|  | /* | 
|  | * include/asm-v850/bitops.h -- Bit operations | 
|  | * | 
|  | *  Copyright (C) 2001,02,03,04,05  NEC Electronics Corporation | 
|  | *  Copyright (C) 2001,02,03,04,05  Miles Bader <miles@gnu.org> | 
|  | *  Copyright (C) 1992  Linus Torvalds. | 
|  | * | 
|  | * This file is subject to the terms and conditions of the GNU General | 
|  | * Public License.  See the file COPYING in the main directory of this | 
|  | * archive for more details. | 
|  | */ | 
|  |  | 
|  | #ifndef __V850_BITOPS_H__ | 
|  | #define __V850_BITOPS_H__ | 
|  |  | 
|  |  | 
|  | #include <linux/config.h> | 
|  | #include <linux/compiler.h>	/* unlikely  */ | 
|  | #include <asm/byteorder.h>	/* swab32 */ | 
|  | #include <asm/system.h>		/* interrupt enable/disable */ | 
|  |  | 
|  |  | 
|  | #ifdef __KERNEL__ | 
|  |  | 
|  | /* | 
|  | * The __ functions are not atomic | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * ffz = Find First Zero in word. Undefined if no zero exists, | 
|  | * so code should check against ~0UL first.. | 
|  | */ | 
|  | extern __inline__ unsigned long ffz (unsigned long word) | 
|  | { | 
|  | unsigned long result = 0; | 
|  |  | 
|  | while (word & 1) { | 
|  | result++; | 
|  | word >>= 1; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* In the following constant-bit-op macros, a "g" constraint is used when | 
|  | we really need an integer ("i" constraint).  This is to avoid | 
|  | warnings/errors from the compiler in the case where the associated | 
|  | operand _isn't_ an integer, and shouldn't produce bogus assembly because | 
|  | use of that form is protected by a guard statement that checks for | 
|  | constants, and should otherwise be removed by the optimizer.  This | 
|  | _usually_ works -- however, __builtin_constant_p returns true for a | 
|  | variable with a known constant value too, and unfortunately gcc will | 
|  | happily put the variable in a register and use the register for the "g" | 
|  | constraint'd asm operand.  To avoid the latter problem, we add a | 
|  | constant offset to the operand and subtract it back in the asm code; | 
|  | forcing gcc to do arithmetic on the value is usually enough to get it | 
|  | to use a real constant value.  This is horrible, and ultimately | 
|  | unreliable too, but it seems to work for now (hopefully gcc will offer | 
|  | us more control in the future, so we can do a better job).  */ | 
|  |  | 
|  | #define __const_bit_op(op, nr, addr)					\ | 
|  | ({ __asm__ (op " (%0 - 0x123), %1"					\ | 
|  | :: "g" (((nr) & 0x7) + 0x123),				\ | 
|  | "m" (*((char *)(addr) + ((nr) >> 3)))			\ | 
|  | : "memory"); }) | 
|  | #define __var_bit_op(op, nr, addr)					\ | 
|  | ({ int __nr = (nr);							\ | 
|  | __asm__ (op " %0, [%1]"						\ | 
|  | :: "r" (__nr & 0x7),					\ | 
|  | "r" ((char *)(addr) + (__nr >> 3))			\ | 
|  | : "memory"); }) | 
|  | #define __bit_op(op, nr, addr)						\ | 
|  | ((__builtin_constant_p (nr) && (unsigned)(nr) <= 0x7FFFF)		\ | 
