| /* | 
 |  * Dynamic DMA mapping support. | 
 |  * | 
 |  * This implementation is a fallback for platforms that do not support | 
 |  * I/O TLBs (aka DMA address translation hardware). | 
 |  * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com> | 
 |  * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com> | 
 |  * Copyright (C) 2000, 2003 Hewlett-Packard Co | 
 |  *	David Mosberger-Tang <davidm@hpl.hp.com> | 
 |  * | 
 |  * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API. | 
 |  * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid | 
 |  *			unnecessary i-cache flushing. | 
 |  * 04/07/.. ak		Better overflow handling. Assorted fixes. | 
 |  * 05/09/10 linville	Add support for syncing ranges, support syncing for | 
 |  *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. | 
 |  * 08/12/11 beckyb	Add highmem support | 
 |  */ | 
 |  | 
 | #include <linux/cache.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/export.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/string.h> | 
 | #include <linux/swiotlb.h> | 
 | #include <linux/pfn.h> | 
 | #include <linux/types.h> | 
 | #include <linux/ctype.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/gfp.h> | 
 |  | 
 | #include <asm/io.h> | 
 | #include <asm/dma.h> | 
 | #include <asm/scatterlist.h> | 
 |  | 
 | #include <linux/init.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/iommu-helper.h> | 
 |  | 
 | #define OFFSET(val,align) ((unsigned long)	\ | 
 | 	                   ( (val) & ( (align) - 1))) | 
 |  | 
 | #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) | 
 |  | 
 | /* | 
 |  * Minimum IO TLB size to bother booting with.  Systems with mainly | 
 |  * 64bit capable cards will only lightly use the swiotlb.  If we can't | 
 |  * allocate a contiguous 1MB, we're probably in trouble anyway. | 
 |  */ | 
 | #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) | 
 |  | 
 | int swiotlb_force; | 
 |  | 
 | /* | 
 |  * Used to do a quick range check in swiotlb_tbl_unmap_single and | 
 |  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this | 
 |  * API. | 
 |  */ | 
 | static char *io_tlb_start, *io_tlb_end; | 
 |  | 
 | /* | 
 |  * The number of IO TLB blocks (in groups of 64) between io_tlb_start and | 
 |  * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages. | 
 |  */ | 
 | static unsigned long io_tlb_nslabs; | 
 |  | 
 | /* | 
 |  * When the IOMMU overflows we return a fallback buffer. This sets the size. | 
 |  */ | 
 | static unsigned long io_tlb_overflow = 32*1024; | 
 |  | 
 | static void *io_tlb_overflow_buffer; | 
 |  | 
 | /* | 
 |  * This is a free list describing the number of free entries available from | 
 |  * each index | 
 |  */ | 
 | static unsigned int *io_tlb_list; | 
 | static unsigned int io_tlb_index; | 
 |  | 
 | /* | 
 |  * We need to save away the original address corresponding to a mapped entry | 
 |  * for the sync operations. | 
 |  */ | 
 | static phys_addr_t *io_tlb_orig_addr; | 
 |  | 
 | /* | 
 |  * Protect the above data structures in the map and unmap calls | 
 |  */ | 
 | static DEFINE_SPINLOCK(io_tlb_lock); | 
 |  | 
 | static int late_alloc; | 
 |  | 
 | static int __init | 
 | setup_io_tlb_npages(char *str) | 
 | { | 
 | 	if (isdigit(*str)) { | 
 | 		io_tlb_nslabs = simple_strtoul(str, &str, 0); | 
 | 		/* avoid tail segment of size < IO_TLB_SEGSIZE */ | 
 | 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | 
 | 	} | 
 | 	if (*str == ',') | 
 | 		++str; | 
 | 	if (!strcmp(str, "force")) | 
 | 		swiotlb_force = 1; | 
 |  | 
 | 	return 1; | 
 | } | 
 | __setup("swiotlb=", setup_io_tlb_npages); | 
 | /* make io_tlb_overflow tunable too? */ | 
 |  | 
 | unsigned long swiotlb_nr_tbl(void) | 
 | { | 
 | 	return io_tlb_nslabs; | 
 | } | 
 | EXPORT_SYMBOL_GPL(swiotlb_nr_tbl); | 
 | /* Note that this doesn't work with highmem page */ | 
 | static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev, | 
