|  | /* | 
|  | * Driver for high-speed SCC boards (those with DMA support) | 
|  | * Copyright (C) 1997-2000 Klaus Kudielka | 
|  | * | 
|  | * S5SCC/DMA support by Janko Koleznik S52HI | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | */ | 
|  |  | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/if_arp.h> | 
|  | #include <linux/in.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/rtnetlink.h> | 
|  | #include <linux/sockios.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <asm/atomic.h> | 
|  | #include <asm/dma.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/irq.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <net/ax25.h> | 
|  | #include "z8530.h" | 
|  |  | 
|  |  | 
|  | /* Number of buffers per channel */ | 
|  |  | 
|  | #define NUM_TX_BUF      2	/* NUM_TX_BUF >= 1 (min. 2 recommended) */ | 
|  | #define NUM_RX_BUF      6	/* NUM_RX_BUF >= 1 (min. 2 recommended) */ | 
|  | #define BUF_SIZE        1576	/* BUF_SIZE >= mtu + hard_header_len */ | 
|  |  | 
|  |  | 
|  | /* Cards supported */ | 
|  |  | 
|  | #define HW_PI           { "Ottawa PI", 0x300, 0x20, 0x10, 8, \ | 
|  | 0, 8, 1843200, 3686400 } | 
|  | #define HW_PI2          { "Ottawa PI2", 0x300, 0x20, 0x10, 8, \ | 
|  | 0, 8, 3686400, 7372800 } | 
|  | #define HW_TWIN         { "Gracilis PackeTwin", 0x200, 0x10, 0x10, 32, \ | 
|  | 0, 4, 6144000, 6144000 } | 
|  | #define HW_S5           { "S5SCC/DMA", 0x200, 0x10, 0x10, 32, \ | 
|  | 0, 8, 4915200, 9830400 } | 
|  |  | 
|  | #define HARDWARE        { HW_PI, HW_PI2, HW_TWIN, HW_S5 } | 
|  |  | 
|  | #define TMR_0_HZ        25600	/* Frequency of timer 0 */ | 
|  |  | 
|  | #define TYPE_PI         0 | 
|  | #define TYPE_PI2        1 | 
|  | #define TYPE_TWIN       2 | 
|  | #define TYPE_S5         3 | 
|  | #define NUM_TYPES       4 | 
|  |  | 
|  | #define MAX_NUM_DEVS    32 | 
|  |  | 
|  |  | 
|  | /* SCC chips supported */ | 
|  |  | 
|  | #define Z8530           0 | 
|  | #define Z85C30          1 | 
|  | #define Z85230          2 | 
|  |  | 
|  | #define CHIPNAMES       { "Z8530", "Z85C30", "Z85230" } | 
|  |  | 
|  |  | 
|  | /* I/O registers */ | 
|  |  | 
|  | /* 8530 registers relative to card base */ | 
|  | #define SCCB_CMD        0x00 | 
|  | #define SCCB_DATA       0x01 | 
|  | #define SCCA_CMD        0x02 | 
|  | #define SCCA_DATA       0x03 | 
|  |  | 
|  | /* 8253/8254 registers relative to card base */ | 
|  | #define TMR_CNT0        0x00 | 
|  | #define TMR_CNT1        0x01 | 
|  | #define TMR_CNT2        0x02 | 
|  | #define TMR_CTRL        0x03 | 
|  |  | 
|  | /* Additional PI/PI2 registers relative to card base */ | 
|  | #define PI_DREQ_MASK    0x04 | 
|  |  | 
|  | /* Additional PackeTwin registers relative to card base */ | 
|  | #define TWIN_INT_REG    0x08 | 
|  | #define TWIN_CLR_TMR1   0x09 | 
|  | #define TWIN_CLR_TMR2   0x0a | 
|  | #define TWIN_SPARE_1    0x0b | 
|  | #define TWIN_DMA_CFG    0x08 | 
|  | #define TWIN_SERIAL_CFG 0x09 | 
|  | #define TWIN_DMA_CLR_FF 0x0a | 
|  | #define TWIN_SPARE_2    0x0b | 
|  |  | 
|  |  | 
|  | /* PackeTwin I/O register values */ | 
|  |  | 
|  | /* INT_REG */ | 
|  | #define TWIN_SCC_MSK       0x01 | 
|  | #define TWIN_TMR1_MSK      0x02 | 
|  | #define TWIN_TMR2_MSK      0x04 | 
|  | #define TWIN_INT_MSK       0x07 | 
|  |  | 
|  | /* SERIAL_CFG */ | 
|  | #define TWIN_DTRA_ON       0x01 | 
|  | #define TWIN_DTRB_ON       0x02 | 
|  | #define TWIN_EXTCLKA       0x04 | 
|  | #define TWIN_EXTCLKB       0x08 | 
|  | #define TWIN_LOOPA_ON      0x10 | 
|  | #define TWIN_LOOPB_ON      0x20 | 
|  | #define TWIN_EI            0x80 | 
|  |  | 
|  | /* DMA_CFG */ | 
|  | #define TWIN_DMA_HDX_T1    0x08 | 
