|  | #ifndef __ASM_SYSTEM_H | 
|  | #define __ASM_SYSTEM_H | 
|  |  | 
|  | #include <linux/config.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <asm/segment.h> | 
|  | #include <asm/cpufeature.h> | 
|  | #include <linux/bitops.h> /* for LOCK_PREFIX */ | 
|  |  | 
|  | #ifdef __KERNEL__ | 
|  |  | 
|  | struct task_struct;	/* one of the stranger aspects of C forward declarations.. */ | 
|  | extern struct task_struct * FASTCALL(__switch_to(struct task_struct *prev, struct task_struct *next)); | 
|  |  | 
|  | #define switch_to(prev,next,last) do {					\ | 
|  | unsigned long esi,edi;						\ | 
|  | asm volatile("pushfl\n\t"					\ | 
|  | "pushl %%ebp\n\t"					\ | 
|  | "movl %%esp,%0\n\t"	/* save ESP */		\ | 
|  | "movl %5,%%esp\n\t"	/* restore ESP */	\ | 
|  | "movl $1f,%1\n\t"		/* save EIP */		\ | 
|  | "pushl %6\n\t"		/* restore EIP */	\ | 
|  | "jmp __switch_to\n"				\ | 
|  | "1:\t"						\ | 
|  | "popl %%ebp\n\t"					\ | 
|  | "popfl"						\ | 
|  | :"=m" (prev->thread.esp),"=m" (prev->thread.eip),	\ | 
|  | "=a" (last),"=S" (esi),"=D" (edi)			\ | 
|  | :"m" (next->thread.esp),"m" (next->thread.eip),	\ | 
|  | "2" (prev), "d" (next));				\ | 
|  | } while (0) | 
|  |  | 
|  | #define _set_base(addr,base) do { unsigned long __pr; \ | 
|  | __asm__ __volatile__ ("movw %%dx,%1\n\t" \ | 
|  | "rorl $16,%%edx\n\t" \ | 
|  | "movb %%dl,%2\n\t" \ | 
|  | "movb %%dh,%3" \ | 
|  | :"=&d" (__pr) \ | 
|  | :"m" (*((addr)+2)), \ | 
|  | "m" (*((addr)+4)), \ | 
|  | "m" (*((addr)+7)), \ | 
|  | "0" (base) \ | 
|  | ); } while(0) | 
|  |  | 
|  | #define _set_limit(addr,limit) do { unsigned long __lr; \ | 
|  | __asm__ __volatile__ ("movw %%dx,%1\n\t" \ | 
|  | "rorl $16,%%edx\n\t" \ | 
|  | "movb %2,%%dh\n\t" \ | 
|  | "andb $0xf0,%%dh\n\t" \ | 
|  | "orb %%dh,%%dl\n\t" \ | 
|  | "movb %%dl,%2" \ | 
|  | :"=&d" (__lr) \ | 
|  | :"m" (*(addr)), \ | 
|  | "m" (*((addr)+6)), \ | 
|  | "0" (limit) \ | 
|  | ); } while(0) | 
|  |  | 
|  | #define set_base(ldt,base) _set_base( ((char *)&(ldt)) , (base) ) | 
|  | #define set_limit(ldt,limit) _set_limit( ((char *)&(ldt)) , ((limit)-1)>>12 ) | 
|  |  | 
|  | static inline unsigned long _get_base(char * addr) | 
|  | { | 
|  | unsigned long __base; | 
|  | __asm__("movb %3,%%dh\n\t" | 
|  | "movb %2,%%dl\n\t" | 
|  | "shll $16,%%edx\n\t" | 
|  | "movw %1,%%dx" | 
|  | :"=&d" (__base) | 
|  | :"m" (*((addr)+2)), | 
|  | "m" (*((addr)+4)), | 
|  | "m" (*((addr)+7))); | 
|  | return __base; | 
|  | } | 
|  |  | 
|  | #define get_base(ldt) _get_base( ((char *)&(ldt)) ) | 
|  |  | 
|  | /* | 
|  | * Load a segment. Fall back on loading the zero | 
|  | * segment if something goes wrong.. | 
|  | */ | 
|  | #define loadsegment(seg,value)			\ | 
|  | asm volatile("\n"			\ | 
|  | "1:\t"				\ | 
|  | "mov %0,%%" #seg "\n"		\ | 
|  | "2:\n"				\ | 
|  | ".section .fixup,\"ax\"\n"	\ | 
|  | "3:\t"				\ | 
|  | "pushl $0\n\t"			\ | 
|  | "popl %%" #seg "\n\t"		\ | 
|  | "jmp 2b\n"			\ | 
|  | ".previous\n"			\ | 
|  | ".section __ex_table,\"a\"\n\t"	\ | 
|  | ".align 4\n\t"			\ | 
|  | ".long 1b,3b\n"			\ | 
|  | ".previous"			\ | 
|  | : :"m" (value)) | 
|  |  | 
|  | /* | 
|  | * Save a segment register away | 
|  | */ | 
|  | #define savesegment(seg, value) \ | 
|  | asm volatile("mov %%" #seg ",%0":"=m" (value)) | 
|  |  | 
|  | /* | 
|  | * Clear and set 'TS' bit respectively | 
|  | */ | 
|  | #define clts() __asm__ __volatile__ ("clts") | 
