| /* | 
 |  * net/sunrpc/cache.c | 
 |  * | 
 |  * Generic code for various authentication-related caches | 
 |  * used by sunrpc clients and servers. | 
 |  * | 
 |  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> | 
 |  * | 
 |  * Released under terms in GPL version 2.  See COPYING. | 
 |  * | 
 |  */ | 
 |  | 
 | #include <linux/types.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/file.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/signal.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/kmod.h> | 
 | #include <linux/list.h> | 
 | #include <linux/module.h> | 
 | #include <linux/ctype.h> | 
 | #include <asm/uaccess.h> | 
 | #include <linux/poll.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/net.h> | 
 | #include <linux/workqueue.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/pagemap.h> | 
 | #include <asm/ioctls.h> | 
 | #include <linux/sunrpc/types.h> | 
 | #include <linux/sunrpc/cache.h> | 
 | #include <linux/sunrpc/stats.h> | 
 | #include <linux/sunrpc/rpc_pipe_fs.h> | 
 | #include "netns.h" | 
 |  | 
 | #define	 RPCDBG_FACILITY RPCDBG_CACHE | 
 |  | 
 | static bool cache_defer_req(struct cache_req *req, struct cache_head *item); | 
 | static void cache_revisit_request(struct cache_head *item); | 
 |  | 
 | static void cache_init(struct cache_head *h) | 
 | { | 
 | 	time_t now = seconds_since_boot(); | 
 | 	h->next = NULL; | 
 | 	h->flags = 0; | 
 | 	kref_init(&h->ref); | 
 | 	h->expiry_time = now + CACHE_NEW_EXPIRY; | 
 | 	h->last_refresh = now; | 
 | } | 
 |  | 
 | static inline int cache_is_expired(struct cache_detail *detail, struct cache_head *h) | 
 | { | 
 | 	return  (h->expiry_time < seconds_since_boot()) || | 
 | 		(detail->flush_time > h->last_refresh); | 
 | } | 
 |  | 
 | struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail, | 
 | 				       struct cache_head *key, int hash) | 
 | { | 
 | 	struct cache_head **head,  **hp; | 
 | 	struct cache_head *new = NULL, *freeme = NULL; | 
 |  | 
 | 	head = &detail->hash_table[hash]; | 
 |  | 
 | 	read_lock(&detail->hash_lock); | 
 |  | 
 | 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) { | 
 | 		struct cache_head *tmp = *hp; | 
 | 		if (detail->match(tmp, key)) { | 
 | 			if (cache_is_expired(detail, tmp)) | 
 | 				/* This entry is expired, we will discard it. */ | 
 | 				break; | 
 | 			cache_get(tmp); | 
 | 			read_unlock(&detail->hash_lock); | 
 | 			return tmp; | 
 | 		} | 
 | 	} | 
 | 	read_unlock(&detail->hash_lock); | 
 | 	/* Didn't find anything, insert an empty entry */ | 
 |  | 
 | 	new = detail->alloc(); | 
 | 	if (!new) | 
 | 		return NULL; | 
 | 	/* must fully initialise 'new', else | 
 | 	 * we might get lose if we need to | 
 | 	 * cache_put it soon. | 
 | 	 */ | 
 | 	cache_init(new); | 
 | 	detail->init(new, key); | 
 |  | 
 | 	write_lock(&detail->hash_lock); | 
 |  | 
 | 	/* check if entry appeared while we slept */ | 
 | 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) { | 
 | 		struct cache_head *tmp = *hp; | 
 | 		if (detail->match(tmp, key)) { | 
 | 			if (cache_is_expired(detail, tmp)) { | 
 | 				*hp = tmp->next; | 
 | 				tmp->next = NULL; | 
 | 				detail->entries --; | 
 | 				freeme = tmp; | 
 | 				break; | 
 | 			} | 
 | 			cache_get(tmp); | 
 | 			write_unlock(&detail->hash_lock); | 
 | 			cache_put(new, detail); | 
 | 			return tmp; | 
 | 		} | 
 | 	} | 
 | 	new->next = *head; | 
 | 	*head = new; | 
 | 	detail->entries++; | 
 | 	cache_get(new); | 
 | 	write_unlock(&detail->hash_lock); | 
 |  | 
 | 	if (freeme) | 
 | 		cache_put(freeme, detail); | 
 | 	return new; | 
 | } | 
 | EXPORT_SYMBOL_GPL(sunrpc_cache_lookup); | 
 |  | 
 |  | 
 | static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch); | 
 |  | 
 | static void cache_fresh_locked(struct cache_head *head, time_t expiry) | 
 | { | 
 | 	head->expiry_time = expiry; | 
 | 	head->last_refresh = seconds_since_boot(); | 
 | 	smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */ | 
 | 	set_bit(CACHE_VALID, &head->flags); | 
 | } | 
 |  | 
 | static void cache_fresh_unlocked(struct cache_head *head, | 
 | 				 struct cache_detail *detail) | 
 | { | 
 | 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { | 
 | 		cache_revisit_request(head); | 
 | 		cache_dequeue(detail, head); | 
 | 	} | 
 | } | 
 |  | 
 | struct cache_head *sunrpc_cache_update(struct cache_detail *detail, | 
 | 				       struct cache_head *new, struct cache_head *old, int hash) | 
 | { | 
 | 	/* The 'old' entry is to be replaced by 'new'. | 
 | 	 * If 'old' is not VALID, we update it directly, | 
 | 	 * otherwise we need to replace it | 
 | 	 */ | 
 | 	struct cache_head **head; | 
 | 	struct cache_head *tmp; | 
 |  | 
 | 	if (!test_bit(CACHE_VALID, &old->flags)) { | 
 | 		write_lock(&detail->hash_lock); | 
 | 		if (!test_bit(CACHE_VALID, &old->flags)) { | 
 | 			if (test_bit(CACHE_NEGATIVE, &new->flags)) | 
 | 				set_bit(CACHE_NEGATIVE, &old->flags); | 
 | 			else | 
 | 				detail->update(old, new); | 
 | 			cache_fresh_locked(old, new->expiry_time); | 
 | 			write_unlock(&detail->hash_lock); | 
 | 			cache_fresh_unlocked(old, detail); | 
 | 			return old; | 
 | 		} | 
 | 		write_unlock(&detail->hash_lock); | 
 | 	} | 
 | 	/* We need to insert a new entry */ | 
 | 	tmp = detail->alloc(); | 
 | 	if (!tmp) { | 
 | 		cache_put(old, detail); | 
 | 		return NULL; | 
 | 	} | 
 | 	cache_init(tmp); | 
 | 	detail->init(tmp, old); | 
 | 	head = &detail->hash_table[hash]; | 
 |  | 
 | 	write_lock(&detail->hash_lock); | 
 | 	if (test_bit(CACHE_NEGATIVE, &new->flags)) | 
 | 		set_bit(CACHE_NEGATIVE, &tmp->flags); | 
 | 	else | 
 | 		detail->update(tmp, new); | 
 | 	tmp->next = *head; | 
 | 	*head = tmp; | 
 | 	detail->entries++; | 
 | 	cache_get(tmp); | 
 | 	cache_fresh_locked(tmp, new->expiry_time); | 
 | 	cache_fresh_locked(old, 0); | 
 | 	write_unlock(&detail->hash_lock); | 
 | 	cache_fresh_unlocked(tmp, detail); | 
 | 	cache_fresh_unlocked(old, detail); | 
 | 	cache_put(old, detail); | 
 | 	return tmp; | 
 | } | 
 | EXPORT_SYMBOL_GPL(sunrpc_cache_update); | 
 |  | 
 | static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h) | 
 | { | 
 | 	if (!cd->cache_upcall) | 
 | 		return -EINVAL; | 
 | 	return cd->cache_upcall(cd, h); | 
 | } | 
 |  | 
 | static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h) | 
 | { | 
 | 	if (!test_bit(CACHE_VALID, &h->flags)) | 
 | 		return -EAGAIN; | 
 | 	else { | 
 | 		/* entry is valid */ | 
 | 		if (test_bit(CACHE_NEGATIVE, &h->flags)) | 
 | 			return -ENOENT; | 
 | 		else { | 
 | 			/* | 
 | 			 * In combination with write barrier in | 
 | 			 * sunrpc_cache_update, ensures that anyone | 
 | 			 * using the cache entry after this sees the | 
 | 			 * updated contents: | 
 | 			 */ | 
 | 			smp_rmb(); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h) | 
