|  | /* | 
|  | * Xen mmu operations | 
|  | * | 
|  | * This file contains the various mmu fetch and update operations. | 
|  | * The most important job they must perform is the mapping between the | 
|  | * domain's pfn and the overall machine mfns. | 
|  | * | 
|  | * Xen allows guests to directly update the pagetable, in a controlled | 
|  | * fashion.  In other words, the guest modifies the same pagetable | 
|  | * that the CPU actually uses, which eliminates the overhead of having | 
|  | * a separate shadow pagetable. | 
|  | * | 
|  | * In order to allow this, it falls on the guest domain to map its | 
|  | * notion of a "physical" pfn - which is just a domain-local linear | 
|  | * address - into a real "machine address" which the CPU's MMU can | 
|  | * use. | 
|  | * | 
|  | * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be | 
|  | * inserted directly into the pagetable.  When creating a new | 
|  | * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely, | 
|  | * when reading the content back with __(pgd|pmd|pte)_val, it converts | 
|  | * the mfn back into a pfn. | 
|  | * | 
|  | * The other constraint is that all pages which make up a pagetable | 
|  | * must be mapped read-only in the guest.  This prevents uncontrolled | 
|  | * guest updates to the pagetable.  Xen strictly enforces this, and | 
|  | * will disallow any pagetable update which will end up mapping a | 
|  | * pagetable page RW, and will disallow using any writable page as a | 
|  | * pagetable. | 
|  | * | 
|  | * Naively, when loading %cr3 with the base of a new pagetable, Xen | 
|  | * would need to validate the whole pagetable before going on. | 
|  | * Naturally, this is quite slow.  The solution is to "pin" a | 
|  | * pagetable, which enforces all the constraints on the pagetable even | 
|  | * when it is not actively in use.  This menas that Xen can be assured | 
|  | * that it is still valid when you do load it into %cr3, and doesn't | 
|  | * need to revalidate it. | 
|  | * | 
|  | * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 | 
|  | */ | 
|  | #include <linux/sched.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/bug.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/seq_file.h> | 
|  |  | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/fixmap.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/paravirt.h> | 
|  | #include <asm/e820.h> | 
|  | #include <asm/linkage.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/init.h> | 
|  | #include <asm/pat.h> | 
|  |  | 
|  | #include <asm/xen/hypercall.h> | 
|  | #include <asm/xen/hypervisor.h> | 
|  |  | 
|  | #include <xen/xen.h> | 
|  | #include <xen/page.h> | 
|  | #include <xen/interface/xen.h> | 
|  | #include <xen/interface/hvm/hvm_op.h> | 
|  | #include <xen/interface/version.h> | 
|  | #include <xen/interface/memory.h> | 
|  | #include <xen/hvc-console.h> | 
|  |  | 
|  | #include "multicalls.h" | 
|  | #include "mmu.h" | 
|  | #include "debugfs.h" | 
|  |  | 
|  | /* | 
|  | * Protects atomic reservation decrease/increase against concurrent increases. | 
|  | * Also protects non-atomic updates of current_pages and balloon lists. | 
|  | */ | 
|  | DEFINE_SPINLOCK(xen_reservation_lock); | 
|  |  | 
|  | /* | 
|  | * Identity map, in addition to plain kernel map.  This needs to be | 
|  | * large enough to allocate page table pages to allocate the rest. | 
|  | * Each page can map 2MB. | 
|  | */ | 
|  | #define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4) | 
|  | static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES); | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | /* l3 pud for userspace vsyscall mapping */ | 
|  | static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss; | 
|  | #endif /* CONFIG_X86_64 */ | 
|  |  | 
|  | /* | 
|  | * Note about cr3 (pagetable base) values: | 
|  | * | 
|  | * xen_cr3 contains the current logical cr3 value; it contains the | 
|  | * last set cr3.  This may not be the current effective cr3, because | 
|  | * its update may be being lazily deferred.  However, a vcpu looking | 
|  | * at its own cr3 can use this value knowing that it everything will | 
|  | * be self-consistent. | 
|  | * | 
|  | * xen_current_cr3 contains the actual vcpu cr3; it is set once the | 
|  | * hypercall to set the vcpu cr3 is complete (so it may be a little | 
|  | * out of date, but it will never be set early).  If one vcpu is | 
|  | * looking at another vcpu's cr3 value, it should use this variable. | 
|  | */ | 
|  | DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */ | 
|  | DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Just beyond the highest usermode address.  STACK_TOP_MAX has a | 
|  | * redzone above it, so round it up to a PGD boundary. | 
|  | */ | 
|  | #define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK) | 
|  |  | 
|  | unsigned long arbitrary_virt_to_mfn(void *vaddr) | 
|  | { | 
|  | xmaddr_t maddr = arbitrary_virt_to_machine(vaddr); | 
|  |  | 
|  | return PFN_DOWN(maddr.maddr); | 
|  | } | 
|  |  | 
|  | xmaddr_t arbitrary_virt_to_machine(void *vaddr) | 
|  | { | 
|  | unsigned long address = (unsigned long)vaddr; | 
|  | unsigned int level; | 
|  | pte_t *pte; | 
|  | unsigned offset; | 
|  |  | 
|  | /* | 
|  | * if the PFN is in the linear mapped vaddr range, we can just use | 
|  | * the (quick) virt_to_machine() p2m lookup | 
|  | */ | 
|  | if (virt_addr_valid(vaddr)) | 
|  | return virt_to_machine(vaddr); | 
|  |  | 
|  | /* otherwise we have to do a (slower) full page-table walk */ | 
|  |  | 
|  | pte = lookup_address(address, &level); | 
|  | BUG_ON(pte == NULL); | 
|  | offset = address & ~PAGE_MASK; | 
|  | return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine); | 
|  |  | 
|  | void make_lowmem_page_readonly(void *vaddr) | 
|  | { | 
|  | pte_t *pte, ptev; | 
|  | unsigned long address = (unsigned long)vaddr; | 
|  | unsigned int level; | 
|  |  | 
|  | pte = lookup_address(address, &level); | 
|  | if (pte == NULL) | 
|  | return;		/* vaddr missing */ | 
|  |  | 
|  | ptev = pte_wrprotect(*pte); | 
|  |  | 
|  | if (HYPERVISOR_update_va_mapping(address, ptev, 0)) | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | void make_lowmem_page_readwrite(void *vaddr) | 
|  | { | 
|  | pte_t *pte, ptev; | 
|  | unsigned long address = (unsigned long)vaddr; | 
|  | unsigned int level; | 
|  |  | 
|  | pte = lookup_address(address, &level); | 
|  | if (pte == NULL) | 
|  | return;		/* vaddr missing */ | 
|  |  | 
|  | ptev = pte_mkwrite(*pte); | 
|  |  | 
|  | if (HYPERVISOR_update_va_mapping(address, ptev, 0)) | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  |  | 
|  | static bool xen_page_pinned(void *ptr) | 
|  | { | 
|  | struct page *page = virt_to_page(ptr); | 
|  |  | 
|  | return PagePinned(page); | 
|  | } | 
|  |  | 
|  | void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid) | 
|  | { | 
|  | struct multicall_space mcs; | 
|  | struct mmu_update *u; | 
|  |  | 
|  | mcs = xen_mc_entry(sizeof(*u)); | 
|  | u = mcs.args; | 
|  |  | 
|  | /* ptep might be kmapped when using 32-bit HIGHPTE */ | 
|  | u->ptr = virt_to_machine(ptep).maddr; | 
|  | u->val = pte_val_ma(pteval); | 
|  |  | 
|  | MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid); | 
|  |  | 
|  | xen_mc_issue(PARAVIRT_LAZY_MMU); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(xen_set_domain_pte); | 
|  |  | 
|  | static void xen_extend_mmu_update(const struct mmu_update *update) | 
|  | { | 
|  | struct multicall_space mcs; | 
|  | struct mmu_update *u; | 
|  |  | 
|  | mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u)); | 
|  |  | 
|  | if (mcs.mc != NULL) { | 
|  | mcs.mc->args[1]++; | 
|  | } else { | 
|  | mcs = __xen_mc_entry(sizeof(*u)); | 
|  | MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); | 
|  | } | 
|  |  | 
|  | u = mcs.args; | 
|  | *u = *update; | 
|  | } | 
|  |  | 
|  | static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val) | 
|  | { | 
|  | struct mmu_update u; | 
|  |  | 
|  | preempt_disable(); | 
|  |  | 
|  | xen_mc_batch(); | 
|  |  | 
|  | /* ptr may be ioremapped for 64-bit pagetable setup */ | 
|  | u.ptr = arbitrary_virt_to_machine(ptr).maddr; | 
|  | u.val = pmd_val_ma(val); | 
|  | xen_extend_mmu_update(&u); | 
|  |  | 
|  | xen_mc_issue(PARAVIRT_LAZY_MMU); | 
|  |  | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static void xen_set_pmd(pmd_t *ptr, pmd_t val) | 
|  | { | 
|  | /* If page is not pinned, we can just update the entry | 
|  | directly */ | 
|  | if (!xen_page_pinned(ptr)) { | 
|  | *ptr = val; | 
|  | return; | 
|  | } | 
|  |  | 
|  | xen_set_pmd_hyper(ptr, val); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Associate a virtual page frame with a given physical page frame | 
|  | * and protection flags for that frame. | 
|  | */ | 
|  | void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags) | 
|  | { | 
|  | set_pte_vaddr(vaddr, mfn_pte(mfn, flags)); | 
|  | } | 
|  |  | 
|  | static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval) | 
|  | { | 
|  | struct mmu_update u; | 
|  |  | 
|  | if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) | 
|  | return false; | 
|  |  | 