|  | ? __const_bit_op (op, nr, addr)					\ | 
|  | : __var_bit_op (op, nr, addr)) | 
|  |  | 
|  | #define __set_bit(nr, addr)		__bit_op ("set1", nr, addr) | 
|  | #define __clear_bit(nr, addr)		__bit_op ("clr1", nr, addr) | 
|  | #define __change_bit(nr, addr)		__bit_op ("not1", nr, addr) | 
|  |  | 
|  | /* The bit instructions used by `non-atomic' variants are actually atomic.  */ | 
|  | #define set_bit __set_bit | 
|  | #define clear_bit __clear_bit | 
|  | #define change_bit __change_bit | 
|  |  | 
|  |  | 
|  | #define __const_tns_bit_op(op, nr, addr)				      \ | 
|  | ({ int __tns_res;							      \ | 
|  | __asm__ __volatile__ (						      \ | 
|  | "tst1 (%1 - 0x123), %2; setf nz, %0; " op " (%1 - 0x123), %2"    \ | 
|  | : "=&r" (__tns_res)					      \ | 
|  | : "g" (((nr) & 0x7) + 0x123),				      \ | 
|  | "m" (*((char *)(addr) + ((nr) >> 3)))			      \ | 
|  | : "memory");						      \ | 
|  | __tns_res;								      \ | 
|  | }) | 
|  | #define __var_tns_bit_op(op, nr, addr)					      \ | 
|  | ({ int __nr = (nr);							      \ | 
|  | int __tns_res;							      \ | 
|  | __asm__ __volatile__ (						      \ | 
|  | "tst1 %1, [%2]; setf nz, %0; " op " %1, [%2]"		      \ | 
|  | : "=&r" (__tns_res)					      \ | 
|  | : "r" (__nr & 0x7),					      \ | 
|  | "r" ((char *)(addr) + (__nr >> 3))			      \ | 
|  | : "memory");						      \ | 
|  | __tns_res;								      \ | 
|  | }) | 
|  | #define __tns_bit_op(op, nr, addr)					\ | 
|  | ((__builtin_constant_p (nr) && (unsigned)(nr) <= 0x7FFFF)		\ | 
|  | ? __const_tns_bit_op (op, nr, addr)					\ | 
|  | : __var_tns_bit_op (op, nr, addr)) | 
|  | #define __tns_atomic_bit_op(op, nr, addr)				\ | 
|  | ({ int __tns_atomic_res, __tns_atomic_flags;				\ | 
|  | local_irq_save (__tns_atomic_flags);				\ | 
|  | __tns_atomic_res = __tns_bit_op (op, nr, addr);			\ | 
|  | local_irq_restore (__tns_atomic_flags);				\ | 
|  | __tns_atomic_res;							\ | 
|  | }) | 
|  |  | 
|  | #define __test_and_set_bit(nr, addr)	__tns_bit_op ("set1", nr, addr) | 
|  | #define test_and_set_bit(nr, addr)	__tns_atomic_bit_op ("set1", nr, addr) | 
|  |  | 
|  | #define __test_and_clear_bit(nr, addr)	__tns_bit_op ("clr1", nr, addr) | 
|  | #define test_and_clear_bit(nr, addr)	__tns_atomic_bit_op ("clr1", nr, addr) | 
|  |  | 
|  | #define __test_and_change_bit(nr, addr)	__tns_bit_op ("not1", nr, addr) | 
|  | #define test_and_change_bit(nr, addr)	__tns_atomic_bit_op ("not1", nr, addr) | 
|  |  | 
|  |  | 
|  | #define __const_test_bit(nr, addr)					      \ | 
|  | ({ int __test_bit_res;						      \ | 
|  | __asm__ __volatile__ ("tst1 (%1 - 0x123), %2; setf nz, %0"		      \ | 
|  | : "=r" (__test_bit_res)			      \ | 
|  | : "g" (((nr) & 0x7) + 0x123),		      \ | 
|  | "m" (*((const char *)(addr) + ((nr) >> 3))));    \ | 
|  | __test_bit_res;							      \ | 
|  | }) | 
|  | extern __inline__ int __test_bit (int nr, const void *addr) | 
|  | { | 
|  | int res; | 
|  | __asm__ __volatile__ ("tst1 %1, [%2]; setf nz, %0" | 
|  | : "=r" (res) | 