 | 				      volatile void *address) | 
 | { | 
 | 	return phys_to_dma(hwdev, virt_to_phys(address)); | 
 | } | 
 |  | 
 | void swiotlb_print_info(void) | 
 | { | 
 | 	unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT; | 
 | 	phys_addr_t pstart, pend; | 
 |  | 
 | 	pstart = virt_to_phys(io_tlb_start); | 
 | 	pend = virt_to_phys(io_tlb_end); | 
 |  | 
 | 	printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n", | 
 | 	       bytes >> 20, io_tlb_start, io_tlb_end); | 
 | 	printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n", | 
 | 	       (unsigned long long)pstart, | 
 | 	       (unsigned long long)pend); | 
 | } | 
 |  | 
 | void __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose) | 
 | { | 
 | 	unsigned long i, bytes; | 
 |  | 
 | 	bytes = nslabs << IO_TLB_SHIFT; | 
 |  | 
 | 	io_tlb_nslabs = nslabs; | 
 | 	io_tlb_start = tlb; | 
 | 	io_tlb_end = io_tlb_start + bytes; | 
 |  | 
 | 	/* | 
 | 	 * Allocate and initialize the free list array.  This array is used | 
 | 	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE | 
 | 	 * between io_tlb_start and io_tlb_end. | 
 | 	 */ | 
 | 	io_tlb_list = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(int))); | 
 | 	for (i = 0; i < io_tlb_nslabs; i++) | 
 |  		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); | 
 | 	io_tlb_index = 0; | 
 | 	io_tlb_orig_addr = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t))); | 
 |  | 
 | 	/* | 
 | 	 * Get the overflow emergency buffer | 
 | 	 */ | 
 | 	io_tlb_overflow_buffer = alloc_bootmem_low_pages(PAGE_ALIGN(io_tlb_overflow)); | 
 | 	if (!io_tlb_overflow_buffer) | 
 | 		panic("Cannot allocate SWIOTLB overflow buffer!\n"); | 
 | 	if (verbose) | 
 | 		swiotlb_print_info(); | 
 | } | 
 |  | 
 | /* | 
 |  * Statically reserve bounce buffer space and initialize bounce buffer data | 
 |  * structures for the software IO TLB used to implement the DMA API. | 
 |  */ | 
 | void __init | 
 | swiotlb_init_with_default_size(size_t default_size, int verbose) | 
 | { | 
 | 	unsigned long bytes; | 
 |  | 
 | 	if (!io_tlb_nslabs) { | 
 | 		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); | 
 | 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | 
 | 	} | 
 |  | 
 | 	bytes = io_tlb_nslabs << IO_TLB_SHIFT; | 
 |  | 
 | 	/* | 
 | 	 * Get IO TLB memory from the low pages | 
 | 	 */ | 
 | 	io_tlb_start = alloc_bootmem_low_pages(PAGE_ALIGN(bytes)); | 
 | 	if (!io_tlb_start) | 
 | 		panic("Cannot allocate SWIOTLB buffer"); | 
 |  | 
 | 	swiotlb_init_with_tbl(io_tlb_start, io_tlb_nslabs, verbose); | 
 | } | 
 |  | 
 | void __init | 
 | swiotlb_init(int verbose) | 
 | { | 
 | 	swiotlb_init_with_default_size(64 * (1<<20), verbose);	/* default to 64MB */ | 
 | } | 
 |  | 
 | /* | 
 |  * Systems with larger DMA zones (those that don't support ISA) can | 
 |  * initialize the swiotlb later using the slab allocator if needed. | 
 |  * This should be just like above, but with some error catching. | 
 |  */ | 
 | int | 
 | swiotlb_late_init_with_default_size(size_t default_size) | 
 | { | 
 | 	unsigned long i, bytes, req_nslabs = io_tlb_nslabs; | 
 | 	unsigned int order; | 
 |  | 
 | 	if (!io_tlb_nslabs) { | 
 | 		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); | 
 | 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Get IO TLB memory from the low pages | 
 | 	 */ | 
 | 	order = get_order(io_tlb_nslabs << IO_TLB_SHIFT); | 
 | 	io_tlb_nslabs = SLABS_PER_PAGE << order; | 
 | 	bytes = io_tlb_nslabs << IO_TLB_SHIFT; | 
 |  | 
 | 	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { | 
 | 		io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, | 
 | 							order); | 
 | 		if (io_tlb_start) | 
 | 			break; | 
 | 		order--; | 
 | 	} | 
 |  | 
 | 	if (!io_tlb_start) | 
 | 		goto cleanup1; | 
 |  | 
 | 	if (order != get_order(bytes)) { | 
 | 		printk(KERN_WARNING "Warning: only able to allocate %ld MB " | 
 | 		       "for software IO TLB\n", (PAGE_SIZE << order) >> 20); | 