|  | xen_mc_batch(); | 
|  |  | 
|  | u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; | 
|  | u.val = pte_val_ma(pteval); | 
|  | xen_extend_mmu_update(&u); | 
|  |  | 
|  | xen_mc_issue(PARAVIRT_LAZY_MMU); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void xen_set_pte(pte_t *ptep, pte_t pteval) | 
|  | { | 
|  | if (!xen_batched_set_pte(ptep, pteval)) | 
|  | native_set_pte(ptep, pteval); | 
|  | } | 
|  |  | 
|  | static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr, | 
|  | pte_t *ptep, pte_t pteval) | 
|  | { | 
|  | xen_set_pte(ptep, pteval); | 
|  | } | 
|  |  | 
|  | pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, | 
|  | unsigned long addr, pte_t *ptep) | 
|  | { | 
|  | /* Just return the pte as-is.  We preserve the bits on commit */ | 
|  | return *ptep; | 
|  | } | 
|  |  | 
|  | void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr, | 
|  | pte_t *ptep, pte_t pte) | 
|  | { | 
|  | struct mmu_update u; | 
|  |  | 
|  | xen_mc_batch(); | 
|  |  | 
|  | u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD; | 
|  | u.val = pte_val_ma(pte); | 
|  | xen_extend_mmu_update(&u); | 
|  |  | 
|  | xen_mc_issue(PARAVIRT_LAZY_MMU); | 
|  | } | 
|  |  | 
|  | /* Assume pteval_t is equivalent to all the other *val_t types. */ | 
|  | static pteval_t pte_mfn_to_pfn(pteval_t val) | 
|  | { | 
|  | if (val & _PAGE_PRESENT) { | 
|  | unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; | 
|  | pteval_t flags = val & PTE_FLAGS_MASK; | 
|  | val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags; | 
|  | } | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static pteval_t pte_pfn_to_mfn(pteval_t val) | 
|  | { | 
|  | if (val & _PAGE_PRESENT) { | 
|  | unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; | 
|  | pteval_t flags = val & PTE_FLAGS_MASK; | 
|  | unsigned long mfn; | 
|  |  | 
|  | if (!xen_feature(XENFEAT_auto_translated_physmap)) | 
|  | mfn = get_phys_to_machine(pfn); | 
|  | else | 
|  | mfn = pfn; | 
|  | /* | 
|  | * If there's no mfn for the pfn, then just create an | 
|  | * empty non-present pte.  Unfortunately this loses | 
|  | * information about the original pfn, so | 
|  | * pte_mfn_to_pfn is asymmetric. | 
|  | */ | 
|  | if (unlikely(mfn == INVALID_P2M_ENTRY)) { | 
|  | mfn = 0; | 
|  | flags = 0; | 
|  | } else { | 
|  | /* | 
|  | * Paramount to do this test _after_ the | 
|  | * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY & | 
|  | * IDENTITY_FRAME_BIT resolves to true. | 
|  | */ | 
|  | mfn &= ~FOREIGN_FRAME_BIT; | 
|  | if (mfn & IDENTITY_FRAME_BIT) { | 
|  | mfn &= ~IDENTITY_FRAME_BIT; | 
|  | flags |= _PAGE_IOMAP; | 
|  | } | 
|  | } | 
|  | val = ((pteval_t)mfn << PAGE_SHIFT) | flags; | 
|  | } | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static pteval_t iomap_pte(pteval_t val) | 
|  | { | 
|  | if (val & _PAGE_PRESENT) { | 
|  | unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; | 
|  | pteval_t flags = val & PTE_FLAGS_MASK; | 
|  |  | 
|  | /* We assume the pte frame number is a MFN, so | 
|  | just use it as-is. */ | 
|  | val = ((pteval_t)pfn << PAGE_SHIFT) | flags; | 
|  | } | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static pteval_t xen_pte_val(pte_t pte) | 
|  | { | 
|  | pteval_t pteval = pte.pte; | 
|  |  | 
|  | /* If this is a WC pte, convert back from Xen WC to Linux WC */ | 
|  | if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) { | 
|  | WARN_ON(!pat_enabled); | 
|  | pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT; | 
|  | } | 
|  |  | 
|  | if (xen_initial_domain() && (pteval & _PAGE_IOMAP)) | 
|  | return pteval; | 
|  |  | 
|  | return pte_mfn_to_pfn(pteval); | 
|  | } | 
|  | PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val); | 
|  |  | 
|  | static pgdval_t xen_pgd_val(pgd_t pgd) | 
|  | { | 
|  | return pte_mfn_to_pfn(pgd.pgd); | 
|  | } | 
|  | PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val); | 
|  |  | 
|  | /* | 
|  | * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7 | 
|  | * are reserved for now, to correspond to the Intel-reserved PAT | 
|  | * types. | 
|  | * | 
|  | * We expect Linux's PAT set as follows: | 
|  | * | 
|  | * Idx  PTE flags        Linux    Xen    Default | 
|  | * 0                     WB       WB     WB | 
|  | * 1            PWT      WC       WT     WT | 
|  | * 2        PCD          UC-      UC-    UC- | 
|  | * 3        PCD PWT      UC       UC     UC | 
|  | * 4    PAT              WB       WC     WB | 
|  | * 5    PAT     PWT      WC       WP     WT | 
|  | * 6    PAT PCD          UC-      UC     UC- | 
|  | * 7    PAT PCD PWT      UC       UC     UC | 
|  | */ | 
|  |  | 
|  | void xen_set_pat(u64 pat) | 
|  | { | 
|  | /* We expect Linux to use a PAT setting of | 
|  | * UC UC- WC WB (ignoring the PAT flag) */ | 
|  | WARN_ON(pat != 0x0007010600070106ull); | 
|  | } | 
|  |  | 
|  | static pte_t xen_make_pte(pteval_t pte) | 
|  | { | 
|  | phys_addr_t addr = (pte & PTE_PFN_MASK); | 
|  |  | 
|  | /* If Linux is trying to set a WC pte, then map to the Xen WC. | 
|  | * If _PAGE_PAT is set, then it probably means it is really | 
|  | * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope | 
|  | * things work out OK... | 
|  | * | 
|  | * (We should never see kernel mappings with _PAGE_PSE set, | 
|  | * but we could see hugetlbfs mappings, I think.). | 
|  | */ | 
|  | if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) { | 
|  | if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT) | 
|  | pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unprivileged domains are allowed to do IOMAPpings for | 
|  | * PCI passthrough, but not map ISA space.  The ISA | 
|  | * mappings are just dummy local mappings to keep other | 
|  | * parts of the kernel happy. | 
|  | */ | 
|  | if (unlikely(pte & _PAGE_IOMAP) && | 
|  | (xen_initial_domain() || addr >= ISA_END_ADDRESS)) { | 
|  | pte = iomap_pte(pte); | 
|  | } else { | 
|  | pte &= ~_PAGE_IOMAP; | 
|  | pte = pte_pfn_to_mfn(pte); | 
|  | } | 
|  |  | 
|  | return native_make_pte(pte); | 
|  | } | 
|  | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte); | 
|  |  | 
|  | #ifdef CONFIG_XEN_DEBUG | 
|  | pte_t xen_make_pte_debug(pteval_t pte) | 
|  | { | 
|  | phys_addr_t addr = (pte & PTE_PFN_MASK); | 
|  | phys_addr_t other_addr; | 
|  | bool io_page = false; | 
|  | pte_t _pte; | 
|  |  | 
|  | if (pte & _PAGE_IOMAP) | 
|  | io_page = true; | 
|  |  | 
|  | _pte = xen_make_pte(pte); | 
|  |  | 
|  | if (!addr) | 
|  | return _pte; | 
|  |  | 
|  | if (io_page && | 
|  | (xen_initial_domain() || addr >= ISA_END_ADDRESS)) { | 
|  | other_addr = pfn_to_mfn(addr >> PAGE_SHIFT) << PAGE_SHIFT; | 
|  | WARN_ONCE(addr != other_addr, | 
|  | "0x%lx is using VM_IO, but it is 0x%lx!\n", | 
|  | (unsigned long)addr, (unsigned long)other_addr); | 
|  | } else { | 
|  | pteval_t iomap_set = (_pte.pte & PTE_FLAGS_MASK) & _PAGE_IOMAP; | 
|  | other_addr = (_pte.pte & PTE_PFN_MASK); | 
|  | WARN_ONCE((addr == other_addr) && (!io_page) && (!iomap_set), | 
|  | "0x%lx is missing VM_IO (and wasn't fixed)!\n", | 
|  | (unsigned long)addr); | 
|  | } | 
|  |  | 
|  | return _pte; | 
|  | } | 
|  | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_debug); | 
|  | #endif | 
|  |  | 
|  | static pgd_t xen_make_pgd(pgdval_t pgd) | 
|  | { | 
|  | pgd = pte_pfn_to_mfn(pgd); | 
|  | return native_make_pgd(pgd); | 
|  | } | 
|  | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd); | 
|  |  | 
|  | static pmdval_t xen_pmd_val(pmd_t pmd) | 
|  | { | 
|  | return pte_mfn_to_pfn(pmd.pmd); | 
|  | } | 
|  | PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val); | 
|  |  | 
|  | static void xen_set_pud_hyper(pud_t *ptr, pud_t val) | 
|  | { | 
|  | struct mmu_update u; | 
|  |  | 
|  | preempt_disable(); | 
|  |  | 
|  | xen_mc_batch(); | 
|  |  | 
|  | /* ptr may be ioremapped for 64-bit pagetable setup */ | 
|  | u.ptr = arbitrary_virt_to_machine(ptr).maddr; | 
|  | u.val = pud_val_ma(val); | 
|  | xen_extend_mmu_update(&u); | 
|  |  | 
|  | xen_mc_issue(PARAVIRT_LAZY_MMU); | 
|  |  | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static void xen_set_pud(pud_t *ptr, pud_t val) | 
|  | { | 
|  | /* If page is not pinned, we can just update the entry | 
|  | directly */ | 
|  | if (!xen_page_pinned(ptr)) { | 
|  | *ptr = val; | 
|  | return; | 
|  | } | 
|  |  | 
|  | xen_set_pud_hyper(ptr, val); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_PAE | 
|  | static void xen_set_pte_atomic(pte_t *ptep, pte_t pte) | 
|  | { | 
|  | set_64bit((u64 *)ptep, native_pte_val(pte)); | 
|  | } | 
|  |  | 
|  | static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) | 
|  | { | 
|  | if (!xen_batched_set_pte(ptep, native_make_pte(0))) | 
|  | native_pte_clear(mm, addr, ptep); | 
|  | } | 
|  |  | 
|  | static void xen_pmd_clear(pmd_t *pmdp) | 
|  | { | 
|  | set_pmd(pmdp, __pmd(0)); | 
|  | } | 
|  | #endif	/* CONFIG_X86_PAE */ | 
|  |  | 
|  | static pmd_t xen_make_pmd(pmdval_t pmd) | 
|  | { | 
|  | pmd = pte_pfn_to_mfn(pmd); | 
|  | return native_make_pmd(pmd); | 
|  | } | 
|  | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd); | 
|  |  | 
|  | #if PAGETABLE_LEVELS == 4 | 