 | { | 
 | 	int rv; | 
 |  | 
 | 	write_lock(&detail->hash_lock); | 
 | 	rv = cache_is_valid(detail, h); | 
 | 	if (rv != -EAGAIN) { | 
 | 		write_unlock(&detail->hash_lock); | 
 | 		return rv; | 
 | 	} | 
 | 	set_bit(CACHE_NEGATIVE, &h->flags); | 
 | 	cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY); | 
 | 	write_unlock(&detail->hash_lock); | 
 | 	cache_fresh_unlocked(h, detail); | 
 | 	return -ENOENT; | 
 | } | 
 |  | 
 | /* | 
 |  * This is the generic cache management routine for all | 
 |  * the authentication caches. | 
 |  * It checks the currency of a cache item and will (later) | 
 |  * initiate an upcall to fill it if needed. | 
 |  * | 
 |  * | 
 |  * Returns 0 if the cache_head can be used, or cache_puts it and returns | 
 |  * -EAGAIN if upcall is pending and request has been queued | 
 |  * -ETIMEDOUT if upcall failed or request could not be queue or | 
 |  *           upcall completed but item is still invalid (implying that | 
 |  *           the cache item has been replaced with a newer one). | 
 |  * -ENOENT if cache entry was negative | 
 |  */ | 
 | int cache_check(struct cache_detail *detail, | 
 | 		    struct cache_head *h, struct cache_req *rqstp) | 
 | { | 
 | 	int rv; | 
 | 	long refresh_age, age; | 
 |  | 
 | 	/* First decide return status as best we can */ | 
 | 	rv = cache_is_valid(detail, h); | 
 |  | 
 | 	/* now see if we want to start an upcall */ | 
 | 	refresh_age = (h->expiry_time - h->last_refresh); | 
 | 	age = seconds_since_boot() - h->last_refresh; | 
 |  | 
 | 	if (rqstp == NULL) { | 
 | 		if (rv == -EAGAIN) | 
 | 			rv = -ENOENT; | 
 | 	} else if (rv == -EAGAIN || age > refresh_age/2) { | 
 | 		dprintk("RPC:       Want update, refage=%ld, age=%ld\n", | 
 | 				refresh_age, age); | 
 | 		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) { | 
 | 			switch (cache_make_upcall(detail, h)) { | 
 | 			case -EINVAL: | 
 | 				clear_bit(CACHE_PENDING, &h->flags); | 
 | 				cache_revisit_request(h); | 
 | 				rv = try_to_negate_entry(detail, h); | 
 | 				break; | 
 | 			case -EAGAIN: | 
 | 				clear_bit(CACHE_PENDING, &h->flags); | 
 | 				cache_revisit_request(h); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (rv == -EAGAIN) { | 
 | 		if (!cache_defer_req(rqstp, h)) { | 
 | 			/* | 
 | 			 * Request was not deferred; handle it as best | 
 | 			 * we can ourselves: | 
 | 			 */ | 
 | 			rv = cache_is_valid(detail, h); | 
 | 			if (rv == -EAGAIN) | 
 | 				rv = -ETIMEDOUT; | 
 | 		} | 
 | 	} | 
 | 	if (rv) | 
 | 		cache_put(h, detail); | 
 | 	return rv; | 
 | } | 
 | EXPORT_SYMBOL_GPL(cache_check); | 
 |  | 
 | /* | 
 |  * caches need to be periodically cleaned. | 
 |  * For this we maintain a list of cache_detail and | 
 |  * a current pointer into that list and into the table | 
 |  * for that entry. | 
 |  * | 
 |  * Each time clean_cache is called it finds the next non-empty entry | 
 |  * in the current table and walks the list in that entry | 
 |  * looking for entries that can be removed. | 
 |  * | 
 |  * An entry gets removed if: | 
 |  * - The expiry is before current time | 
 |  * - The last_refresh time is before the flush_time for that cache | 
 |  * | 
 |  * later we might drop old entries with non-NEVER expiry if that table | 
 |  * is getting 'full' for some definition of 'full' | 
 |  * | 
 |  * The question of "how often to scan a table" is an interesting one | 
 |  * and is answered in part by the use of the "nextcheck" field in the | 
 |  * cache_detail. | 
 |  * When a scan of a table begins, the nextcheck field is set to a time | 
 |  * that is well into the future. | 
 |  * While scanning, if an expiry time is found that is earlier than the | 
 |  * current nextcheck time, nextcheck is set to that expiry time. | 
 |  * If the flush_time is ever set to a time earlier than the nextcheck | 
 |  * time, the nextcheck time is then set to that flush_time. | 
 |  * | 
 |  * A table is then only scanned if the current time is at least | 
 |  * the nextcheck time. | 
 |  * | 
 |  */ | 
 |  | 
 | static LIST_HEAD(cache_list); | 
 | static DEFINE_SPINLOCK(cache_list_lock); | 
 | static struct cache_detail *current_detail; | 
 | static int current_index; | 
 |  | 
 | static void do_cache_clean(struct work_struct *work); | 
 | static struct delayed_work cache_cleaner; | 
 |  | 
 | static void sunrpc_init_cache_detail(struct cache_detail *cd) | 
 | { | 
 | 	rwlock_init(&cd->hash_lock); | 
 | 	INIT_LIST_HEAD(&cd->queue); | 
 | 	spin_lock(&cache_list_lock); | 
 | 	cd->nextcheck = 0; | 
 | 	cd->entries = 0; | 
 | 	atomic_set(&cd->readers, 0); | 
 | 	cd->last_close = 0; | 
 | 	cd->last_warn = -1; | 
 | 	list_add(&cd->others, &cache_list); | 
 | 	spin_unlock(&cache_list_lock); | 
 |  | 
 | 	/* start the cleaning process */ | 
 | 	schedule_delayed_work(&cache_cleaner, 0); | 
 | } | 
 |  | 
 | static void sunrpc_destroy_cache_detail(struct cache_detail *cd) | 
 | { | 
 | 	cache_purge(cd); | 
 | 	spin_lock(&cache_list_lock); | 
 | 	write_lock(&cd->hash_lock); | 
 | 	if (cd->entries || atomic_read(&cd->inuse)) { | 
 | 		write_unlock(&cd->hash_lock); | 
 | 		spin_unlock(&cache_list_lock); | 
 | 		goto out; | 
 | 	} | 
 | 	if (current_detail == cd) | 
 | 		current_detail = NULL; | 
 | 	list_del_init(&cd->others); | 
 | 	write_unlock(&cd->hash_lock); | 
 | 	spin_unlock(&cache_list_lock); | 
 | 	if (list_empty(&cache_list)) { | 
 | 		/* module must be being unloaded so its safe to kill the worker */ | 
 | 		cancel_delayed_work_sync(&cache_cleaner); | 
 | 	} | 
 | 	return; | 
 | out: | 
 | 	printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name); | 
 | } | 
 |  | 
 | /* clean cache tries to find something to clean | 
 |  * and cleans it. | 
 |  * It returns 1 if it cleaned something, | 
 |  *            0 if it didn't find anything this time | 
 |  *           -1 if it fell off the end of the list. | 
 |  */ | 
 | static int cache_clean(void) | 
 | { | 
 | 	int rv = 0; | 
 | 	struct list_head *next; | 
 |  | 
 | 	spin_lock(&cache_list_lock); | 
 |  | 
 | 	/* find a suitable table if we don't already have one */ | 
 | 	while (current_detail == NULL || | 
 | 	    current_index >= current_detail->hash_size) { | 
 | 		if (current_detail) | 
 | 			next = current_detail->others.next; | 
 | 		else | 
 | 			next = cache_list.next; | 
 | 		if (next == &cache_list) { | 
 | 			current_detail = NULL; | 
 | 			spin_unlock(&cache_list_lock); | 
 | 			return -1; | 
 | 		} | 
 | 		current_detail = list_entry(next, struct cache_detail, others); | 
 | 		if (current_detail->nextcheck > seconds_since_boot()) | 
 | 			current_index = current_detail->hash_size; | 
 | 		else { | 
 | 			current_index = 0; | 
 | 			current_detail->nextcheck = seconds_since_boot()+30*60; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* find a non-empty bucket in the table */ | 