|  | #define TWIN_DMA_HDX_R1    0x0a | 
|  | #define TWIN_DMA_HDX_T3    0x14 | 
|  | #define TWIN_DMA_HDX_R3    0x16 | 
|  | #define TWIN_DMA_FDX_T3R1  0x1b | 
|  | #define TWIN_DMA_FDX_T1R3  0x1d | 
|  |  | 
|  |  | 
|  | /* Status values */ | 
|  |  | 
|  | #define IDLE      0 | 
|  | #define TX_HEAD   1 | 
|  | #define TX_DATA   2 | 
|  | #define TX_PAUSE  3 | 
|  | #define TX_TAIL   4 | 
|  | #define RTS_OFF   5 | 
|  | #define WAIT      6 | 
|  | #define DCD_ON    7 | 
|  | #define RX_ON     8 | 
|  | #define DCD_OFF   9 | 
|  |  | 
|  |  | 
|  | /* Ioctls */ | 
|  |  | 
|  | #define SIOCGSCCPARAM SIOCDEVPRIVATE | 
|  | #define SIOCSSCCPARAM (SIOCDEVPRIVATE+1) | 
|  |  | 
|  |  | 
|  | /* Data types */ | 
|  |  | 
|  | struct scc_param { | 
|  | int pclk_hz;		/* frequency of BRG input (don't change) */ | 
|  | int brg_tc;		/* BRG terminal count; BRG disabled if < 0 */ | 
|  | int nrzi;		/* 0 (nrz), 1 (nrzi) */ | 
|  | int clocks;		/* see dmascc_cfg documentation */ | 
|  | int txdelay;		/* [1/TMR_0_HZ] */ | 
|  | int txtimeout;		/* [1/HZ] */ | 
|  | int txtail;		/* [1/TMR_0_HZ] */ | 
|  | int waittime;		/* [1/TMR_0_HZ] */ | 
|  | int slottime;		/* [1/TMR_0_HZ] */ | 
|  | int persist;		/* 1 ... 256 */ | 
|  | int dma;		/* -1 (disable), 0, 1, 3 */ | 
|  | int txpause;		/* [1/TMR_0_HZ] */ | 
|  | int rtsoff;		/* [1/TMR_0_HZ] */ | 
|  | int dcdon;		/* [1/TMR_0_HZ] */ | 
|  | int dcdoff;		/* [1/TMR_0_HZ] */ | 
|  | }; | 
|  |  | 
|  | struct scc_hardware { | 
|  | char *name; | 
|  | int io_region; | 
|  | int io_delta; | 
|  | int io_size; | 
|  | int num_devs; | 
|  | int scc_offset; | 
|  | int tmr_offset; | 
|  | int tmr_hz; | 
|  | int pclk_hz; | 
|  | }; | 
|  |  | 
|  | struct scc_priv { | 
|  | int type; | 
|  | int chip; | 
|  | struct net_device *dev; | 
|  | struct scc_info *info; | 
|  |  | 
|  | int channel; | 
|  | int card_base, scc_cmd, scc_data; | 
|  | int tmr_cnt, tmr_ctrl, tmr_mode; | 
|  | struct scc_param param; | 
|  | char rx_buf[NUM_RX_BUF][BUF_SIZE]; | 
|  | int rx_len[NUM_RX_BUF]; | 
|  | int rx_ptr; | 
|  | struct work_struct rx_work; | 
|  | int rx_head, rx_tail, rx_count; | 
|  | int rx_over; | 
|  | char tx_buf[NUM_TX_BUF][BUF_SIZE]; | 
|  | int tx_len[NUM_TX_BUF]; | 
|  | int tx_ptr; | 
|  | int tx_head, tx_tail, tx_count; | 
|  | int state; | 
|  | unsigned long tx_start; | 
|  | int rr0; | 
|  | spinlock_t *register_lock;	/* Per scc_info */ | 
|  | spinlock_t ring_lock; | 
|  | }; | 
|  |  | 
|  | struct scc_info { | 
|  | int irq_used; | 
|  | int twin_serial_cfg; | 
|  | struct net_device *dev[2]; | 
|  | struct scc_priv priv[2]; | 
|  | struct scc_info *next; | 
|  | spinlock_t register_lock;	/* Per device register lock */ | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* Function declarations */ | 
|  | static int setup_adapter(int card_base, int type, int n) __init; | 
|  |  | 
|  | static void write_scc(struct scc_priv *priv, int reg, int val); | 
|  | static void write_scc_data(struct scc_priv *priv, int val, int fast); | 
|  | static int read_scc(struct scc_priv *priv, int reg); | 
|  | static int read_scc_data(struct scc_priv *priv); | 
|  |  | 
|  | static int scc_open(struct net_device *dev); | 
|  | static int scc_close(struct net_device *dev); | 
|  | static int scc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd); | 
|  | static int scc_send_packet(struct sk_buff *skb, struct net_device *dev); | 
|  | static int scc_set_mac_address(struct net_device *dev, void *sa); | 
|  |  | 
|  | static inline void tx_on(struct scc_priv *priv); | 
|  | static inline void rx_on(struct scc_priv *priv); | 
|  | static inline void rx_off(struct scc_priv *priv); | 
