|  | /* | 
|  | * | 
|  | * BRIEF MODULE DESCRIPTION | 
|  | *      The Descriptor Based DMA channel manager that first appeared | 
|  | *	on the Au1550.  I started with dma.c, but I think all that is | 
|  | *	left is this initial comment :-) | 
|  | * | 
|  | * Copyright 2004 Embedded Edge, LLC | 
|  | *	dan@embeddededge.com | 
|  | * | 
|  | *  This program is free software; you can redistribute  it and/or modify it | 
|  | *  under  the terms of  the GNU General  Public License as published by the | 
|  | *  Free Software Foundation;  either version 2 of the  License, or (at your | 
|  | *  option) any later version. | 
|  | * | 
|  | *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED | 
|  | *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF | 
|  | *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN | 
|  | *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT, | 
|  | *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
|  | *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF | 
|  | *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON | 
|  | *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT | 
|  | *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF | 
|  | *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | * | 
|  | *  You should have received a copy of the  GNU General Public License along | 
|  | *  with this program; if not, write  to the Free Software Foundation, Inc., | 
|  | *  675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/module.h> | 
|  | #include <asm/mach-au1x00/au1000.h> | 
|  | #include <asm/mach-au1x00/au1xxx_dbdma.h> | 
|  |  | 
|  | #if defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) | 
|  |  | 
|  | /* | 
|  | * The Descriptor Based DMA supports up to 16 channels. | 
|  | * | 
|  | * There are 32 devices defined. We keep an internal structure | 
|  | * of devices using these channels, along with additional | 
|  | * information. | 
|  | * | 
|  | * We allocate the descriptors and allow access to them through various | 
|  | * functions.  The drivers allocate the data buffers and assign them | 
|  | * to the descriptors. | 
|  | */ | 
|  | static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock); | 
|  |  | 
|  | /* I couldn't find a macro that did this... */ | 
|  | #define ALIGN_ADDR(x, a)	((((u32)(x)) + (a-1)) & ~(a-1)) | 
|  |  | 
|  | static dbdma_global_t *dbdma_gptr = (dbdma_global_t *)DDMA_GLOBAL_BASE; | 
|  | static int dbdma_initialized; | 
|  | static void au1xxx_dbdma_init(void); | 
|  |  | 
|  | static dbdev_tab_t dbdev_tab[] = { | 
|  | #ifdef CONFIG_SOC_AU1550 | 
|  | /* UARTS */ | 
|  | { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 }, | 
|  | { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 }, | 
|  | { DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 }, | 
|  | { DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 }, | 
|  |  | 
|  | /* EXT DMA */ | 
|  | { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 }, | 
|  | { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 }, | 
|  | { DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 }, | 
|  | { DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 }, | 
|  |  | 
|  | /* USB DEV */ | 
|  | { DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 }, | 
|  | { DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 }, | 
|  | { DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 }, | 
|  | { DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 }, | 
|  | { DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 }, | 
|  | { DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 }, | 
|  |  | 
|  | /* PSC 0 */ | 
|  | { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 }, | 
|  | { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 }, | 
|  |  | 
|  | /* PSC 1 */ | 
|  | { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 }, | 
|  | { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 }, | 
|  |  | 
|  | /* PSC 2 */ | 
|  | { DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 }, | 
|  | { DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 }, | 
|  |  | 
|  | /* PSC 3 */ | 
|  | { DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 }, | 
|  | { DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 }, | 
|  |  | 
|  | { DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 },	/* PCI */ | 
|  | { DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 },	/* NAND */ | 
|  |  | 
|  | /* MAC 0 */ | 
|  | { DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, | 