 | 	while (current_detail && | 
 | 	       current_index < current_detail->hash_size && | 
 | 	       current_detail->hash_table[current_index] == NULL) | 
 | 		current_index++; | 
 |  | 
 | 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */ | 
 |  | 
 | 	if (current_detail && current_index < current_detail->hash_size) { | 
 | 		struct cache_head *ch, **cp; | 
 | 		struct cache_detail *d; | 
 |  | 
 | 		write_lock(¤t_detail->hash_lock); | 
 |  | 
 | 		/* Ok, now to clean this strand */ | 
 |  | 
 | 		cp = & current_detail->hash_table[current_index]; | 
 | 		for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) { | 
 | 			if (current_detail->nextcheck > ch->expiry_time) | 
 | 				current_detail->nextcheck = ch->expiry_time+1; | 
 | 			if (!cache_is_expired(current_detail, ch)) | 
 | 				continue; | 
 |  | 
 | 			*cp = ch->next; | 
 | 			ch->next = NULL; | 
 | 			current_detail->entries--; | 
 | 			rv = 1; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		write_unlock(¤t_detail->hash_lock); | 
 | 		d = current_detail; | 
 | 		if (!ch) | 
 | 			current_index ++; | 
 | 		spin_unlock(&cache_list_lock); | 
 | 		if (ch) { | 
 | 			if (test_and_clear_bit(CACHE_PENDING, &ch->flags)) | 
 | 				cache_dequeue(current_detail, ch); | 
 | 			cache_revisit_request(ch); | 
 | 			cache_put(ch, d); | 
 | 		} | 
 | 	} else | 
 | 		spin_unlock(&cache_list_lock); | 
 |  | 
 | 	return rv; | 
 | } | 
 |  | 
 | /* | 
 |  * We want to regularly clean the cache, so we need to schedule some work ... | 
 |  */ | 
 | static void do_cache_clean(struct work_struct *work) | 
 | { | 
 | 	int delay = 5; | 
 | 	if (cache_clean() == -1) | 
 | 		delay = round_jiffies_relative(30*HZ); | 
 |  | 
 | 	if (list_empty(&cache_list)) | 
 | 		delay = 0; | 
 |  | 
 | 	if (delay) | 
 | 		schedule_delayed_work(&cache_cleaner, delay); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Clean all caches promptly.  This just calls cache_clean | 
 |  * repeatedly until we are sure that every cache has had a chance to | 
 |  * be fully cleaned | 
 |  */ | 
 | void cache_flush(void) | 
 | { | 
 | 	while (cache_clean() != -1) | 
 | 		cond_resched(); | 
 | 	while (cache_clean() != -1) | 
 | 		cond_resched(); | 
 | } | 
 | EXPORT_SYMBOL_GPL(cache_flush); | 
 |  | 
 | void cache_purge(struct cache_detail *detail) | 
 | { | 
 | 	detail->flush_time = LONG_MAX; | 
 | 	detail->nextcheck = seconds_since_boot(); | 
 | 	cache_flush(); | 
 | 	detail->flush_time = 1; | 
 | } | 
 | EXPORT_SYMBOL_GPL(cache_purge); | 
 |  | 
 |  | 
 | /* | 
 |  * Deferral and Revisiting of Requests. | 
 |  * | 
 |  * If a cache lookup finds a pending entry, we | 
 |  * need to defer the request and revisit it later. | 
 |  * All deferred requests are stored in a hash table, | 
 |  * indexed by "struct cache_head *". | 
 |  * As it may be wasteful to store a whole request | 
 |  * structure, we allow the request to provide a | 
 |  * deferred form, which must contain a | 
 |  * 'struct cache_deferred_req' | 
 |  * This cache_deferred_req contains a method to allow | 
 |  * it to be revisited when cache info is available | 
 |  */ | 
 |  | 
 | #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head)) | 
 | #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) | 
 |  | 
 | #define	DFR_MAX	300	/* ??? */ | 
 |  | 
 | static DEFINE_SPINLOCK(cache_defer_lock); | 
 | static LIST_HEAD(cache_defer_list); | 
 | static struct hlist_head cache_defer_hash[DFR_HASHSIZE]; | 
 | static int cache_defer_cnt; | 
 |  | 
 | static void __unhash_deferred_req(struct cache_deferred_req *dreq) | 
 | { | 
 | 	hlist_del_init(&dreq->hash); | 
 | 	if (!list_empty(&dreq->recent)) { | 
 | 		list_del_init(&dreq->recent); | 
 | 		cache_defer_cnt--; | 
 | 	} | 
 | } | 
 |  | 
 | static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item) | 
 | { | 
 | 	int hash = DFR_HASH(item); | 
 |  | 
 | 	INIT_LIST_HEAD(&dreq->recent); | 
 | 	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]); | 
 | } | 
 |  | 
 | static void setup_deferral(struct cache_deferred_req *dreq, | 
 | 			   struct cache_head *item, | 
 | 			   int count_me) | 
 | { | 
 |  | 
 | 	dreq->item = item; | 
 |  | 
 | 	spin_lock(&cache_defer_lock); | 
 |  | 
 | 	__hash_deferred_req(dreq, item); | 
 |  | 
 | 	if (count_me) { | 
 | 		cache_defer_cnt++; | 
 | 		list_add(&dreq->recent, &cache_defer_list); | 
 | 	} | 
 |  | 
 | 	spin_unlock(&cache_defer_lock); | 
 |  | 
 | } | 
 |  | 
 | struct thread_deferred_req { | 
 | 	struct cache_deferred_req handle; | 
 | 	struct completion completion; | 
 | }; | 
 |  | 
 | static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many) | 
 | { | 
 | 	struct thread_deferred_req *dr = | 
 | 		container_of(dreq, struct thread_deferred_req, handle); | 
 | 	complete(&dr->completion); | 
 | } | 
 |  | 
 | static void cache_wait_req(struct cache_req *req, struct cache_head *item) | 
 | { | 
 | 	struct thread_deferred_req sleeper; | 
 | 	struct cache_deferred_req *dreq = &sleeper.handle; | 
 |  | 
 | 	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion); | 
 | 	dreq->revisit = cache_restart_thread; | 
 |  | 
 | 	setup_deferral(dreq, item, 0); | 
 |  | 
 | 	if (!test_bit(CACHE_PENDING, &item->flags) || | 
 | 	    wait_for_completion_interruptible_timeout( | 
 | 		    &sleeper.completion, req->thread_wait) <= 0) { | 
 | 		/* The completion wasn't completed, so we need | 
 | 		 * to clean up | 
 | 		 */ | 
 | 		spin_lock(&cache_defer_lock); | 
 | 		if (!hlist_unhashed(&sleeper.handle.hash)) { | 
 | 			__unhash_deferred_req(&sleeper.handle); | 
 | 			spin_unlock(&cache_defer_lock); | 
 | 		} else { | 
 | 			/* cache_revisit_request already removed | 
 | 			 * this from the hash table, but hasn't | 
 | 			 * called ->revisit yet.  It will very soon | 
 | 			 * and we need to wait for it. | 
 | 			 */ | 
 | 			spin_unlock(&cache_defer_lock); | 
 | 			wait_for_completion(&sleeper.completion); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void cache_limit_defers(void) | 
 | { | 
 | 	/* Make sure we haven't exceed the limit of allowed deferred | 
 | 	 * requests. | 
 | 	 */ | 
 | 	struct cache_deferred_req *discard = NULL; | 
 |  | 
 | 	if (cache_defer_cnt <= DFR_MAX) | 
 | 		return; | 
 |  | 
 | 	spin_lock(&cache_defer_lock); | 
 |  | 
 | 	/* Consider removing either the first or the last */ | 
 | 	if (cache_defer_cnt > DFR_MAX) { | 
 | 		if (net_random() & 1) | 
 | 			discard = list_entry(cache_defer_list.next, | 
 | 					     struct cache_deferred_req, recent); | 
 | 		else | 
 | 			discard = list_entry(cache_defer_list.prev, | 
 | 					     struct cache_deferred_req, recent); | 
 | 		__unhash_deferred_req(discard); | 
 | 	} | 
 | 	spin_unlock(&cache_defer_lock); | 
 | 	if (discard) | 
 | 		discard->revisit(discard, 1); | 
 | } | 
 |  | 