|  | static pudval_t xen_pud_val(pud_t pud) | 
|  | { | 
|  | return pte_mfn_to_pfn(pud.pud); | 
|  | } | 
|  | PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val); | 
|  |  | 
|  | static pud_t xen_make_pud(pudval_t pud) | 
|  | { | 
|  | pud = pte_pfn_to_mfn(pud); | 
|  |  | 
|  | return native_make_pud(pud); | 
|  | } | 
|  | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud); | 
|  |  | 
|  | static pgd_t *xen_get_user_pgd(pgd_t *pgd) | 
|  | { | 
|  | pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK); | 
|  | unsigned offset = pgd - pgd_page; | 
|  | pgd_t *user_ptr = NULL; | 
|  |  | 
|  | if (offset < pgd_index(USER_LIMIT)) { | 
|  | struct page *page = virt_to_page(pgd_page); | 
|  | user_ptr = (pgd_t *)page->private; | 
|  | if (user_ptr) | 
|  | user_ptr += offset; | 
|  | } | 
|  |  | 
|  | return user_ptr; | 
|  | } | 
|  |  | 
|  | static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val) | 
|  | { | 
|  | struct mmu_update u; | 
|  |  | 
|  | u.ptr = virt_to_machine(ptr).maddr; | 
|  | u.val = pgd_val_ma(val); | 
|  | xen_extend_mmu_update(&u); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Raw hypercall-based set_pgd, intended for in early boot before | 
|  | * there's a page structure.  This implies: | 
|  | *  1. The only existing pagetable is the kernel's | 
|  | *  2. It is always pinned | 
|  | *  3. It has no user pagetable attached to it | 
|  | */ | 
|  | static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val) | 
|  | { | 
|  | preempt_disable(); | 
|  |  | 
|  | xen_mc_batch(); | 
|  |  | 
|  | __xen_set_pgd_hyper(ptr, val); | 
|  |  | 
|  | xen_mc_issue(PARAVIRT_LAZY_MMU); | 
|  |  | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static void xen_set_pgd(pgd_t *ptr, pgd_t val) | 
|  | { | 
|  | pgd_t *user_ptr = xen_get_user_pgd(ptr); | 
|  |  | 
|  | /* If page is not pinned, we can just update the entry | 
|  | directly */ | 
|  | if (!xen_page_pinned(ptr)) { | 
|  | *ptr = val; | 
|  | if (user_ptr) { | 
|  | WARN_ON(xen_page_pinned(user_ptr)); | 
|  | *user_ptr = val; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* If it's pinned, then we can at least batch the kernel and | 
|  | user updates together. */ | 
|  | xen_mc_batch(); | 
|  |  | 
|  | __xen_set_pgd_hyper(ptr, val); | 
|  | if (user_ptr) | 
|  | __xen_set_pgd_hyper(user_ptr, val); | 
|  |  | 
|  | xen_mc_issue(PARAVIRT_LAZY_MMU); | 
|  | } | 
|  | #endif	/* PAGETABLE_LEVELS == 4 */ | 
|  |  | 
|  | /* | 
|  | * (Yet another) pagetable walker.  This one is intended for pinning a | 
|  | * pagetable.  This means that it walks a pagetable and calls the | 
|  | * callback function on each page it finds making up the page table, | 
|  | * at every level.  It walks the entire pagetable, but it only bothers | 
|  | * pinning pte pages which are below limit.  In the normal case this | 
|  | * will be STACK_TOP_MAX, but at boot we need to pin up to | 
|  | * FIXADDR_TOP. | 
|  | * | 
|  | * For 32-bit the important bit is that we don't pin beyond there, | 
|  | * because then we start getting into Xen's ptes. | 
|  | * | 
|  | * For 64-bit, we must skip the Xen hole in the middle of the address | 
|  | * space, just after the big x86-64 virtual hole. | 
|  | */ | 
|  | static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd, | 
|  | int (*func)(struct mm_struct *mm, struct page *, | 
|  | enum pt_level), | 
|  | unsigned long limit) | 
|  | { | 
|  | int flush = 0; | 
|  | unsigned hole_low, hole_high; | 
|  | unsigned pgdidx_limit, pudidx_limit, pmdidx_limit; | 
|  | unsigned pgdidx, pudidx, pmdidx; | 
|  |  | 
|  | /* The limit is the last byte to be touched */ | 
|  | limit--; | 
|  | BUG_ON(limit >= FIXADDR_TOP); | 
|  |  | 
|  | if (xen_feature(XENFEAT_auto_translated_physmap)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * 64-bit has a great big hole in the middle of the address | 
|  | * space, which contains the Xen mappings.  On 32-bit these | 
|  | * will end up making a zero-sized hole and so is a no-op. | 
|  | */ | 
|  | hole_low = pgd_index(USER_LIMIT); | 
|  | hole_high = pgd_index(PAGE_OFFSET); | 
|  |  | 
|  | pgdidx_limit = pgd_index(limit); | 
|  | #if PTRS_PER_PUD > 1 | 
|  | pudidx_limit = pud_index(limit); | 
|  | #else | 
|  | pudidx_limit = 0; | 
|  | #endif | 
|  | #if PTRS_PER_PMD > 1 | 
|  | pmdidx_limit = pmd_index(limit); | 
|  | #else | 
|  | pmdidx_limit = 0; | 
|  | #endif | 
|  |  | 
|  | for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) { | 
|  | pud_t *pud; | 
|  |  | 
|  | if (pgdidx >= hole_low && pgdidx < hole_high) | 
|  | continue; | 
|  |  | 
|  | if (!pgd_val(pgd[pgdidx])) | 
|  | continue; | 
|  |  | 
|  | pud = pud_offset(&pgd[pgdidx], 0); | 
|  |  | 
|  | if (PTRS_PER_PUD > 1) /* not folded */ | 
|  | flush |= (*func)(mm, virt_to_page(pud), PT_PUD); | 
|  |  | 
|  | for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) { | 
|  | pmd_t *pmd; | 
|  |  | 
|  | if (pgdidx == pgdidx_limit && | 
|  | pudidx > pudidx_limit) | 
|  | goto out; | 
|  |  | 
|  | if (pud_none(pud[pudidx])) | 
|  | continue; | 
|  |  | 
|  | pmd = pmd_offset(&pud[pudidx], 0); | 
|  |  | 
|  | if (PTRS_PER_PMD > 1) /* not folded */ | 
|  | flush |= (*func)(mm, virt_to_page(pmd), PT_PMD); | 
|  |  | 
|  | for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) { | 
|  | struct page *pte; | 
|  |  | 
|  | if (pgdidx == pgdidx_limit && | 
|  | pudidx == pudidx_limit && | 
|  | pmdidx > pmdidx_limit) | 
|  | goto out; | 
|  |  | 
|  | if (pmd_none(pmd[pmdidx])) | 
|  | continue; | 
|  |  | 
|  | pte = pmd_page(pmd[pmdidx]); | 
|  | flush |= (*func)(mm, pte, PT_PTE); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | /* Do the top level last, so that the callbacks can use it as | 
|  | a cue to do final things like tlb flushes. */ | 
|  | flush |= (*func)(mm, virt_to_page(pgd), PT_PGD); | 
|  |  | 
|  | return flush; | 
|  | } | 
|  |  | 
|  | static int xen_pgd_walk(struct mm_struct *mm, | 
|  | int (*func)(struct mm_struct *mm, struct page *, | 
|  | enum pt_level), | 
|  | unsigned long limit) | 
|  | { | 
|  | return __xen_pgd_walk(mm, mm->pgd, func, limit); | 
|  | } | 
|  |  | 
|  | /* If we're using split pte locks, then take the page's lock and | 
|  | return a pointer to it.  Otherwise return NULL. */ | 
|  | static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm) | 
|  | { | 
|  | spinlock_t *ptl = NULL; | 
|  |  | 
|  | #if USE_SPLIT_PTLOCKS | 
|  | ptl = __pte_lockptr(page); | 
|  | spin_lock_nest_lock(ptl, &mm->page_table_lock); | 
|  | #endif | 
|  |  | 
|  | return ptl; | 
|  | } | 
|  |  | 
|  | static void xen_pte_unlock(void *v) | 
|  | { | 
|  | spinlock_t *ptl = v; | 
|  | spin_unlock(ptl); | 
|  | } | 
|  |  | 
|  | static void xen_do_pin(unsigned level, unsigned long pfn) | 
|  | { | 
|  | struct mmuext_op *op; | 
|  | struct multicall_space mcs; | 
|  |  | 
|  | mcs = __xen_mc_entry(sizeof(*op)); | 
|  | op = mcs.args; | 
|  | op->cmd = level; | 
|  | op->arg1.mfn = pfn_to_mfn(pfn); | 
|  | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | 
|  | } | 
|  |  | 
|  | static int xen_pin_page(struct mm_struct *mm, struct page *page, | 
|  | enum pt_level level) | 
|  | { | 
|  | unsigned pgfl = TestSetPagePinned(page); | 
|  | int flush; | 
|  |  | 
|  | if (pgfl) | 
|  | flush = 0;		/* already pinned */ | 
|  | else if (PageHighMem(page)) | 
|  | /* kmaps need flushing if we found an unpinned | 
|  | highpage */ | 
|  | flush = 1; | 
|  | else { | 
|  | void *pt = lowmem_page_address(page); | 
|  | unsigned long pfn = page_to_pfn(page); | 
|  | struct multicall_space mcs = __xen_mc_entry(0); | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | flush = 0; | 
|  |  | 
|  | /* | 
|  | * We need to hold the pagetable lock between the time | 
|  | * we make the pagetable RO and when we actually pin | 
|  | * it.  If we don't, then other users may come in and | 
|  | * attempt to update the pagetable by writing it, | 
|  | * which will fail because the memory is RO but not | 
|  | * pinned, so Xen won't do the trap'n'emulate. | 
|  | * | 
|  | * If we're using split pte locks, we can't hold the | 
|  | * entire pagetable's worth of locks during the | 
|  | * traverse, because we may wrap the preempt count (8 | 
|  | * bits).  The solution is to mark RO and pin each PTE | 
|  | * page while holding the lock.  This means the number | 
|  | * of locks we end up holding is never more than a | 
|  | * batch size (~32 entries, at present). | 
|  | * | 
|  | * If we're not using split pte locks, we needn't pin | 
|  | * the PTE pages independently, because we're | 
|  | * protected by the overall pagetable lock. | 
|  | */ | 
|  | ptl = NULL; | 
|  | if (level == PT_PTE) | 
|  | ptl = xen_pte_lock(page, mm); | 
|  |  | 
|  | MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, | 
|  | pfn_pte(pfn, PAGE_KERNEL_RO), | 
|  | level == PT_PGD ? UVMF_TLB_FLUSH : 0); | 
|  |  | 
|  | if (ptl) { | 
|  | xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn); | 
|  |  | 
|  | /* Queue a deferred unlock for when this batch | 
|  | is completed. */ | 
|  | xen_mc_callback(xen_pte_unlock, ptl); | 
|  | } | 
|  | } | 
|  |  | 
|  | return flush; | 
|  | } | 
|  |  | 