|  | #define read_cr0() ({ \ | 
|  | unsigned int __dummy; \ | 
|  | __asm__( \ | 
|  | "movl %%cr0,%0\n\t" \ | 
|  | :"=r" (__dummy)); \ | 
|  | __dummy; \ | 
|  | }) | 
|  | #define write_cr0(x) \ | 
|  | __asm__("movl %0,%%cr0": :"r" (x)); | 
|  |  | 
|  | #define read_cr4() ({ \ | 
|  | unsigned int __dummy; \ | 
|  | __asm__( \ | 
|  | "movl %%cr4,%0\n\t" \ | 
|  | :"=r" (__dummy)); \ | 
|  | __dummy; \ | 
|  | }) | 
|  | #define write_cr4(x) \ | 
|  | __asm__("movl %0,%%cr4": :"r" (x)); | 
|  | #define stts() write_cr0(8 | read_cr0()) | 
|  |  | 
|  | #endif	/* __KERNEL__ */ | 
|  |  | 
|  | #define wbinvd() \ | 
|  | __asm__ __volatile__ ("wbinvd": : :"memory"); | 
|  |  | 
|  | static inline unsigned long get_limit(unsigned long segment) | 
|  | { | 
|  | unsigned long __limit; | 
|  | __asm__("lsll %1,%0" | 
|  | :"=r" (__limit):"r" (segment)); | 
|  | return __limit+1; | 
|  | } | 
|  |  | 
|  | #define nop() __asm__ __volatile__ ("nop") | 
|  |  | 
|  | #define xchg(ptr,v) ((__typeof__(*(ptr)))__xchg((unsigned long)(v),(ptr),sizeof(*(ptr)))) | 
|  |  | 
|  | #define tas(ptr) (xchg((ptr),1)) | 
|  |  | 
|  | struct __xchg_dummy { unsigned long a[100]; }; | 
|  | #define __xg(x) ((struct __xchg_dummy *)(x)) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * The semantics of XCHGCMP8B are a bit strange, this is why | 
|  | * there is a loop and the loading of %%eax and %%edx has to | 
|  | * be inside. This inlines well in most cases, the cached | 
|  | * cost is around ~38 cycles. (in the future we might want | 
|  | * to do an SIMD/3DNOW!/MMX/FPU 64-bit store here, but that | 
|  | * might have an implicit FPU-save as a cost, so it's not | 
|  | * clear which path to go.) | 
|  | * | 
|  | * cmpxchg8b must be used with the lock prefix here to allow | 
|  | * the instruction to be executed atomically, see page 3-102 | 
|  | * of the instruction set reference 24319102.pdf. We need | 
|  | * the reader side to see the coherent 64bit value. | 
|  | */ | 
|  | static inline void __set_64bit (unsigned long long * ptr, | 
|  | unsigned int low, unsigned int high) | 
|  | { | 
|  | __asm__ __volatile__ ( | 
|  | "\n1:\t" | 
|  | "movl (%0), %%eax\n\t" | 
|  | "movl 4(%0), %%edx\n\t" | 
|  | "lock cmpxchg8b (%0)\n\t" | 
|  | "jnz 1b" | 
|  | : /* no outputs */ | 
|  | :	"D"(ptr), | 
|  | "b"(low), | 
|  | "c"(high) | 
|  | :	"ax","dx","memory"); | 
|  | } | 
|  |  | 
|  | static inline void __set_64bit_constant (unsigned long long *ptr, | 
|  | unsigned long long value) | 
|  | { | 
|  | __set_64bit(ptr,(unsigned int)(value), (unsigned int)((value)>>32ULL)); | 
|  | } | 
|  | #define ll_low(x)	*(((unsigned int*)&(x))+0) | 
|  | #define ll_high(x)	*(((unsigned int*)&(x))+1) | 
|  |  | 
|  | static inline void __set_64bit_var (unsigned long long *ptr, | 
|  | unsigned long long value) | 
|  | { | 
|  | __set_64bit(ptr,ll_low(value), ll_high(value)); | 
|  | } | 
|  |  | 
|  | #define set_64bit(ptr,value) \ | 
|  | (__builtin_constant_p(value) ? \ | 
|  | __set_64bit_constant(ptr, value) : \ | 
|  | __set_64bit_var(ptr, value) ) | 
|  |  | 
|  | #define _set_64bit(ptr,value) \ | 
|  | (__builtin_constant_p(value) ? \ | 
|  | __set_64bit(ptr, (unsigned int)(value), (unsigned int)((value)>>32ULL) ) : \ | 
|  | __set_64bit(ptr, ll_low(value), ll_high(value)) ) | 
|  |  | 
|  | /* | 
|  | * Note: no "lock" prefix even on SMP: xchg always implies lock anyway | 