|  | static void start_timer(struct scc_priv *priv, int t, int r15); | 
|  | static inline unsigned char random(void); | 
|  |  | 
|  | static inline void z8530_isr(struct scc_info *info); | 
|  | static irqreturn_t scc_isr(int irq, void *dev_id); | 
|  | static void rx_isr(struct scc_priv *priv); | 
|  | static void special_condition(struct scc_priv *priv, int rc); | 
|  | static void rx_bh(struct work_struct *); | 
|  | static void tx_isr(struct scc_priv *priv); | 
|  | static void es_isr(struct scc_priv *priv); | 
|  | static void tm_isr(struct scc_priv *priv); | 
|  |  | 
|  |  | 
|  | /* Initialization variables */ | 
|  |  | 
|  | static int io[MAX_NUM_DEVS] __initdata = { 0, }; | 
|  |  | 
|  | /* Beware! hw[] is also used in dmascc_exit(). */ | 
|  | static struct scc_hardware hw[NUM_TYPES] = HARDWARE; | 
|  |  | 
|  |  | 
|  | /* Global variables */ | 
|  |  | 
|  | static struct scc_info *first; | 
|  | static unsigned long rand; | 
|  |  | 
|  |  | 
|  | MODULE_AUTHOR("Klaus Kudielka"); | 
|  | MODULE_DESCRIPTION("Driver for high-speed SCC boards"); | 
|  | module_param_array(io, int, NULL, 0); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | static void __exit dmascc_exit(void) | 
|  | { | 
|  | int i; | 
|  | struct scc_info *info; | 
|  |  | 
|  | while (first) { | 
|  | info = first; | 
|  |  | 
|  | /* Unregister devices */ | 
|  | for (i = 0; i < 2; i++) | 
|  | unregister_netdev(info->dev[i]); | 
|  |  | 
|  | /* Reset board */ | 
|  | if (info->priv[0].type == TYPE_TWIN) | 
|  | outb(0, info->dev[0]->base_addr + TWIN_SERIAL_CFG); | 
|  | write_scc(&info->priv[0], R9, FHWRES); | 
|  | release_region(info->dev[0]->base_addr, | 
|  | hw[info->priv[0].type].io_size); | 
|  |  | 
|  | for (i = 0; i < 2; i++) | 
|  | free_netdev(info->dev[i]); | 
|  |  | 
|  | /* Free memory */ | 
|  | first = info->next; | 
|  | kfree(info); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __init dmascc_init(void) | 
|  | { | 
|  | int h, i, j, n; | 
|  | int base[MAX_NUM_DEVS], tcmd[MAX_NUM_DEVS], t0[MAX_NUM_DEVS], | 
|  | t1[MAX_NUM_DEVS]; | 
|  | unsigned t_val; | 
|  | unsigned long time, start[MAX_NUM_DEVS], delay[MAX_NUM_DEVS], | 
|  | counting[MAX_NUM_DEVS]; | 
|  |  | 
|  | /* Initialize random number generator */ | 
|  | rand = jiffies; | 
|  | /* Cards found = 0 */ | 
|  | n = 0; | 
|  | /* Warning message */ | 
|  | if (!io[0]) | 
|  | printk(KERN_INFO "dmascc: autoprobing (dangerous)\n"); | 
|  |  | 
|  | /* Run autodetection for each card type */ | 
|  | for (h = 0; h < NUM_TYPES; h++) { | 
|  |  | 
|  | if (io[0]) { | 
|  | /* User-specified I/O address regions */ | 
|  | for (i = 0; i < hw[h].num_devs; i++) | 
|  | base[i] = 0; | 
|  | for (i = 0; i < MAX_NUM_DEVS && io[i]; i++) { | 
|  | j = (io[i] - | 
|  | hw[h].io_region) / hw[h].io_delta; | 
|  | if (j >= 0 && j < hw[h].num_devs && | 
|  | hw[h].io_region + | 
|  | j * hw[h].io_delta == io[i]) { | 
|  | base[j] = io[i]; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | /* Default I/O address regions */ | 
|  | for (i = 0; i < hw[h].num_devs; i++) { | 
|  | base[i] = | 
|  | hw[h].io_region + i * hw[h].io_delta; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check valid I/O address regions */ | 
|  | for (i = 0; i < hw[h].num_devs; i++) | 
|  | if (base[i]) { | 
|  | if (!request_region | 
|  | (base[i], hw[h].io_size, "dmascc")) | 
|  | base[i] = 0; | 
|  | else { | 
|  | tcmd[i] = | 
|  | base[i] + hw[h].tmr_offset + | 
|  | TMR_CTRL; | 
|  | t0[i] = | 
|  | base[i] + hw[h].tmr_offset + | 
|  | TMR_CNT0; | 
|  | t1[i] = | 
|  | base[i] + hw[h].tmr_offset + | 
|  | TMR_CNT1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Start timers */ | 
