|  | /* | 
|  | * Initialize MMU support. | 
|  | * | 
|  | * Copyright (C) 1998-2003 Hewlett-Packard Co | 
|  | *	David Mosberger-Tang <davidm@hpl.hp.com> | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  |  | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/efi.h> | 
|  | #include <linux/elf.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mmzone.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/personality.h> | 
|  | #include <linux/reboot.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/kexec.h> | 
|  |  | 
|  | #include <asm/dma.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/machvec.h> | 
|  | #include <asm/numa.h> | 
|  | #include <asm/patch.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/sal.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/unistd.h> | 
|  | #include <asm/mca.h> | 
|  | #include <asm/paravirt.h> | 
|  |  | 
|  | extern void ia64_tlb_init (void); | 
|  |  | 
|  | unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL; | 
|  |  | 
|  | #ifdef CONFIG_VIRTUAL_MEM_MAP | 
|  | unsigned long VMALLOC_END = VMALLOC_END_INIT; | 
|  | EXPORT_SYMBOL(VMALLOC_END); | 
|  | struct page *vmem_map; | 
|  | EXPORT_SYMBOL(vmem_map); | 
|  | #endif | 
|  |  | 
|  | struct page *zero_page_memmap_ptr;	/* map entry for zero page */ | 
|  | EXPORT_SYMBOL(zero_page_memmap_ptr); | 
|  |  | 
|  | void | 
|  | __ia64_sync_icache_dcache (pte_t pte) | 
|  | { | 
|  | unsigned long addr; | 
|  | struct page *page; | 
|  |  | 
|  | page = pte_page(pte); | 
|  | addr = (unsigned long) page_address(page); | 
|  |  | 
|  | if (test_bit(PG_arch_1, &page->flags)) | 
|  | return;				/* i-cache is already coherent with d-cache */ | 
|  |  | 
|  | flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page))); | 
|  | set_bit(PG_arch_1, &page->flags);	/* mark page as clean */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Since DMA is i-cache coherent, any (complete) pages that were written via | 
|  | * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to | 
|  | * flush them when they get mapped into an executable vm-area. | 
|  | */ | 
|  | void | 
|  | dma_mark_clean(void *addr, size_t size) | 
|  | { | 
|  | unsigned long pg_addr, end; | 
|  |  | 
|  | pg_addr = PAGE_ALIGN((unsigned long) addr); | 
|  | end = (unsigned long) addr + size; | 
|  | while (pg_addr + PAGE_SIZE <= end) { | 
|  | struct page *page = virt_to_page(pg_addr); | 
|  | set_bit(PG_arch_1, &page->flags); | 
|  | pg_addr += PAGE_SIZE; | 
|  | } | 
|  | } | 
|  |  | 
|  | inline void | 
|  | ia64_set_rbs_bot (void) | 
|  | { | 
|  | unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16; | 
|  |  | 
|  | if (stack_size > MAX_USER_STACK_SIZE) | 
|  | stack_size = MAX_USER_STACK_SIZE; | 
|  | current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This performs some platform-dependent address space initialization. | 
|  | * On IA-64, we want to setup the VM area for the register backing | 
|  | * store (which grows upwards) and install the gateway page which is | 
|  | * used for signal trampolines, etc. | 
|  | */ | 
|  | void | 
|  | ia64_init_addr_space (void) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | ia64_set_rbs_bot(); | 
|  |  | 
|  | /* | 
|  | * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore | 
|  | * the problem.  When the process attempts to write to the register backing store | 
|  | * for the first time, it will get a SEGFAULT in this case. | 
|  | */ | 
|  | vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); | 
|  | if (vma) { | 
|  | INIT_LIST_HEAD(&vma->anon_vma_chain); | 
|  | vma->vm_mm = current->mm; | 
|  | vma->vm_start = current->thread.rbs_bot & PAGE_MASK; | 
|  | vma->vm_end = vma->vm_start + PAGE_SIZE; | 
|  | vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT; | 
|  | vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); | 
|  | down_write(¤t->mm->mmap_sem); | 
|  | if (insert_vm_struct(current->mm, vma)) { | 