|  | * Note 2: xchg has side effect, so that attribute volatile is necessary, | 
|  | *	  but generally the primitive is invalid, *ptr is output argument. --ANK | 
|  | */ | 
|  | static inline unsigned long __xchg(unsigned long x, volatile void * ptr, int size) | 
|  | { | 
|  | switch (size) { | 
|  | case 1: | 
|  | __asm__ __volatile__("xchgb %b0,%1" | 
|  | :"=q" (x) | 
|  | :"m" (*__xg(ptr)), "0" (x) | 
|  | :"memory"); | 
|  | break; | 
|  | case 2: | 
|  | __asm__ __volatile__("xchgw %w0,%1" | 
|  | :"=r" (x) | 
|  | :"m" (*__xg(ptr)), "0" (x) | 
|  | :"memory"); | 
|  | break; | 
|  | case 4: | 
|  | __asm__ __volatile__("xchgl %0,%1" | 
|  | :"=r" (x) | 
|  | :"m" (*__xg(ptr)), "0" (x) | 
|  | :"memory"); | 
|  | break; | 
|  | } | 
|  | return x; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Atomic compare and exchange.  Compare OLD with MEM, if identical, | 
|  | * store NEW in MEM.  Return the initial value in MEM.  Success is | 
|  | * indicated by comparing RETURN with OLD. | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_X86_CMPXCHG | 
|  | #define __HAVE_ARCH_CMPXCHG 1 | 
|  | #endif | 
|  |  | 
|  | static inline unsigned long __cmpxchg(volatile void *ptr, unsigned long old, | 
|  | unsigned long new, int size) | 
|  | { | 
|  | unsigned long prev; | 
|  | switch (size) { | 
|  | case 1: | 
|  | __asm__ __volatile__(LOCK_PREFIX "cmpxchgb %b1,%2" | 
|  | : "=a"(prev) | 
|  | : "q"(new), "m"(*__xg(ptr)), "0"(old) | 
|  | : "memory"); | 
|  | return prev; | 
|  | case 2: | 
|  | __asm__ __volatile__(LOCK_PREFIX "cmpxchgw %w1,%2" | 
|  | : "=a"(prev) | 
|  | : "q"(new), "m"(*__xg(ptr)), "0"(old) | 
|  | : "memory"); | 
|  | return prev; | 
|  | case 4: | 
|  | __asm__ __volatile__(LOCK_PREFIX "cmpxchgl %1,%2" | 
|  | : "=a"(prev) | 
|  | : "q"(new), "m"(*__xg(ptr)), "0"(old) | 
|  | : "memory"); | 
|  | return prev; | 
|  | } | 
|  | return old; | 
|  | } | 
|  |  | 
|  | #define cmpxchg(ptr,o,n)\ | 
|  | ((__typeof__(*(ptr)))__cmpxchg((ptr),(unsigned long)(o),\ | 
|  | (unsigned long)(n),sizeof(*(ptr)))) | 
|  |  | 
|  | #ifdef __KERNEL__ | 
|  | struct alt_instr { | 
|  | __u8 *instr; 		/* original instruction */ | 
|  | __u8 *replacement; | 
|  | __u8  cpuid;		/* cpuid bit set for replacement */ | 
|  | __u8  instrlen;		/* length of original instruction */ | 
|  | __u8  replacementlen; 	/* length of new instruction, <= instrlen */ | 
|  | __u8  pad; | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Alternative instructions for different CPU types or capabilities. | 
|  | * | 
|  | * This allows to use optimized instructions even on generic binary | 
|  | * kernels. | 
|  | * | 
|  | * length of oldinstr must be longer or equal the length of newinstr | 
|  | * It can be padded with nops as needed. | 
|  | * | 
|  | * For non barrier like inlines please define new variants | 
|  | * without volatile and memory clobber. | 
|  | */ | 
|  | #define alternative(oldinstr, newinstr, feature) 	\ | 
|  | asm volatile ("661:\n\t" oldinstr "\n662:\n" 		     \ | 
|  | ".section .altinstructions,\"a\"\n"     	     \ | 
|  | "  .align 4\n"				       \ | 
|  | "  .long 661b\n"            /* label */          \ | 
|  | "  .long 663f\n"		  /* new instruction */ 	\ | 
|  | "  .byte %c0\n"             /* feature bit */    \ | 
|  | "  .byte 662b-661b\n"       /* sourcelen */      \ | 