|  | for (i = 0; i < hw[h].num_devs; i++) | 
|  | if (base[i]) { | 
|  | /* Timer 0: LSB+MSB, Mode 3, TMR_0_HZ */ | 
|  | outb(0x36, tcmd[i]); | 
|  | outb((hw[h].tmr_hz / TMR_0_HZ) & 0xFF, | 
|  | t0[i]); | 
|  | outb((hw[h].tmr_hz / TMR_0_HZ) >> 8, | 
|  | t0[i]); | 
|  | /* Timer 1: LSB+MSB, Mode 0, HZ/10 */ | 
|  | outb(0x70, tcmd[i]); | 
|  | outb((TMR_0_HZ / HZ * 10) & 0xFF, t1[i]); | 
|  | outb((TMR_0_HZ / HZ * 10) >> 8, t1[i]); | 
|  | start[i] = jiffies; | 
|  | delay[i] = 0; | 
|  | counting[i] = 1; | 
|  | /* Timer 2: LSB+MSB, Mode 0 */ | 
|  | outb(0xb0, tcmd[i]); | 
|  | } | 
|  | time = jiffies; | 
|  | /* Wait until counter registers are loaded */ | 
|  | udelay(2000000 / TMR_0_HZ); | 
|  |  | 
|  | /* Timing loop */ | 
|  | while (jiffies - time < 13) { | 
|  | for (i = 0; i < hw[h].num_devs; i++) | 
|  | if (base[i] && counting[i]) { | 
|  | /* Read back Timer 1: latch; read LSB; read MSB */ | 
|  | outb(0x40, tcmd[i]); | 
|  | t_val = | 
|  | inb(t1[i]) + (inb(t1[i]) << 8); | 
|  | /* Also check whether counter did wrap */ | 
|  | if (t_val == 0 || | 
|  | t_val > TMR_0_HZ / HZ * 10) | 
|  | counting[i] = 0; | 
|  | delay[i] = jiffies - start[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Evaluate measurements */ | 
|  | for (i = 0; i < hw[h].num_devs; i++) | 
|  | if (base[i]) { | 
|  | if ((delay[i] >= 9 && delay[i] <= 11) && | 
|  | /* Ok, we have found an adapter */ | 
|  | (setup_adapter(base[i], h, n) == 0)) | 
|  | n++; | 
|  | else | 
|  | release_region(base[i], | 
|  | hw[h].io_size); | 
|  | } | 
|  |  | 
|  | }			/* NUM_TYPES */ | 
|  |  | 
|  | /* If any adapter was successfully initialized, return ok */ | 
|  | if (n) | 
|  | return 0; | 
|  |  | 
|  | /* If no adapter found, return error */ | 
|  | printk(KERN_INFO "dmascc: no adapters found\n"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | module_init(dmascc_init); | 
|  | module_exit(dmascc_exit); | 
|  |  | 
|  | static void __init dev_setup(struct net_device *dev) | 
|  | { | 
|  | dev->type = ARPHRD_AX25; | 
|  | dev->hard_header_len = AX25_MAX_HEADER_LEN; | 
|  | dev->mtu = 1500; | 
|  | dev->addr_len = AX25_ADDR_LEN; | 
|  | dev->tx_queue_len = 64; | 
|  | memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN); | 
|  | memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN); | 
|  | } | 
|  |  | 
|  | static const struct net_device_ops scc_netdev_ops = { | 
|  | .ndo_open = scc_open, | 
|  | .ndo_stop = scc_close, | 
|  | .ndo_start_xmit = scc_send_packet, | 
|  | .ndo_do_ioctl = scc_ioctl, | 
|  | .ndo_set_mac_address = scc_set_mac_address, | 
|  | }; | 
|  |  | 
|  | static int __init setup_adapter(int card_base, int type, int n) | 
|  | { | 
|  | int i, irq, chip; | 
|  | struct scc_info *info; | 
|  | struct net_device *dev; | 
|  | struct scc_priv *priv; | 
|  | unsigned long time; | 
|  | unsigned int irqs; | 
|  | int tmr_base = card_base + hw[type].tmr_offset; | 
|  | int scc_base = card_base + hw[type].scc_offset; | 
|  | char *chipnames[] = CHIPNAMES; | 
|  |  | 
|  | /* Initialize what is necessary for write_scc and write_scc_data */ | 
|  | info = kzalloc(sizeof(struct scc_info), GFP_KERNEL | GFP_DMA); | 
|  | if (!info) { | 
|  | printk(KERN_ERR "dmascc: " | 
|  | "could not allocate memory for %s at %#3x\n", | 
|  | hw[type].name, card_base); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  |  | 
|  | info->dev[0] = alloc_netdev(0, "", dev_setup); | 
|  | if (!info->dev[0]) { | 
|  | printk(KERN_ERR "dmascc: " | 
|  | "could not allocate memory for %s at %#3x\n", | 
|  | hw[type].name, card_base); | 
|  | goto out1; | 
|  | } | 
|  |  | 
|  | info->dev[1] = alloc_netdev(0, "", dev_setup); | 