|  | /* This is called just after a mm has been created, but it has not | 
|  | been used yet.  We need to make sure that its pagetable is all | 
|  | read-only, and can be pinned. */ | 
|  | static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd) | 
|  | { | 
|  | xen_mc_batch(); | 
|  |  | 
|  | if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) { | 
|  | /* re-enable interrupts for flushing */ | 
|  | xen_mc_issue(0); | 
|  |  | 
|  | kmap_flush_unused(); | 
|  |  | 
|  | xen_mc_batch(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | { | 
|  | pgd_t *user_pgd = xen_get_user_pgd(pgd); | 
|  |  | 
|  | xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd))); | 
|  |  | 
|  | if (user_pgd) { | 
|  | xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD); | 
|  | xen_do_pin(MMUEXT_PIN_L4_TABLE, | 
|  | PFN_DOWN(__pa(user_pgd))); | 
|  | } | 
|  | } | 
|  | #else /* CONFIG_X86_32 */ | 
|  | #ifdef CONFIG_X86_PAE | 
|  | /* Need to make sure unshared kernel PMD is pinnable */ | 
|  | xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), | 
|  | PT_PMD); | 
|  | #endif | 
|  | xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd))); | 
|  | #endif /* CONFIG_X86_64 */ | 
|  | xen_mc_issue(0); | 
|  | } | 
|  |  | 
|  | static void xen_pgd_pin(struct mm_struct *mm) | 
|  | { | 
|  | __xen_pgd_pin(mm, mm->pgd); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * On save, we need to pin all pagetables to make sure they get their | 
|  | * mfns turned into pfns.  Search the list for any unpinned pgds and pin | 
|  | * them (unpinned pgds are not currently in use, probably because the | 
|  | * process is under construction or destruction). | 
|  | * | 
|  | * Expected to be called in stop_machine() ("equivalent to taking | 
|  | * every spinlock in the system"), so the locking doesn't really | 
|  | * matter all that much. | 
|  | */ | 
|  | void xen_mm_pin_all(void) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | spin_lock(&pgd_lock); | 
|  |  | 
|  | list_for_each_entry(page, &pgd_list, lru) { | 
|  | if (!PagePinned(page)) { | 
|  | __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page)); | 
|  | SetPageSavePinned(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock(&pgd_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The init_mm pagetable is really pinned as soon as its created, but | 
|  | * that's before we have page structures to store the bits.  So do all | 
|  | * the book-keeping now. | 
|  | */ | 
|  | static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page, | 
|  | enum pt_level level) | 
|  | { | 
|  | SetPagePinned(page); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __init xen_mark_init_mm_pinned(void) | 
|  | { | 
|  | xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP); | 
|  | } | 
|  |  | 
|  | static int xen_unpin_page(struct mm_struct *mm, struct page *page, | 
|  | enum pt_level level) | 
|  | { | 
|  | unsigned pgfl = TestClearPagePinned(page); | 
|  |  | 
|  | if (pgfl && !PageHighMem(page)) { | 
|  | void *pt = lowmem_page_address(page); | 
|  | unsigned long pfn = page_to_pfn(page); | 
|  | spinlock_t *ptl = NULL; | 
|  | struct multicall_space mcs; | 
|  |  | 
|  | /* | 
|  | * Do the converse to pin_page.  If we're using split | 
|  | * pte locks, we must be holding the lock for while | 
|  | * the pte page is unpinned but still RO to prevent | 
|  | * concurrent updates from seeing it in this | 
|  | * partially-pinned state. | 
|  | */ | 
|  | if (level == PT_PTE) { | 
|  | ptl = xen_pte_lock(page, mm); | 
|  |  | 
|  | if (ptl) | 
|  | xen_do_pin(MMUEXT_UNPIN_TABLE, pfn); | 
|  | } | 
|  |  | 
|  | mcs = __xen_mc_entry(0); | 
|  |  | 
|  | MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, | 
|  | pfn_pte(pfn, PAGE_KERNEL), | 
|  | level == PT_PGD ? UVMF_TLB_FLUSH : 0); | 
|  |  | 
|  | if (ptl) { | 
|  | /* unlock when batch completed */ | 
|  | xen_mc_callback(xen_pte_unlock, ptl); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0;		/* never need to flush on unpin */ | 
|  | } | 
|  |  | 
|  | /* Release a pagetables pages back as normal RW */ | 
|  | static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd) | 
|  | { | 
|  | xen_mc_batch(); | 
|  |  | 
|  | xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | { | 
|  | pgd_t *user_pgd = xen_get_user_pgd(pgd); | 
|  |  | 
|  | if (user_pgd) { | 
|  | xen_do_pin(MMUEXT_UNPIN_TABLE, | 
|  | PFN_DOWN(__pa(user_pgd))); | 
|  | xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_X86_PAE | 
|  | /* Need to make sure unshared kernel PMD is unpinned */ | 
|  | xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), | 
|  | PT_PMD); | 
|  | #endif | 
|  |  | 
|  | __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT); | 
|  |  | 
|  | xen_mc_issue(0); | 
|  | } | 
|  |  | 
|  | static void xen_pgd_unpin(struct mm_struct *mm) | 
|  | { | 
|  | __xen_pgd_unpin(mm, mm->pgd); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * On resume, undo any pinning done at save, so that the rest of the | 
|  | * kernel doesn't see any unexpected pinned pagetables. | 
|  | */ | 
|  | void xen_mm_unpin_all(void) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | spin_lock(&pgd_lock); | 
|  |  | 
|  | list_for_each_entry(page, &pgd_list, lru) { | 
|  | if (PageSavePinned(page)) { | 
|  | BUG_ON(!PagePinned(page)); | 
|  | __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page)); | 
|  | ClearPageSavePinned(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock(&pgd_lock); | 
|  | } | 
|  |  | 
|  | static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next) | 
|  | { | 
|  | spin_lock(&next->page_table_lock); | 
|  | xen_pgd_pin(next); | 
|  | spin_unlock(&next->page_table_lock); | 
|  | } | 
|  |  | 
|  | static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) | 
|  | { | 
|  | spin_lock(&mm->page_table_lock); | 
|  | xen_pgd_pin(mm); | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* Another cpu may still have their %cr3 pointing at the pagetable, so | 
|  | we need to repoint it somewhere else before we can unpin it. */ | 
|  | static void drop_other_mm_ref(void *info) | 
|  | { | 
|  | struct mm_struct *mm = info; | 
|  | struct mm_struct *active_mm; | 
|  |  | 
|  | active_mm = percpu_read(cpu_tlbstate.active_mm); | 
|  |  | 
|  | if (active_mm == mm && percpu_read(cpu_tlbstate.state) != TLBSTATE_OK) | 
|  | leave_mm(smp_processor_id()); | 
|  |  | 
|  | /* If this cpu still has a stale cr3 reference, then make sure | 
|  | it has been flushed. */ | 
|  | if (percpu_read(xen_current_cr3) == __pa(mm->pgd)) | 
|  | load_cr3(swapper_pg_dir); | 
|  | } | 
|  |  | 
|  | static void xen_drop_mm_ref(struct mm_struct *mm) | 
|  | { | 
|  | cpumask_var_t mask; | 
|  | unsigned cpu; | 
|  |  | 
|  | if (current->active_mm == mm) { | 
|  | if (current->mm == mm) | 
|  | load_cr3(swapper_pg_dir); | 
|  | else | 
|  | leave_mm(smp_processor_id()); | 
|  | } | 
|  |  | 
|  | /* Get the "official" set of cpus referring to our pagetable. */ | 
|  | if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) { | 
|  | for_each_online_cpu(cpu) { | 
|  | if (!cpumask_test_cpu(cpu, mm_cpumask(mm)) | 
|  | && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd)) | 
|  | continue; | 
|  | smp_call_function_single(cpu, drop_other_mm_ref, mm, 1); | 
|  | } | 
|  | return; | 
|  | } | 
|  | cpumask_copy(mask, mm_cpumask(mm)); | 
|  |  | 
|  | /* It's possible that a vcpu may have a stale reference to our | 
|  | cr3, because its in lazy mode, and it hasn't yet flushed | 
|  | its set of pending hypercalls yet.  In this case, we can | 
|  | look at its actual current cr3 value, and force it to flush | 
|  | if needed. */ | 
|  | for_each_online_cpu(cpu) { | 
|  | if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd)) | 
|  | cpumask_set_cpu(cpu, mask); | 
|  | } | 
|  |  | 
|  | if (!cpumask_empty(mask)) | 
|  | smp_call_function_many(mask, drop_other_mm_ref, mm, 1); | 
|  | free_cpumask_var(mask); | 
|  | } | 
|  | #else | 
|  | static void xen_drop_mm_ref(struct mm_struct *mm) | 
|  | { | 
|  | if (current->active_mm == mm) | 
|  | load_cr3(swapper_pg_dir); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * While a process runs, Xen pins its pagetables, which means that the | 
|  | * hypervisor forces it to be read-only, and it controls all updates | 
|  | * to it.  This means that all pagetable updates have to go via the | 
|  | * hypervisor, which is moderately expensive. | 
|  | * | 
|  | * Since we're pulling the pagetable down, we switch to use init_mm, | 
|  | * unpin old process pagetable and mark it all read-write, which | 
|  | * allows further operations on it to be simple memory accesses. | 
|  | * | 
|  | * The only subtle point is that another CPU may be still using the | 
|  | * pagetable because of lazy tlb flushing.  This means we need need to | 
|  | * switch all CPUs off this pagetable before we can unpin it. | 
|  | */ | 
|  | static void xen_exit_mmap(struct mm_struct *mm) | 
|  | { | 
|  | get_cpu();		/* make sure we don't move around */ | 
|  | xen_drop_mm_ref(mm); | 
|  | put_cpu(); | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  |  | 