|  | up_write(¤t->mm->mmap_sem); | 
|  | kmem_cache_free(vm_area_cachep, vma); | 
|  | return; | 
|  | } | 
|  | up_write(¤t->mm->mmap_sem); | 
|  | } | 
|  |  | 
|  | /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */ | 
|  | if (!(current->personality & MMAP_PAGE_ZERO)) { | 
|  | vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); | 
|  | if (vma) { | 
|  | INIT_LIST_HEAD(&vma->anon_vma_chain); | 
|  | vma->vm_mm = current->mm; | 
|  | vma->vm_end = PAGE_SIZE; | 
|  | vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT); | 
|  | vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED; | 
|  | down_write(¤t->mm->mmap_sem); | 
|  | if (insert_vm_struct(current->mm, vma)) { | 
|  | up_write(¤t->mm->mmap_sem); | 
|  | kmem_cache_free(vm_area_cachep, vma); | 
|  | return; | 
|  | } | 
|  | up_write(¤t->mm->mmap_sem); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void | 
|  | free_initmem (void) | 
|  | { | 
|  | unsigned long addr, eaddr; | 
|  |  | 
|  | addr = (unsigned long) ia64_imva(__init_begin); | 
|  | eaddr = (unsigned long) ia64_imva(__init_end); | 
|  | while (addr < eaddr) { | 
|  | ClearPageReserved(virt_to_page(addr)); | 
|  | init_page_count(virt_to_page(addr)); | 
|  | free_page(addr); | 
|  | ++totalram_pages; | 
|  | addr += PAGE_SIZE; | 
|  | } | 
|  | printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n", | 
|  | (__init_end - __init_begin) >> 10); | 
|  | } | 
|  |  | 
|  | void __init | 
|  | free_initrd_mem (unsigned long start, unsigned long end) | 
|  | { | 
|  | struct page *page; | 
|  | /* | 
|  | * EFI uses 4KB pages while the kernel can use 4KB or bigger. | 
|  | * Thus EFI and the kernel may have different page sizes. It is | 
|  | * therefore possible to have the initrd share the same page as | 
|  | * the end of the kernel (given current setup). | 
|  | * | 
|  | * To avoid freeing/using the wrong page (kernel sized) we: | 
|  | *	- align up the beginning of initrd | 
|  | *	- align down the end of initrd | 
|  | * | 
|  | *  |             | | 
|  | *  |=============| a000 | 
|  | *  |             | | 
|  | *  |             | | 
|  | *  |             | 9000 | 
|  | *  |/////////////| | 
|  | *  |/////////////| | 
|  | *  |=============| 8000 | 
|  | *  |///INITRD////| | 
|  | *  |/////////////| | 
|  | *  |/////////////| 7000 | 
|  | *  |             | | 
|  | *  |KKKKKKKKKKKKK| | 
|  | *  |=============| 6000 | 
|  | *  |KKKKKKKKKKKKK| | 
|  | *  |KKKKKKKKKKKKK| | 
|  | *  K=kernel using 8KB pages | 
|  | * | 
|  | * In this example, we must free page 8000 ONLY. So we must align up | 
|  | * initrd_start and keep initrd_end as is. | 
|  | */ | 
|  | start = PAGE_ALIGN(start); | 
|  | end = end & PAGE_MASK; | 
|  |  | 
|  | if (start < end) | 
|  | printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10); | 
|  |  | 
|  | for (; start < end; start += PAGE_SIZE) { | 
|  | if (!virt_addr_valid(start)) | 
|  | continue; | 
|  | page = virt_to_page(start); | 
|  | ClearPageReserved(page); | 
|  | init_page_count(page); | 
|  | free_page(start); | 
|  | ++totalram_pages; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This installs a clean page in the kernel's page table. | 
|  | */ | 
|  | static struct page * __init | 
|  | put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  |  | 
|  | if (!PageReserved(page)) | 
|  | printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n", | 
|  | page_address(page)); | 
|  |  | 
|  | pgd = pgd_offset_k(address);		/* note: this is NOT pgd_offset()! */ | 
|  |  | 
|  | { | 
|  | pud = pud_alloc(&init_mm, pgd, address); | 
|  | if (!pud) | 
|  | goto out; | 
|  | pmd = pmd_alloc(&init_mm, pud, address); | 
|  | if (!pmd) | 
|  | goto out; | 
|  | pte = pte_alloc_kernel(pmd, address); | 
|  | if (!pte) | 
|  | goto out; | 
|  | if (!pte_none(*pte)) | 
|  | goto out; | 
|  | set_pte(pte, mk_pte(page, pgprot)); | 
|  | } | 
|  | out: | 
