| /* | 
 |  * sparse memory mappings. | 
 |  */ | 
 | #include <linux/mm.h> | 
 | #include <linux/mmzone.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/module.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/vmalloc.h> | 
 | #include "internal.h" | 
 | #include <asm/dma.h> | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/pgtable.h> | 
 |  | 
 | /* | 
 |  * Permanent SPARSEMEM data: | 
 |  * | 
 |  * 1) mem_section	- memory sections, mem_map's for valid memory | 
 |  */ | 
 | #ifdef CONFIG_SPARSEMEM_EXTREME | 
 | struct mem_section *mem_section[NR_SECTION_ROOTS] | 
 | 	____cacheline_internodealigned_in_smp; | 
 | #else | 
 | struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] | 
 | 	____cacheline_internodealigned_in_smp; | 
 | #endif | 
 | EXPORT_SYMBOL(mem_section); | 
 |  | 
 | #ifdef NODE_NOT_IN_PAGE_FLAGS | 
 | /* | 
 |  * If we did not store the node number in the page then we have to | 
 |  * do a lookup in the section_to_node_table in order to find which | 
 |  * node the page belongs to. | 
 |  */ | 
 | #if MAX_NUMNODES <= 256 | 
 | static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; | 
 | #else | 
 | static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; | 
 | #endif | 
 |  | 
 | int page_to_nid(struct page *page) | 
 | { | 
 | 	return section_to_node_table[page_to_section(page)]; | 
 | } | 
 | EXPORT_SYMBOL(page_to_nid); | 
 |  | 
 | static void set_section_nid(unsigned long section_nr, int nid) | 
 | { | 
 | 	section_to_node_table[section_nr] = nid; | 
 | } | 
 | #else /* !NODE_NOT_IN_PAGE_FLAGS */ | 
 | static inline void set_section_nid(unsigned long section_nr, int nid) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SPARSEMEM_EXTREME | 
 | static struct mem_section noinline __init_refok *sparse_index_alloc(int nid) | 
 | { | 
 | 	struct mem_section *section = NULL; | 
 | 	unsigned long array_size = SECTIONS_PER_ROOT * | 
 | 				   sizeof(struct mem_section); | 
 |  | 
 | 	if (slab_is_available()) { | 
 | 		if (node_state(nid, N_HIGH_MEMORY)) | 
 | 			section = kmalloc_node(array_size, GFP_KERNEL, nid); | 
 | 		else | 
 | 			section = kmalloc(array_size, GFP_KERNEL); | 
 | 	} else | 
 | 		section = alloc_bootmem_node(NODE_DATA(nid), array_size); | 
 |  | 
 | 	if (section) | 
 | 		memset(section, 0, array_size); | 
 |  | 
 | 	return section; | 
 | } | 
 |  | 
 | static int __meminit sparse_index_init(unsigned long section_nr, int nid) | 
 | { | 
 | 	static DEFINE_SPINLOCK(index_init_lock); | 
 | 	unsigned long root = SECTION_NR_TO_ROOT(section_nr); | 
 | 	struct mem_section *section; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (mem_section[root]) | 
 | 		return -EEXIST; | 
 |  | 
 | 	section = sparse_index_alloc(nid); | 
 | 	if (!section) | 
 | 		return -ENOMEM; | 
 | 	/* | 
 | 	 * This lock keeps two different sections from | 
 | 	 * reallocating for the same index | 
 | 	 */ | 
 | 	spin_lock(&index_init_lock); | 
 |  | 
 | 	if (mem_section[root]) { | 
 | 		ret = -EEXIST; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	mem_section[root] = section; | 
 | out: | 
 | 	spin_unlock(&index_init_lock); | 
 | 	return ret; | 
 | } | 
 | #else /* !SPARSEMEM_EXTREME */ | 
 | static inline int sparse_index_init(unsigned long section_nr, int nid) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Although written for the SPARSEMEM_EXTREME case, this happens | 
 |  * to also work for the flat array case because | 
 |  * NR_SECTION_ROOTS==NR_MEM_SECTIONS. | 
 |  */ | 
 | int __section_nr(struct mem_section* ms) | 
 | { | 
 | 	unsigned long root_nr; | 
 | 	struct mem_section* root; | 
 |  | 
 | 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { | 
 | 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); | 
 | 		if (!root) | 
 | 			continue; | 
 |  | 
 | 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) | 
 | 		     break; | 
 | 	} | 
 |  | 
 | 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root); | 
 | } | 
 |  | 
 | /* | 
 |  * During early boot, before section_mem_map is used for an actual | 