 | 		io_tlb_nslabs = SLABS_PER_PAGE << order; | 
 | 		bytes = io_tlb_nslabs << IO_TLB_SHIFT; | 
 | 	} | 
 | 	io_tlb_end = io_tlb_start + bytes; | 
 | 	memset(io_tlb_start, 0, bytes); | 
 |  | 
 | 	/* | 
 | 	 * Allocate and initialize the free list array.  This array is used | 
 | 	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE | 
 | 	 * between io_tlb_start and io_tlb_end. | 
 | 	 */ | 
 | 	io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL, | 
 | 	                              get_order(io_tlb_nslabs * sizeof(int))); | 
 | 	if (!io_tlb_list) | 
 | 		goto cleanup2; | 
 |  | 
 | 	for (i = 0; i < io_tlb_nslabs; i++) | 
 |  		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); | 
 | 	io_tlb_index = 0; | 
 |  | 
 | 	io_tlb_orig_addr = (phys_addr_t *) | 
 | 		__get_free_pages(GFP_KERNEL, | 
 | 				 get_order(io_tlb_nslabs * | 
 | 					   sizeof(phys_addr_t))); | 
 | 	if (!io_tlb_orig_addr) | 
 | 		goto cleanup3; | 
 |  | 
 | 	memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t)); | 
 |  | 
 | 	/* | 
 | 	 * Get the overflow emergency buffer | 
 | 	 */ | 
 | 	io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA, | 
 | 	                                          get_order(io_tlb_overflow)); | 
 | 	if (!io_tlb_overflow_buffer) | 
 | 		goto cleanup4; | 
 |  | 
 | 	swiotlb_print_info(); | 
 |  | 
 | 	late_alloc = 1; | 
 |  | 
 | 	return 0; | 
 |  | 
 | cleanup4: | 
 | 	free_pages((unsigned long)io_tlb_orig_addr, | 
 | 		   get_order(io_tlb_nslabs * sizeof(phys_addr_t))); | 
 | 	io_tlb_orig_addr = NULL; | 
 | cleanup3: | 
 | 	free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * | 
 | 	                                                 sizeof(int))); | 
 | 	io_tlb_list = NULL; | 
 | cleanup2: | 
 | 	io_tlb_end = NULL; | 
 | 	free_pages((unsigned long)io_tlb_start, order); | 
 | 	io_tlb_start = NULL; | 
 | cleanup1: | 
 | 	io_tlb_nslabs = req_nslabs; | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | void __init swiotlb_free(void) | 
 | { | 
 | 	if (!io_tlb_overflow_buffer) | 
 | 		return; | 
 |  | 
 | 	if (late_alloc) { | 
 | 		free_pages((unsigned long)io_tlb_overflow_buffer, | 
 | 			   get_order(io_tlb_overflow)); | 
 | 		free_pages((unsigned long)io_tlb_orig_addr, | 
 | 			   get_order(io_tlb_nslabs * sizeof(phys_addr_t))); | 
 | 		free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * | 
 | 								 sizeof(int))); | 
 | 		free_pages((unsigned long)io_tlb_start, | 
 | 			   get_order(io_tlb_nslabs << IO_TLB_SHIFT)); | 
 | 	} else { | 
 | 		free_bootmem_late(__pa(io_tlb_overflow_buffer), | 
 | 				  PAGE_ALIGN(io_tlb_overflow)); | 
 | 		free_bootmem_late(__pa(io_tlb_orig_addr), | 
 | 				  PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t))); | 
 | 		free_bootmem_late(__pa(io_tlb_list), | 
 | 				  PAGE_ALIGN(io_tlb_nslabs * sizeof(int))); | 
 | 		free_bootmem_late(__pa(io_tlb_start), | 
 | 				  PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); | 
 | 	} | 
 | 	io_tlb_nslabs = 0; | 
 | } | 
 |  | 
 | static int is_swiotlb_buffer(phys_addr_t paddr) | 
 | { | 
 | 	return paddr >= virt_to_phys(io_tlb_start) && | 
 | 		paddr < virt_to_phys(io_tlb_end); | 
 | } | 
 |  | 
 | /* | 
 |  * Bounce: copy the swiotlb buffer back to the original dma location | 
 |  */ | 
 | void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size, | 
 | 		    enum dma_data_direction dir) | 
 | { | 
 | 	unsigned long pfn = PFN_DOWN(phys); | 
 |  | 
 | 	if (PageHighMem(pfn_to_page(pfn))) { | 
 | 		/* The buffer does not have a mapping.  Map it in and copy */ | 
 | 		unsigned int offset = phys & ~PAGE_MASK; | 
 | 		char *buffer; | 
 | 		unsigned int sz = 0; | 
 | 		unsigned long flags; | 
 |  | 
 | 		while (size) { | 
 | 			sz = min_t(size_t, PAGE_SIZE - offset, size); | 
 |  | 
 | 			local_irq_save(flags); | 
 | 			buffer = kmap_atomic(pfn_to_page(pfn)); | 
 | 			if (dir == DMA_TO_DEVICE) | 