|  | { DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 }, | 
|  |  | 
|  | /* MAC 1 */ | 
|  | { DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, | 
|  | { DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 }, | 
|  |  | 
|  | #endif /* CONFIG_SOC_AU1550 */ | 
|  |  | 
|  | #ifdef CONFIG_SOC_AU1200 | 
|  | { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 }, | 
|  | { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 }, | 
|  | { DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 }, | 
|  | { DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 }, | 
|  |  | 
|  | { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 }, | 
|  | { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 }, | 
|  |  | 
|  | { DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | 
|  | { DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | 
|  | { DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | 
|  | { DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | 
|  |  | 
|  | { DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 }, | 
|  | { DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 }, | 
|  | { DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 }, | 
|  | { DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 4, 8, 0x10680004, 0, 0 }, | 
|  |  | 
|  | { DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 }, | 
|  | { DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 }, | 
|  |  | 
|  | { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x11a0001c, 0, 0 }, | 
|  | { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x11a0001c, 0, 0 }, | 
|  | { DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | 
|  |  | 
|  | { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x11b0001c, 0, 0 }, | 
|  | { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x11b0001c, 0, 0 }, | 
|  | { DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | 
|  |  | 
|  | { DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 }, | 
|  | { DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 }, | 
|  | { DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 }, | 
|  | { DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | 
|  |  | 
|  | { DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, | 
|  |  | 
|  | #endif /* CONFIG_SOC_AU1200 */ | 
|  |  | 
|  | { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | 
|  | { DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | 
|  |  | 
|  | /* Provide 16 user definable device types */ | 
|  | { ~0, 0, 0, 0, 0, 0, 0 }, | 
|  | { ~0, 0, 0, 0, 0, 0, 0 }, | 
|  | { ~0, 0, 0, 0, 0, 0, 0 }, | 
|  | { ~0, 0, 0, 0, 0, 0, 0 }, | 
|  | { ~0, 0, 0, 0, 0, 0, 0 }, | 
|  | { ~0, 0, 0, 0, 0, 0, 0 }, | 
|  | { ~0, 0, 0, 0, 0, 0, 0 }, | 
|  | { ~0, 0, 0, 0, 0, 0, 0 }, | 
|  | { ~0, 0, 0, 0, 0, 0, 0 }, | 
|  | { ~0, 0, 0, 0, 0, 0, 0 }, | 
|  | { ~0, 0, 0, 0, 0, 0, 0 }, | 
|  | { ~0, 0, 0, 0, 0, 0, 0 }, | 
|  | { ~0, 0, 0, 0, 0, 0, 0 }, | 
|  | { ~0, 0, 0, 0, 0, 0, 0 }, | 
|  | { ~0, 0, 0, 0, 0, 0, 0 }, | 
|  | { ~0, 0, 0, 0, 0, 0, 0 }, | 
|  | }; | 
|  |  | 
|  | #define DBDEV_TAB_SIZE	ARRAY_SIZE(dbdev_tab) | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | static u32 au1xxx_dbdma_pm_regs[NUM_DBDMA_CHANS + 1][8]; | 
|  | #endif | 
|  |  | 
|  |  | 
|  | static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS]; | 
|  |  | 
|  | static dbdev_tab_t *find_dbdev_id(u32 id) | 
|  | { | 
|  | int i; | 
|  | dbdev_tab_t *p; | 
|  | for (i = 0; i < DBDEV_TAB_SIZE; ++i) { | 
|  | p = &dbdev_tab[i]; | 
|  | if (p->dev_id == id) | 
|  | return p; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp) | 
|  | { | 
|  | return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); | 
|  | } | 
|  | EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt); | 
|  |  | 
|  | u32 au1xxx_ddma_add_device(dbdev_tab_t *dev) | 
|  | { | 
|  | u32 ret = 0; | 
|  | dbdev_tab_t *p; | 
|  | static u16 new_id = 0x1000; | 
|  |  | 
|  | p = find_dbdev_id(~0); | 
|  | if (NULL != p) { | 
|  | memcpy(p, dev, sizeof(dbdev_tab_t)); | 
|  | p->dev_id = DSCR_DEV2CUSTOM_ID(new_id, dev->dev_id); | 
|  | ret = p->dev_id; | 
|  | new_id++; | 
|  | #if 0 | 
|  | printk(KERN_DEBUG "add_device: id:%x flags:%x padd:%x\n", | 
|  | p->dev_id, p->dev_flags, p->dev_physaddr); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(au1xxx_ddma_add_device); | 
|  |  | 
|  | void au1xxx_ddma_del_device(u32 devid) | 
|  | { | 
|  | dbdev_tab_t *p = find_dbdev_id(devid); | 
|  |  | 
|  | if (p != NULL) { | 