|  | if (!info->dev[1]) { | 
|  | printk(KERN_ERR "dmascc: " | 
|  | "could not allocate memory for %s at %#3x\n", | 
|  | hw[type].name, card_base); | 
|  | goto out2; | 
|  | } | 
|  | spin_lock_init(&info->register_lock); | 
|  |  | 
|  | priv = &info->priv[0]; | 
|  | priv->type = type; | 
|  | priv->card_base = card_base; | 
|  | priv->scc_cmd = scc_base + SCCA_CMD; | 
|  | priv->scc_data = scc_base + SCCA_DATA; | 
|  | priv->register_lock = &info->register_lock; | 
|  |  | 
|  | /* Reset SCC */ | 
|  | write_scc(priv, R9, FHWRES | MIE | NV); | 
|  |  | 
|  | /* Determine type of chip by enabling SDLC/HDLC enhancements */ | 
|  | write_scc(priv, R15, SHDLCE); | 
|  | if (!read_scc(priv, R15)) { | 
|  | /* WR7' not present. This is an ordinary Z8530 SCC. */ | 
|  | chip = Z8530; | 
|  | } else { | 
|  | /* Put one character in TX FIFO */ | 
|  | write_scc_data(priv, 0, 0); | 
|  | if (read_scc(priv, R0) & Tx_BUF_EMP) { | 
|  | /* TX FIFO not full. This is a Z85230 ESCC with a 4-byte FIFO. */ | 
|  | chip = Z85230; | 
|  | } else { | 
|  | /* TX FIFO full. This is a Z85C30 SCC with a 1-byte FIFO. */ | 
|  | chip = Z85C30; | 
|  | } | 
|  | } | 
|  | write_scc(priv, R15, 0); | 
|  |  | 
|  | /* Start IRQ auto-detection */ | 
|  | irqs = probe_irq_on(); | 
|  |  | 
|  | /* Enable interrupts */ | 
|  | if (type == TYPE_TWIN) { | 
|  | outb(0, card_base + TWIN_DMA_CFG); | 
|  | inb(card_base + TWIN_CLR_TMR1); | 
|  | inb(card_base + TWIN_CLR_TMR2); | 
|  | info->twin_serial_cfg = TWIN_EI; | 
|  | outb(info->twin_serial_cfg, card_base + TWIN_SERIAL_CFG); | 
|  | } else { | 
|  | write_scc(priv, R15, CTSIE); | 
|  | write_scc(priv, R0, RES_EXT_INT); | 
|  | write_scc(priv, R1, EXT_INT_ENAB); | 
|  | } | 
|  |  | 
|  | /* Start timer */ | 
|  | outb(1, tmr_base + TMR_CNT1); | 
|  | outb(0, tmr_base + TMR_CNT1); | 
|  |  | 
|  | /* Wait and detect IRQ */ | 
|  | time = jiffies; | 
|  | while (jiffies - time < 2 + HZ / TMR_0_HZ); | 
|  | irq = probe_irq_off(irqs); | 
|  |  | 
|  | /* Clear pending interrupt, disable interrupts */ | 
|  | if (type == TYPE_TWIN) { | 
|  | inb(card_base + TWIN_CLR_TMR1); | 
|  | } else { | 
|  | write_scc(priv, R1, 0); | 
|  | write_scc(priv, R15, 0); | 
|  | write_scc(priv, R0, RES_EXT_INT); | 
|  | } | 
|  |  | 
|  | if (irq <= 0) { | 
|  | printk(KERN_ERR | 
|  | "dmascc: could not find irq of %s at %#3x (irq=%d)\n", | 
|  | hw[type].name, card_base, irq); | 
|  | goto out3; | 
|  | } | 
|  |  | 
|  | /* Set up data structures */ | 
|  | for (i = 0; i < 2; i++) { | 
|  | dev = info->dev[i]; | 
|  | priv = &info->priv[i]; | 
|  | priv->type = type; | 
|  | priv->chip = chip; | 
|  | priv->dev = dev; | 
|  | priv->info = info; | 
|  | priv->channel = i; | 
|  | spin_lock_init(&priv->ring_lock); | 
|  | priv->register_lock = &info->register_lock; | 
|  | priv->card_base = card_base; | 
|  | priv->scc_cmd = scc_base + (i ? SCCB_CMD : SCCA_CMD); | 
|  | priv->scc_data = scc_base + (i ? SCCB_DATA : SCCA_DATA); | 
|  | priv->tmr_cnt = tmr_base + (i ? TMR_CNT2 : TMR_CNT1); | 
|  | priv->tmr_ctrl = tmr_base + TMR_CTRL; | 
|  | priv->tmr_mode = i ? 0xb0 : 0x70; | 
|  | priv->param.pclk_hz = hw[type].pclk_hz; | 
|  | priv->param.brg_tc = -1; | 
|  | priv->param.clocks = TCTRxCP | RCRTxCP; | 
|  | priv->param.persist = 256; | 
|  | priv->param.dma = -1; | 
|  | INIT_WORK(&priv->rx_work, rx_bh); | 
|  | dev->ml_priv = priv; | 
|  | sprintf(dev->name, "dmascc%i", 2 * n + i); | 
|  | dev->base_addr = card_base; | 
|  | dev->irq = irq; | 
|  | dev->netdev_ops = &scc_netdev_ops; | 
|  | dev->header_ops = &ax25_header_ops; | 
|  | } | 
|  | if (register_netdev(info->dev[0])) { | 
|  | printk(KERN_ERR "dmascc: could not register %s\n", | 