|  | "  .byte 664f-663f\n"       /* replacementlen */ \ | 
|  | ".previous\n"						\ | 
|  | ".section .altinstr_replacement,\"ax\"\n"			\ | 
|  | "663:\n\t" newinstr "\n664:\n"   /* replacement */    \ | 
|  | ".previous" :: "i" (feature) : "memory") | 
|  |  | 
|  | /* | 
|  | * Alternative inline assembly with input. | 
|  | * | 
|  | * Pecularities: | 
|  | * No memory clobber here. | 
|  | * Argument numbers start with 1. | 
|  | * Best is to use constraints that are fixed size (like (%1) ... "r") | 
|  | * If you use variable sized constraints like "m" or "g" in the | 
|  | * replacement maake sure to pad to the worst case length. | 
|  | */ | 
|  | #define alternative_input(oldinstr, newinstr, feature, input...)		\ | 
|  | asm volatile ("661:\n\t" oldinstr "\n662:\n"				\ | 
|  | ".section .altinstructions,\"a\"\n"			\ | 
|  | "  .align 4\n"						\ | 
|  | "  .long 661b\n"            /* label */			\ | 
|  | "  .long 663f\n"		  /* new instruction */ 	\ | 
|  | "  .byte %c0\n"             /* feature bit */		\ | 
|  | "  .byte 662b-661b\n"       /* sourcelen */		\ | 
|  | "  .byte 664f-663f\n"       /* replacementlen */ 		\ | 
|  | ".previous\n"						\ | 
|  | ".section .altinstr_replacement,\"ax\"\n"			\ | 
|  | "663:\n\t" newinstr "\n664:\n"   /* replacement */ 	\ | 
|  | ".previous" :: "i" (feature), ##input) | 
|  |  | 
|  | /* | 
|  | * Force strict CPU ordering. | 
|  | * And yes, this is required on UP too when we're talking | 
|  | * to devices. | 
|  | * | 
|  | * For now, "wmb()" doesn't actually do anything, as all | 
|  | * Intel CPU's follow what Intel calls a *Processor Order*, | 
|  | * in which all writes are seen in the program order even | 
|  | * outside the CPU. | 
|  | * | 
|  | * I expect future Intel CPU's to have a weaker ordering, | 
|  | * but I'd also expect them to finally get their act together | 
|  | * and add some real memory barriers if so. | 
|  | * | 
|  | * Some non intel clones support out of order store. wmb() ceases to be a | 
|  | * nop for these. | 
|  | */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Actually only lfence would be needed for mb() because all stores done | 
|  | * by the kernel should be already ordered. But keep a full barrier for now. | 
|  | */ | 
|  |  | 
|  | #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2) | 
|  | #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2) | 
|  |  | 
|  | /** | 
|  | * read_barrier_depends - Flush all pending reads that subsequents reads | 
|  | * depend on. | 
|  | * | 
|  | * No data-dependent reads from memory-like regions are ever reordered | 
|  | * over this barrier.  All reads preceding this primitive are guaranteed | 
|  | * to access memory (but not necessarily other CPUs' caches) before any | 
|  | * reads following this primitive that depend on the data return by | 
|  | * any of the preceding reads.  This primitive is much lighter weight than | 
|  | * rmb() on most CPUs, and is never heavier weight than is | 
|  | * rmb(). | 
|  | * | 
|  | * These ordering constraints are respected by both the local CPU | 
|  | * and the compiler. | 
|  | * | 
|  | * Ordering is not guaranteed by anything other than these primitives, | 
|  | * not even by data dependencies.  See the documentation for | 
|  | * memory_barrier() for examples and URLs to more information. | 
|  | * | 
|  | * For example, the following code would force ordering (the initial | 