 |  * mem_map, we use section_mem_map to store the section's NUMA | 
 |  * node.  This keeps us from having to use another data structure.  The | 
 |  * node information is cleared just before we store the real mem_map. | 
 |  */ | 
 | static inline unsigned long sparse_encode_early_nid(int nid) | 
 | { | 
 | 	return (nid << SECTION_NID_SHIFT); | 
 | } | 
 |  | 
 | static inline int sparse_early_nid(struct mem_section *section) | 
 | { | 
 | 	return (section->section_mem_map >> SECTION_NID_SHIFT); | 
 | } | 
 |  | 
 | /* Validate the physical addressing limitations of the model */ | 
 | void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, | 
 | 						unsigned long *end_pfn) | 
 | { | 
 | 	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); | 
 |  | 
 | 	/* | 
 | 	 * Sanity checks - do not allow an architecture to pass | 
 | 	 * in larger pfns than the maximum scope of sparsemem: | 
 | 	 */ | 
 | 	if (*start_pfn > max_sparsemem_pfn) { | 
 | 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation", | 
 | 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", | 
 | 			*start_pfn, *end_pfn, max_sparsemem_pfn); | 
 | 		WARN_ON_ONCE(1); | 
 | 		*start_pfn = max_sparsemem_pfn; | 
 | 		*end_pfn = max_sparsemem_pfn; | 
 | 	} else if (*end_pfn > max_sparsemem_pfn) { | 
 | 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation", | 
 | 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", | 
 | 			*start_pfn, *end_pfn, max_sparsemem_pfn); | 
 | 		WARN_ON_ONCE(1); | 
 | 		*end_pfn = max_sparsemem_pfn; | 
 | 	} | 
 | } | 
 |  | 
 | /* Record a memory area against a node. */ | 
 | void __init memory_present(int nid, unsigned long start, unsigned long end) | 
 | { | 
 | 	unsigned long pfn; | 
 |  | 
 | 	start &= PAGE_SECTION_MASK; | 
 | 	mminit_validate_memmodel_limits(&start, &end); | 
 | 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { | 
 | 		unsigned long section = pfn_to_section_nr(pfn); | 
 | 		struct mem_section *ms; | 
 |  | 
 | 		sparse_index_init(section, nid); | 
 | 		set_section_nid(section, nid); | 
 |  | 
 | 		ms = __nr_to_section(section); | 
 | 		if (!ms->section_mem_map) | 
 | 			ms->section_mem_map = sparse_encode_early_nid(nid) | | 
 | 							SECTION_MARKED_PRESENT; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Only used by the i386 NUMA architecures, but relatively | 
 |  * generic code. | 
 |  */ | 
 | unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn, | 
 | 						     unsigned long end_pfn) | 
 | { | 
 | 	unsigned long pfn; | 
 | 	unsigned long nr_pages = 0; | 
 |  | 
 | 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn); | 
 | 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { | 
 | 		if (nid != early_pfn_to_nid(pfn)) | 
 | 			continue; | 
 |  | 
 | 		if (pfn_present(pfn)) | 
 | 			nr_pages += PAGES_PER_SECTION; | 
 | 	} | 
 |  | 
 | 	return nr_pages * sizeof(struct page); | 
 | } | 
 |  | 
 | /* | 
 |  * Subtle, we encode the real pfn into the mem_map such that | 
 |  * the identity pfn - section_mem_map will return the actual | 
 |  * physical page frame number. | 
 |  */ | 
 | static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) | 
 | { | 
 | 	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); | 
 | } | 
 |  | 
 | /* | 
 |  * Decode mem_map from the coded memmap | 
 |  */ | 
 | struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) | 
 | { | 
 | 	/* mask off the extra low bits of information */ | 
 | 	coded_mem_map &= SECTION_MAP_MASK; | 
 | 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); | 
 | } | 
 |  | 
 | static int __meminit sparse_init_one_section(struct mem_section *ms, | 
 | 		unsigned long pnum, struct page *mem_map, | 
 | 		unsigned long *pageblock_bitmap) | 
 | { | 
 | 	if (!present_section(ms)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ms->section_mem_map &= ~SECTION_MAP_MASK; | 
 | 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | | 
 | 							SECTION_HAS_MEM_MAP; | 
 |  	ms->pageblock_flags = pageblock_bitmap; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | unsigned long usemap_size(void) | 