 | 				memcpy(dma_addr, buffer + offset, sz); | 
 | 			else | 
 | 				memcpy(buffer + offset, dma_addr, sz); | 
 | 			kunmap_atomic(buffer); | 
 | 			local_irq_restore(flags); | 
 |  | 
 | 			size -= sz; | 
 | 			pfn++; | 
 | 			dma_addr += sz; | 
 | 			offset = 0; | 
 | 		} | 
 | 	} else { | 
 | 		if (dir == DMA_TO_DEVICE) | 
 | 			memcpy(dma_addr, phys_to_virt(phys), size); | 
 | 		else | 
 | 			memcpy(phys_to_virt(phys), dma_addr, size); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(swiotlb_bounce); | 
 |  | 
 | void *swiotlb_tbl_map_single(struct device *hwdev, dma_addr_t tbl_dma_addr, | 
 | 			     phys_addr_t phys, size_t size, | 
 | 			     enum dma_data_direction dir) | 
 | { | 
 | 	unsigned long flags; | 
 | 	char *dma_addr; | 
 | 	unsigned int nslots, stride, index, wrap; | 
 | 	int i; | 
 | 	unsigned long mask; | 
 | 	unsigned long offset_slots; | 
 | 	unsigned long max_slots; | 
 |  | 
 | 	mask = dma_get_seg_boundary(hwdev); | 
 |  | 
 | 	tbl_dma_addr &= mask; | 
 |  | 
 | 	offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | 
 |  | 
 | 	/* | 
 |  	 * Carefully handle integer overflow which can occur when mask == ~0UL. | 
 |  	 */ | 
 | 	max_slots = mask + 1 | 
 | 		    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT | 
 | 		    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); | 
 |  | 
 | 	/* | 
 | 	 * For mappings greater than a page, we limit the stride (and | 
 | 	 * hence alignment) to a page size. | 
 | 	 */ | 
 | 	nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | 
 | 	if (size > PAGE_SIZE) | 
 | 		stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT)); | 
 | 	else | 
 | 		stride = 1; | 
 |  | 
 | 	BUG_ON(!nslots); | 
 |  | 
 | 	/* | 
 | 	 * Find suitable number of IO TLB entries size that will fit this | 
 | 	 * request and allocate a buffer from that IO TLB pool. | 
 | 	 */ | 
 | 	spin_lock_irqsave(&io_tlb_lock, flags); | 
 | 	index = ALIGN(io_tlb_index, stride); | 
 | 	if (index >= io_tlb_nslabs) | 
 | 		index = 0; | 
 | 	wrap = index; | 
 |  | 
 | 	do { | 
 | 		while (iommu_is_span_boundary(index, nslots, offset_slots, | 
 | 					      max_slots)) { | 
 | 			index += stride; | 
 | 			if (index >= io_tlb_nslabs) | 
 | 				index = 0; | 
 | 			if (index == wrap) | 
 | 				goto not_found; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If we find a slot that indicates we have 'nslots' number of | 
 | 		 * contiguous buffers, we allocate the buffers from that slot | 
 | 		 * and mark the entries as '0' indicating unavailable. | 
 | 		 */ | 
 | 		if (io_tlb_list[index] >= nslots) { | 
 | 			int count = 0; | 
 |  | 
 | 			for (i = index; i < (int) (index + nslots); i++) | 
 | 				io_tlb_list[i] = 0; | 
 | 			for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--) | 
 | 				io_tlb_list[i] = ++count; | 
 | 			dma_addr = io_tlb_start + (index << IO_TLB_SHIFT); | 
 |  | 
 | 			/* | 
 | 			 * Update the indices to avoid searching in the next | 
 | 			 * round. | 
 | 			 */ | 
 | 			io_tlb_index = ((index + nslots) < io_tlb_nslabs | 
 | 					? (index + nslots) : 0); | 
 |  | 
 | 			goto found; | 
 | 		} | 
 | 		index += stride; | 
 | 		if (index >= io_tlb_nslabs) | 
 | 			index = 0; | 
 | 	} while (index != wrap); | 
 |  | 
 | not_found: | 
 | 	spin_unlock_irqrestore(&io_tlb_lock, flags); | 
 | 	return NULL; | 
 | found: | 
 | 	spin_unlock_irqrestore(&io_tlb_lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * Save away the mapping from the original address to the DMA address. | 
 | 	 * This is needed when we sync the memory.  Then we sync the buffer if | 
 | 	 * needed. | 
 | 	 */ | 
 | 	for (i = 0; i < nslots; i++) | 
 | 		io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT); | 
 | 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) | 
 | 		swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE); | 
 |  | 
 | 	return dma_addr; | 
 | } | 
 | EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single); | 