|  | info->dev[0]->name); | 
|  | goto out3; | 
|  | } | 
|  | if (register_netdev(info->dev[1])) { | 
|  | printk(KERN_ERR "dmascc: could not register %s\n", | 
|  | info->dev[1]->name); | 
|  | goto out4; | 
|  | } | 
|  |  | 
|  |  | 
|  | info->next = first; | 
|  | first = info; | 
|  | printk(KERN_INFO "dmascc: found %s (%s) at %#3x, irq %d\n", | 
|  | hw[type].name, chipnames[chip], card_base, irq); | 
|  | return 0; | 
|  |  | 
|  | out4: | 
|  | unregister_netdev(info->dev[0]); | 
|  | out3: | 
|  | if (info->priv[0].type == TYPE_TWIN) | 
|  | outb(0, info->dev[0]->base_addr + TWIN_SERIAL_CFG); | 
|  | write_scc(&info->priv[0], R9, FHWRES); | 
|  | free_netdev(info->dev[1]); | 
|  | out2: | 
|  | free_netdev(info->dev[0]); | 
|  | out1: | 
|  | kfree(info); | 
|  | out: | 
|  | return -1; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Driver functions */ | 
|  |  | 
|  | static void write_scc(struct scc_priv *priv, int reg, int val) | 
|  | { | 
|  | unsigned long flags; | 
|  | switch (priv->type) { | 
|  | case TYPE_S5: | 
|  | if (reg) | 
|  | outb(reg, priv->scc_cmd); | 
|  | outb(val, priv->scc_cmd); | 
|  | return; | 
|  | case TYPE_TWIN: | 
|  | if (reg) | 
|  | outb_p(reg, priv->scc_cmd); | 
|  | outb_p(val, priv->scc_cmd); | 
|  | return; | 
|  | default: | 
|  | spin_lock_irqsave(priv->register_lock, flags); | 
|  | outb_p(0, priv->card_base + PI_DREQ_MASK); | 
|  | if (reg) | 
|  | outb_p(reg, priv->scc_cmd); | 
|  | outb_p(val, priv->scc_cmd); | 
|  | outb(1, priv->card_base + PI_DREQ_MASK); | 
|  | spin_unlock_irqrestore(priv->register_lock, flags); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static void write_scc_data(struct scc_priv *priv, int val, int fast) | 
|  | { | 
|  | unsigned long flags; | 
|  | switch (priv->type) { | 
|  | case TYPE_S5: | 
|  | outb(val, priv->scc_data); | 
|  | return; | 
|  | case TYPE_TWIN: | 
|  | outb_p(val, priv->scc_data); | 
|  | return; | 
|  | default: | 
|  | if (fast) | 
|  | outb_p(val, priv->scc_data); | 
|  | else { | 
|  | spin_lock_irqsave(priv->register_lock, flags); | 
|  | outb_p(0, priv->card_base + PI_DREQ_MASK); | 
|  | outb_p(val, priv->scc_data); | 
|  | outb(1, priv->card_base + PI_DREQ_MASK); | 
|  | spin_unlock_irqrestore(priv->register_lock, flags); | 
|  | } | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static int read_scc(struct scc_priv *priv, int reg) | 
|  | { | 
|  | int rc; | 
|  | unsigned long flags; | 
|  | switch (priv->type) { | 
|  | case TYPE_S5: | 
|  | if (reg) | 
|  | outb(reg, priv->scc_cmd); | 
|  | return inb(priv->scc_cmd); | 
|  | case TYPE_TWIN: | 
|  | if (reg) | 
|  | outb_p(reg, priv->scc_cmd); | 
|  | return inb_p(priv->scc_cmd); | 
|  | default: | 
|  | spin_lock_irqsave(priv->register_lock, flags); | 
|  | outb_p(0, priv->card_base + PI_DREQ_MASK); | 
|  | if (reg) | 
|  | outb_p(reg, priv->scc_cmd); | 
|  | rc = inb_p(priv->scc_cmd); | 
|  | outb(1, priv->card_base + PI_DREQ_MASK); | 
|  | spin_unlock_irqrestore(priv->register_lock, flags); | 
|  | return rc; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static int read_scc_data(struct scc_priv *priv) | 
|  | { | 
|  | int rc; | 
|  | unsigned long flags; | 
|  | switch (priv->type) { | 
|  | case TYPE_S5: | 
|  | return inb(priv->scc_data); | 
|  | case TYPE_TWIN: | 
|  | return inb_p(priv->scc_data); | 
|  | default: | 
|  | spin_lock_irqsave(priv->register_lock, flags); | 
|  | outb_p(0, priv->card_base + PI_DREQ_MASK); | 
|  | rc = inb_p(priv->scc_data); | 
|  | outb(1, priv->card_base + PI_DREQ_MASK); | 
|  | spin_unlock_irqrestore(priv->register_lock, flags); | 