|  | memset(p, 0, sizeof(dbdev_tab_t)); | 
|  | p->dev_id = ~0; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(au1xxx_ddma_del_device); | 
|  |  | 
|  | /* Allocate a channel and return a non-zero descriptor if successful. */ | 
|  | u32 au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid, | 
|  | void (*callback)(int, void *), void *callparam) | 
|  | { | 
|  | unsigned long   flags; | 
|  | u32		used, chan, rv; | 
|  | u32		dcp; | 
|  | int		i; | 
|  | dbdev_tab_t	*stp, *dtp; | 
|  | chan_tab_t	*ctp; | 
|  | au1x_dma_chan_t *cp; | 
|  |  | 
|  | /* | 
|  | * We do the intialization on the first channel allocation. | 
|  | * We have to wait because of the interrupt handler initialization | 
|  | * which can't be done successfully during board set up. | 
|  | */ | 
|  | if (!dbdma_initialized) | 
|  | au1xxx_dbdma_init(); | 
|  | dbdma_initialized = 1; | 
|  |  | 
|  | stp = find_dbdev_id(srcid); | 
|  | if (stp == NULL) | 
|  | return 0; | 
|  | dtp = find_dbdev_id(destid); | 
|  | if (dtp == NULL) | 
|  | return 0; | 
|  |  | 
|  | used = 0; | 
|  | rv = 0; | 
|  |  | 
|  | /* Check to see if we can get both channels. */ | 
|  | spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags); | 
|  | if (!(stp->dev_flags & DEV_FLAGS_INUSE) || | 
|  | (stp->dev_flags & DEV_FLAGS_ANYUSE)) { | 
|  | /* Got source */ | 
|  | stp->dev_flags |= DEV_FLAGS_INUSE; | 
|  | if (!(dtp->dev_flags & DEV_FLAGS_INUSE) || | 
|  | (dtp->dev_flags & DEV_FLAGS_ANYUSE)) { | 
|  | /* Got destination */ | 
|  | dtp->dev_flags |= DEV_FLAGS_INUSE; | 
|  | } else { | 
|  | /* Can't get dest.  Release src. */ | 
|  | stp->dev_flags &= ~DEV_FLAGS_INUSE; | 
|  | used++; | 
|  | } | 
|  | } else | 
|  | used++; | 
|  | spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags); | 
|  |  | 
|  | if (!used) { | 
|  | /* Let's see if we can allocate a channel for it. */ | 
|  | ctp = NULL; | 
|  | chan = 0; | 
|  | spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags); | 
|  | for (i = 0; i < NUM_DBDMA_CHANS; i++) | 
|  | if (chan_tab_ptr[i] == NULL) { | 
|  | /* | 
|  | * If kmalloc fails, it is caught below same | 
|  | * as a channel not available. | 
|  | */ | 
|  | ctp = kmalloc(sizeof(chan_tab_t), GFP_ATOMIC); | 
|  | chan_tab_ptr[i] = ctp; | 
|  | break; | 
|  | } | 
|  | spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags); | 
|  |  | 
|  | if (ctp != NULL) { | 
|  | memset(ctp, 0, sizeof(chan_tab_t)); | 
|  | ctp->chan_index = chan = i; | 
|  | dcp = DDMA_CHANNEL_BASE; | 
|  | dcp += (0x0100 * chan); | 
|  | ctp->chan_ptr = (au1x_dma_chan_t *)dcp; | 
|  | cp = (au1x_dma_chan_t *)dcp; | 
|  | ctp->chan_src = stp; | 
|  | ctp->chan_dest = dtp; | 
|  | ctp->chan_callback = callback; | 
|  | ctp->chan_callparam = callparam; | 
|  |  | 
|  | /* Initialize channel configuration. */ | 
|  | i = 0; | 
|  | if (stp->dev_intlevel) | 
|  | i |= DDMA_CFG_SED; | 
|  | if (stp->dev_intpolarity) | 
|  | i |= DDMA_CFG_SP; | 
|  | if (dtp->dev_intlevel) | 
|  | i |= DDMA_CFG_DED; | 
|  | if (dtp->dev_intpolarity) | 
|  | i |= DDMA_CFG_DP; | 
|  | if ((stp->dev_flags & DEV_FLAGS_SYNC) || | 
|  | (dtp->dev_flags & DEV_FLAGS_SYNC)) | 
|  | i |= DDMA_CFG_SYNC; | 
|  | cp->ddma_cfg = i; | 
|  | au_sync(); | 
|  |  | 
|  | /* Return a non-zero value that can be used to | 
|  | * find the channel information in subsequent | 
|  | * operations. | 
|  | */ | 
|  | rv = (u32)(&chan_tab_ptr[chan]); | 
|  | } else { | 
|  | /* Release devices */ | 
|  | stp->dev_flags &= ~DEV_FLAGS_INUSE; | 
|  | dtp->dev_flags &= ~DEV_FLAGS_INUSE; | 
|  | } | 
|  | } | 
|  | return rv; | 
|  | } | 
|  | EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc); | 
|  |  | 
|  | /* | 
|  | * Set the device width if source or destination is a FIFO. | 
|  | * Should be 8, 16, or 32 bits. | 
|  | */ | 
|  | u32 au1xxx_dbdma_set_devwidth(u32 chanid, int bits) | 
|  | { | 
|  | u32		rv; | 
|  | chan_tab_t	*ctp; | 
|  | dbdev_tab_t	*stp, *dtp; | 
|  |  | 
|  | ctp = *((chan_tab_t **)chanid); | 
|  | stp = ctp->chan_src; | 
|  | dtp = ctp->chan_dest; | 
|  | rv = 0; | 
|  |  | 
|  | if (stp->dev_flags & DEV_FLAGS_IN) {	/* Source in fifo */ | 
|  | rv = stp->dev_devwidth; | 
|  | stp->dev_devwidth = bits; | 
|  | } | 
|  | if (dtp->dev_flags & DEV_FLAGS_OUT) {	/* Destination out fifo */ | 
|  | rv = dtp->dev_devwidth; | 
|  | dtp->dev_devwidth = bits; | 
|  | } | 
|  |  | 
|  | return rv; | 
|  | } | 
|  | EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth); | 
|  |  | 