 | /* Return true if and only if a deferred request is queued. */ | 
 | static bool cache_defer_req(struct cache_req *req, struct cache_head *item) | 
 | { | 
 | 	struct cache_deferred_req *dreq; | 
 |  | 
 | 	if (req->thread_wait) { | 
 | 		cache_wait_req(req, item); | 
 | 		if (!test_bit(CACHE_PENDING, &item->flags)) | 
 | 			return false; | 
 | 	} | 
 | 	dreq = req->defer(req); | 
 | 	if (dreq == NULL) | 
 | 		return false; | 
 | 	setup_deferral(dreq, item, 1); | 
 | 	if (!test_bit(CACHE_PENDING, &item->flags)) | 
 | 		/* Bit could have been cleared before we managed to | 
 | 		 * set up the deferral, so need to revisit just in case | 
 | 		 */ | 
 | 		cache_revisit_request(item); | 
 |  | 
 | 	cache_limit_defers(); | 
 | 	return true; | 
 | } | 
 |  | 
 | static void cache_revisit_request(struct cache_head *item) | 
 | { | 
 | 	struct cache_deferred_req *dreq; | 
 | 	struct list_head pending; | 
 | 	struct hlist_node *lp, *tmp; | 
 | 	int hash = DFR_HASH(item); | 
 |  | 
 | 	INIT_LIST_HEAD(&pending); | 
 | 	spin_lock(&cache_defer_lock); | 
 |  | 
 | 	hlist_for_each_entry_safe(dreq, lp, tmp, &cache_defer_hash[hash], hash) | 
 | 		if (dreq->item == item) { | 
 | 			__unhash_deferred_req(dreq); | 
 | 			list_add(&dreq->recent, &pending); | 
 | 		} | 
 |  | 
 | 	spin_unlock(&cache_defer_lock); | 
 |  | 
 | 	while (!list_empty(&pending)) { | 
 | 		dreq = list_entry(pending.next, struct cache_deferred_req, recent); | 
 | 		list_del_init(&dreq->recent); | 
 | 		dreq->revisit(dreq, 0); | 
 | 	} | 
 | } | 
 |  | 
 | void cache_clean_deferred(void *owner) | 
 | { | 
 | 	struct cache_deferred_req *dreq, *tmp; | 
 | 	struct list_head pending; | 
 |  | 
 |  | 
 | 	INIT_LIST_HEAD(&pending); | 
 | 	spin_lock(&cache_defer_lock); | 
 |  | 
 | 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { | 
 | 		if (dreq->owner == owner) { | 
 | 			__unhash_deferred_req(dreq); | 
 | 			list_add(&dreq->recent, &pending); | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&cache_defer_lock); | 
 |  | 
 | 	while (!list_empty(&pending)) { | 
 | 		dreq = list_entry(pending.next, struct cache_deferred_req, recent); | 
 | 		list_del_init(&dreq->recent); | 
 | 		dreq->revisit(dreq, 1); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * communicate with user-space | 
 |  * | 
 |  * We have a magic /proc file - /proc/sunrpc/<cachename>/channel. | 
 |  * On read, you get a full request, or block. | 
 |  * On write, an update request is processed. | 
 |  * Poll works if anything to read, and always allows write. | 
 |  * | 
 |  * Implemented by linked list of requests.  Each open file has | 
 |  * a ->private that also exists in this list.  New requests are added | 
 |  * to the end and may wakeup and preceding readers. | 
 |  * New readers are added to the head.  If, on read, an item is found with | 
 |  * CACHE_UPCALLING clear, we free it from the list. | 
 |  * | 
 |  */ | 
 |  | 
 | static DEFINE_SPINLOCK(queue_lock); | 
 | static DEFINE_MUTEX(queue_io_mutex); | 
 |  | 
 | struct cache_queue { | 
 | 	struct list_head	list; | 
 | 	int			reader;	/* if 0, then request */ | 
 | }; | 
 | struct cache_request { | 
 | 	struct cache_queue	q; | 
 | 	struct cache_head	*item; | 
 | 	char			* buf; | 
 | 	int			len; | 
 | 	int			readers; | 
 | }; | 
 | struct cache_reader { | 
 | 	struct cache_queue	q; | 
 | 	int			offset;	/* if non-0, we have a refcnt on next request */ | 
 | }; | 
 |  | 
 | static ssize_t cache_read(struct file *filp, char __user *buf, size_t count, | 
 | 			  loff_t *ppos, struct cache_detail *cd) | 
 | { | 
 | 	struct cache_reader *rp = filp->private_data; | 
 | 	struct cache_request *rq; | 
 | 	struct inode *inode = filp->f_path.dentry->d_inode; | 
 | 	int err; | 
 |  | 
 | 	if (count == 0) | 
 | 		return 0; | 
 |  | 
 | 	mutex_lock(&inode->i_mutex); /* protect against multiple concurrent | 
 | 			      * readers on this file */ | 
 |  again: | 
 | 	spin_lock(&queue_lock); | 
 | 	/* need to find next request */ | 
 | 	while (rp->q.list.next != &cd->queue && | 
 | 	       list_entry(rp->q.list.next, struct cache_queue, list) | 
 | 	       ->reader) { | 
 | 		struct list_head *next = rp->q.list.next; | 
 | 		list_move(&rp->q.list, next); | 
 | 	} | 
 | 	if (rp->q.list.next == &cd->queue) { | 
 | 		spin_unlock(&queue_lock); | 
 | 		mutex_unlock(&inode->i_mutex); | 
 | 		BUG_ON(rp->offset); | 
 | 		return 0; | 
 | 	} | 
 | 	rq = container_of(rp->q.list.next, struct cache_request, q.list); | 
 | 	BUG_ON(rq->q.reader); | 
 | 	if (rp->offset == 0) | 
 | 		rq->readers++; | 
 | 	spin_unlock(&queue_lock); | 
 |  | 
 | 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { | 
 | 		err = -EAGAIN; | 
 | 		spin_lock(&queue_lock); | 
 | 		list_move(&rp->q.list, &rq->q.list); | 
 | 		spin_unlock(&queue_lock); | 
 | 	} else { | 
 | 		if (rp->offset + count > rq->len) | 
 | 			count = rq->len - rp->offset; | 
 | 		err = -EFAULT; | 
 | 		if (copy_to_user(buf, rq->buf + rp->offset, count)) | 
 | 			goto out; | 
 | 		rp->offset += count; | 
 | 		if (rp->offset >= rq->len) { | 
 | 			rp->offset = 0; | 
 | 			spin_lock(&queue_lock); | 
 | 			list_move(&rp->q.list, &rq->q.list); | 
 | 			spin_unlock(&queue_lock); | 
 | 		} | 
 | 		err = 0; | 
 | 	} | 
 |  out: | 
 | 	if (rp->offset == 0) { | 
 | 		/* need to release rq */ | 
 | 		spin_lock(&queue_lock); | 
 | 		rq->readers--; | 
 | 		if (rq->readers == 0 && | 
 | 		    !test_bit(CACHE_PENDING, &rq->item->flags)) { | 
 | 			list_del(&rq->q.list); | 
 | 			spin_unlock(&queue_lock); | 
 | 			cache_put(rq->item, cd); | 
 | 			kfree(rq->buf); | 
 | 			kfree(rq); | 
 | 		} else | 
 | 			spin_unlock(&queue_lock); | 
 | 	} | 
 | 	if (err == -EAGAIN) | 
 | 		goto again; | 
 | 	mutex_unlock(&inode->i_mutex); | 
 | 	return err ? err :  count; | 
 | } | 
 |  | 
 | static ssize_t cache_do_downcall(char *kaddr, const char __user *buf, | 
 | 				 size_t count, struct cache_detail *cd) | 
 | { | 
 | 	ssize_t ret; | 
 |  | 
 | 	if (copy_from_user(kaddr, buf, count)) | 
 | 		return -EFAULT; | 
 | 	kaddr[count] = '\0'; | 
 | 	ret = cd->cache_parse(cd, kaddr, count); | 
 | 	if (!ret) | 
 | 		ret = count; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static ssize_t cache_slow_downcall(const char __user *buf, | 
 | 				   size_t count, struct cache_detail *cd) | 
 | { | 
 | 	static char write_buf[8192]; /* protected by queue_io_mutex */ | 
 | 	ssize_t ret = -EINVAL; | 
 |  | 
 | 	if (count >= sizeof(write_buf)) | 
 | 		goto out; | 
 | 	mutex_lock(&queue_io_mutex); | 
 | 	ret = cache_do_downcall(write_buf, buf, count, cd); | 
 | 	mutex_unlock(&queue_io_mutex); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static ssize_t cache_downcall(struct address_space *mapping, | 
 | 			      const char __user *buf, | 
 | 			      size_t count, struct cache_detail *cd) | 