|  | /* no need for flush_tlb */ | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static void __init | 
|  | setup_gate (void) | 
|  | { | 
|  | void *gate_section; | 
|  | struct page *page; | 
|  |  | 
|  | /* | 
|  | * Map the gate page twice: once read-only to export the ELF | 
|  | * headers etc. and once execute-only page to enable | 
|  | * privilege-promotion via "epc": | 
|  | */ | 
|  | gate_section = paravirt_get_gate_section(); | 
|  | page = virt_to_page(ia64_imva(gate_section)); | 
|  | put_kernel_page(page, GATE_ADDR, PAGE_READONLY); | 
|  | #ifdef HAVE_BUGGY_SEGREL | 
|  | page = virt_to_page(ia64_imva(gate_section + PAGE_SIZE)); | 
|  | put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE); | 
|  | #else | 
|  | put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE); | 
|  | /* Fill in the holes (if any) with read-only zero pages: */ | 
|  | { | 
|  | unsigned long addr; | 
|  |  | 
|  | for (addr = GATE_ADDR + PAGE_SIZE; | 
|  | addr < GATE_ADDR + PERCPU_PAGE_SIZE; | 
|  | addr += PAGE_SIZE) | 
|  | { | 
|  | put_kernel_page(ZERO_PAGE(0), addr, | 
|  | PAGE_READONLY); | 
|  | put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE, | 
|  | PAGE_READONLY); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | ia64_patch_gate(); | 
|  | } | 
|  |  | 
|  | void __devinit | 
|  | ia64_mmu_init (void *my_cpu_data) | 
|  | { | 
|  | unsigned long pta, impl_va_bits; | 
|  | extern void __devinit tlb_init (void); | 
|  |  | 
|  | #ifdef CONFIG_DISABLE_VHPT | 
|  | #	define VHPT_ENABLE_BIT	0 | 
|  | #else | 
|  | #	define VHPT_ENABLE_BIT	1 | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped | 
|  | * address space.  The IA-64 architecture guarantees that at least 50 bits of | 
|  | * virtual address space are implemented but if we pick a large enough page size | 
|  | * (e.g., 64KB), the mapped address space is big enough that it will overlap with | 
|  | * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages, | 
|  | * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a | 
|  | * problem in practice.  Alternatively, we could truncate the top of the mapped | 
|  | * address space to not permit mappings that would overlap with the VMLPT. | 
|  | * --davidm 00/12/06 | 
|  | */ | 
|  | #	define pte_bits			3 | 
|  | #	define mapped_space_bits	(3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT) | 
|  | /* | 
|  | * The virtual page table has to cover the entire implemented address space within | 
|  | * a region even though not all of this space may be mappable.  The reason for | 
|  | * this is that the Access bit and Dirty bit fault handlers perform | 
|  | * non-speculative accesses to the virtual page table, so the address range of the | 
|  | * virtual page table itself needs to be covered by virtual page table. | 
|  | */ | 
|  | #	define vmlpt_bits		(impl_va_bits - PAGE_SHIFT + pte_bits) | 
|  | #	define POW2(n)			(1ULL << (n)) | 
|  |  | 
|  | impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61))); | 
|  |  | 
|  | if (impl_va_bits < 51 || impl_va_bits > 61) | 
|  | panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1); | 
|  | /* | 
|  | * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need, | 
|  | * which must fit into "vmlpt_bits - pte_bits" slots. Second half of | 
|  | * the test makes sure that our mapped space doesn't overlap the | 
|  | * unimplemented hole in the middle of the region. | 
|  | */ | 
|  | if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) || | 
|  | (mapped_space_bits > impl_va_bits - 1)) | 
|  | panic("Cannot build a big enough virtual-linear page table" | 
|  | " to cover mapped address space.\n" | 
|  | " Try using a smaller page size.\n"); | 
|  |  | 
|  |  | 
|  | /* place the VMLPT at the end of each page-table mapped region: */ | 
|  | pta = POW2(61) - POW2(vmlpt_bits); | 
|  |  | 
|  | /* | 
|  | * Set the (virtually mapped linear) page table address.  Bit | 