|  | return rc; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static int scc_open(struct net_device *dev) | 
|  | { | 
|  | struct scc_priv *priv = dev->ml_priv; | 
|  | struct scc_info *info = priv->info; | 
|  | int card_base = priv->card_base; | 
|  |  | 
|  | /* Request IRQ if not already used by other channel */ | 
|  | if (!info->irq_used) { | 
|  | if (request_irq(dev->irq, scc_isr, 0, "dmascc", info)) { | 
|  | return -EAGAIN; | 
|  | } | 
|  | } | 
|  | info->irq_used++; | 
|  |  | 
|  | /* Request DMA if required */ | 
|  | if (priv->param.dma >= 0) { | 
|  | if (request_dma(priv->param.dma, "dmascc")) { | 
|  | if (--info->irq_used == 0) | 
|  | free_irq(dev->irq, info); | 
|  | return -EAGAIN; | 
|  | } else { | 
|  | unsigned long flags = claim_dma_lock(); | 
|  | clear_dma_ff(priv->param.dma); | 
|  | release_dma_lock(flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Initialize local variables */ | 
|  | priv->rx_ptr = 0; | 
|  | priv->rx_over = 0; | 
|  | priv->rx_head = priv->rx_tail = priv->rx_count = 0; | 
|  | priv->state = IDLE; | 
|  | priv->tx_head = priv->tx_tail = priv->tx_count = 0; | 
|  | priv->tx_ptr = 0; | 
|  |  | 
|  | /* Reset channel */ | 
|  | write_scc(priv, R9, (priv->channel ? CHRB : CHRA) | MIE | NV); | 
|  | /* X1 clock, SDLC mode */ | 
|  | write_scc(priv, R4, SDLC | X1CLK); | 
|  | /* DMA */ | 
|  | write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN); | 
|  | /* 8 bit RX char, RX disable */ | 
|  | write_scc(priv, R3, Rx8); | 
|  | /* 8 bit TX char, TX disable */ | 
|  | write_scc(priv, R5, Tx8); | 
|  | /* SDLC address field */ | 
|  | write_scc(priv, R6, 0); | 
|  | /* SDLC flag */ | 
|  | write_scc(priv, R7, FLAG); | 
|  | switch (priv->chip) { | 
|  | case Z85C30: | 
|  | /* Select WR7' */ | 
|  | write_scc(priv, R15, SHDLCE); | 
|  | /* Auto EOM reset */ | 
|  | write_scc(priv, R7, AUTOEOM); | 
|  | write_scc(priv, R15, 0); | 
|  | break; | 
|  | case Z85230: | 
|  | /* Select WR7' */ | 
|  | write_scc(priv, R15, SHDLCE); | 
|  | /* The following bits are set (see 2.5.2.1): | 
|  | - Automatic EOM reset | 
|  | - Interrupt request if RX FIFO is half full | 
|  | This bit should be ignored in DMA mode (according to the | 
|  | documentation), but actually isn't. The receiver doesn't work if | 
|  | it is set. Thus, we have to clear it in DMA mode. | 
|  | - Interrupt/DMA request if TX FIFO is completely empty | 
|  | a) If set, the ESCC behaves as if it had no TX FIFO (Z85C30 | 
|  | compatibility). | 
|  | b) If cleared, DMA requests may follow each other very quickly, | 
|  | filling up the TX FIFO. | 
|  | Advantage: TX works even in case of high bus latency. | 
|  | Disadvantage: Edge-triggered DMA request circuitry may miss | 
|  | a request. No more data is delivered, resulting | 
|  | in a TX FIFO underrun. | 
|  | Both PI2 and S5SCC/DMA seem to work fine with TXFIFOE cleared. | 
|  | The PackeTwin doesn't. I don't know about the PI, but let's | 
|  | assume it behaves like the PI2. | 
|  | */ | 
|  | if (priv->param.dma >= 0) { | 
|  | if (priv->type == TYPE_TWIN) | 
|  | write_scc(priv, R7, AUTOEOM | TXFIFOE); | 
|  | else | 
|  | write_scc(priv, R7, AUTOEOM); | 
|  | } else { | 
|  | write_scc(priv, R7, AUTOEOM | RXFIFOH); | 
|  | } | 
|  | write_scc(priv, R15, 0); | 
|  | break; | 
|  | } | 
|  | /* Preset CRC, NRZ(I) encoding */ | 
|  | write_scc(priv, R10, CRCPS | (priv->param.nrzi ? NRZI : NRZ)); | 
|  |  | 
|  | /* Configure baud rate generator */ | 
|  | if (priv->param.brg_tc >= 0) { | 
|  | /* Program BR generator */ | 
|  | write_scc(priv, R12, priv->param.brg_tc & 0xFF); | 
|  | write_scc(priv, R13, (priv->param.brg_tc >> 8) & 0xFF); | 
|  | /* BRG source = SYS CLK; enable BRG; DTR REQ function (required by | 