|  | /* Allocate a descriptor ring, initializing as much as possible. */ | 
|  | u32 au1xxx_dbdma_ring_alloc(u32 chanid, int entries) | 
|  | { | 
|  | int			i; | 
|  | u32			desc_base, srcid, destid; | 
|  | u32			cmd0, cmd1, src1, dest1; | 
|  | u32			src0, dest0; | 
|  | chan_tab_t		*ctp; | 
|  | dbdev_tab_t		*stp, *dtp; | 
|  | au1x_ddma_desc_t	*dp; | 
|  |  | 
|  | /* | 
|  | * I guess we could check this to be within the | 
|  | * range of the table...... | 
|  | */ | 
|  | ctp = *((chan_tab_t **)chanid); | 
|  | stp = ctp->chan_src; | 
|  | dtp = ctp->chan_dest; | 
|  |  | 
|  | /* | 
|  | * The descriptors must be 32-byte aligned.  There is a | 
|  | * possibility the allocation will give us such an address, | 
|  | * and if we try that first we are likely to not waste larger | 
|  | * slabs of memory. | 
|  | */ | 
|  | desc_base = (u32)kmalloc(entries * sizeof(au1x_ddma_desc_t), | 
|  | GFP_KERNEL|GFP_DMA); | 
|  | if (desc_base == 0) | 
|  | return 0; | 
|  |  | 
|  | if (desc_base & 0x1f) { | 
|  | /* | 
|  | * Lost....do it again, allocate extra, and round | 
|  | * the address base. | 
|  | */ | 
|  | kfree((const void *)desc_base); | 
|  | i = entries * sizeof(au1x_ddma_desc_t); | 
|  | i += (sizeof(au1x_ddma_desc_t) - 1); | 
|  | desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA); | 
|  | if (desc_base == 0) | 
|  | return 0; | 
|  |  | 
|  | desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t)); | 
|  | } | 
|  | dp = (au1x_ddma_desc_t *)desc_base; | 
|  |  | 
|  | /* Keep track of the base descriptor. */ | 
|  | ctp->chan_desc_base = dp; | 
|  |  | 
|  | /* Initialize the rings with as much information as we know. */ | 
|  | srcid = stp->dev_id; | 
|  | destid = dtp->dev_id; | 
|  |  | 
|  | cmd0 = cmd1 = src1 = dest1 = 0; | 
|  | src0 = dest0 = 0; | 
|  |  | 
|  | cmd0 |= DSCR_CMD0_SID(srcid); | 
|  | cmd0 |= DSCR_CMD0_DID(destid); | 
|  | cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV; | 
|  | cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE); | 
|  |  | 
|  | /* Is it mem to mem transfer? */ | 
|  | if (((DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_THROTTLE) || | 
|  | (DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_ALWAYS)) && | 
|  | ((DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_THROTTLE) || | 
|  | (DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_ALWAYS))) | 
|  | cmd0 |= DSCR_CMD0_MEM; | 
|  |  | 
|  | switch (stp->dev_devwidth) { | 
|  | case 8: | 
|  | cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE); | 
|  | break; | 
|  | case 16: | 
|  | cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD); | 
|  | break; | 
|  | case 32: | 
|  | default: | 
|  | cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD); | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (dtp->dev_devwidth) { | 
|  | case 8: | 
|  | cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE); | 
|  | break; | 
|  | case 16: | 
|  | cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD); | 
|  | break; | 
|  | case 32: | 
|  | default: | 
|  | cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the device is marked as an in/out FIFO, ensure it is | 
|  | * set non-coherent. | 
|  | */ | 
|  | if (stp->dev_flags & DEV_FLAGS_IN) | 
|  | cmd0 |= DSCR_CMD0_SN;		/* Source in FIFO */ | 
|  | if (dtp->dev_flags & DEV_FLAGS_OUT) | 
|  | cmd0 |= DSCR_CMD0_DN;		/* Destination out FIFO */ | 
|  |  | 
|  | /* | 
|  | * Set up source1.  For now, assume no stride and increment. | 
|  | * A channel attribute update can change this later. | 
|  | */ | 
|  | switch (stp->dev_tsize) { | 
|  | case 1: | 
|  | src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1); | 
|  | break; | 
|  | case 2: | 
|  | src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2); | 
|  | break; | 
|  | case 4: | 
|  | src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4); | 
|  | break; | 
|  | case 8: | 
|  | default: | 
|  | src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* If source input is FIFO, set static address.	*/ | 
|  | if (stp->dev_flags & DEV_FLAGS_IN) { | 
|  | if (stp->dev_flags & DEV_FLAGS_BURSTABLE) | 
|  | src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST); | 
|  | else | 
|  | src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC); | 
|  | } | 
|  |  | 
|  | if (stp->dev_physaddr) | 
|  | src0 = stp->dev_physaddr; | 
|  |  | 
|  | /* | 
|  | * Set up dest1.  For now, assume no stride and increment. | 
|  | * A channel attribute update can change this later. | 
|  | */ | 
|  | switch (dtp->dev_tsize) { | 