 |  | 
 | /* | 
 |  * Allocates bounce buffer and returns its kernel virtual address. | 
 |  */ | 
 |  | 
 | static void * | 
 | map_single(struct device *hwdev, phys_addr_t phys, size_t size, | 
 | 	   enum dma_data_direction dir) | 
 | { | 
 | 	dma_addr_t start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start); | 
 |  | 
 | 	return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir); | 
 | } | 
 |  | 
 | /* | 
 |  * dma_addr is the kernel virtual address of the bounce buffer to unmap. | 
 |  */ | 
 | void | 
 | swiotlb_tbl_unmap_single(struct device *hwdev, char *dma_addr, size_t size, | 
 | 			enum dma_data_direction dir) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | 
 | 	int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT; | 
 | 	phys_addr_t phys = io_tlb_orig_addr[index]; | 
 |  | 
 | 	/* | 
 | 	 * First, sync the memory before unmapping the entry | 
 | 	 */ | 
 | 	if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL))) | 
 | 		swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE); | 
 |  | 
 | 	/* | 
 | 	 * Return the buffer to the free list by setting the corresponding | 
 | 	 * entries to indicate the number of contiguous entries available. | 
 | 	 * While returning the entries to the free list, we merge the entries | 
 | 	 * with slots below and above the pool being returned. | 
 | 	 */ | 
 | 	spin_lock_irqsave(&io_tlb_lock, flags); | 
 | 	{ | 
 | 		count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ? | 
 | 			 io_tlb_list[index + nslots] : 0); | 
 | 		/* | 
 | 		 * Step 1: return the slots to the free list, merging the | 
 | 		 * slots with superceeding slots | 
 | 		 */ | 
 | 		for (i = index + nslots - 1; i >= index; i--) | 
 | 			io_tlb_list[i] = ++count; | 
 | 		/* | 
 | 		 * Step 2: merge the returned slots with the preceding slots, | 
 | 		 * if available (non zero) | 
 | 		 */ | 
 | 		for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--) | 
 | 			io_tlb_list[i] = ++count; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&io_tlb_lock, flags); | 
 | } | 
 | EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single); | 
 |  | 
 | void | 
 | swiotlb_tbl_sync_single(struct device *hwdev, char *dma_addr, size_t size, | 
 | 			enum dma_data_direction dir, | 
 | 			enum dma_sync_target target) | 
 | { | 
 | 	int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT; | 
 | 	phys_addr_t phys = io_tlb_orig_addr[index]; | 
 |  | 
 | 	phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1)); | 
 |  | 
 | 	switch (target) { | 
 | 	case SYNC_FOR_CPU: | 
 | 		if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) | 
 | 			swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE); | 
 | 		else | 
 | 			BUG_ON(dir != DMA_TO_DEVICE); | 
 | 		break; | 
 | 	case SYNC_FOR_DEVICE: | 
 | 		if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) | 
 | 			swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE); | 
 | 		else | 
 | 			BUG_ON(dir != DMA_FROM_DEVICE); | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single); | 
 |  | 
 | void * | 
 | swiotlb_alloc_coherent(struct device *hwdev, size_t size, | 
 | 		       dma_addr_t *dma_handle, gfp_t flags) | 
 | { | 
 | 	dma_addr_t dev_addr; | 
 | 	void *ret; | 
 | 	int order = get_order(size); | 
 | 	u64 dma_mask = DMA_BIT_MASK(32); | 
 |  | 
 | 	if (hwdev && hwdev->coherent_dma_mask) | 
 | 		dma_mask = hwdev->coherent_dma_mask; | 
 |  | 
 | 	ret = (void *)__get_free_pages(flags, order); | 
 | 	if (ret && swiotlb_virt_to_bus(hwdev, ret) + size - 1 > dma_mask) { | 
 | 		/* | 
 | 		 * The allocated memory isn't reachable by the device. | 
 | 		 */ | 
 | 		free_pages((unsigned long) ret, order); | 
 | 		ret = NULL; | 
 | 	} | 
 | 	if (!ret) { | 
 | 		/* | 
 | 		 * We are either out of memory or the device can't DMA to | 
 | 		 * GFP_DMA memory; fall back on map_single(), which | 
 | 		 * will grab memory from the lowest available address range. | 