 | { | 
 | 	unsigned long size_bytes; | 
 | 	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8; | 
 | 	size_bytes = roundup(size_bytes, sizeof(unsigned long)); | 
 | 	return size_bytes; | 
 | } | 
 |  | 
 | #ifdef CONFIG_MEMORY_HOTPLUG | 
 | static unsigned long *__kmalloc_section_usemap(void) | 
 | { | 
 | 	return kmalloc(usemap_size(), GFP_KERNEL); | 
 | } | 
 | #endif /* CONFIG_MEMORY_HOTPLUG */ | 
 |  | 
 | #ifdef CONFIG_MEMORY_HOTREMOVE | 
 | static unsigned long * __init | 
 | sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat) | 
 | { | 
 | 	unsigned long section_nr; | 
 |  | 
 | 	/* | 
 | 	 * A page may contain usemaps for other sections preventing the | 
 | 	 * page being freed and making a section unremovable while | 
 | 	 * other sections referencing the usemap retmain active. Similarly, | 
 | 	 * a pgdat can prevent a section being removed. If section A | 
 | 	 * contains a pgdat and section B contains the usemap, both | 
 | 	 * sections become inter-dependent. This allocates usemaps | 
 | 	 * from the same section as the pgdat where possible to avoid | 
 | 	 * this problem. | 
 | 	 */ | 
 | 	section_nr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); | 
 | 	return alloc_bootmem_section(usemap_size(), section_nr); | 
 | } | 
 |  | 
 | static void __init check_usemap_section_nr(int nid, unsigned long *usemap) | 
 | { | 
 | 	unsigned long usemap_snr, pgdat_snr; | 
 | 	static unsigned long old_usemap_snr = NR_MEM_SECTIONS; | 
 | 	static unsigned long old_pgdat_snr = NR_MEM_SECTIONS; | 
 | 	struct pglist_data *pgdat = NODE_DATA(nid); | 
 | 	int usemap_nid; | 
 |  | 
 | 	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT); | 
 | 	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); | 
 | 	if (usemap_snr == pgdat_snr) | 
 | 		return; | 
 |  | 
 | 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) | 
 | 		/* skip redundant message */ | 
 | 		return; | 
 |  | 
 | 	old_usemap_snr = usemap_snr; | 
 | 	old_pgdat_snr = pgdat_snr; | 
 |  | 
 | 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); | 
 | 	if (usemap_nid != nid) { | 
 | 		printk(KERN_INFO | 
 | 		       "node %d must be removed before remove section %ld\n", | 
 | 		       nid, usemap_snr); | 
 | 		return; | 
 | 	} | 
 | 	/* | 
 | 	 * There is a circular dependency. | 
 | 	 * Some platforms allow un-removable section because they will just | 
 | 	 * gather other removable sections for dynamic partitioning. | 
 | 	 * Just notify un-removable section's number here. | 
 | 	 */ | 
 | 	printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr, | 
 | 	       pgdat_snr, nid); | 
 | 	printk(KERN_CONT | 
 | 	       " have a circular dependency on usemap and pgdat allocations\n"); | 
 | } | 
 | #else | 
 | static unsigned long * __init | 
 | sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat) | 
 | { | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void __init check_usemap_section_nr(int nid, unsigned long *usemap) | 
 | { | 
 | } | 
 | #endif /* CONFIG_MEMORY_HOTREMOVE */ | 
 |  | 
 | static unsigned long *__init sparse_early_usemap_alloc(unsigned long pnum) | 
 | { | 
 | 	unsigned long *usemap; | 
 | 	struct mem_section *ms = __nr_to_section(pnum); | 
 | 	int nid = sparse_early_nid(ms); | 
 |  | 
 | 	usemap = sparse_early_usemap_alloc_pgdat_section(NODE_DATA(nid)); | 
 | 	if (usemap) | 
 | 		return usemap; | 
 |  | 
 | 	usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size()); | 
 | 	if (usemap) { | 
 | 		check_usemap_section_nr(nid, usemap); | 
 | 		return usemap; | 
 | 	} | 
 |  | 
 | 	/* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */ | 
 | 	nid = 0; | 
 |  | 
 | 	printk(KERN_WARNING "%s: allocation failed\n", __func__); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | #ifndef CONFIG_SPARSEMEM_VMEMMAP | 
 | struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid) | 
 | { | 
 | 	struct page *map; | 
 |  | 
 | 	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION); | 
 | 	if (map) | 
 | 		return map; | 
 |  | 