|  | /* pgd may not be pinned in the error exit path of execve */ | 
|  | if (xen_page_pinned(mm->pgd)) | 
|  | xen_pgd_unpin(mm); | 
|  |  | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | } | 
|  |  | 
|  | static void __init xen_pagetable_setup_start(pgd_t *base) | 
|  | { | 
|  | } | 
|  |  | 
|  | static __init void xen_mapping_pagetable_reserve(u64 start, u64 end) | 
|  | { | 
|  | /* reserve the range used */ | 
|  | native_pagetable_reserve(start, end); | 
|  |  | 
|  | /* set as RW the rest */ | 
|  | printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n", end, | 
|  | PFN_PHYS(pgt_buf_top)); | 
|  | while (end < PFN_PHYS(pgt_buf_top)) { | 
|  | make_lowmem_page_readwrite(__va(end)); | 
|  | end += PAGE_SIZE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void xen_post_allocator_init(void); | 
|  |  | 
|  | static void __init xen_pagetable_setup_done(pgd_t *base) | 
|  | { | 
|  | xen_setup_shared_info(); | 
|  | xen_post_allocator_init(); | 
|  | } | 
|  |  | 
|  | static void xen_write_cr2(unsigned long cr2) | 
|  | { | 
|  | percpu_read(xen_vcpu)->arch.cr2 = cr2; | 
|  | } | 
|  |  | 
|  | static unsigned long xen_read_cr2(void) | 
|  | { | 
|  | return percpu_read(xen_vcpu)->arch.cr2; | 
|  | } | 
|  |  | 
|  | unsigned long xen_read_cr2_direct(void) | 
|  | { | 
|  | return percpu_read(xen_vcpu_info.arch.cr2); | 
|  | } | 
|  |  | 
|  | static void xen_flush_tlb(void) | 
|  | { | 
|  | struct mmuext_op *op; | 
|  | struct multicall_space mcs; | 
|  |  | 
|  | preempt_disable(); | 
|  |  | 
|  | mcs = xen_mc_entry(sizeof(*op)); | 
|  |  | 
|  | op = mcs.args; | 
|  | op->cmd = MMUEXT_TLB_FLUSH_LOCAL; | 
|  | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | 
|  |  | 
|  | xen_mc_issue(PARAVIRT_LAZY_MMU); | 
|  |  | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static void xen_flush_tlb_single(unsigned long addr) | 
|  | { | 
|  | struct mmuext_op *op; | 
|  | struct multicall_space mcs; | 
|  |  | 
|  | preempt_disable(); | 
|  |  | 
|  | mcs = xen_mc_entry(sizeof(*op)); | 
|  | op = mcs.args; | 
|  | op->cmd = MMUEXT_INVLPG_LOCAL; | 
|  | op->arg1.linear_addr = addr & PAGE_MASK; | 
|  | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | 
|  |  | 
|  | xen_mc_issue(PARAVIRT_LAZY_MMU); | 
|  |  | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static void xen_flush_tlb_others(const struct cpumask *cpus, | 
|  | struct mm_struct *mm, unsigned long va) | 
|  | { | 
|  | struct { | 
|  | struct mmuext_op op; | 
|  | DECLARE_BITMAP(mask, NR_CPUS); | 
|  | } *args; | 
|  | struct multicall_space mcs; | 
|  |  | 
|  | if (cpumask_empty(cpus)) | 
|  | return;		/* nothing to do */ | 
|  |  | 
|  | mcs = xen_mc_entry(sizeof(*args)); | 
|  | args = mcs.args; | 
|  | args->op.arg2.vcpumask = to_cpumask(args->mask); | 
|  |  | 
|  | /* Remove us, and any offline CPUS. */ | 
|  | cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask); | 
|  | cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask)); | 
|  |  | 
|  | if (va == TLB_FLUSH_ALL) { | 
|  | args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; | 
|  | } else { | 
|  | args->op.cmd = MMUEXT_INVLPG_MULTI; | 
|  | args->op.arg1.linear_addr = va; | 
|  | } | 
|  |  | 
|  | MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); | 
|  |  | 
|  | xen_mc_issue(PARAVIRT_LAZY_MMU); | 
|  | } | 
|  |  | 
|  | static unsigned long xen_read_cr3(void) | 
|  | { | 
|  | return percpu_read(xen_cr3); | 
|  | } | 
|  |  | 
|  | static void set_current_cr3(void *v) | 
|  | { | 
|  | percpu_write(xen_current_cr3, (unsigned long)v); | 
|  | } | 
|  |  | 
|  | static void __xen_write_cr3(bool kernel, unsigned long cr3) | 
|  | { | 
|  | struct mmuext_op *op; | 
|  | struct multicall_space mcs; | 
|  | unsigned long mfn; | 
|  |  | 
|  | if (cr3) | 
|  | mfn = pfn_to_mfn(PFN_DOWN(cr3)); | 
|  | else | 
|  | mfn = 0; | 
|  |  | 
|  | WARN_ON(mfn == 0 && kernel); | 
|  |  | 
|  | mcs = __xen_mc_entry(sizeof(*op)); | 
|  |  | 
|  | op = mcs.args; | 
|  | op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR; | 
|  | op->arg1.mfn = mfn; | 
|  |  | 
|  | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | 
|  |  | 
|  | if (kernel) { | 
|  | percpu_write(xen_cr3, cr3); | 
|  |  | 
|  | /* Update xen_current_cr3 once the batch has actually | 
|  | been submitted. */ | 
|  | xen_mc_callback(set_current_cr3, (void *)cr3); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void xen_write_cr3(unsigned long cr3) | 
|  | { | 
|  | BUG_ON(preemptible()); | 
|  |  | 
|  | xen_mc_batch();  /* disables interrupts */ | 
|  |  | 
|  | /* Update while interrupts are disabled, so its atomic with | 
|  | respect to ipis */ | 
|  | percpu_write(xen_cr3, cr3); | 
|  |  | 
|  | __xen_write_cr3(true, cr3); | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | { | 
|  | pgd_t *user_pgd = xen_get_user_pgd(__va(cr3)); | 
|  | if (user_pgd) | 
|  | __xen_write_cr3(false, __pa(user_pgd)); | 
|  | else | 
|  | __xen_write_cr3(false, 0); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */ | 
|  | } | 
|  |  | 
|  | static int xen_pgd_alloc(struct mm_struct *mm) | 
|  | { | 
|  | pgd_t *pgd = mm->pgd; | 
|  | int ret = 0; | 
|  |  | 
|  | BUG_ON(PagePinned(virt_to_page(pgd))); | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | { | 
|  | struct page *page = virt_to_page(pgd); | 
|  | pgd_t *user_pgd; | 
|  |  | 
|  | BUG_ON(page->private != 0); | 
|  |  | 
|  | ret = -ENOMEM; | 
|  |  | 
|  | user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); | 
|  | page->private = (unsigned long)user_pgd; | 
|  |  | 
|  | if (user_pgd != NULL) { | 
|  | user_pgd[pgd_index(VSYSCALL_START)] = | 
|  | __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE); | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd)))); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd) | 
|  | { | 
|  | #ifdef CONFIG_X86_64 | 
|  | pgd_t *user_pgd = xen_get_user_pgd(pgd); | 
|  |  | 
|  | if (user_pgd) | 
|  | free_page((unsigned long)user_pgd); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte) | 
|  | { | 
|  | /* If there's an existing pte, then don't allow _PAGE_RW to be set */ | 
|  | if (pte_val_ma(*ptep) & _PAGE_PRESENT) | 
|  | pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) & | 
|  | pte_val_ma(pte)); | 
|  |  | 
|  | return pte; | 
|  | } | 
|  | #else /* CONFIG_X86_64 */ | 
|  | static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte) | 
|  | { | 
|  | unsigned long pfn = pte_pfn(pte); | 
|  |  | 
|  | /* | 
|  | * If the new pfn is within the range of the newly allocated | 
|  | * kernel pagetable, and it isn't being mapped into an | 
|  | * early_ioremap fixmap slot as a freshly allocated page, make sure | 
|  | * it is RO. | 
|  | */ | 
|  | if (((!is_early_ioremap_ptep(ptep) && | 
|  | pfn >= pgt_buf_start && pfn < pgt_buf_top)) || | 
|  | (is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1))) | 
|  | pte = pte_wrprotect(pte); | 
|  |  | 
|  | return pte; | 
|  | } | 
|  | #endif /* CONFIG_X86_64 */ | 
|  |  | 
|  | /* Init-time set_pte while constructing initial pagetables, which | 
|  | doesn't allow RO pagetable pages to be remapped RW */ | 
|  | static void __init xen_set_pte_init(pte_t *ptep, pte_t pte) | 
|  | { | 
|  | pte = mask_rw_pte(ptep, pte); | 
|  |  | 
|  | xen_set_pte(ptep, pte); | 
|  | } | 
|  |  | 
|  | static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn) | 
|  | { | 
|  | struct mmuext_op op; | 
|  | op.cmd = cmd; | 
|  | op.arg1.mfn = pfn_to_mfn(pfn); | 
|  | if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* Early in boot, while setting up the initial pagetable, assume | 
|  | everything is pinned. */ | 
|  | static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn) | 
|  | { | 
|  | #ifdef CONFIG_FLATMEM | 
|  | BUG_ON(mem_map);	/* should only be used early */ | 
|  | #endif | 
|  | make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); | 
|  | pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); | 
|  | } | 
|  |  | 
|  | /* Used for pmd and pud */ | 
|  | static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn) | 
|  | { | 
|  | #ifdef CONFIG_FLATMEM | 
|  | BUG_ON(mem_map);	/* should only be used early */ | 
|  | #endif | 
|  | make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); | 
|  | } | 
|  |  | 
|  | /* Early release_pte assumes that all pts are pinned, since there's | 
|  | only init_mm and anything attached to that is pinned. */ | 
|  | static void __init xen_release_pte_init(unsigned long pfn) | 
|  | { | 
|  | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); | 
|  | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); | 
|  | } | 
|  |  | 
|  | static void __init xen_release_pmd_init(unsigned long pfn) | 
|  | { | 
|  | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); | 
|  | } | 
|  |  | 
|  | /* This needs to make sure the new pte page is pinned iff its being | 
|  | attached to a pinned pagetable. */ | 
|  | static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level) | 
|  | { | 
|  | struct page *page = pfn_to_page(pfn); | 
|  |  | 
|  | if (PagePinned(virt_to_page(mm->pgd))) { | 
|  | SetPagePinned(page); | 
|  |  | 
|  | if (!PageHighMem(page)) { | 
