| /* | 
 |  * Virtual Memory Map support | 
 |  * | 
 |  * (C) 2007 sgi. Christoph Lameter. | 
 |  * | 
 |  * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn, | 
 |  * virt_to_page, page_address() to be implemented as a base offset | 
 |  * calculation without memory access. | 
 |  * | 
 |  * However, virtual mappings need a page table and TLBs. Many Linux | 
 |  * architectures already map their physical space using 1-1 mappings | 
 |  * via TLBs. For those arches the virtual memmory map is essentially | 
 |  * for free if we use the same page size as the 1-1 mappings. In that | 
 |  * case the overhead consists of a few additional pages that are | 
 |  * allocated to create a view of memory for vmemmap. | 
 |  * | 
 |  * The architecture is expected to provide a vmemmap_populate() function | 
 |  * to instantiate the mapping. | 
 |  */ | 
 | #include <linux/mm.h> | 
 | #include <linux/mmzone.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/module.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/sched.h> | 
 | #include <asm/dma.h> | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/pgtable.h> | 
 |  | 
 | /* | 
 |  * Allocate a block of memory to be used to back the virtual memory map | 
 |  * or to back the page tables that are used to create the mapping. | 
 |  * Uses the main allocators if they are available, else bootmem. | 
 |  */ | 
 |  | 
 | static void * __init_refok __earlyonly_bootmem_alloc(int node, | 
 | 				unsigned long size, | 
 | 				unsigned long align, | 
 | 				unsigned long goal) | 
 | { | 
 | 	return __alloc_bootmem_node(NODE_DATA(node), size, align, goal); | 
 | } | 
 |  | 
 |  | 
 | void * __meminit vmemmap_alloc_block(unsigned long size, int node) | 
 | { | 
 | 	/* If the main allocator is up use that, fallback to bootmem. */ | 
 | 	if (slab_is_available()) { | 
 | 		struct page *page; | 
 |  | 
 | 		if (node_state(node, N_HIGH_MEMORY)) | 
 | 			page = alloc_pages_node(node, | 
 | 				GFP_KERNEL | __GFP_ZERO, get_order(size)); | 
 | 		else | 
 | 			page = alloc_pages(GFP_KERNEL | __GFP_ZERO, | 
 | 				get_order(size)); | 
 | 		if (page) | 
 | 			return page_address(page); | 
 | 		return NULL; | 
 | 	} else | 
 | 		return __earlyonly_bootmem_alloc(node, size, size, | 
 | 				__pa(MAX_DMA_ADDRESS)); | 
 | } | 
 |  | 
 | void __meminit vmemmap_verify(pte_t *pte, int node, | 
 | 				unsigned long start, unsigned long end) | 
 | { | 
 | 	unsigned long pfn = pte_pfn(*pte); | 
 | 	int actual_node = early_pfn_to_nid(pfn); | 
 |  | 
 | 	if (node_distance(actual_node, node) > LOCAL_DISTANCE) | 
 | 		printk(KERN_WARNING "[%lx-%lx] potential offnode " | 
 | 			"page_structs\n", start, end - 1); | 
 | } | 
 |  | 
 | pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node) | 
 | { | 
 | 	pte_t *pte = pte_offset_kernel(pmd, addr); | 
 | 	if (pte_none(*pte)) { | 
 | 		pte_t entry; | 
 | 		void *p = vmemmap_alloc_block(PAGE_SIZE, node); | 
 | 		if (!p) | 
 | 			return NULL; | 
 | 		entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL); | 
 | 		set_pte_at(&init_mm, addr, pte, entry); | 
 | 	} | 
 | 	return pte; | 
 | } | 
 |  | 
 | pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node) | 
 | { | 
 | 	pmd_t *pmd = pmd_offset(pud, addr); | 
 | 	if (pmd_none(*pmd)) { | 
 | 		void *p = vmemmap_alloc_block(PAGE_SIZE, node); | 
 | 		if (!p) | 
 | 			return NULL; | 
 | 		pmd_populate_kernel(&init_mm, pmd, p); | 
 | 	} | 
 | 	return pmd; | 
 | } | 
 |  | 
 | pud_t * __meminit vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node) | 
 | { | 
 | 	pud_t *pud = pud_offset(pgd, addr); | 
 | 	if (pud_none(*pud)) { | 
 | 		void *p = vmemmap_alloc_block(PAGE_SIZE, node); | 
 | 		if (!p) | 
 | 			return NULL; | 
 | 		pud_populate(&init_mm, pud, p); | 
 | 	} | 
 | 	return pud; | 
 | } | 
 |  | 
 | pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node) | 
 | { | 
 | 	pgd_t *pgd = pgd_offset_k(addr); | 
 | 	if (pgd_none(*pgd)) { | 
 | 		void *p = vmemmap_alloc_block(PAGE_SIZE, node); | 
 | 		if (!p) | 
 | 			return NULL; | 
 | 		pgd_populate(&init_mm, pgd, p); | 
 | 	} | 
 | 	return pgd; | 
 | } | 
 |  | 
 | int __meminit vmemmap_populate_basepages(struct page *start_page, | 
 | 						unsigned long size, int node) | 
 | { | 
 | 	unsigned long addr = (unsigned long)start_page; | 
 | 	unsigned long end = (unsigned long)(start_page + size); | 
 | 	pgd_t *pgd; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *pte; | 
 |  | 
 | 	for (; addr < end; addr += PAGE_SIZE) { | 
 | 		pgd = vmemmap_pgd_populate(addr, node); | 
 | 		if (!pgd) | 
 | 			return -ENOMEM; | 
 | 		pud = vmemmap_pud_populate(pgd, addr, node); | 
 | 		if (!pud) | 
 | 			return -ENOMEM; | 
 | 		pmd = vmemmap_pmd_populate(pud, addr, node); | 
 | 		if (!pmd) | 
 | 			return -ENOMEM; | 
 | 		pte = vmemmap_pte_populate(pmd, addr, node); | 
 | 		if (!pte) | 
 | 			return -ENOMEM; | 
 | 		vmemmap_verify(pte, node, addr, addr + PAGE_SIZE); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct page * __meminit sparse_mem_map_populate(unsigned long pnum, int nid) | 
 | { | 
 | 	struct page *map = pfn_to_page(pnum * PAGES_PER_SECTION); | 
 | 	int error = vmemmap_populate(map, PAGES_PER_SECTION, nid); | 
 | 	if (error) | 
 | 		return NULL; | 
 |  | 
 | 	return map; | 
 | } |