 | 	map = alloc_bootmem_pages_node(NODE_DATA(nid), | 
 | 		       PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION)); | 
 | 	return map; | 
 | } | 
 | #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ | 
 |  | 
 | static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum) | 
 | { | 
 | 	struct page *map; | 
 | 	struct mem_section *ms = __nr_to_section(pnum); | 
 | 	int nid = sparse_early_nid(ms); | 
 |  | 
 | 	map = sparse_mem_map_populate(pnum, nid); | 
 | 	if (map) | 
 | 		return map; | 
 |  | 
 | 	printk(KERN_ERR "%s: sparsemem memory map backing failed " | 
 | 			"some memory will not be available.\n", __func__); | 
 | 	ms->section_mem_map = 0; | 
 | 	return NULL; | 
 | } | 
 |  | 
 | void __attribute__((weak)) __meminit vmemmap_populate_print_last(void) | 
 | { | 
 | } | 
 | /* | 
 |  * Allocate the accumulated non-linear sections, allocate a mem_map | 
 |  * for each and record the physical to section mapping. | 
 |  */ | 
 | void __init sparse_init(void) | 
 | { | 
 | 	unsigned long pnum; | 
 | 	struct page *map; | 
 | 	unsigned long *usemap; | 
 | 	unsigned long **usemap_map; | 
 | 	int size; | 
 |  | 
 | 	/* | 
 | 	 * map is using big page (aka 2M in x86 64 bit) | 
 | 	 * usemap is less one page (aka 24 bytes) | 
 | 	 * so alloc 2M (with 2M align) and 24 bytes in turn will | 
 | 	 * make next 2M slip to one more 2M later. | 
 | 	 * then in big system, the memory will have a lot of holes... | 
 | 	 * here try to allocate 2M pages continously. | 
 | 	 * | 
 | 	 * powerpc need to call sparse_init_one_section right after each | 
 | 	 * sparse_early_mem_map_alloc, so allocate usemap_map at first. | 
 | 	 */ | 
 | 	size = sizeof(unsigned long *) * NR_MEM_SECTIONS; | 
 | 	usemap_map = alloc_bootmem(size); | 
 | 	if (!usemap_map) | 
 | 		panic("can not allocate usemap_map\n"); | 
 |  | 
 | 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { | 
 | 		if (!present_section_nr(pnum)) | 
 | 			continue; | 
 | 		usemap_map[pnum] = sparse_early_usemap_alloc(pnum); | 
 | 	} | 
 |  | 
 | 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { | 
 | 		if (!present_section_nr(pnum)) | 
 | 			continue; | 
 |  | 
 | 		usemap = usemap_map[pnum]; | 
 | 		if (!usemap) | 
 | 			continue; | 
 |  | 
 | 		map = sparse_early_mem_map_alloc(pnum); | 
 | 		if (!map) | 
 | 			continue; | 
 |  | 
 | 		sparse_init_one_section(__nr_to_section(pnum), pnum, map, | 
 | 								usemap); | 
 | 	} | 
 |  | 
 | 	vmemmap_populate_print_last(); | 
 |  | 
 | 	free_bootmem(__pa(usemap_map), size); | 
 | } | 
 |  | 
 | #ifdef CONFIG_MEMORY_HOTPLUG | 
 | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
 | static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, | 
 | 						 unsigned long nr_pages) | 
 | { | 
 | 	/* This will make the necessary allocations eventually. */ | 
 | 	return sparse_mem_map_populate(pnum, nid); | 
 | } | 
 | static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) | 
 | { | 
 | 	return; /* XXX: Not implemented yet */ | 
 | } | 
 | static void free_map_bootmem(struct page *page, unsigned long nr_pages) | 
 | { | 
 | } | 
 | #else | 
 | static struct page *__kmalloc_section_memmap(unsigned long nr_pages) | 
 | { | 
 | 	struct page *page, *ret; | 
 | 	unsigned long memmap_size = sizeof(struct page) * nr_pages; | 
 |  | 
 | 	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); | 
 | 	if (page) | 
 | 		goto got_map_page; | 
 |  | 
 | 	ret = vmalloc(memmap_size); | 
 | 	if (ret) | 
 | 		goto got_map_ptr; | 
 |  | 
 | 	return NULL; | 
 | got_map_page: | 
 | 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); | 
 | got_map_ptr: | 
 | 	memset(ret, 0, memmap_size); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, | 
 | 						  unsigned long nr_pages) | 
 | { | 
 | 	return __kmalloc_section_memmap(nr_pages); | 
 | } | 
 |  | 
 | static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) | 
 | { | 
 | 	if (is_vmalloc_addr(memmap)) | 
 | 		vfree(memmap); | 
 | 	else | 
 | 		free_pages((unsigned long)memmap, | 
 | 			   get_order(sizeof(struct page) * nr_pages)); | 
 | } | 