|  | case 1: | 
|  | dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1); | 
|  | break; | 
|  | case 2: | 
|  | dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2); | 
|  | break; | 
|  | case 4: | 
|  | dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4); | 
|  | break; | 
|  | case 8: | 
|  | default: | 
|  | dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* If destination output is FIFO, set static address. */ | 
|  | if (dtp->dev_flags & DEV_FLAGS_OUT) { | 
|  | if (dtp->dev_flags & DEV_FLAGS_BURSTABLE) | 
|  | dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST); | 
|  | else | 
|  | dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC); | 
|  | } | 
|  |  | 
|  | if (dtp->dev_physaddr) | 
|  | dest0 = dtp->dev_physaddr; | 
|  |  | 
|  | #if 0 | 
|  | printk(KERN_DEBUG "did:%x sid:%x cmd0:%x cmd1:%x source0:%x " | 
|  | "source1:%x dest0:%x dest1:%x\n", | 
|  | dtp->dev_id, stp->dev_id, cmd0, cmd1, src0, | 
|  | src1, dest0, dest1); | 
|  | #endif | 
|  | for (i = 0; i < entries; i++) { | 
|  | dp->dscr_cmd0 = cmd0; | 
|  | dp->dscr_cmd1 = cmd1; | 
|  | dp->dscr_source0 = src0; | 
|  | dp->dscr_source1 = src1; | 
|  | dp->dscr_dest0 = dest0; | 
|  | dp->dscr_dest1 = dest1; | 
|  | dp->dscr_stat = 0; | 
|  | dp->sw_context = 0; | 
|  | dp->sw_status = 0; | 
|  | dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1)); | 
|  | dp++; | 
|  | } | 
|  |  | 
|  | /* Make last descrptor point to the first. */ | 
|  | dp--; | 
|  | dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base)); | 
|  | ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base; | 
|  |  | 
|  | return (u32)ctp->chan_desc_base; | 
|  | } | 
|  | EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc); | 
|  |  | 
|  | /* | 
|  | * Put a source buffer into the DMA ring. | 
|  | * This updates the source pointer and byte count.  Normally used | 
|  | * for memory to fifo transfers. | 
|  | */ | 
|  | u32 _au1xxx_dbdma_put_source(u32 chanid, void *buf, int nbytes, u32 flags) | 
|  | { | 
|  | chan_tab_t		*ctp; | 
|  | au1x_ddma_desc_t	*dp; | 
|  |  | 
|  | /* | 
|  | * I guess we could check this to be within the | 
|  | * range of the table...... | 
|  | */ | 
|  | ctp = *(chan_tab_t **)chanid; | 
|  |  | 
|  | /* | 
|  | * We should have multiple callers for a particular channel, | 
|  | * an interrupt doesn't affect this pointer nor the descriptor, | 
|  | * so no locking should be needed. | 
|  | */ | 
|  | dp = ctp->put_ptr; | 
|  |  | 
|  | /* | 
|  | * If the descriptor is valid, we are way ahead of the DMA | 
|  | * engine, so just return an error condition. | 
|  | */ | 
|  | if (dp->dscr_cmd0 & DSCR_CMD0_V) | 
|  | return 0; | 
|  |  | 
|  | /* Load up buffer address and byte count. */ | 
|  | dp->dscr_source0 = virt_to_phys(buf); | 
|  | dp->dscr_cmd1 = nbytes; | 
|  | /* Check flags */ | 
|  | if (flags & DDMA_FLAGS_IE) | 
|  | dp->dscr_cmd0 |= DSCR_CMD0_IE; | 
|  | if (flags & DDMA_FLAGS_NOIE) | 
|  | dp->dscr_cmd0 &= ~DSCR_CMD0_IE; | 
|  |  | 
|  | /* | 
|  | * There is an errata on the Au1200/Au1550 parts that could result | 
|  | * in "stale" data being DMA'ed. It has to do with the snoop logic on | 
|  | * the cache eviction buffer.  DMA_NONCOHERENT is on by default for | 
|  | * these parts. If it is fixed in the future, these dma_cache_inv will | 
|  | * just be nothing more than empty macros. See io.h. | 
|  | */ | 
|  | dma_cache_wback_inv((unsigned long)buf, nbytes); | 
|  | dp->dscr_cmd0 |= DSCR_CMD0_V;	/* Let it rip */ | 
|  | au_sync(); | 
|  | dma_cache_wback_inv((unsigned long)dp, sizeof(dp)); | 
|  | ctp->chan_ptr->ddma_dbell = 0; | 
|  |  | 
|  | /* Get next descriptor pointer.	*/ | 
|  | ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); | 
|  |  | 
|  | /* Return something non-zero. */ | 
|  | return nbytes; | 
|  | } | 
|  | EXPORT_SYMBOL(_au1xxx_dbdma_put_source); | 
|  |  | 
|  | /* Put a destination buffer into the DMA ring. | 
|  | * This updates the destination pointer and byte count.  Normally used | 
|  | * to place an empty buffer into the ring for fifo to memory transfers. | 
|  | */ | 
|  | u32 | 
|  | _au1xxx_dbdma_put_dest(u32 chanid, void *buf, int nbytes, u32 flags) | 
|  | { | 
|  | chan_tab_t		*ctp; | 
|  | au1x_ddma_desc_t	*dp; | 
|  |  | 
|  | /* I guess we could check this to be within the | 
|  | * range of the table...... | 
|  | */ | 
|  | ctp = *((chan_tab_t **)chanid); | 
|  |  | 
|  | /* We should have multiple callers for a particular channel, | 