|  | * 8 selects between the short and long format, bits 2-7 the | 
|  | * size of the table, and bit 0 whether the VHPT walker is | 
|  | * enabled. | 
|  | */ | 
|  | ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT); | 
|  |  | 
|  | ia64_tlb_init(); | 
|  |  | 
|  | #ifdef	CONFIG_HUGETLB_PAGE | 
|  | ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2); | 
|  | ia64_srlz_d(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_VIRTUAL_MEM_MAP | 
|  | int vmemmap_find_next_valid_pfn(int node, int i) | 
|  | { | 
|  | unsigned long end_address, hole_next_pfn; | 
|  | unsigned long stop_address; | 
|  | pg_data_t *pgdat = NODE_DATA(node); | 
|  |  | 
|  | end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i]; | 
|  | end_address = PAGE_ALIGN(end_address); | 
|  |  | 
|  | stop_address = (unsigned long) &vmem_map[ | 
|  | pgdat->node_start_pfn + pgdat->node_spanned_pages]; | 
|  |  | 
|  | do { | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  |  | 
|  | pgd = pgd_offset_k(end_address); | 
|  | if (pgd_none(*pgd)) { | 
|  | end_address += PGDIR_SIZE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | pud = pud_offset(pgd, end_address); | 
|  | if (pud_none(*pud)) { | 
|  | end_address += PUD_SIZE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | pmd = pmd_offset(pud, end_address); | 
|  | if (pmd_none(*pmd)) { | 
|  | end_address += PMD_SIZE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | pte = pte_offset_kernel(pmd, end_address); | 
|  | retry_pte: | 
|  | if (pte_none(*pte)) { | 
|  | end_address += PAGE_SIZE; | 
|  | pte++; | 
|  | if ((end_address < stop_address) && | 
|  | (end_address != ALIGN(end_address, 1UL << PMD_SHIFT))) | 
|  | goto retry_pte; | 
|  | continue; | 
|  | } | 
|  | /* Found next valid vmem_map page */ | 
|  | break; | 
|  | } while (end_address < stop_address); | 
|  |  | 
|  | end_address = min(end_address, stop_address); | 
|  | end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1; | 
|  | hole_next_pfn = end_address / sizeof(struct page); | 
|  | return hole_next_pfn - pgdat->node_start_pfn; | 
|  | } | 
|  |  | 
|  | int __init create_mem_map_page_table(u64 start, u64 end, void *arg) | 
|  | { | 
|  | unsigned long address, start_page, end_page; | 
|  | struct page *map_start, *map_end; | 
|  | int node; | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  |  | 
|  | map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); | 
|  | map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT); | 
|  |  | 
|  | start_page = (unsigned long) map_start & PAGE_MASK; | 
|  | end_page = PAGE_ALIGN((unsigned long) map_end); | 
|  | node = paddr_to_nid(__pa(start)); | 
|  |  | 
|  | for (address = start_page; address < end_page; address += PAGE_SIZE) { | 
|  | pgd = pgd_offset_k(address); | 
|  | if (pgd_none(*pgd)) | 
|  | pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); | 
|  | pud = pud_offset(pgd, address); | 
|  |  | 
|  | if (pud_none(*pud)) | 
|  | pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); | 
|  | pmd = pmd_offset(pud, address); | 
|  |  | 
|  | if (pmd_none(*pmd)) | 
|  | pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); | 
|  | pte = pte_offset_kernel(pmd, address); | 
|  |  | 
|  | if (pte_none(*pte)) | 
|  | set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT, | 
|  | PAGE_KERNEL)); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct memmap_init_callback_data { | 
|  | struct page *start; | 
|  | struct page *end; | 
|  | int nid; | 
|  | unsigned long zone; | 
|  | }; | 
|  |  | 
|  | static int __meminit | 
|  | virtual_memmap_init(u64 start, u64 end, void *arg) | 
|  | { | 
|  | struct memmap_init_callback_data *args; | 
|  | struct page *map_start, *map_end; | 
|  |  | 
|  | args = (struct memmap_init_callback_data *) arg; | 
|  | map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); | 
|  | map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT); | 