 | { | 
 | 	struct page *page; | 
 | 	char *kaddr; | 
 | 	ssize_t ret = -ENOMEM; | 
 |  | 
 | 	if (count >= PAGE_CACHE_SIZE) | 
 | 		goto out_slow; | 
 |  | 
 | 	page = find_or_create_page(mapping, 0, GFP_KERNEL); | 
 | 	if (!page) | 
 | 		goto out_slow; | 
 |  | 
 | 	kaddr = kmap(page); | 
 | 	ret = cache_do_downcall(kaddr, buf, count, cd); | 
 | 	kunmap(page); | 
 | 	unlock_page(page); | 
 | 	page_cache_release(page); | 
 | 	return ret; | 
 | out_slow: | 
 | 	return cache_slow_downcall(buf, count, cd); | 
 | } | 
 |  | 
 | static ssize_t cache_write(struct file *filp, const char __user *buf, | 
 | 			   size_t count, loff_t *ppos, | 
 | 			   struct cache_detail *cd) | 
 | { | 
 | 	struct address_space *mapping = filp->f_mapping; | 
 | 	struct inode *inode = filp->f_path.dentry->d_inode; | 
 | 	ssize_t ret = -EINVAL; | 
 |  | 
 | 	if (!cd->cache_parse) | 
 | 		goto out; | 
 |  | 
 | 	mutex_lock(&inode->i_mutex); | 
 | 	ret = cache_downcall(mapping, buf, count, cd); | 
 | 	mutex_unlock(&inode->i_mutex); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static DECLARE_WAIT_QUEUE_HEAD(queue_wait); | 
 |  | 
 | static unsigned int cache_poll(struct file *filp, poll_table *wait, | 
 | 			       struct cache_detail *cd) | 
 | { | 
 | 	unsigned int mask; | 
 | 	struct cache_reader *rp = filp->private_data; | 
 | 	struct cache_queue *cq; | 
 |  | 
 | 	poll_wait(filp, &queue_wait, wait); | 
 |  | 
 | 	/* alway allow write */ | 
 | 	mask = POLL_OUT | POLLWRNORM; | 
 |  | 
 | 	if (!rp) | 
 | 		return mask; | 
 |  | 
 | 	spin_lock(&queue_lock); | 
 |  | 
 | 	for (cq= &rp->q; &cq->list != &cd->queue; | 
 | 	     cq = list_entry(cq->list.next, struct cache_queue, list)) | 
 | 		if (!cq->reader) { | 
 | 			mask |= POLLIN | POLLRDNORM; | 
 | 			break; | 
 | 		} | 
 | 	spin_unlock(&queue_lock); | 
 | 	return mask; | 
 | } | 
 |  | 
 | static int cache_ioctl(struct inode *ino, struct file *filp, | 
 | 		       unsigned int cmd, unsigned long arg, | 
 | 		       struct cache_detail *cd) | 
 | { | 
 | 	int len = 0; | 
 | 	struct cache_reader *rp = filp->private_data; | 
 | 	struct cache_queue *cq; | 
 |  | 
 | 	if (cmd != FIONREAD || !rp) | 
 | 		return -EINVAL; | 
 |  | 
 | 	spin_lock(&queue_lock); | 
 |  | 
 | 	/* only find the length remaining in current request, | 
 | 	 * or the length of the next request | 
 | 	 */ | 
 | 	for (cq= &rp->q; &cq->list != &cd->queue; | 
 | 	     cq = list_entry(cq->list.next, struct cache_queue, list)) | 
 | 		if (!cq->reader) { | 
 | 			struct cache_request *cr = | 
 | 				container_of(cq, struct cache_request, q); | 
 | 			len = cr->len - rp->offset; | 
 | 			break; | 
 | 		} | 
 | 	spin_unlock(&queue_lock); | 
 |  | 
 | 	return put_user(len, (int __user *)arg); | 
 | } | 
 |  | 
 | static int cache_open(struct inode *inode, struct file *filp, | 
 | 		      struct cache_detail *cd) | 
 | { | 
 | 	struct cache_reader *rp = NULL; | 
 |  | 
 | 	if (!cd || !try_module_get(cd->owner)) | 
 | 		return -EACCES; | 
 | 	nonseekable_open(inode, filp); | 
 | 	if (filp->f_mode & FMODE_READ) { | 
 | 		rp = kmalloc(sizeof(*rp), GFP_KERNEL); | 
 | 		if (!rp) | 
 | 			return -ENOMEM; | 
 | 		rp->offset = 0; | 
 | 		rp->q.reader = 1; | 
 | 		atomic_inc(&cd->readers); | 
 | 		spin_lock(&queue_lock); | 
 | 		list_add(&rp->q.list, &cd->queue); | 
 | 		spin_unlock(&queue_lock); | 
 | 	} | 
 | 	filp->private_data = rp; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int cache_release(struct inode *inode, struct file *filp, | 
 | 			 struct cache_detail *cd) | 
 | { | 
 | 	struct cache_reader *rp = filp->private_data; | 
 |  | 
 | 	if (rp) { | 
 | 		spin_lock(&queue_lock); | 
 | 		if (rp->offset) { | 
 | 			struct cache_queue *cq; | 
 | 			for (cq= &rp->q; &cq->list != &cd->queue; | 
 | 			     cq = list_entry(cq->list.next, struct cache_queue, list)) | 
 | 				if (!cq->reader) { | 
 | 					container_of(cq, struct cache_request, q) | 
 | 						->readers--; | 
 | 					break; | 
 | 				} | 
 | 			rp->offset = 0; | 
 | 		} | 
 | 		list_del(&rp->q.list); | 
 | 		spin_unlock(&queue_lock); | 
 |  | 
 | 		filp->private_data = NULL; | 
 | 		kfree(rp); | 
 |  | 
 | 		cd->last_close = seconds_since_boot(); | 
 | 		atomic_dec(&cd->readers); | 
 | 	} | 
 | 	module_put(cd->owner); | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 |  | 
 | static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch) | 
 | { | 
 | 	struct cache_queue *cq; | 
 | 	spin_lock(&queue_lock); | 
 | 	list_for_each_entry(cq, &detail->queue, list) | 
 | 		if (!cq->reader) { | 
 | 			struct cache_request *cr = container_of(cq, struct cache_request, q); | 
 | 			if (cr->item != ch) | 
 | 				continue; | 
 | 			if (cr->readers != 0) | 
 | 				continue; | 
 | 			list_del(&cr->q.list); | 
 | 			spin_unlock(&queue_lock); | 
 | 			cache_put(cr->item, detail); | 
 | 			kfree(cr->buf); | 
 | 			kfree(cr); | 
 | 			return; | 
 | 		} | 
 | 	spin_unlock(&queue_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Support routines for text-based upcalls. | 
 |  * Fields are separated by spaces. | 
 |  * Fields are either mangled to quote space tab newline slosh with slosh | 
 |  * or a hexified with a leading \x | 
 |  * Record is terminated with newline. | 
 |  * | 
 |  */ | 
 |  | 
 | void qword_add(char **bpp, int *lp, char *str) | 
 | { | 
 | 	char *bp = *bpp; | 
 | 	int len = *lp; | 
 | 	char c; | 
 |  | 
 | 	if (len < 0) return; | 
 |  | 
 | 	while ((c=*str++) && len) | 
 | 		switch(c) { | 
 | 		case ' ': | 
 | 		case '\t': | 
 | 		case '\n': | 
 | 		case '\\': | 
 | 			if (len >= 4) { | 
 | 				*bp++ = '\\'; | 
 | 				*bp++ = '0' + ((c & 0300)>>6); | 
 | 				*bp++ = '0' + ((c & 0070)>>3); | 
 | 				*bp++ = '0' + ((c & 0007)>>0); | 
 | 			} | 
 | 			len -= 4; | 
 | 			break; | 
 | 		default: | 
 | 			*bp++ = c; | 
 | 			len--; | 
 | 		} | 
 | 	if (c || len <1) len = -1; | 
 | 	else { | 
 | 		*bp++ = ' '; | 
 | 		len--; | 
 | 	} | 
 | 	*bpp = bp; | 
 | 	*lp = len; | 
 | } | 
 | EXPORT_SYMBOL_GPL(qword_add); | 
 |  | 
 | void qword_addhex(char **bpp, int *lp, char *buf, int blen) | 
 | { | 
 | 	char *bp = *bpp; | 
 | 	int len = *lp; | 
 |  | 
 | 	if (len < 0) return; | 
 |  | 
 | 	if (len > 2) { | 
 | 		*bp++ = '\\'; | 
 | 		*bp++ = 'x'; | 
 | 		len -= 2; | 
 | 		while (blen && len >= 2) { | 
 | 			unsigned char c = *buf++; | 
 | 			*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1); | 
 | 			*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1); | 
 | 			len -= 2; | 
 | 			blen--; | 
 | 		} | 
 | 	} | 
 | 	if (blen || len<1) len = -1; | 
 | 	else { | 
 | 		*bp++ = ' '; | 
 | 		len--; | 
 | 	} | 
 | 	*bpp = bp; | 
 | 	*lp = len; | 
 | } | 
 | EXPORT_SYMBOL_GPL(qword_addhex); | 
 |  | 
 | static void warn_no_listener(struct cache_detail *detail) | 
 | { | 
 | 	if (detail->last_warn != detail->last_close) { | 