|  | : "r" (nr & 0x7), "r" (addr + (nr >> 3))); | 
|  | return res; | 
|  | } | 
|  | #define test_bit(nr,addr)						\ | 
|  | ((__builtin_constant_p (nr) && (unsigned)(nr) <= 0x7FFFF)		\ | 
|  | ? __const_test_bit ((nr), (addr))					\ | 
|  | : __test_bit ((nr), (addr))) | 
|  |  | 
|  |  | 
|  | /* clear_bit doesn't provide any barrier for the compiler.  */ | 
|  | #define smp_mb__before_clear_bit()	barrier () | 
|  | #define smp_mb__after_clear_bit()	barrier () | 
|  |  | 
|  |  | 
|  | #define find_first_zero_bit(addr, size) \ | 
|  | find_next_zero_bit ((addr), (size), 0) | 
|  |  | 
|  | extern __inline__ int find_next_zero_bit(const void *addr, int size, int offset) | 
|  | { | 
|  | unsigned long *p = ((unsigned long *) addr) + (offset >> 5); | 
|  | unsigned long result = offset & ~31UL; | 
|  | unsigned long tmp; | 
|  |  | 
|  | if (offset >= size) | 
|  | return size; | 
|  | size -= result; | 
|  | offset &= 31UL; | 
|  | if (offset) { | 
|  | tmp = * (p++); | 
|  | tmp |= ~0UL >> (32-offset); | 
|  | if (size < 32) | 
|  | goto found_first; | 
|  | if (~tmp) | 
|  | goto found_middle; | 
|  | size -= 32; | 
|  | result += 32; | 
|  | } | 
|  | while (size & ~31UL) { | 
|  | if (~ (tmp = * (p++))) | 
|  | goto found_middle; | 
|  | result += 32; | 
|  | size -= 32; | 
|  | } | 
|  | if (!size) | 
|  | return result; | 
|  | tmp = *p; | 
|  |  | 
|  | found_first: | 
|  | tmp |= ~0UL >> size; | 
|  | found_middle: | 
|  | return result + ffz (tmp); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* This is the same as generic_ffs, but we can't use that because it's | 
|  | inline and the #include order mucks things up.  */ | 
|  | static inline int generic_ffs_for_find_next_bit(int x) | 
|  | { | 
|  | int r = 1; | 
|  |  | 
|  | if (!x) | 
|  | return 0; | 
|  | if (!(x & 0xffff)) { | 
|  | x >>= 16; | 
|  | r += 16; | 
|  | } | 
|  | if (!(x & 0xff)) { | 
|  | x >>= 8; | 
|  | r += 8; | 
|  | } | 
|  | if (!(x & 0xf)) { | 
|  | x >>= 4; | 
|  | r += 4; | 
|  | } | 
|  | if (!(x & 3)) { | 
|  | x >>= 2; | 
|  | r += 2; | 
|  | } | 
|  | if (!(x & 1)) { | 
|  | x >>= 1; | 
|  | r += 1; | 
|  | } | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find next one bit in a bitmap reasonably efficiently. | 
|  | */ | 
|  | static __inline__ unsigned long find_next_bit(const unsigned long *addr, | 
|  | unsigned long size, unsigned long offset) | 
|  | { | 
|  | unsigned int *p = ((unsigned int *) addr) + (offset >> 5); | 
|  | unsigned int result = offset & ~31UL; | 
|  | unsigned int tmp; | 
|  |  | 
|  | if (offset >= size) | 
|  | return size; | 
|  | size -= result; | 
|  | offset &= 31UL; | 
|  | if (offset) { | 
|  | tmp = *p++; | 
|  | tmp &= ~0UL << offset; | 
|  | if (size < 32) | 
|  | goto found_first; | 
|  | if (tmp) | 
|  | goto found_middle; | 
|  | size -= 32; | 
|  | result += 32; | 
|  | } | 
|  | while (size >= 32) { | 
|  | if ((tmp = *p++) != 0) | 
|  | goto found_middle; | 
|  | result += 32; | 
|  | size -= 32; | 