 | 		 */ | 
 | 		ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE); | 
 | 		if (!ret) | 
 | 			return NULL; | 
 | 	} | 
 |  | 
 | 	memset(ret, 0, size); | 
 | 	dev_addr = swiotlb_virt_to_bus(hwdev, ret); | 
 |  | 
 | 	/* Confirm address can be DMA'd by device */ | 
 | 	if (dev_addr + size - 1 > dma_mask) { | 
 | 		printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n", | 
 | 		       (unsigned long long)dma_mask, | 
 | 		       (unsigned long long)dev_addr); | 
 |  | 
 | 		/* DMA_TO_DEVICE to avoid memcpy in unmap_single */ | 
 | 		swiotlb_tbl_unmap_single(hwdev, ret, size, DMA_TO_DEVICE); | 
 | 		return NULL; | 
 | 	} | 
 | 	*dma_handle = dev_addr; | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(swiotlb_alloc_coherent); | 
 |  | 
 | void | 
 | swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, | 
 | 		      dma_addr_t dev_addr) | 
 | { | 
 | 	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); | 
 |  | 
 | 	WARN_ON(irqs_disabled()); | 
 | 	if (!is_swiotlb_buffer(paddr)) | 
 | 		free_pages((unsigned long)vaddr, get_order(size)); | 
 | 	else | 
 | 		/* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */ | 
 | 		swiotlb_tbl_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE); | 
 | } | 
 | EXPORT_SYMBOL(swiotlb_free_coherent); | 
 |  | 
 | static void | 
 | swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir, | 
 | 	     int do_panic) | 
 | { | 
 | 	/* | 
 | 	 * Ran out of IOMMU space for this operation. This is very bad. | 
 | 	 * Unfortunately the drivers cannot handle this operation properly. | 
 | 	 * unless they check for dma_mapping_error (most don't) | 
 | 	 * When the mapping is small enough return a static buffer to limit | 
 | 	 * the damage, or panic when the transfer is too big. | 
 | 	 */ | 
 | 	printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at " | 
 | 	       "device %s\n", size, dev ? dev_name(dev) : "?"); | 
 |  | 
 | 	if (size <= io_tlb_overflow || !do_panic) | 
 | 		return; | 
 |  | 
 | 	if (dir == DMA_BIDIRECTIONAL) | 
 | 		panic("DMA: Random memory could be DMA accessed\n"); | 
 | 	if (dir == DMA_FROM_DEVICE) | 
 | 		panic("DMA: Random memory could be DMA written\n"); | 
 | 	if (dir == DMA_TO_DEVICE) | 
 | 		panic("DMA: Random memory could be DMA read\n"); | 
 | } | 
 |  | 
 | /* | 
 |  * Map a single buffer of the indicated size for DMA in streaming mode.  The | 
 |  * physical address to use is returned. | 
 |  * | 
 |  * Once the device is given the dma address, the device owns this memory until | 
 |  * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed. | 
 |  */ | 
 | dma_addr_t swiotlb_map_page(struct device *dev, struct page *page, | 
 | 			    unsigned long offset, size_t size, | 
 | 			    enum dma_data_direction dir, | 
 | 			    struct dma_attrs *attrs) | 
 | { | 
 | 	phys_addr_t phys = page_to_phys(page) + offset; | 
 | 	dma_addr_t dev_addr = phys_to_dma(dev, phys); | 
 | 	void *map; | 
 |  | 
 | 	BUG_ON(dir == DMA_NONE); | 
 | 	/* | 
 | 	 * If the address happens to be in the device's DMA window, | 
 | 	 * we can safely return the device addr and not worry about bounce | 
 | 	 * buffering it. | 
 | 	 */ | 
 | 	if (dma_capable(dev, dev_addr, size) && !swiotlb_force) | 
 | 		return dev_addr; | 
 |  | 
 | 	/* | 
 | 	 * Oh well, have to allocate and map a bounce buffer. | 
 | 	 */ | 
 | 	map = map_single(dev, phys, size, dir); | 
 | 	if (!map) { | 
 | 		swiotlb_full(dev, size, dir, 1); | 
 | 		map = io_tlb_overflow_buffer; | 
 | 	} | 
 |  | 
 | 	dev_addr = swiotlb_virt_to_bus(dev, map); | 
 |  | 
 | 	/* | 
 | 	 * Ensure that the address returned is DMA'ble | 
 | 	 */ | 
 | 	if (!dma_capable(dev, dev_addr, size)) { | 
 | 		swiotlb_tbl_unmap_single(dev, map, size, dir); | 
 | 		dev_addr = swiotlb_virt_to_bus(dev, io_tlb_overflow_buffer); | 
 | 	} | 
 |  | 
 | 	return dev_addr; | 
 | } | 
 | EXPORT_SYMBOL_GPL(swiotlb_map_page); | 
 |  | 
 | /* | 