 | 		detail->last_warn = detail->last_close; | 
 | 		if (detail->warn_no_listener) | 
 | 			detail->warn_no_listener(detail, detail->last_close != 0); | 
 | 	} | 
 | } | 
 |  | 
 | static bool cache_listeners_exist(struct cache_detail *detail) | 
 | { | 
 | 	if (atomic_read(&detail->readers)) | 
 | 		return true; | 
 | 	if (detail->last_close == 0) | 
 | 		/* This cache was never opened */ | 
 | 		return false; | 
 | 	if (detail->last_close < seconds_since_boot() - 30) | 
 | 		/* | 
 | 		 * We allow for the possibility that someone might | 
 | 		 * restart a userspace daemon without restarting the | 
 | 		 * server; but after 30 seconds, we give up. | 
 | 		 */ | 
 | 		 return false; | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * register an upcall request to user-space and queue it up for read() by the | 
 |  * upcall daemon. | 
 |  * | 
 |  * Each request is at most one page long. | 
 |  */ | 
 | int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h, | 
 | 		void (*cache_request)(struct cache_detail *, | 
 | 				      struct cache_head *, | 
 | 				      char **, | 
 | 				      int *)) | 
 | { | 
 |  | 
 | 	char *buf; | 
 | 	struct cache_request *crq; | 
 | 	char *bp; | 
 | 	int len; | 
 |  | 
 | 	if (!cache_listeners_exist(detail)) { | 
 | 		warn_no_listener(detail); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL); | 
 | 	if (!buf) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	crq = kmalloc(sizeof (*crq), GFP_KERNEL); | 
 | 	if (!crq) { | 
 | 		kfree(buf); | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	bp = buf; len = PAGE_SIZE; | 
 |  | 
 | 	cache_request(detail, h, &bp, &len); | 
 |  | 
 | 	if (len < 0) { | 
 | 		kfree(buf); | 
 | 		kfree(crq); | 
 | 		return -EAGAIN; | 
 | 	} | 
 | 	crq->q.reader = 0; | 
 | 	crq->item = cache_get(h); | 
 | 	crq->buf = buf; | 
 | 	crq->len = PAGE_SIZE - len; | 
 | 	crq->readers = 0; | 
 | 	spin_lock(&queue_lock); | 
 | 	list_add_tail(&crq->q.list, &detail->queue); | 
 | 	spin_unlock(&queue_lock); | 
 | 	wake_up(&queue_wait); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall); | 
 |  | 
 | /* | 
 |  * parse a message from user-space and pass it | 
 |  * to an appropriate cache | 
 |  * Messages are, like requests, separated into fields by | 
 |  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal | 
 |  * | 
 |  * Message is | 
 |  *   reply cachename expiry key ... content.... | 
 |  * | 
 |  * key and content are both parsed by cache | 
 |  */ | 
 |  | 
 | #define isodigit(c) (isdigit(c) && c <= '7') | 
 | int qword_get(char **bpp, char *dest, int bufsize) | 
 | { | 
 | 	/* return bytes copied, or -1 on error */ | 
 | 	char *bp = *bpp; | 
 | 	int len = 0; | 
 |  | 
 | 	while (*bp == ' ') bp++; | 
 |  | 
 | 	if (bp[0] == '\\' && bp[1] == 'x') { | 
 | 		/* HEX STRING */ | 
 | 		bp += 2; | 
 | 		while (len < bufsize) { | 
 | 			int h, l; | 
 |  | 
 | 			h = hex_to_bin(bp[0]); | 
 | 			if (h < 0) | 
 | 				break; | 
 |  | 
 | 			l = hex_to_bin(bp[1]); | 
 | 			if (l < 0) | 
 | 				break; | 
 |  | 
 | 			*dest++ = (h << 4) | l; | 
 | 			bp += 2; | 
 | 			len++; | 
 | 		} | 
 | 	} else { | 
 | 		/* text with \nnn octal quoting */ | 
 | 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { | 
 | 			if (*bp == '\\' && | 
 | 			    isodigit(bp[1]) && (bp[1] <= '3') && | 
 | 			    isodigit(bp[2]) && | 
 | 			    isodigit(bp[3])) { | 
 | 				int byte = (*++bp -'0'); | 
 | 				bp++; | 
 | 				byte = (byte << 3) | (*bp++ - '0'); | 
 | 				byte = (byte << 3) | (*bp++ - '0'); | 
 | 				*dest++ = byte; | 
 | 				len++; | 
 | 			} else { | 
 | 				*dest++ = *bp++; | 
 | 				len++; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (*bp != ' ' && *bp != '\n' && *bp != '\0') | 
 | 		return -1; | 
 | 	while (*bp == ' ') bp++; | 
 | 	*bpp = bp; | 
 | 	*dest = '\0'; | 
 | 	return len; | 
 | } | 
 | EXPORT_SYMBOL_GPL(qword_get); | 
 |  | 
 |  | 
 | /* | 
 |  * support /proc/sunrpc/cache/$CACHENAME/content | 
 |  * as a seqfile. | 
 |  * We call ->cache_show passing NULL for the item to | 
 |  * get a header, then pass each real item in the cache | 
 |  */ | 
 |  | 
 | struct handle { | 
 | 	struct cache_detail *cd; | 
 | }; | 
 |  | 
 | static void *c_start(struct seq_file *m, loff_t *pos) | 
 | 	__acquires(cd->hash_lock) | 
 | { | 
 | 	loff_t n = *pos; | 
 | 	unsigned hash, entry; | 
 | 	struct cache_head *ch; | 
 | 	struct cache_detail *cd = ((struct handle*)m->private)->cd; | 
 |  | 
 |  | 
 | 	read_lock(&cd->hash_lock); | 
 | 	if (!n--) | 
 | 		return SEQ_START_TOKEN; | 
 | 	hash = n >> 32; | 
 | 	entry = n & ((1LL<<32) - 1); | 
 |  | 
 | 	for (ch=cd->hash_table[hash]; ch; ch=ch->next) | 
 | 		if (!entry--) | 
 | 			return ch; | 
 | 	n &= ~((1LL<<32) - 1); | 
 | 	do { | 
 | 		hash++; | 
 | 		n += 1LL<<32; | 
 | 	} while(hash < cd->hash_size && | 
 | 		cd->hash_table[hash]==NULL); | 
 | 	if (hash >= cd->hash_size) | 
 | 		return NULL; | 
 | 	*pos = n+1; | 
 | 	return cd->hash_table[hash]; | 
 | } | 
 |  | 
 | static void *c_next(struct seq_file *m, void *p, loff_t *pos) | 
 | { | 
 | 	struct cache_head *ch = p; | 
 | 	int hash = (*pos >> 32); | 
 | 	struct cache_detail *cd = ((struct handle*)m->private)->cd; | 
 |  | 
 | 	if (p == SEQ_START_TOKEN) | 
 | 		hash = 0; | 
 | 	else if (ch->next == NULL) { | 
 | 		hash++; | 
 | 		*pos += 1LL<<32; | 
 | 	} else { | 
 | 		++*pos; | 
 | 		return ch->next; | 
 | 	} | 
 | 	*pos &= ~((1LL<<32) - 1); | 
 | 	while (hash < cd->hash_size && | 
 | 	       cd->hash_table[hash] == NULL) { | 
 | 		hash++; | 
 | 		*pos += 1LL<<32; | 
 | 	} | 
 | 	if (hash >= cd->hash_size) | 
 | 		return NULL; | 
 | 	++*pos; | 
 | 	return cd->hash_table[hash]; | 
 | } | 
 |  | 
 | static void c_stop(struct seq_file *m, void *p) | 
 | 	__releases(cd->hash_lock) | 
 | { | 
 | 	struct cache_detail *cd = ((struct handle*)m->private)->cd; | 
 | 	read_unlock(&cd->hash_lock); | 
 | } | 
 |  | 
 | static int c_show(struct seq_file *m, void *p) | 
 | { | 
 | 	struct cache_head *cp = p; | 
 | 	struct cache_detail *cd = ((struct handle*)m->private)->cd; | 
 |  | 
 | 	if (p == SEQ_START_TOKEN) | 
 | 		return cd->cache_show(m, cd, NULL); | 
 |  | 
 | 	ifdebug(CACHE) | 
 | 		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n", | 
 | 			   convert_to_wallclock(cp->expiry_time), | 
 | 			   atomic_read(&cp->ref.refcount), cp->flags); | 
 | 	cache_get(cp); | 
 | 	if (cache_check(cd, cp, NULL)) | 
 | 		/* cache_check does a cache_put on failure */ | 
 | 		seq_printf(m, "# "); | 
 | 	else | 
 | 		cache_put(cp, cd); | 
 |  | 
 | 	return cd->cache_show(m, cd, cp); | 
 | } | 
 |  | 
 | static const struct seq_operations cache_content_op = { | 
 | 	.start	= c_start, | 
 | 	.next	= c_next, | 
 | 	.stop	= c_stop, | 
 | 	.show	= c_show, | 
 | }; | 
 |  | 
 | static int content_open(struct inode *inode, struct file *file, | 