|  | } | 
|  | if (!size) | 
|  | return result; | 
|  | tmp = *p; | 
|  |  | 
|  | found_first: | 
|  | tmp &= ~0UL >> (32 - size); | 
|  | if (tmp == 0UL)        /* Are any bits set? */ | 
|  | return result + size; /* Nope. */ | 
|  | found_middle: | 
|  | return result + generic_ffs_for_find_next_bit(tmp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find_first_bit - find the first set bit in a memory region | 
|  | */ | 
|  | #define find_first_bit(addr, size) \ | 
|  | find_next_bit((addr), (size), 0) | 
|  |  | 
|  |  | 
|  | #define ffs(x) generic_ffs (x) | 
|  | #define fls(x) generic_fls (x) | 
|  | #define __ffs(x) ffs(x) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * This is just `generic_ffs' from <linux/bitops.h>, except that it assumes | 
|  | * that at least one bit is set, and returns the real index of the bit | 
|  | * (rather than the bit index + 1, like ffs does). | 
|  | */ | 
|  | static inline int sched_ffs(int x) | 
|  | { | 
|  | int r = 0; | 
|  |  | 
|  | if (!(x & 0xffff)) { | 
|  | x >>= 16; | 
|  | r += 16; | 
|  | } | 
|  | if (!(x & 0xff)) { | 
|  | x >>= 8; | 
|  | r += 8; | 
|  | } | 
|  | if (!(x & 0xf)) { | 
|  | x >>= 4; | 
|  | r += 4; | 
|  | } | 
|  | if (!(x & 3)) { | 
|  | x >>= 2; | 
|  | r += 2; | 
|  | } | 
|  | if (!(x & 1)) { | 
|  | x >>= 1; | 
|  | r += 1; | 
|  | } | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Every architecture must define this function. It's the fastest | 
|  | * way of searching a 140-bit bitmap where the first 100 bits are | 
|  | * unlikely to be set. It's guaranteed that at least one of the 140 | 
|  | * bits is set. | 
|  | */ | 
|  | static inline int sched_find_first_bit(unsigned long *b) | 
|  | { | 
|  | unsigned offs = 0; | 
|  | while (! *b) { | 
|  | b++; | 
|  | offs += 32; | 
|  | } | 
|  | return sched_ffs (*b) + offs; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * hweightN: returns the hamming weight (i.e. the number | 
|  | * of bits set) of a N-bit word | 
|  | */ | 
|  | #define hweight32(x) 			generic_hweight32 (x) | 
|  | #define hweight16(x) 			generic_hweight16 (x) | 
|  | #define hweight8(x) 			generic_hweight8 (x) | 
|  |  | 
|  | #define ext2_set_bit			test_and_set_bit | 
|  | #define ext2_set_bit_atomic(l,n,a)      test_and_set_bit(n,a) | 
|  | #define ext2_clear_bit			test_and_clear_bit | 
|  | #define ext2_clear_bit_atomic(l,n,a)    test_and_clear_bit(n,a) | 
|  | #define ext2_test_bit			test_bit | 
|  | #define ext2_find_first_zero_bit	find_first_zero_bit | 
|  | #define ext2_find_next_zero_bit		find_next_zero_bit | 
|  |  | 
|  | /* Bitmap functions for the minix filesystem.  */ | 
|  | #define minix_test_and_set_bit		test_and_set_bit | 
|  | #define minix_set_bit			set_bit | 
|  | #define minix_test_and_clear_bit	test_and_clear_bit | 
|  | #define minix_test_bit 			test_bit | 
|  | #define minix_find_first_zero_bit 	find_first_zero_bit | 
|  |  | 
|  | #endif /* __KERNEL__ */ | 
|  |  | 
|  | #endif /* __V850_BITOPS_H__ */ |