 |  * Unmap a single streaming mode DMA translation.  The dma_addr and size must | 
 |  * match what was provided for in a previous swiotlb_map_page call.  All | 
 |  * other usages are undefined. | 
 |  * | 
 |  * After this call, reads by the cpu to the buffer are guaranteed to see | 
 |  * whatever the device wrote there. | 
 |  */ | 
 | static void unmap_single(struct device *hwdev, dma_addr_t dev_addr, | 
 | 			 size_t size, enum dma_data_direction dir) | 
 | { | 
 | 	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); | 
 |  | 
 | 	BUG_ON(dir == DMA_NONE); | 
 |  | 
 | 	if (is_swiotlb_buffer(paddr)) { | 
 | 		swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (dir != DMA_FROM_DEVICE) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * phys_to_virt doesn't work with hihgmem page but we could | 
 | 	 * call dma_mark_clean() with hihgmem page here. However, we | 
 | 	 * are fine since dma_mark_clean() is null on POWERPC. We can | 
 | 	 * make dma_mark_clean() take a physical address if necessary. | 
 | 	 */ | 
 | 	dma_mark_clean(phys_to_virt(paddr), size); | 
 | } | 
 |  | 
 | void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, | 
 | 			size_t size, enum dma_data_direction dir, | 
 | 			struct dma_attrs *attrs) | 
 | { | 
 | 	unmap_single(hwdev, dev_addr, size, dir); | 
 | } | 
 | EXPORT_SYMBOL_GPL(swiotlb_unmap_page); | 
 |  | 
 | /* | 
 |  * Make physical memory consistent for a single streaming mode DMA translation | 
 |  * after a transfer. | 
 |  * | 
 |  * If you perform a swiotlb_map_page() but wish to interrogate the buffer | 
 |  * using the cpu, yet do not wish to teardown the dma mapping, you must | 
 |  * call this function before doing so.  At the next point you give the dma | 
 |  * address back to the card, you must first perform a | 
 |  * swiotlb_dma_sync_for_device, and then the device again owns the buffer | 
 |  */ | 
 | static void | 
 | swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, | 
 | 		    size_t size, enum dma_data_direction dir, | 
 | 		    enum dma_sync_target target) | 
 | { | 
 | 	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); | 
 |  | 
 | 	BUG_ON(dir == DMA_NONE); | 
 |  | 
 | 	if (is_swiotlb_buffer(paddr)) { | 
 | 		swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir, | 
 | 				       target); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (dir != DMA_FROM_DEVICE) | 
 | 		return; | 
 |  | 
 | 	dma_mark_clean(phys_to_virt(paddr), size); | 
 | } | 
 |  | 
 | void | 
 | swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, | 
 | 			    size_t size, enum dma_data_direction dir) | 
 | { | 
 | 	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); | 
 | } | 
 | EXPORT_SYMBOL(swiotlb_sync_single_for_cpu); | 
 |  | 
 | void | 
 | swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, | 
 | 			       size_t size, enum dma_data_direction dir) | 
 | { | 
 | 	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); | 
 | } | 
 | EXPORT_SYMBOL(swiotlb_sync_single_for_device); | 
 |  | 
 | /* | 
 |  * Map a set of buffers described by scatterlist in streaming mode for DMA. | 
 |  * This is the scatter-gather version of the above swiotlb_map_page | 
 |  * interface.  Here the scatter gather list elements are each tagged with the | 
 |  * appropriate dma address and length.  They are obtained via | 
 |  * sg_dma_{address,length}(SG). | 
 |  * | 
 |  * NOTE: An implementation may be able to use a smaller number of | 
 |  *       DMA address/length pairs than there are SG table elements. | 
 |  *       (for example via virtual mapping capabilities) | 
 |  *       The routine returns the number of addr/length pairs actually | 
 |  *       used, at most nents. | 
 |  * | 
 |  * Device ownership issues as mentioned above for swiotlb_map_page are the | 
 |  * same here. | 
 |  */ | 
 | int | 
 | swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems, | 
 | 		     enum dma_data_direction dir, struct dma_attrs *attrs) | 