 | 			struct cache_detail *cd) | 
 | { | 
 | 	struct handle *han; | 
 |  | 
 | 	if (!cd || !try_module_get(cd->owner)) | 
 | 		return -EACCES; | 
 | 	han = __seq_open_private(file, &cache_content_op, sizeof(*han)); | 
 | 	if (han == NULL) { | 
 | 		module_put(cd->owner); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	han->cd = cd; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int content_release(struct inode *inode, struct file *file, | 
 | 		struct cache_detail *cd) | 
 | { | 
 | 	int ret = seq_release_private(inode, file); | 
 | 	module_put(cd->owner); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int open_flush(struct inode *inode, struct file *file, | 
 | 			struct cache_detail *cd) | 
 | { | 
 | 	if (!cd || !try_module_get(cd->owner)) | 
 | 		return -EACCES; | 
 | 	return nonseekable_open(inode, file); | 
 | } | 
 |  | 
 | static int release_flush(struct inode *inode, struct file *file, | 
 | 			struct cache_detail *cd) | 
 | { | 
 | 	module_put(cd->owner); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static ssize_t read_flush(struct file *file, char __user *buf, | 
 | 			  size_t count, loff_t *ppos, | 
 | 			  struct cache_detail *cd) | 
 | { | 
 | 	char tbuf[20]; | 
 | 	unsigned long p = *ppos; | 
 | 	size_t len; | 
 |  | 
 | 	sprintf(tbuf, "%lu\n", convert_to_wallclock(cd->flush_time)); | 
 | 	len = strlen(tbuf); | 
 | 	if (p >= len) | 
 | 		return 0; | 
 | 	len -= p; | 
 | 	if (len > count) | 
 | 		len = count; | 
 | 	if (copy_to_user(buf, (void*)(tbuf+p), len)) | 
 | 		return -EFAULT; | 
 | 	*ppos += len; | 
 | 	return len; | 
 | } | 
 |  | 
 | static ssize_t write_flush(struct file *file, const char __user *buf, | 
 | 			   size_t count, loff_t *ppos, | 
 | 			   struct cache_detail *cd) | 
 | { | 
 | 	char tbuf[20]; | 
 | 	char *bp, *ep; | 
 |  | 
 | 	if (*ppos || count > sizeof(tbuf)-1) | 
 | 		return -EINVAL; | 
 | 	if (copy_from_user(tbuf, buf, count)) | 
 | 		return -EFAULT; | 
 | 	tbuf[count] = 0; | 
 | 	simple_strtoul(tbuf, &ep, 0); | 
 | 	if (*ep && *ep != '\n') | 
 | 		return -EINVAL; | 
 |  | 
 | 	bp = tbuf; | 
 | 	cd->flush_time = get_expiry(&bp); | 
 | 	cd->nextcheck = seconds_since_boot(); | 
 | 	cache_flush(); | 
 |  | 
 | 	*ppos += count; | 
 | 	return count; | 
 | } | 
 |  | 
 | static ssize_t cache_read_procfs(struct file *filp, char __user *buf, | 
 | 				 size_t count, loff_t *ppos) | 
 | { | 
 | 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; | 
 |  | 
 | 	return cache_read(filp, buf, count, ppos, cd); | 
 | } | 
 |  | 
 | static ssize_t cache_write_procfs(struct file *filp, const char __user *buf, | 
 | 				  size_t count, loff_t *ppos) | 
 | { | 
 | 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; | 
 |  | 
 | 	return cache_write(filp, buf, count, ppos, cd); | 
 | } | 
 |  | 
 | static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait) | 
 | { | 
 | 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; | 
 |  | 
 | 	return cache_poll(filp, wait, cd); | 
 | } | 
 |  | 
 | static long cache_ioctl_procfs(struct file *filp, | 
 | 			       unsigned int cmd, unsigned long arg) | 
 | { | 
 | 	struct inode *inode = filp->f_path.dentry->d_inode; | 
 | 	struct cache_detail *cd = PDE(inode)->data; | 
 |  | 
 | 	return cache_ioctl(inode, filp, cmd, arg, cd); | 
 | } | 
 |  | 
 | static int cache_open_procfs(struct inode *inode, struct file *filp) | 
 | { | 
 | 	struct cache_detail *cd = PDE(inode)->data; | 
 |  | 
 | 	return cache_open(inode, filp, cd); | 
 | } | 
 |  | 
 | static int cache_release_procfs(struct inode *inode, struct file *filp) | 
 | { | 
 | 	struct cache_detail *cd = PDE(inode)->data; | 
 |  | 
 | 	return cache_release(inode, filp, cd); | 
 | } | 
 |  | 
 | static const struct file_operations cache_file_operations_procfs = { | 
 | 	.owner		= THIS_MODULE, | 
 | 	.llseek		= no_llseek, | 
 | 	.read		= cache_read_procfs, | 
 | 	.write		= cache_write_procfs, | 
 | 	.poll		= cache_poll_procfs, | 
 | 	.unlocked_ioctl	= cache_ioctl_procfs, /* for FIONREAD */ | 
 | 	.open		= cache_open_procfs, | 
 | 	.release	= cache_release_procfs, | 
 | }; | 
 |  | 
 | static int content_open_procfs(struct inode *inode, struct file *filp) | 
 | { | 
 | 	struct cache_detail *cd = PDE(inode)->data; | 
 |  | 
 | 	return content_open(inode, filp, cd); | 
 | } | 
 |  | 
 | static int content_release_procfs(struct inode *inode, struct file *filp) | 
 | { | 
 | 	struct cache_detail *cd = PDE(inode)->data; | 
 |  | 
 | 	return content_release(inode, filp, cd); | 
 | } | 
 |  | 
 | static const struct file_operations content_file_operations_procfs = { | 
 | 	.open		= content_open_procfs, | 
 | 	.read		= seq_read, | 
 | 	.llseek		= seq_lseek, | 
 | 	.release	= content_release_procfs, | 
 | }; | 
 |  | 
 | static int open_flush_procfs(struct inode *inode, struct file *filp) | 
 | { | 
 | 	struct cache_detail *cd = PDE(inode)->data; | 
 |  | 
 | 	return open_flush(inode, filp, cd); | 
 | } | 
 |  | 
 | static int release_flush_procfs(struct inode *inode, struct file *filp) | 
 | { | 
 | 	struct cache_detail *cd = PDE(inode)->data; | 
 |  | 
 | 	return release_flush(inode, filp, cd); | 
 | } | 
 |  | 
 | static ssize_t read_flush_procfs(struct file *filp, char __user *buf, | 
 | 			    size_t count, loff_t *ppos) | 
 | { | 
 | 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; | 
 |  | 
 | 	return read_flush(filp, buf, count, ppos, cd); | 
 | } | 
 |  | 
 | static ssize_t write_flush_procfs(struct file *filp, | 
 | 				  const char __user *buf, | 
 | 				  size_t count, loff_t *ppos) | 
 | { | 
 | 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; | 
 |  | 
 | 	return write_flush(filp, buf, count, ppos, cd); | 
 | } | 
 |  | 
 | static const struct file_operations cache_flush_operations_procfs = { | 
 | 	.open		= open_flush_procfs, | 
 | 	.read		= read_flush_procfs, | 
 | 	.write		= write_flush_procfs, | 
 | 	.release	= release_flush_procfs, | 
 | 	.llseek		= no_llseek, | 
 | }; | 
 |  | 
 | static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net) | 
 | { | 
 | 	struct sunrpc_net *sn; | 
 |  | 
 | 	if (cd->u.procfs.proc_ent == NULL) | 
 | 		return; | 
 | 	if (cd->u.procfs.flush_ent) | 
 | 		remove_proc_entry("flush", cd->u.procfs.proc_ent); | 
 | 	if (cd->u.procfs.channel_ent) | 
 | 		remove_proc_entry("channel", cd->u.procfs.proc_ent); | 
 | 	if (cd->u.procfs.content_ent) | 
 | 		remove_proc_entry("content", cd->u.procfs.proc_ent); | 
 | 	cd->u.procfs.proc_ent = NULL; | 
 | 	sn = net_generic(net, sunrpc_net_id); | 
 | 	remove_proc_entry(cd->name, sn->proc_net_rpc); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PROC_FS | 
 | static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) | 
 | { | 
 | 	struct proc_dir_entry *p; | 
 | 	struct sunrpc_net *sn; | 
 |  | 