|  | * an interrupt doesn't affect this pointer nor the descriptor, | 
|  | * so no locking should be needed. | 
|  | */ | 
|  | dp = ctp->put_ptr; | 
|  |  | 
|  | /* If the descriptor is valid, we are way ahead of the DMA | 
|  | * engine, so just return an error condition. | 
|  | */ | 
|  | if (dp->dscr_cmd0 & DSCR_CMD0_V) | 
|  | return 0; | 
|  |  | 
|  | /* Load up buffer address and byte count */ | 
|  |  | 
|  | /* Check flags  */ | 
|  | if (flags & DDMA_FLAGS_IE) | 
|  | dp->dscr_cmd0 |= DSCR_CMD0_IE; | 
|  | if (flags & DDMA_FLAGS_NOIE) | 
|  | dp->dscr_cmd0 &= ~DSCR_CMD0_IE; | 
|  |  | 
|  | dp->dscr_dest0 = virt_to_phys(buf); | 
|  | dp->dscr_cmd1 = nbytes; | 
|  | #if 0 | 
|  | printk(KERN_DEBUG "cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n", | 
|  | dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0, | 
|  | dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1); | 
|  | #endif | 
|  | /* | 
|  | * There is an errata on the Au1200/Au1550 parts that could result in | 
|  | * "stale" data being DMA'ed. It has to do with the snoop logic on the | 
|  | * cache eviction buffer.  DMA_NONCOHERENT is on by default for these | 
|  | * parts. If it is fixed in the future, these dma_cache_inv will just | 
|  | * be nothing more than empty macros. See io.h. | 
|  | */ | 
|  | dma_cache_inv((unsigned long)buf, nbytes); | 
|  | dp->dscr_cmd0 |= DSCR_CMD0_V;	/* Let it rip */ | 
|  | au_sync(); | 
|  | dma_cache_wback_inv((unsigned long)dp, sizeof(dp)); | 
|  | ctp->chan_ptr->ddma_dbell = 0; | 
|  |  | 
|  | /* Get next descriptor pointer.	*/ | 
|  | ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); | 
|  |  | 
|  | /* Return something non-zero. */ | 
|  | return nbytes; | 
|  | } | 
|  | EXPORT_SYMBOL(_au1xxx_dbdma_put_dest); | 
|  |  | 
|  | /* | 
|  | * Get a destination buffer into the DMA ring. | 
|  | * Normally used to get a full buffer from the ring during fifo | 
|  | * to memory transfers.  This does not set the valid bit, you will | 
|  | * have to put another destination buffer to keep the DMA going. | 
|  | */ | 
|  | u32 au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes) | 
|  | { | 
|  | chan_tab_t		*ctp; | 
|  | au1x_ddma_desc_t	*dp; | 
|  | u32			rv; | 
|  |  | 
|  | /* | 
|  | * I guess we could check this to be within the | 
|  | * range of the table...... | 
|  | */ | 
|  | ctp = *((chan_tab_t **)chanid); | 
|  |  | 
|  | /* | 
|  | * We should have multiple callers for a particular channel, | 
|  | * an interrupt doesn't affect this pointer nor the descriptor, | 
|  | * so no locking should be needed. | 
|  | */ | 
|  | dp = ctp->get_ptr; | 
|  |  | 
|  | /* | 
|  | * If the descriptor is valid, we are way ahead of the DMA | 
|  | * engine, so just return an error condition. | 
|  | */ | 
|  | if (dp->dscr_cmd0 & DSCR_CMD0_V) | 
|  | return 0; | 
|  |  | 
|  | /* Return buffer address and byte count. */ | 
|  | *buf = (void *)(phys_to_virt(dp->dscr_dest0)); | 
|  | *nbytes = dp->dscr_cmd1; | 
|  | rv = dp->dscr_stat; | 
|  |  | 
|  | /* Get next descriptor pointer.	*/ | 
|  | ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); | 
|  |  | 
|  | /* Return something non-zero. */ | 
|  | return rv; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest); | 
|  |  | 
|  | void au1xxx_dbdma_stop(u32 chanid) | 
|  | { | 
|  | chan_tab_t	*ctp; | 
|  | au1x_dma_chan_t *cp; | 
|  | int halt_timeout = 0; | 
|  |  | 
|  | ctp = *((chan_tab_t **)chanid); | 
|  |  | 
|  | cp = ctp->chan_ptr; | 
|  | cp->ddma_cfg &= ~DDMA_CFG_EN;	/* Disable channel */ | 
|  | au_sync(); | 
|  | while (!(cp->ddma_stat & DDMA_STAT_H)) { | 
|  | udelay(1); | 
|  | halt_timeout++; | 
|  | if (halt_timeout > 100) { | 
|  | printk(KERN_WARNING "warning: DMA channel won't halt\n"); | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* clear current desc valid and doorbell */ | 
|  | cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V); | 
|  | au_sync(); | 
|  | } | 
|  | EXPORT_SYMBOL(au1xxx_dbdma_stop); | 
|  |  | 
|  | /* | 
|  | * Start using the current descriptor pointer.  If the DBDMA encounters | 
|  | * a non-valid descriptor, it will stop.  In this case, we can just | 
|  | * continue by adding a buffer to the list and starting again. | 
|  | */ | 
|  | void au1xxx_dbdma_start(u32 chanid) | 
|  | { | 
|  | chan_tab_t	*ctp; | 
|  | au1x_dma_chan_t *cp; | 
|  |  | 
|  | ctp = *((chan_tab_t **)chanid); | 
|  | cp = ctp->chan_ptr; | 
|  | cp->ddma_desptr = virt_to_phys(ctp->cur_ptr); | 
|  | cp->ddma_cfg |= DDMA_CFG_EN;	/* Enable channel */ | 