 | { | 
 | 	struct scatterlist *sg; | 
 | 	int i; | 
 |  | 
 | 	BUG_ON(dir == DMA_NONE); | 
 |  | 
 | 	for_each_sg(sgl, sg, nelems, i) { | 
 | 		phys_addr_t paddr = sg_phys(sg); | 
 | 		dma_addr_t dev_addr = phys_to_dma(hwdev, paddr); | 
 |  | 
 | 		if (swiotlb_force || | 
 | 		    !dma_capable(hwdev, dev_addr, sg->length)) { | 
 | 			void *map = map_single(hwdev, sg_phys(sg), | 
 | 					       sg->length, dir); | 
 | 			if (!map) { | 
 | 				/* Don't panic here, we expect map_sg users | 
 | 				   to do proper error handling. */ | 
 | 				swiotlb_full(hwdev, sg->length, dir, 0); | 
 | 				swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir, | 
 | 						       attrs); | 
 | 				sgl[0].dma_length = 0; | 
 | 				return 0; | 
 | 			} | 
 | 			sg->dma_address = swiotlb_virt_to_bus(hwdev, map); | 
 | 		} else | 
 | 			sg->dma_address = dev_addr; | 
 | 		sg->dma_length = sg->length; | 
 | 	} | 
 | 	return nelems; | 
 | } | 
 | EXPORT_SYMBOL(swiotlb_map_sg_attrs); | 
 |  | 
 | int | 
 | swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, | 
 | 	       enum dma_data_direction dir) | 
 | { | 
 | 	return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL); | 
 | } | 
 | EXPORT_SYMBOL(swiotlb_map_sg); | 
 |  | 
 | /* | 
 |  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules | 
 |  * concerning calls here are the same as for swiotlb_unmap_page() above. | 
 |  */ | 
 | void | 
 | swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, | 
 | 		       int nelems, enum dma_data_direction dir, struct dma_attrs *attrs) | 
 | { | 
 | 	struct scatterlist *sg; | 
 | 	int i; | 
 |  | 
 | 	BUG_ON(dir == DMA_NONE); | 
 |  | 
 | 	for_each_sg(sgl, sg, nelems, i) | 
 | 		unmap_single(hwdev, sg->dma_address, sg->dma_length, dir); | 
 |  | 
 | } | 
 | EXPORT_SYMBOL(swiotlb_unmap_sg_attrs); | 
 |  | 
 | void | 
 | swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, | 
 | 		 enum dma_data_direction dir) | 
 | { | 
 | 	return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL); | 
 | } | 
 | EXPORT_SYMBOL(swiotlb_unmap_sg); | 
 |  | 
 | /* | 
 |  * Make physical memory consistent for a set of streaming mode DMA translations | 
 |  * after a transfer. | 
 |  * | 
 |  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules | 
 |  * and usage. | 
 |  */ | 
 | static void | 
 | swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, | 
 | 		int nelems, enum dma_data_direction dir, | 
 | 		enum dma_sync_target target) | 
 | { | 
 | 	struct scatterlist *sg; | 
 | 	int i; | 
 |  | 
 | 	for_each_sg(sgl, sg, nelems, i) | 
 | 		swiotlb_sync_single(hwdev, sg->dma_address, | 
 | 				    sg->dma_length, dir, target); | 
 | } | 
 |  | 
 | void | 
 | swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, | 
 | 			int nelems, enum dma_data_direction dir) | 
 | { | 
 | 	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); | 
 | } | 
 | EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu); | 
 |  | 
 | void | 
 | swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, | 
 | 			   int nelems, enum dma_data_direction dir) | 
 | { | 
 | 	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); | 
 | } | 
 | EXPORT_SYMBOL(swiotlb_sync_sg_for_device); | 
 |  | 
 | int | 
 | swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr) | 
 | { | 
 | 	return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer)); | 
 | } | 
 | EXPORT_SYMBOL(swiotlb_dma_mapping_error); | 
 |  | 
 | /* | 
 |  * Return whether the given device DMA address mask can be supported | 
 |  * properly.  For example, if your device can only drive the low 24-bits | 
 |  * during bus mastering, then you would pass 0x00ffffff as the mask to | 
 |  * this function. | 
 |  */ | 
 | int | 
 | swiotlb_dma_supported(struct device *hwdev, u64 mask) | 
 | { | 
 | 	return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask; | 
 | } | 
 | EXPORT_SYMBOL(swiotlb_dma_supported); |