|  | make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn))); | 
|  | if (level == PT_PTE && USE_SPLIT_PTLOCKS) | 
|  | pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); | 
|  | } else { | 
|  | /* make sure there are no stray mappings of | 
|  | this page */ | 
|  | kmap_flush_unused(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn) | 
|  | { | 
|  | xen_alloc_ptpage(mm, pfn, PT_PTE); | 
|  | } | 
|  |  | 
|  | static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn) | 
|  | { | 
|  | xen_alloc_ptpage(mm, pfn, PT_PMD); | 
|  | } | 
|  |  | 
|  | /* This should never happen until we're OK to use struct page */ | 
|  | static void xen_release_ptpage(unsigned long pfn, unsigned level) | 
|  | { | 
|  | struct page *page = pfn_to_page(pfn); | 
|  |  | 
|  | if (PagePinned(page)) { | 
|  | if (!PageHighMem(page)) { | 
|  | if (level == PT_PTE && USE_SPLIT_PTLOCKS) | 
|  | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); | 
|  | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); | 
|  | } | 
|  | ClearPagePinned(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void xen_release_pte(unsigned long pfn) | 
|  | { | 
|  | xen_release_ptpage(pfn, PT_PTE); | 
|  | } | 
|  |  | 
|  | static void xen_release_pmd(unsigned long pfn) | 
|  | { | 
|  | xen_release_ptpage(pfn, PT_PMD); | 
|  | } | 
|  |  | 
|  | #if PAGETABLE_LEVELS == 4 | 
|  | static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn) | 
|  | { | 
|  | xen_alloc_ptpage(mm, pfn, PT_PUD); | 
|  | } | 
|  |  | 
|  | static void xen_release_pud(unsigned long pfn) | 
|  | { | 
|  | xen_release_ptpage(pfn, PT_PUD); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void __init xen_reserve_top(void) | 
|  | { | 
|  | #ifdef CONFIG_X86_32 | 
|  | unsigned long top = HYPERVISOR_VIRT_START; | 
|  | struct xen_platform_parameters pp; | 
|  |  | 
|  | if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0) | 
|  | top = pp.virt_start; | 
|  |  | 
|  | reserve_top_address(-top); | 
|  | #endif	/* CONFIG_X86_32 */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Like __va(), but returns address in the kernel mapping (which is | 
|  | * all we have until the physical memory mapping has been set up. | 
|  | */ | 
|  | static void *__ka(phys_addr_t paddr) | 
|  | { | 
|  | #ifdef CONFIG_X86_64 | 
|  | return (void *)(paddr + __START_KERNEL_map); | 
|  | #else | 
|  | return __va(paddr); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Convert a machine address to physical address */ | 
|  | static unsigned long m2p(phys_addr_t maddr) | 
|  | { | 
|  | phys_addr_t paddr; | 
|  |  | 
|  | maddr &= PTE_PFN_MASK; | 
|  | paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT; | 
|  |  | 
|  | return paddr; | 
|  | } | 
|  |  | 
|  | /* Convert a machine address to kernel virtual */ | 
|  | static void *m2v(phys_addr_t maddr) | 
|  | { | 
|  | return __ka(m2p(maddr)); | 
|  | } | 
|  |  | 
|  | /* Set the page permissions on an identity-mapped pages */ | 
|  | static void set_page_prot(void *addr, pgprot_t prot) | 
|  | { | 
|  | unsigned long pfn = __pa(addr) >> PAGE_SHIFT; | 
|  | pte_t pte = pfn_pte(pfn, prot); | 
|  |  | 
|  | if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0)) | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn) | 
|  | { | 
|  | unsigned pmdidx, pteidx; | 
|  | unsigned ident_pte; | 
|  | unsigned long pfn; | 
|  |  | 
|  | level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES, | 
|  | PAGE_SIZE); | 
|  |  | 
|  | ident_pte = 0; | 
|  | pfn = 0; | 
|  | for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) { | 
|  | pte_t *pte_page; | 
|  |  | 
|  | /* Reuse or allocate a page of ptes */ | 
|  | if (pmd_present(pmd[pmdidx])) | 
|  | pte_page = m2v(pmd[pmdidx].pmd); | 
|  | else { | 
|  | /* Check for free pte pages */ | 
|  | if (ident_pte == LEVEL1_IDENT_ENTRIES) | 
|  | break; | 
|  |  | 
|  | pte_page = &level1_ident_pgt[ident_pte]; | 
|  | ident_pte += PTRS_PER_PTE; | 
|  |  | 
|  | pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE); | 
|  | } | 
|  |  | 
|  | /* Install mappings */ | 
|  | for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) { | 
|  | pte_t pte; | 
|  |  | 
|  | if (!pte_none(pte_page[pteidx])) | 
|  | continue; | 
|  |  | 
|  | pte = pfn_pte(pfn, PAGE_KERNEL_EXEC); | 
|  | pte_page[pteidx] = pte; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE) | 
|  | set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO); | 
|  |  | 
|  | set_page_prot(pmd, PAGE_KERNEL_RO); | 
|  | } | 
|  |  | 
|  | void __init xen_setup_machphys_mapping(void) | 
|  | { | 
|  | struct xen_machphys_mapping mapping; | 
|  | unsigned long machine_to_phys_nr_ents; | 
|  |  | 
|  | if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) { | 
|  | machine_to_phys_mapping = (unsigned long *)mapping.v_start; | 
|  | machine_to_phys_nr_ents = mapping.max_mfn + 1; | 
|  | } else { | 
|  | machine_to_phys_nr_ents = MACH2PHYS_NR_ENTRIES; | 
|  | } | 
|  | machine_to_phys_order = fls(machine_to_phys_nr_ents - 1); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | static void convert_pfn_mfn(void *v) | 
|  | { | 
|  | pte_t *pte = v; | 
|  | int i; | 
|  |  | 
|  | /* All levels are converted the same way, so just treat them | 
|  | as ptes. */ | 
|  | for (i = 0; i < PTRS_PER_PTE; i++) | 
|  | pte[i] = xen_make_pte(pte[i].pte); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set up the initial kernel pagetable. | 
|  | * | 
|  | * We can construct this by grafting the Xen provided pagetable into | 
|  | * head_64.S's preconstructed pagetables.  We copy the Xen L2's into | 
|  | * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This | 
|  | * means that only the kernel has a physical mapping to start with - | 
|  | * but that's enough to get __va working.  We need to fill in the rest | 
|  | * of the physical mapping once some sort of allocator has been set | 
|  | * up. | 
|  | */ | 
|  | pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd, | 
|  | unsigned long max_pfn) | 
|  | { | 
|  | pud_t *l3; | 
|  | pmd_t *l2; | 
|  |  | 
|  | /* max_pfn_mapped is the last pfn mapped in the initial memory | 
|  | * mappings. Considering that on Xen after the kernel mappings we | 
|  | * have the mappings of some pages that don't exist in pfn space, we | 
|  | * set max_pfn_mapped to the last real pfn mapped. */ | 
|  | max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list)); | 
|  |  | 
|  | /* Zap identity mapping */ | 
|  | init_level4_pgt[0] = __pgd(0); | 
|  |  | 
|  | /* Pre-constructed entries are in pfn, so convert to mfn */ | 
|  | convert_pfn_mfn(init_level4_pgt); | 
|  | convert_pfn_mfn(level3_ident_pgt); | 
|  | convert_pfn_mfn(level3_kernel_pgt); | 
|  |  | 
|  | l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd); | 
|  | l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud); | 
|  |  | 
|  | memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); | 
|  | memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); | 
|  |  | 
|  | l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd); | 
|  | l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud); | 
|  | memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); | 
|  |  | 
|  | /* Set up identity map */ | 
|  | xen_map_identity_early(level2_ident_pgt, max_pfn); | 
|  |  | 
|  | /* Make pagetable pieces RO */ | 
|  | set_page_prot(init_level4_pgt, PAGE_KERNEL_RO); | 
|  | set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO); | 
|  | set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO); | 
|  | set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO); | 
|  | set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); | 
|  | set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO); | 
|  |  | 
|  | /* Pin down new L4 */ | 
|  | pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, | 
|  | PFN_DOWN(__pa_symbol(init_level4_pgt))); | 
|  |  | 
|  | /* Unpin Xen-provided one */ | 
|  | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); | 
|  |  | 
|  | /* Switch over */ | 
|  | pgd = init_level4_pgt; | 
|  |  | 
|  | /* | 
|  | * At this stage there can be no user pgd, and no page | 
|  | * structure to attach it to, so make sure we just set kernel | 
|  | * pgd. | 
|  | */ | 
|  | xen_mc_batch(); | 
|  | __xen_write_cr3(true, __pa(pgd)); | 
|  | xen_mc_issue(PARAVIRT_LAZY_CPU); | 
|  |  | 
|  | memblock_x86_reserve_range(__pa(xen_start_info->pt_base), | 
|  | __pa(xen_start_info->pt_base + | 
|  | xen_start_info->nr_pt_frames * PAGE_SIZE), | 
|  | "XEN PAGETABLES"); | 
|  |  | 
|  | return pgd; | 
|  | } | 
|  | #else	/* !CONFIG_X86_64 */ | 
|  | static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD); | 
|  | static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD); | 
|  |  | 
|  | static void __init xen_write_cr3_init(unsigned long cr3) | 
|  | { | 
|  | unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir)); | 
|  |  | 
|  | BUG_ON(read_cr3() != __pa(initial_page_table)); | 
|  | BUG_ON(cr3 != __pa(swapper_pg_dir)); | 
|  |  | 
|  | /* | 
|  | * We are switching to swapper_pg_dir for the first time (from | 
|  | * initial_page_table) and therefore need to mark that page | 
|  | * read-only and then pin it. | 