|  | au_sync(); | 
|  | cp->ddma_dbell = 0; | 
|  | au_sync(); | 
|  | } | 
|  | EXPORT_SYMBOL(au1xxx_dbdma_start); | 
|  |  | 
|  | void au1xxx_dbdma_reset(u32 chanid) | 
|  | { | 
|  | chan_tab_t		*ctp; | 
|  | au1x_ddma_desc_t	*dp; | 
|  |  | 
|  | au1xxx_dbdma_stop(chanid); | 
|  |  | 
|  | ctp = *((chan_tab_t **)chanid); | 
|  | ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base; | 
|  |  | 
|  | /* Run through the descriptors and reset the valid indicator. */ | 
|  | dp = ctp->chan_desc_base; | 
|  |  | 
|  | do { | 
|  | dp->dscr_cmd0 &= ~DSCR_CMD0_V; | 
|  | /* | 
|  | * Reset our software status -- this is used to determine | 
|  | * if a descriptor is in use by upper level software. Since | 
|  | * posting can reset 'V' bit. | 
|  | */ | 
|  | dp->sw_status = 0; | 
|  | dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); | 
|  | } while (dp != ctp->chan_desc_base); | 
|  | } | 
|  | EXPORT_SYMBOL(au1xxx_dbdma_reset); | 
|  |  | 
|  | u32 au1xxx_get_dma_residue(u32 chanid) | 
|  | { | 
|  | chan_tab_t	*ctp; | 
|  | au1x_dma_chan_t *cp; | 
|  | u32		rv; | 
|  |  | 
|  | ctp = *((chan_tab_t **)chanid); | 
|  | cp = ctp->chan_ptr; | 
|  |  | 
|  | /* This is only valid if the channel is stopped. */ | 
|  | rv = cp->ddma_bytecnt; | 
|  | au_sync(); | 
|  |  | 
|  | return rv; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue); | 
|  |  | 
|  | void au1xxx_dbdma_chan_free(u32 chanid) | 
|  | { | 
|  | chan_tab_t	*ctp; | 
|  | dbdev_tab_t	*stp, *dtp; | 
|  |  | 
|  | ctp = *((chan_tab_t **)chanid); | 
|  | stp = ctp->chan_src; | 
|  | dtp = ctp->chan_dest; | 
|  |  | 
|  | au1xxx_dbdma_stop(chanid); | 
|  |  | 
|  | kfree((void *)ctp->chan_desc_base); | 
|  |  | 
|  | stp->dev_flags &= ~DEV_FLAGS_INUSE; | 
|  | dtp->dev_flags &= ~DEV_FLAGS_INUSE; | 
|  | chan_tab_ptr[ctp->chan_index] = NULL; | 
|  |  | 
|  | kfree(ctp); | 
|  | } | 
|  | EXPORT_SYMBOL(au1xxx_dbdma_chan_free); | 
|  |  | 
|  | static irqreturn_t dbdma_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | u32 intstat; | 
|  | u32 chan_index; | 
|  | chan_tab_t		*ctp; | 
|  | au1x_ddma_desc_t	*dp; | 
|  | au1x_dma_chan_t *cp; | 
|  |  | 
|  | intstat = dbdma_gptr->ddma_intstat; | 
|  | au_sync(); | 
|  | chan_index = __ffs(intstat); | 
|  |  | 
|  | ctp = chan_tab_ptr[chan_index]; | 
|  | cp = ctp->chan_ptr; | 
|  | dp = ctp->cur_ptr; | 
|  |  | 
|  | /* Reset interrupt. */ | 
|  | cp->ddma_irq = 0; | 
|  | au_sync(); | 
|  |  | 
|  | if (ctp->chan_callback) | 
|  | ctp->chan_callback(irq, ctp->chan_callparam); | 
|  |  | 
|  | ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); | 
|  | return IRQ_RETVAL(1); | 
|  | } | 
|  |  | 
|  | static void au1xxx_dbdma_init(void) | 
|  | { | 
|  | int irq_nr; | 
|  |  | 
|  | dbdma_gptr->ddma_config = 0; | 
|  | dbdma_gptr->ddma_throttle = 0; | 
|  | dbdma_gptr->ddma_inten = 0xffff; | 
|  | au_sync(); | 
|  |  | 
|  | #if defined(CONFIG_SOC_AU1550) | 
|  | irq_nr = AU1550_DDMA_INT; | 
|  | #elif defined(CONFIG_SOC_AU1200) | 
|  | irq_nr = AU1200_DDMA_INT; | 
|  | #else | 
|  | #error Unknown Au1x00 SOC | 
|  | #endif | 
|  |  | 
|  | if (request_irq(irq_nr, dbdma_interrupt, IRQF_DISABLED, | 
|  | "Au1xxx dbdma", (void *)dbdma_gptr)) | 
|  | printk(KERN_ERR "Can't get 1550 dbdma irq"); | 
|  | } | 
|  |  | 
|  | void au1xxx_dbdma_dump(u32 chanid) | 
|  | { | 
|  | chan_tab_t	 *ctp; | 
|  | au1x_ddma_desc_t *dp; | 
|  | dbdev_tab_t	 *stp, *dtp; | 
|  | au1x_dma_chan_t  *cp; | 
|  | u32 i		 = 0; | 
|  |  | 
|  | ctp = *((chan_tab_t **)chanid); | 
|  | stp = ctp->chan_src; | 
|  | dtp = ctp->chan_dest; | 
|  | cp = ctp->chan_ptr; | 
|  |  | 
|  | printk(KERN_DEBUG "Chan %x, stp %x (dev %d)  dtp %x (dev %d) \n", | 
|  | (u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp, | 
|  | dtp - dbdev_tab); | 
|  | printk(KERN_DEBUG "desc base %x, get %x, put %x, cur %x\n", | 
|  | (u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr), | 
|  | (u32)(ctp->put_ptr), (u32)(ctp->cur_ptr)); | 
|  |  | 
|  | printk(KERN_DEBUG "dbdma chan %x\n", (u32)cp); | 
|  | printk(KERN_DEBUG "cfg %08x, desptr %08x, statptr %08x\n", | 
|  | cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr); | 
|  | printk(KERN_DEBUG "dbell %08x, irq %08x, stat %08x, bytecnt %08x\n", | 
|  | cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat, | 
|  | cp->ddma_bytecnt); | 
|  |  | 
|  | /* Run through the descriptors */ | 
|  | dp = ctp->chan_desc_base; | 
|  |  | 
|  | do { | 
|  | printk(KERN_DEBUG "Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n", | 