|  |  | 
|  | if (map_start < args->start) | 
|  | map_start = args->start; | 
|  | if (map_end > args->end) | 
|  | map_end = args->end; | 
|  |  | 
|  | /* | 
|  | * We have to initialize "out of bounds" struct page elements that fit completely | 
|  | * on the same pages that were allocated for the "in bounds" elements because they | 
|  | * may be referenced later (and found to be "reserved"). | 
|  | */ | 
|  | map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page); | 
|  | map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end) | 
|  | / sizeof(struct page)); | 
|  |  | 
|  | if (map_start < map_end) | 
|  | memmap_init_zone((unsigned long)(map_end - map_start), | 
|  | args->nid, args->zone, page_to_pfn(map_start), | 
|  | MEMMAP_EARLY); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __meminit | 
|  | memmap_init (unsigned long size, int nid, unsigned long zone, | 
|  | unsigned long start_pfn) | 
|  | { | 
|  | if (!vmem_map) | 
|  | memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY); | 
|  | else { | 
|  | struct page *start; | 
|  | struct memmap_init_callback_data args; | 
|  |  | 
|  | start = pfn_to_page(start_pfn); | 
|  | args.start = start; | 
|  | args.end = start + size; | 
|  | args.nid = nid; | 
|  | args.zone = zone; | 
|  |  | 
|  | efi_memmap_walk(virtual_memmap_init, &args); | 
|  | } | 
|  | } | 
|  |  | 
|  | int | 
|  | ia64_pfn_valid (unsigned long pfn) | 
|  | { | 
|  | char byte; | 
|  | struct page *pg = pfn_to_page(pfn); | 
|  |  | 
|  | return     (__get_user(byte, (char __user *) pg) == 0) | 
|  | && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK)) | 
|  | || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0)); | 
|  | } | 
|  | EXPORT_SYMBOL(ia64_pfn_valid); | 
|  |  | 
|  | int __init find_largest_hole(u64 start, u64 end, void *arg) | 
|  | { | 
|  | u64 *max_gap = arg; | 
|  |  | 
|  | static u64 last_end = PAGE_OFFSET; | 
|  |  | 
|  | /* NOTE: this algorithm assumes efi memmap table is ordered */ | 
|  |  | 
|  | if (*max_gap < (start - last_end)) | 
|  | *max_gap = start - last_end; | 
|  | last_end = end; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_VIRTUAL_MEM_MAP */ | 
|  |  | 
|  | int __init register_active_ranges(u64 start, u64 len, int nid) | 
|  | { | 
|  | u64 end = start + len; | 
|  |  | 
|  | #ifdef CONFIG_KEXEC | 
|  | if (start > crashk_res.start && start < crashk_res.end) | 
|  | start = crashk_res.end; | 
|  | if (end > crashk_res.start && end < crashk_res.end) | 
|  | end = crashk_res.start; | 
|  | #endif | 
|  |  | 
|  | if (start < end) | 
|  | add_active_range(nid, __pa(start) >> PAGE_SHIFT, | 
|  | __pa(end) >> PAGE_SHIFT); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init | 
|  | count_reserved_pages(u64 start, u64 end, void *arg) | 
|  | { | 
|  | unsigned long num_reserved = 0; | 
|  | unsigned long *count = arg; | 
|  |  | 
|  | for (; start < end; start += PAGE_SIZE) | 
|  | if (PageReserved(virt_to_page(start))) | 
|  | ++num_reserved; | 
|  | *count += num_reserved; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int | 
|  | find_max_min_low_pfn (u64 start, u64 end, void *arg) | 
|  | { | 
|  | unsigned long pfn_start, pfn_end; | 
|  | #ifdef CONFIG_FLATMEM | 
|  | pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT; | 
|  | pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT; | 
|  | #else | 
|  | pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT; | 
|  | pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT; | 
|  | #endif | 
|  | min_low_pfn = min(min_low_pfn, pfn_start); | 
|  | max_low_pfn = max(max_low_pfn, pfn_end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Boot command-line option "nolwsys" can be used to disable the use of any light-weight | 
|  | * system call handler.  When this option is in effect, all fsyscalls will end up bubbling | 
|  | * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is | 