|  | * | 
|  | * Xen disallows sharing of kernel PMDs for PAE | 
|  | * guests. Therefore we must copy the kernel PMD from | 
|  | * initial_page_table into a new kernel PMD to be used in | 
|  | * swapper_pg_dir. | 
|  | */ | 
|  | swapper_kernel_pmd = | 
|  | extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); | 
|  | memcpy(swapper_kernel_pmd, initial_kernel_pmd, | 
|  | sizeof(pmd_t) * PTRS_PER_PMD); | 
|  | swapper_pg_dir[KERNEL_PGD_BOUNDARY] = | 
|  | __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT); | 
|  | set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO); | 
|  |  | 
|  | set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO); | 
|  | xen_write_cr3(cr3); | 
|  | pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn); | 
|  |  | 
|  | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, | 
|  | PFN_DOWN(__pa(initial_page_table))); | 
|  | set_page_prot(initial_page_table, PAGE_KERNEL); | 
|  | set_page_prot(initial_kernel_pmd, PAGE_KERNEL); | 
|  |  | 
|  | pv_mmu_ops.write_cr3 = &xen_write_cr3; | 
|  | } | 
|  |  | 
|  | pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd, | 
|  | unsigned long max_pfn) | 
|  | { | 
|  | pmd_t *kernel_pmd; | 
|  |  | 
|  | initial_kernel_pmd = | 
|  | extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); | 
|  |  | 
|  | max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list)); | 
|  |  | 
|  | kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd); | 
|  | memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD); | 
|  |  | 
|  | xen_map_identity_early(initial_kernel_pmd, max_pfn); | 
|  |  | 
|  | memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD); | 
|  | initial_page_table[KERNEL_PGD_BOUNDARY] = | 
|  | __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT); | 
|  |  | 
|  | set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO); | 
|  | set_page_prot(initial_page_table, PAGE_KERNEL_RO); | 
|  | set_page_prot(empty_zero_page, PAGE_KERNEL_RO); | 
|  |  | 
|  | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); | 
|  |  | 
|  | pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, | 
|  | PFN_DOWN(__pa(initial_page_table))); | 
|  | xen_write_cr3(__pa(initial_page_table)); | 
|  |  | 
|  | memblock_x86_reserve_range(__pa(xen_start_info->pt_base), | 
|  | __pa(xen_start_info->pt_base + | 
|  | xen_start_info->nr_pt_frames * PAGE_SIZE), | 
|  | "XEN PAGETABLES"); | 
|  |  | 
|  | return initial_page_table; | 
|  | } | 
|  | #endif	/* CONFIG_X86_64 */ | 
|  |  | 
|  | static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss; | 
|  |  | 
|  | static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot) | 
|  | { | 
|  | pte_t pte; | 
|  |  | 
|  | phys >>= PAGE_SHIFT; | 
|  |  | 
|  | switch (idx) { | 
|  | case FIX_BTMAP_END ... FIX_BTMAP_BEGIN: | 
|  | #ifdef CONFIG_X86_F00F_BUG | 
|  | case FIX_F00F_IDT: | 
|  | #endif | 
|  | #ifdef CONFIG_X86_32 | 
|  | case FIX_WP_TEST: | 
|  | case FIX_VDSO: | 
|  | # ifdef CONFIG_HIGHMEM | 
|  | case FIX_KMAP_BEGIN ... FIX_KMAP_END: | 
|  | # endif | 
|  | #else | 
|  | case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE: | 
|  | #endif | 
|  | case FIX_TEXT_POKE0: | 
|  | case FIX_TEXT_POKE1: | 
|  | /* All local page mappings */ | 
|  | pte = pfn_pte(phys, prot); | 
|  | break; | 
|  |  | 
|  | #ifdef CONFIG_X86_LOCAL_APIC | 
|  | case FIX_APIC_BASE:	/* maps dummy local APIC */ | 
|  | pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_X86_IO_APIC | 
|  | case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END: | 
|  | /* | 
|  | * We just don't map the IO APIC - all access is via | 
|  | * hypercalls.  Keep the address in the pte for reference. | 
|  | */ | 
|  | pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | case FIX_PARAVIRT_BOOTMAP: | 
|  | /* This is an MFN, but it isn't an IO mapping from the | 
|  | IO domain */ | 
|  | pte = mfn_pte(phys, prot); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | /* By default, set_fixmap is used for hardware mappings */ | 
|  | pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | __native_set_fixmap(idx, pte); | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | /* Replicate changes to map the vsyscall page into the user | 
|  | pagetable vsyscall mapping. */ | 
|  | if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) { | 
|  | unsigned long vaddr = __fix_to_virt(idx); | 
|  | set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void __init xen_ident_map_ISA(void) | 
|  | { | 
|  | unsigned long pa; | 
|  |  | 
|  | /* | 
|  | * If we're dom0, then linear map the ISA machine addresses into | 
|  | * the kernel's address space. | 
|  | */ | 
|  | if (!xen_initial_domain()) | 
|  | return; | 
|  |  | 
|  | xen_raw_printk("Xen: setup ISA identity maps\n"); | 
|  |  | 
|  | for (pa = ISA_START_ADDRESS; pa < ISA_END_ADDRESS; pa += PAGE_SIZE) { | 
|  | pte_t pte = mfn_pte(PFN_DOWN(pa), PAGE_KERNEL_IO); | 
|  |  | 
|  | if (HYPERVISOR_update_va_mapping(PAGE_OFFSET + pa, pte, 0)) | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | xen_flush_tlb(); | 
|  | } | 
|  |  | 
|  | static void __init xen_post_allocator_init(void) | 
|  | { | 
|  | #ifdef CONFIG_XEN_DEBUG | 
|  | pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte_debug); | 
|  | #endif | 
|  | pv_mmu_ops.set_pte = xen_set_pte; | 
|  | pv_mmu_ops.set_pmd = xen_set_pmd; | 
|  | pv_mmu_ops.set_pud = xen_set_pud; | 
|  | #if PAGETABLE_LEVELS == 4 | 
|  | pv_mmu_ops.set_pgd = xen_set_pgd; | 
|  | #endif | 
|  |  | 
|  | /* This will work as long as patching hasn't happened yet | 
|  | (which it hasn't) */ | 
|  | pv_mmu_ops.alloc_pte = xen_alloc_pte; | 
|  | pv_mmu_ops.alloc_pmd = xen_alloc_pmd; | 
|  | pv_mmu_ops.release_pte = xen_release_pte; | 
|  | pv_mmu_ops.release_pmd = xen_release_pmd; | 
|  | #if PAGETABLE_LEVELS == 4 | 
|  | pv_mmu_ops.alloc_pud = xen_alloc_pud; | 
|  | pv_mmu_ops.release_pud = xen_release_pud; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | SetPagePinned(virt_to_page(level3_user_vsyscall)); | 
|  | #endif | 
|  | xen_mark_init_mm_pinned(); | 
|  | } | 
|  |  | 
|  | static void xen_leave_lazy_mmu(void) | 
|  | { | 
|  | preempt_disable(); | 
|  | xen_mc_flush(); | 
|  | paravirt_leave_lazy_mmu(); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static const struct pv_mmu_ops xen_mmu_ops __initconst = { | 
|  | .read_cr2 = xen_read_cr2, | 
|  | .write_cr2 = xen_write_cr2, | 
|  |  | 
|  | .read_cr3 = xen_read_cr3, | 
|  | #ifdef CONFIG_X86_32 | 
|  | .write_cr3 = xen_write_cr3_init, | 
|  | #else | 
|  | .write_cr3 = xen_write_cr3, | 
|  | #endif | 
|  |  | 
|  | .flush_tlb_user = xen_flush_tlb, | 
|  | .flush_tlb_kernel = xen_flush_tlb, | 
|  | .flush_tlb_single = xen_flush_tlb_single, | 
|  | .flush_tlb_others = xen_flush_tlb_others, | 
|  |  | 
|  | .pte_update = paravirt_nop, | 
|  | .pte_update_defer = paravirt_nop, | 
|  |  | 
|  | .pgd_alloc = xen_pgd_alloc, | 
|  | .pgd_free = xen_pgd_free, | 
|  |  | 
|  | .alloc_pte = xen_alloc_pte_init, | 
|  | .release_pte = xen_release_pte_init, | 
|  | .alloc_pmd = xen_alloc_pmd_init, | 
|  | .release_pmd = xen_release_pmd_init, | 
|  |  | 
|  | .set_pte = xen_set_pte_init, | 
|  | .set_pte_at = xen_set_pte_at, | 
|  | .set_pmd = xen_set_pmd_hyper, | 
|  |  | 
|  | .ptep_modify_prot_start = __ptep_modify_prot_start, | 
|  | .ptep_modify_prot_commit = __ptep_modify_prot_commit, | 
|  |  | 
|  | .pte_val = PV_CALLEE_SAVE(xen_pte_val), | 
|  | .pgd_val = PV_CALLEE_SAVE(xen_pgd_val), | 
|  |  | 
|  | .make_pte = PV_CALLEE_SAVE(xen_make_pte), | 
|  | .make_pgd = PV_CALLEE_SAVE(xen_make_pgd), | 
|  |  | 
|  | #ifdef CONFIG_X86_PAE | 
|  | .set_pte_atomic = xen_set_pte_atomic, | 
|  | .pte_clear = xen_pte_clear, | 
|  | .pmd_clear = xen_pmd_clear, | 
|  | #endif	/* CONFIG_X86_PAE */ | 
|  | .set_pud = xen_set_pud_hyper, | 
|  |  | 
|  | .make_pmd = PV_CALLEE_SAVE(xen_make_pmd), | 
|  | .pmd_val = PV_CALLEE_SAVE(xen_pmd_val), | 
|  |  | 
|  | #if PAGETABLE_LEVELS == 4 | 
|  | .pud_val = PV_CALLEE_SAVE(xen_pud_val), | 
|  | .make_pud = PV_CALLEE_SAVE(xen_make_pud), | 
|  | .set_pgd = xen_set_pgd_hyper, | 
|  |  | 
|  | .alloc_pud = xen_alloc_pmd_init, | 
|  | .release_pud = xen_release_pmd_init, | 
|  | #endif	/* PAGETABLE_LEVELS == 4 */ | 
|  |  | 
|  | .activate_mm = xen_activate_mm, | 
|  | .dup_mmap = xen_dup_mmap, | 
|  | .exit_mmap = xen_exit_mmap, | 
|  |  | 
|  | .lazy_mode = { | 
|  | .enter = paravirt_enter_lazy_mmu, | 
|  | .leave = xen_leave_lazy_mmu, | 
|  | }, | 
|  |  | 
|  | .set_fixmap = xen_set_fixmap, | 
|  | }; | 
|  |  | 
|  | void __init xen_init_mmu_ops(void) | 
|  | { | 
|  | x86_init.mapping.pagetable_reserve = xen_mapping_pagetable_reserve; | 
|  | x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start; | 
|  | x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done; | 
|  | pv_mmu_ops = xen_mmu_ops; | 
|  |  | 
|  | memset(dummy_mapping, 0xff, PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | /* Protected by xen_reservation_lock. */ | 
|  | #define MAX_CONTIG_ORDER 9 /* 2MB */ | 
|  | static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER]; | 
|  |  | 
|  | #define VOID_PTE (mfn_pte(0, __pgprot(0))) | 