 |  | 
 | static void free_map_bootmem(struct page *page, unsigned long nr_pages) | 
 | { | 
 | 	unsigned long maps_section_nr, removing_section_nr, i; | 
 | 	int magic; | 
 |  | 
 | 	for (i = 0; i < nr_pages; i++, page++) { | 
 | 		magic = atomic_read(&page->_mapcount); | 
 |  | 
 | 		BUG_ON(magic == NODE_INFO); | 
 |  | 
 | 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); | 
 | 		removing_section_nr = page->private; | 
 |  | 
 | 		/* | 
 | 		 * When this function is called, the removing section is | 
 | 		 * logical offlined state. This means all pages are isolated | 
 | 		 * from page allocator. If removing section's memmap is placed | 
 | 		 * on the same section, it must not be freed. | 
 | 		 * If it is freed, page allocator may allocate it which will | 
 | 		 * be removed physically soon. | 
 | 		 */ | 
 | 		if (maps_section_nr != removing_section_nr) | 
 | 			put_page_bootmem(page); | 
 | 	} | 
 | } | 
 | #endif /* CONFIG_SPARSEMEM_VMEMMAP */ | 
 |  | 
 | static void free_section_usemap(struct page *memmap, unsigned long *usemap) | 
 | { | 
 | 	struct page *usemap_page; | 
 | 	unsigned long nr_pages; | 
 |  | 
 | 	if (!usemap) | 
 | 		return; | 
 |  | 
 | 	usemap_page = virt_to_page(usemap); | 
 | 	/* | 
 | 	 * Check to see if allocation came from hot-plug-add | 
 | 	 */ | 
 | 	if (PageSlab(usemap_page)) { | 
 | 		kfree(usemap); | 
 | 		if (memmap) | 
 | 			__kfree_section_memmap(memmap, PAGES_PER_SECTION); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The usemap came from bootmem. This is packed with other usemaps | 
 | 	 * on the section which has pgdat at boot time. Just keep it as is now. | 
 | 	 */ | 
 |  | 
 | 	if (memmap) { | 
 | 		struct page *memmap_page; | 
 | 		memmap_page = virt_to_page(memmap); | 
 |  | 
 | 		nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) | 
 | 			>> PAGE_SHIFT; | 
 |  | 
 | 		free_map_bootmem(memmap_page, nr_pages); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * returns the number of sections whose mem_maps were properly | 
 |  * set.  If this is <=0, then that means that the passed-in | 
 |  * map was not consumed and must be freed. | 
 |  */ | 
 | int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn, | 
 | 			   int nr_pages) | 
 | { | 
 | 	unsigned long section_nr = pfn_to_section_nr(start_pfn); | 
 | 	struct pglist_data *pgdat = zone->zone_pgdat; | 
 | 	struct mem_section *ms; | 
 | 	struct page *memmap; | 
 | 	unsigned long *usemap; | 
 | 	unsigned long flags; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * no locking for this, because it does its own | 
 | 	 * plus, it does a kmalloc | 
 | 	 */ | 
 | 	ret = sparse_index_init(section_nr, pgdat->node_id); | 
 | 	if (ret < 0 && ret != -EEXIST) | 
 | 		return ret; | 
 | 	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages); | 
 | 	if (!memmap) | 
 | 		return -ENOMEM; | 
 | 	usemap = __kmalloc_section_usemap(); | 
 | 	if (!usemap) { | 
 | 		__kfree_section_memmap(memmap, nr_pages); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	pgdat_resize_lock(pgdat, &flags); | 
 |  | 
 | 	ms = __pfn_to_section(start_pfn); | 
 | 	if (ms->section_mem_map & SECTION_MARKED_PRESENT) { | 
 | 		ret = -EEXIST; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ms->section_mem_map |= SECTION_MARKED_PRESENT; | 
 |  | 
 | 	ret = sparse_init_one_section(ms, section_nr, memmap, usemap); | 
 |  | 
 | out: | 
 | 	pgdat_resize_unlock(pgdat, &flags); | 
 | 	if (ret <= 0) { | 
 | 		kfree(usemap); | 
 | 		__kfree_section_memmap(memmap, nr_pages); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | void sparse_remove_one_section(struct zone *zone, struct mem_section *ms) | 
 | { | 
 | 	struct page *memmap = NULL; | 
 | 	unsigned long *usemap = NULL; | 
 |  | 
 | 	if (ms->section_mem_map) { | 
 | 		usemap = ms->pageblock_flags; | 
 | 		memmap = sparse_decode_mem_map(ms->section_mem_map, | 
 | 						__section_nr(ms)); | 
 | 		ms->section_mem_map = 0; | 
 | 		ms->pageblock_flags = NULL; | 
 | 	} | 
 |  | 
 | 	free_section_usemap(memmap, usemap); | 
 | } | 
 | #endif |