|  | * useful for performance testing, but conceivably could also come in handy for debugging | 
|  | * purposes. | 
|  | */ | 
|  |  | 
|  | static int nolwsys __initdata; | 
|  |  | 
|  | static int __init | 
|  | nolwsys_setup (char *s) | 
|  | { | 
|  | nolwsys = 1; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("nolwsys", nolwsys_setup); | 
|  |  | 
|  | void __init | 
|  | mem_init (void) | 
|  | { | 
|  | long reserved_pages, codesize, datasize, initsize; | 
|  | pg_data_t *pgdat; | 
|  | int i; | 
|  |  | 
|  | BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE); | 
|  | BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE); | 
|  | BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE); | 
|  |  | 
|  | #ifdef CONFIG_PCI | 
|  | /* | 
|  | * This needs to be called _after_ the command line has been parsed but _before_ | 
|  | * any drivers that may need the PCI DMA interface are initialized or bootmem has | 
|  | * been freed. | 
|  | */ | 
|  | platform_dma_init(); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_FLATMEM | 
|  | BUG_ON(!mem_map); | 
|  | max_mapnr = max_low_pfn; | 
|  | #endif | 
|  |  | 
|  | high_memory = __va(max_low_pfn * PAGE_SIZE); | 
|  |  | 
|  | for_each_online_pgdat(pgdat) | 
|  | if (pgdat->bdata->node_bootmem_map) | 
|  | totalram_pages += free_all_bootmem_node(pgdat); | 
|  |  | 
|  | reserved_pages = 0; | 
|  | efi_memmap_walk(count_reserved_pages, &reserved_pages); | 
|  |  | 
|  | codesize =  (unsigned long) _etext - (unsigned long) _stext; | 
|  | datasize =  (unsigned long) _edata - (unsigned long) _etext; | 
|  | initsize =  (unsigned long) __init_end - (unsigned long) __init_begin; | 
|  |  | 
|  | printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, " | 
|  | "%luk data, %luk init)\n", nr_free_pages() << (PAGE_SHIFT - 10), | 
|  | num_physpages << (PAGE_SHIFT - 10), codesize >> 10, | 
|  | reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * For fsyscall entrpoints with no light-weight handler, use the ordinary | 
|  | * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry | 
|  | * code can tell them apart. | 
|  | */ | 
|  | for (i = 0; i < NR_syscalls; ++i) { | 
|  | extern unsigned long sys_call_table[NR_syscalls]; | 
|  | unsigned long *fsyscall_table = paravirt_get_fsyscall_table(); | 
|  |  | 
|  | if (!fsyscall_table[i] || nolwsys) | 
|  | fsyscall_table[i] = sys_call_table[i] | 1; | 
|  | } | 
|  | setup_gate(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | int arch_add_memory(int nid, u64 start, u64 size) | 
|  | { | 
|  | pg_data_t *pgdat; | 
|  | struct zone *zone; | 
|  | unsigned long start_pfn = start >> PAGE_SHIFT; | 
|  | unsigned long nr_pages = size >> PAGE_SHIFT; | 
|  | int ret; | 
|  |  | 
|  | pgdat = NODE_DATA(nid); | 
|  |  | 
|  | zone = pgdat->node_zones + ZONE_NORMAL; | 
|  | ret = __add_pages(nid, zone, start_pfn, nr_pages); | 
|  |  | 
|  | if (ret) | 
|  | printk("%s: Problem encountered in __add_pages() as ret=%d\n", | 
|  | __func__,  ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Even when CONFIG_IA32_SUPPORT is not enabled it is | 
|  | * useful to have the Linux/x86 domain registered to | 
|  | * avoid an attempted module load when emulators call | 
|  | * personality(PER_LINUX32). This saves several milliseconds | 
|  | * on each such call. | 
|  | */ | 
|  | static struct exec_domain ia32_exec_domain; | 
|  |  | 
|  | static int __init | 
|  | per_linux32_init(void) | 
|  | { | 
|  | ia32_exec_domain.name = "Linux/x86"; | 
|  | ia32_exec_domain.handler = NULL; | 
|  | ia32_exec_domain.pers_low = PER_LINUX32; | 
|  | ia32_exec_domain.pers_high = PER_LINUX32; | 
|  | ia32_exec_domain.signal_map = default_exec_domain.signal_map; | 
|  | ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap; | 
|  | register_exec_domain(&ia32_exec_domain); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | __initcall(per_linux32_init); |