|  | i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1); | 
|  | printk(KERN_DEBUG "src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n", | 
|  | dp->dscr_source0, dp->dscr_source1, | 
|  | dp->dscr_dest0, dp->dscr_dest1); | 
|  | printk(KERN_DEBUG "stat %08x, nxtptr %08x\n", | 
|  | dp->dscr_stat, dp->dscr_nxtptr); | 
|  | dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); | 
|  | } while (dp != ctp->chan_desc_base); | 
|  | } | 
|  |  | 
|  | /* Put a descriptor into the DMA ring. | 
|  | * This updates the source/destination pointers and byte count. | 
|  | */ | 
|  | u32 au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr) | 
|  | { | 
|  | chan_tab_t *ctp; | 
|  | au1x_ddma_desc_t *dp; | 
|  | u32 nbytes = 0; | 
|  |  | 
|  | /* | 
|  | * I guess we could check this to be within the | 
|  | * range of the table...... | 
|  | */ | 
|  | ctp = *((chan_tab_t **)chanid); | 
|  |  | 
|  | /* | 
|  | * We should have multiple callers for a particular channel, | 
|  | * an interrupt doesn't affect this pointer nor the descriptor, | 
|  | * so no locking should be needed. | 
|  | */ | 
|  | dp = ctp->put_ptr; | 
|  |  | 
|  | /* | 
|  | * If the descriptor is valid, we are way ahead of the DMA | 
|  | * engine, so just return an error condition. | 
|  | */ | 
|  | if (dp->dscr_cmd0 & DSCR_CMD0_V) | 
|  | return 0; | 
|  |  | 
|  | /* Load up buffer addresses and byte count. */ | 
|  | dp->dscr_dest0 = dscr->dscr_dest0; | 
|  | dp->dscr_source0 = dscr->dscr_source0; | 
|  | dp->dscr_dest1 = dscr->dscr_dest1; | 
|  | dp->dscr_source1 = dscr->dscr_source1; | 
|  | dp->dscr_cmd1 = dscr->dscr_cmd1; | 
|  | nbytes = dscr->dscr_cmd1; | 
|  | /* Allow the caller to specifiy if an interrupt is generated */ | 
|  | dp->dscr_cmd0 &= ~DSCR_CMD0_IE; | 
|  | dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V; | 
|  | ctp->chan_ptr->ddma_dbell = 0; | 
|  |  | 
|  | /* Get next descriptor pointer.	*/ | 
|  | ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); | 
|  |  | 
|  | /* Return something non-zero. */ | 
|  | return nbytes; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | void au1xxx_dbdma_suspend(void) | 
|  | { | 
|  | int i; | 
|  | u32 addr; | 
|  |  | 
|  | addr = DDMA_GLOBAL_BASE; | 
|  | au1xxx_dbdma_pm_regs[0][0] = au_readl(addr + 0x00); | 
|  | au1xxx_dbdma_pm_regs[0][1] = au_readl(addr + 0x04); | 
|  | au1xxx_dbdma_pm_regs[0][2] = au_readl(addr + 0x08); | 
|  | au1xxx_dbdma_pm_regs[0][3] = au_readl(addr + 0x0c); | 
|  |  | 
|  | /* save channel configurations */ | 
|  | for (i = 1, addr = DDMA_CHANNEL_BASE; i < NUM_DBDMA_CHANS; i++) { | 
|  | au1xxx_dbdma_pm_regs[i][0] = au_readl(addr + 0x00); | 
|  | au1xxx_dbdma_pm_regs[i][1] = au_readl(addr + 0x04); | 
|  | au1xxx_dbdma_pm_regs[i][2] = au_readl(addr + 0x08); | 
|  | au1xxx_dbdma_pm_regs[i][3] = au_readl(addr + 0x0c); | 
|  | au1xxx_dbdma_pm_regs[i][4] = au_readl(addr + 0x10); | 
|  | au1xxx_dbdma_pm_regs[i][5] = au_readl(addr + 0x14); | 
|  | au1xxx_dbdma_pm_regs[i][6] = au_readl(addr + 0x18); | 
|  |  | 
|  | /* halt channel */ | 
|  | au_writel(au1xxx_dbdma_pm_regs[i][0] & ~1, addr + 0x00); | 
|  | au_sync(); | 
|  | while (!(au_readl(addr + 0x14) & 1)) | 
|  | au_sync(); | 
|  |  | 
|  | addr += 0x100;	/* next channel base */ | 
|  | } | 
|  | /* disable channel interrupts */ | 
|  | au_writel(0, DDMA_GLOBAL_BASE + 0x0c); | 
|  | au_sync(); | 
|  | } | 
|  |  | 
|  | void au1xxx_dbdma_resume(void) | 
|  | { | 
|  | int i; | 
|  | u32 addr; | 
|  |  | 
|  | addr = DDMA_GLOBAL_BASE; | 
|  | au_writel(au1xxx_dbdma_pm_regs[0][0], addr + 0x00); | 
|  | au_writel(au1xxx_dbdma_pm_regs[0][1], addr + 0x04); | 
|  | au_writel(au1xxx_dbdma_pm_regs[0][2], addr + 0x08); | 
|  | au_writel(au1xxx_dbdma_pm_regs[0][3], addr + 0x0c); | 
|  |  | 
|  | /* restore channel configurations */ | 
|  | for (i = 1, addr = DDMA_CHANNEL_BASE; i < NUM_DBDMA_CHANS; i++) { | 
|  | au_writel(au1xxx_dbdma_pm_regs[i][0], addr + 0x00); | 
|  | au_writel(au1xxx_dbdma_pm_regs[i][1], addr + 0x04); | 
|  | au_writel(au1xxx_dbdma_pm_regs[i][2], addr + 0x08); | 
|  | au_writel(au1xxx_dbdma_pm_regs[i][3], addr + 0x0c); | 
|  | au_writel(au1xxx_dbdma_pm_regs[i][4], addr + 0x10); | 
|  | au_writel(au1xxx_dbdma_pm_regs[i][5], addr + 0x14); | 
|  | au_writel(au1xxx_dbdma_pm_regs[i][6], addr + 0x18); | 
|  | au_sync(); | 
|  | addr += 0x100;	/* next channel base */ | 
|  | } | 
|  | } | 
|  | #endif	/* CONFIG_PM */ | 
|  | #endif /* defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) */ |