|  | static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order, | 
|  | unsigned long *in_frames, | 
|  | unsigned long *out_frames) | 
|  | { | 
|  | int i; | 
|  | struct multicall_space mcs; | 
|  |  | 
|  | xen_mc_batch(); | 
|  | for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) { | 
|  | mcs = __xen_mc_entry(0); | 
|  |  | 
|  | if (in_frames) | 
|  | in_frames[i] = virt_to_mfn(vaddr); | 
|  |  | 
|  | MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0); | 
|  | __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY); | 
|  |  | 
|  | if (out_frames) | 
|  | out_frames[i] = virt_to_pfn(vaddr); | 
|  | } | 
|  | xen_mc_issue(0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the pfn-to-mfn mappings for a virtual address range, either to | 
|  | * point to an array of mfns, or contiguously from a single starting | 
|  | * mfn. | 
|  | */ | 
|  | static void xen_remap_exchanged_ptes(unsigned long vaddr, int order, | 
|  | unsigned long *mfns, | 
|  | unsigned long first_mfn) | 
|  | { | 
|  | unsigned i, limit; | 
|  | unsigned long mfn; | 
|  |  | 
|  | xen_mc_batch(); | 
|  |  | 
|  | limit = 1u << order; | 
|  | for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) { | 
|  | struct multicall_space mcs; | 
|  | unsigned flags; | 
|  |  | 
|  | mcs = __xen_mc_entry(0); | 
|  | if (mfns) | 
|  | mfn = mfns[i]; | 
|  | else | 
|  | mfn = first_mfn + i; | 
|  |  | 
|  | if (i < (limit - 1)) | 
|  | flags = 0; | 
|  | else { | 
|  | if (order == 0) | 
|  | flags = UVMF_INVLPG | UVMF_ALL; | 
|  | else | 
|  | flags = UVMF_TLB_FLUSH | UVMF_ALL; | 
|  | } | 
|  |  | 
|  | MULTI_update_va_mapping(mcs.mc, vaddr, | 
|  | mfn_pte(mfn, PAGE_KERNEL), flags); | 
|  |  | 
|  | set_phys_to_machine(virt_to_pfn(vaddr), mfn); | 
|  | } | 
|  |  | 
|  | xen_mc_issue(0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Perform the hypercall to exchange a region of our pfns to point to | 
|  | * memory with the required contiguous alignment.  Takes the pfns as | 
|  | * input, and populates mfns as output. | 
|  | * | 
|  | * Returns a success code indicating whether the hypervisor was able to | 
|  | * satisfy the request or not. | 
|  | */ | 
|  | static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in, | 
|  | unsigned long *pfns_in, | 
|  | unsigned long extents_out, | 
|  | unsigned int order_out, | 
|  | unsigned long *mfns_out, | 
|  | unsigned int address_bits) | 
|  | { | 
|  | long rc; | 
|  | int success; | 
|  |  | 
|  | struct xen_memory_exchange exchange = { | 
|  | .in = { | 
|  | .nr_extents   = extents_in, | 
|  | .extent_order = order_in, | 
|  | .extent_start = pfns_in, | 
|  | .domid        = DOMID_SELF | 
|  | }, | 
|  | .out = { | 
|  | .nr_extents   = extents_out, | 
|  | .extent_order = order_out, | 
|  | .extent_start = mfns_out, | 
|  | .address_bits = address_bits, | 
|  | .domid        = DOMID_SELF | 
|  | } | 
|  | }; | 
|  |  | 
|  | BUG_ON(extents_in << order_in != extents_out << order_out); | 
|  |  | 
|  | rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange); | 
|  | success = (exchange.nr_exchanged == extents_in); | 
|  |  | 
|  | BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0))); | 
|  | BUG_ON(success && (rc != 0)); | 
|  |  | 
|  | return success; | 
|  | } | 
|  |  | 
|  | int xen_create_contiguous_region(unsigned long vstart, unsigned int order, | 
|  | unsigned int address_bits) | 
|  | { | 
|  | unsigned long *in_frames = discontig_frames, out_frame; | 
|  | unsigned long  flags; | 
|  | int            success; | 
|  |  | 
|  | /* | 
|  | * Currently an auto-translated guest will not perform I/O, nor will | 
|  | * it require PAE page directories below 4GB. Therefore any calls to | 
|  | * this function are redundant and can be ignored. | 
|  | */ | 
|  |  | 
|  | if (xen_feature(XENFEAT_auto_translated_physmap)) | 
|  | return 0; | 
|  |  | 
|  | if (unlikely(order > MAX_CONTIG_ORDER)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | memset((void *) vstart, 0, PAGE_SIZE << order); | 
|  |  | 
|  | spin_lock_irqsave(&xen_reservation_lock, flags); | 
|  |  | 
|  | /* 1. Zap current PTEs, remembering MFNs. */ | 
|  | xen_zap_pfn_range(vstart, order, in_frames, NULL); | 
|  |  | 
|  | /* 2. Get a new contiguous memory extent. */ | 
|  | out_frame = virt_to_pfn(vstart); | 
|  | success = xen_exchange_memory(1UL << order, 0, in_frames, | 
|  | 1, order, &out_frame, | 
|  | address_bits); | 
|  |  | 
|  | /* 3. Map the new extent in place of old pages. */ | 
|  | if (success) | 
|  | xen_remap_exchanged_ptes(vstart, order, NULL, out_frame); | 
|  | else | 
|  | xen_remap_exchanged_ptes(vstart, order, in_frames, 0); | 
|  |  | 
|  | spin_unlock_irqrestore(&xen_reservation_lock, flags); | 
|  |  | 
|  | return success ? 0 : -ENOMEM; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(xen_create_contiguous_region); | 
|  |  | 
|  | void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order) | 
|  | { | 
|  | unsigned long *out_frames = discontig_frames, in_frame; | 
|  | unsigned long  flags; | 
|  | int success; | 
|  |  | 
|  | if (xen_feature(XENFEAT_auto_translated_physmap)) | 
|  | return; | 
|  |  | 
|  | if (unlikely(order > MAX_CONTIG_ORDER)) | 
|  | return; | 
|  |  | 
|  | memset((void *) vstart, 0, PAGE_SIZE << order); | 
|  |  | 
|  | spin_lock_irqsave(&xen_reservation_lock, flags); | 
|  |  | 
|  | /* 1. Find start MFN of contiguous extent. */ | 
|  | in_frame = virt_to_mfn(vstart); | 
|  |  | 
|  | /* 2. Zap current PTEs. */ | 
|  | xen_zap_pfn_range(vstart, order, NULL, out_frames); | 
|  |  | 
|  | /* 3. Do the exchange for non-contiguous MFNs. */ | 
|  | success = xen_exchange_memory(1, order, &in_frame, 1UL << order, | 
|  | 0, out_frames, 0); | 
|  |  | 
|  | /* 4. Map new pages in place of old pages. */ | 
|  | if (success) | 
|  | xen_remap_exchanged_ptes(vstart, order, out_frames, 0); | 
|  | else | 
|  | xen_remap_exchanged_ptes(vstart, order, NULL, in_frame); | 
|  |  | 
|  | spin_unlock_irqrestore(&xen_reservation_lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region); | 
|  |  | 
|  | #ifdef CONFIG_XEN_PVHVM | 
|  | static void xen_hvm_exit_mmap(struct mm_struct *mm) | 
|  | { | 
|  | struct xen_hvm_pagetable_dying a; | 
|  | int rc; | 
|  |  | 
|  | a.domid = DOMID_SELF; | 
|  | a.gpa = __pa(mm->pgd); | 
|  | rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a); | 
|  | WARN_ON_ONCE(rc < 0); | 
|  | } | 
|  |  | 
|  | static int is_pagetable_dying_supported(void) | 
|  | { | 
|  | struct xen_hvm_pagetable_dying a; | 
|  | int rc = 0; | 
|  |  | 
|  | a.domid = DOMID_SELF; | 
|  | a.gpa = 0x00; | 
|  | rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a); | 
|  | if (rc < 0) { | 
|  | printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n"); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void __init xen_hvm_init_mmu_ops(void) | 
|  | { | 
|  | if (is_pagetable_dying_supported()) | 
|  | pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #define REMAP_BATCH_SIZE 16 | 
|  |  | 
|  | struct remap_data { | 
|  | unsigned long mfn; | 
|  | pgprot_t prot; | 
|  | struct mmu_update *mmu_update; | 
|  | }; | 
|  |  | 
|  | static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token, | 
|  | unsigned long addr, void *data) | 
|  | { | 
|  | struct remap_data *rmd = data; | 
|  | pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot)); | 
|  |  | 
|  | rmd->mmu_update->ptr = virt_to_machine(ptep).maddr; | 
|  | rmd->mmu_update->val = pte_val_ma(pte); | 
|  | rmd->mmu_update++; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int xen_remap_domain_mfn_range(struct vm_area_struct *vma, | 
|  | unsigned long addr, | 
|  | unsigned long mfn, int nr, | 
|  | pgprot_t prot, unsigned domid) | 
|  | { | 
|  | struct remap_data rmd; | 
|  | struct mmu_update mmu_update[REMAP_BATCH_SIZE]; | 
|  | int batch; | 
|  | unsigned long range; | 
|  | int err = 0; | 
|  |  | 
|  | prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP); | 
|  |  | 
|  | BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) == | 
|  | (VM_PFNMAP | VM_RESERVED | VM_IO))); | 
|  |  | 
|  | rmd.mfn = mfn; | 
|  | rmd.prot = prot; | 
|  |  | 
|  | while (nr) { | 
|  | batch = min(REMAP_BATCH_SIZE, nr); | 
|  | range = (unsigned long)batch << PAGE_SHIFT; | 
|  |  | 
|  | rmd.mmu_update = mmu_update; | 
|  | err = apply_to_page_range(vma->vm_mm, addr, range, | 
|  | remap_area_mfn_pte_fn, &rmd); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | err = -EFAULT; | 
|  | if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0) | 
|  | goto out; | 
|  |  | 
|  | nr -= batch; | 
|  | addr += range; | 
|  | } | 
|  |  | 
|  | err = 0; | 
|  | out: | 
|  |  | 
|  | flush_tlb_all(); | 
|  |  | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range); | 
|  |  | 
|  | #ifdef CONFIG_XEN_DEBUG_FS | 
|  | static int p2m_dump_open(struct inode *inode, struct file *filp) | 
|  | { | 
|  | return single_open(filp, p2m_dump_show, NULL); | 
|  | } | 
|  |  | 
|  | static const struct file_operations p2m_dump_fops = { | 
|  | .open		= p2m_dump_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= single_release, | 
|  | }; | 
|  | #endif /* CONFIG_XEN_DEBUG_FS */ |