 | 	sn = net_generic(net, sunrpc_net_id); | 
 | 	cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc); | 
 | 	if (cd->u.procfs.proc_ent == NULL) | 
 | 		goto out_nomem; | 
 | 	cd->u.procfs.channel_ent = NULL; | 
 | 	cd->u.procfs.content_ent = NULL; | 
 |  | 
 | 	p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR, | 
 | 			     cd->u.procfs.proc_ent, | 
 | 			     &cache_flush_operations_procfs, cd); | 
 | 	cd->u.procfs.flush_ent = p; | 
 | 	if (p == NULL) | 
 | 		goto out_nomem; | 
 |  | 
 | 	if (cd->cache_upcall || cd->cache_parse) { | 
 | 		p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR, | 
 | 				     cd->u.procfs.proc_ent, | 
 | 				     &cache_file_operations_procfs, cd); | 
 | 		cd->u.procfs.channel_ent = p; | 
 | 		if (p == NULL) | 
 | 			goto out_nomem; | 
 | 	} | 
 | 	if (cd->cache_show) { | 
 | 		p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR, | 
 | 				cd->u.procfs.proc_ent, | 
 | 				&content_file_operations_procfs, cd); | 
 | 		cd->u.procfs.content_ent = p; | 
 | 		if (p == NULL) | 
 | 			goto out_nomem; | 
 | 	} | 
 | 	return 0; | 
 | out_nomem: | 
 | 	remove_cache_proc_entries(cd, net); | 
 | 	return -ENOMEM; | 
 | } | 
 | #else /* CONFIG_PROC_FS */ | 
 | static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | void __init cache_initialize(void) | 
 | { | 
 | 	INIT_DELAYED_WORK_DEFERRABLE(&cache_cleaner, do_cache_clean); | 
 | } | 
 |  | 
 | int cache_register_net(struct cache_detail *cd, struct net *net) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	sunrpc_init_cache_detail(cd); | 
 | 	ret = create_cache_proc_entries(cd, net); | 
 | 	if (ret) | 
 | 		sunrpc_destroy_cache_detail(cd); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int cache_register(struct cache_detail *cd) | 
 | { | 
 | 	return cache_register_net(cd, &init_net); | 
 | } | 
 | EXPORT_SYMBOL_GPL(cache_register); | 
 |  | 
 | void cache_unregister_net(struct cache_detail *cd, struct net *net) | 
 | { | 
 | 	remove_cache_proc_entries(cd, net); | 
 | 	sunrpc_destroy_cache_detail(cd); | 
 | } | 
 |  | 
 | void cache_unregister(struct cache_detail *cd) | 
 | { | 
 | 	cache_unregister_net(cd, &init_net); | 
 | } | 
 | EXPORT_SYMBOL_GPL(cache_unregister); | 
 |  | 
 | static ssize_t cache_read_pipefs(struct file *filp, char __user *buf, | 
 | 				 size_t count, loff_t *ppos) | 
 | { | 
 | 	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; | 
 |  | 
 | 	return cache_read(filp, buf, count, ppos, cd); | 
 | } | 
 |  | 
 | static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf, | 
 | 				  size_t count, loff_t *ppos) | 
 | { | 
 | 	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; | 
 |  | 
 | 	return cache_write(filp, buf, count, ppos, cd); | 
 | } | 
 |  | 
 | static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait) | 
 | { | 
 | 	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; | 
 |  | 
 | 	return cache_poll(filp, wait, cd); | 
 | } | 
 |  | 
 | static long cache_ioctl_pipefs(struct file *filp, | 
 | 			      unsigned int cmd, unsigned long arg) | 
 | { | 
 | 	struct inode *inode = filp->f_dentry->d_inode; | 
 | 	struct cache_detail *cd = RPC_I(inode)->private; | 
 |  | 
 | 	return cache_ioctl(inode, filp, cmd, arg, cd); | 
 | } | 
 |  | 
 | static int cache_open_pipefs(struct inode *inode, struct file *filp) | 
 | { | 
 | 	struct cache_detail *cd = RPC_I(inode)->private; | 
 |  | 
 | 	return cache_open(inode, filp, cd); | 
 | } | 
 |  | 
 | static int cache_release_pipefs(struct inode *inode, struct file *filp) | 
 | { | 
 | 	struct cache_detail *cd = RPC_I(inode)->private; | 
 |  | 
 | 	return cache_release(inode, filp, cd); | 
 | } | 
 |  | 
 | const struct file_operations cache_file_operations_pipefs = { | 
 | 	.owner		= THIS_MODULE, | 
 | 	.llseek		= no_llseek, | 
 | 	.read		= cache_read_pipefs, | 
 | 	.write		= cache_write_pipefs, | 
 | 	.poll		= cache_poll_pipefs, | 
 | 	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */ | 
 | 	.open		= cache_open_pipefs, | 
 | 	.release	= cache_release_pipefs, | 
 | }; | 
 |  | 
 | static int content_open_pipefs(struct inode *inode, struct file *filp) | 
 | { | 
 | 	struct cache_detail *cd = RPC_I(inode)->private; | 
 |  | 
 | 	return content_open(inode, filp, cd); | 
 | } | 
 |  | 
 | static int content_release_pipefs(struct inode *inode, struct file *filp) | 
 | { | 
 | 	struct cache_detail *cd = RPC_I(inode)->private; | 
 |  | 
 | 	return content_release(inode, filp, cd); | 
 | } | 
 |  | 
 | const struct file_operations content_file_operations_pipefs = { | 
 | 	.open		= content_open_pipefs, | 
 | 	.read		= seq_read, | 
 | 	.llseek		= seq_lseek, | 
 | 	.release	= content_release_pipefs, | 
 | }; | 
 |  | 
 | static int open_flush_pipefs(struct inode *inode, struct file *filp) | 
 | { | 
 | 	struct cache_detail *cd = RPC_I(inode)->private; | 
 |  | 
 | 	return open_flush(inode, filp, cd); | 
 | } | 
 |  | 
 | static int release_flush_pipefs(struct inode *inode, struct file *filp) | 
 | { | 
 | 	struct cache_detail *cd = RPC_I(inode)->private; | 
 |  | 
 | 	return release_flush(inode, filp, cd); | 
 | } | 
 |  | 
 | static ssize_t read_flush_pipefs(struct file *filp, char __user *buf, | 
 | 			    size_t count, loff_t *ppos) | 
 | { | 
 | 	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; | 
 |  | 
 | 	return read_flush(filp, buf, count, ppos, cd); | 
 | } | 
 |  | 
 | static ssize_t write_flush_pipefs(struct file *filp, | 
 | 				  const char __user *buf, | 
 | 				  size_t count, loff_t *ppos) | 
 | { | 
 | 	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; | 
 |  | 
 | 	return write_flush(filp, buf, count, ppos, cd); | 
 | } | 
 |  | 
 | const struct file_operations cache_flush_operations_pipefs = { | 
 | 	.open		= open_flush_pipefs, | 
 | 	.read		= read_flush_pipefs, | 
 | 	.write		= write_flush_pipefs, | 
 | 	.release	= release_flush_pipefs, | 
 | 	.llseek		= no_llseek, | 
 | }; | 
 |  | 
 | int sunrpc_cache_register_pipefs(struct dentry *parent, | 
 | 				 const char *name, mode_t umode, | 
 | 				 struct cache_detail *cd) | 
 | { | 
 | 	struct qstr q; | 
 | 	struct dentry *dir; | 
 | 	int ret = 0; | 
 |  | 
 | 	sunrpc_init_cache_detail(cd); | 
 | 	q.name = name; | 
 | 	q.len = strlen(name); | 
 | 	q.hash = full_name_hash(q.name, q.len); | 
 | 	dir = rpc_create_cache_dir(parent, &q, umode, cd); | 
 | 	if (!IS_ERR(dir)) | 
 | 		cd->u.pipefs.dir = dir; | 
 | 	else { | 
 | 		sunrpc_destroy_cache_detail(cd); | 
 | 		ret = PTR_ERR(dir); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs); | 
 |  | 
 | void sunrpc_cache_unregister_pipefs(struct cache_detail *cd) | 
 | { | 
 | 	rpc_remove_cache_dir(cd->u.pipefs.dir); | 
 | 	cd->u.pipefs.dir = NULL; | 
 | 	sunrpc_destroy_cache_detail(cd); | 
 | } | 
 | EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs); | 
 |  |