|  | * value of "a" is zero, "b" is one, and "p" is "&a"): | 
|  | * | 
|  | * <programlisting> | 
|  | *	CPU 0				CPU 1 | 
|  | * | 
|  | *	b = 2; | 
|  | *	memory_barrier(); | 
|  | *	p = &b;				q = p; | 
|  | *					read_barrier_depends(); | 
|  | *					d = *q; | 
|  | * </programlisting> | 
|  | * | 
|  | * because the read of "*q" depends on the read of "p" and these | 
|  | * two reads are separated by a read_barrier_depends().  However, | 
|  | * the following code, with the same initial values for "a" and "b": | 
|  | * | 
|  | * <programlisting> | 
|  | *	CPU 0				CPU 1 | 
|  | * | 
|  | *	a = 2; | 
|  | *	memory_barrier(); | 
|  | *	b = 3;				y = b; | 
|  | *					read_barrier_depends(); | 
|  | *					x = a; | 
|  | * </programlisting> | 
|  | * | 
|  | * does not enforce ordering, since there is no data dependency between | 
|  | * the read of "a" and the read of "b".  Therefore, on some CPUs, such | 
|  | * as Alpha, "y" could be set to 3 and "x" to 0.  Use rmb() | 
|  | * in cases like thiswhere there are no data dependencies. | 
|  | **/ | 
|  |  | 
|  | #define read_barrier_depends()	do { } while(0) | 
|  |  | 
|  | #ifdef CONFIG_X86_OOSTORE | 
|  | /* Actually there are no OOO store capable CPUs for now that do SSE, | 
|  | but make it already an possibility. */ | 
|  | #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM) | 
|  | #else | 
|  | #define wmb()	__asm__ __volatile__ ("": : :"memory") | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | #define smp_mb()	mb() | 
|  | #define smp_rmb()	rmb() | 
|  | #define smp_wmb()	wmb() | 
|  | #define smp_read_barrier_depends()	read_barrier_depends() | 
|  | #define set_mb(var, value) do { xchg(&var, value); } while (0) | 
|  | #else | 
|  | #define smp_mb()	barrier() | 
|  | #define smp_rmb()	barrier() | 
|  | #define smp_wmb()	barrier() | 
|  | #define smp_read_barrier_depends()	do { } while(0) | 
|  | #define set_mb(var, value) do { var = value; barrier(); } while (0) | 
|  | #endif | 
|  |  | 
|  | #define set_wmb(var, value) do { var = value; wmb(); } while (0) | 
|  |  | 
|  | /* interrupt control.. */ | 
|  | #define local_save_flags(x)	do { typecheck(unsigned long,x); __asm__ __volatile__("pushfl ; popl %0":"=g" (x): /* no input */); } while (0) | 
|  | #define local_irq_restore(x) 	do { typecheck(unsigned long,x); __asm__ __volatile__("pushl %0 ; popfl": /* no output */ :"g" (x):"memory", "cc"); } while (0) | 
|  | #define local_irq_disable() 	__asm__ __volatile__("cli": : :"memory") | 
|  | #define local_irq_enable()	__asm__ __volatile__("sti": : :"memory") | 
|  | /* used in the idle loop; sti takes one instruction cycle to complete */ | 
|  | #define safe_halt()		__asm__ __volatile__("sti; hlt": : :"memory") | 
|  |  | 
|  | #define irqs_disabled()			\ | 
|  | ({					\ | 
|  | unsigned long flags;		\ | 
|  | local_save_flags(flags);	\ | 
|  | !(flags & (1<<9));		\ | 
|  | }) | 
|  |  | 
|  | /* For spinlocks etc */ | 
|  | #define local_irq_save(x)	__asm__ __volatile__("pushfl ; popl %0 ; cli":"=g" (x): /* no input */ :"memory") | 
|  |  | 
|  | /* | 
|  | * disable hlt during certain critical i/o operations | 
|  | */ | 
|  | #define HAVE_DISABLE_HLT | 
|  | void disable_hlt(void); | 
|  | void enable_hlt(void); | 
|  |  | 
|  | extern int es7000_plat; | 
|  | void cpu_idle_wait(void); | 
|  |  | 
|  | extern unsigned long arch_align_stack(unsigned long sp); | 
|  |  | 
|  | #endif |