|  | PackeTwin, not connected on the PI2); set DPLL source to BRG */ | 
|  | write_scc(priv, R14, SSBR | DTRREQ | BRSRC | BRENABL); | 
|  | /* Enable DPLL */ | 
|  | write_scc(priv, R14, SEARCH | DTRREQ | BRSRC | BRENABL); | 
|  | } else { | 
|  | /* Disable BR generator */ | 
|  | write_scc(priv, R14, DTRREQ | BRSRC); | 
|  | } | 
|  |  | 
|  | /* Configure clocks */ | 
|  | if (priv->type == TYPE_TWIN) { | 
|  | /* Disable external TX clock receiver */ | 
|  | outb((info->twin_serial_cfg &= | 
|  | ~(priv->channel ? TWIN_EXTCLKB : TWIN_EXTCLKA)), | 
|  | card_base + TWIN_SERIAL_CFG); | 
|  | } | 
|  | write_scc(priv, R11, priv->param.clocks); | 
|  | if ((priv->type == TYPE_TWIN) && !(priv->param.clocks & TRxCOI)) { | 
|  | /* Enable external TX clock receiver */ | 
|  | outb((info->twin_serial_cfg |= | 
|  | (priv->channel ? TWIN_EXTCLKB : TWIN_EXTCLKA)), | 
|  | card_base + TWIN_SERIAL_CFG); | 
|  | } | 
|  |  | 
|  | /* Configure PackeTwin */ | 
|  | if (priv->type == TYPE_TWIN) { | 
|  | /* Assert DTR, enable interrupts */ | 
|  | outb((info->twin_serial_cfg |= TWIN_EI | | 
|  | (priv->channel ? TWIN_DTRB_ON : TWIN_DTRA_ON)), | 
|  | card_base + TWIN_SERIAL_CFG); | 
|  | } | 
|  |  | 
|  | /* Read current status */ | 
|  | priv->rr0 = read_scc(priv, R0); | 
|  | /* Enable DCD interrupt */ | 
|  | write_scc(priv, R15, DCDIE); | 
|  |  | 
|  | netif_start_queue(dev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int scc_close(struct net_device *dev) | 
|  | { | 
|  | struct scc_priv *priv = dev->ml_priv; | 
|  | struct scc_info *info = priv->info; | 
|  | int card_base = priv->card_base; | 
|  |  | 
|  | netif_stop_queue(dev); | 
|  |  | 
|  | if (priv->type == TYPE_TWIN) { | 
|  | /* Drop DTR */ | 
|  | outb((info->twin_serial_cfg &= | 
|  | (priv->channel ? ~TWIN_DTRB_ON : ~TWIN_DTRA_ON)), | 
|  | card_base + TWIN_SERIAL_CFG); | 
|  | } | 
|  |  | 
|  | /* Reset channel, free DMA and IRQ */ | 
|  | write_scc(priv, R9, (priv->channel ? CHRB : CHRA) | MIE | NV); | 
|  | if (priv->param.dma >= 0) { | 
|  | if (priv->type == TYPE_TWIN) | 
|  | outb(0, card_base + TWIN_DMA_CFG); | 
|  | free_dma(priv->param.dma); | 
|  | } | 
|  | if (--info->irq_used == 0) | 
|  | free_irq(dev->irq, info); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int scc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) | 
|  | { | 
|  | struct scc_priv *priv = dev->ml_priv; | 
|  |  | 
|  | switch (cmd) { | 
|  | case SIOCGSCCPARAM: | 
|  | if (copy_to_user | 
|  | (ifr->ifr_data, &priv->param, | 
|  | sizeof(struct scc_param))) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | case SIOCSSCCPARAM: | 
|  | if (!capable(CAP_NET_ADMIN)) | 
|  | return -EPERM; | 
|  | if (netif_running(dev)) | 
|  | return -EAGAIN; | 
|  | if (copy_from_user | 
|  | (&priv->param, ifr->ifr_data, | 
|  | sizeof(struct scc_param))) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static int scc_send_packet(struct sk_buff *skb, struct net_device *dev) | 
|  | { | 
|  | struct scc_priv *priv = dev->ml_priv; | 
|  | unsigned long flags; | 
|  | int i; | 
|  |  | 
|  | /* Temporarily stop the scheduler feeding us packets */ | 
|  | netif_stop_queue(dev); | 
|  |  | 
|  | /* Transfer data to DMA buffer */ | 
|  | i = priv->tx_head; | 
|  | skb_copy_from_linear_data_offset(skb, 1, priv->tx_buf[i], skb->len - 1); | 
|  | priv->tx_len[i] = skb->len - 1; | 
|  |  | 
|  | /* Clear interrupts while we touch our circular buffers */ | 
|  |  | 
|  | spin_lock_irqsave(&priv->ring_lock, flags); | 
|  | /* Move the ring buffer's head */ | 
|  | priv->tx_head = (i + 1) % NUM_TX_BUF; | 
|  | priv->tx_count++; | 
|  |  | 
|  | /* If we just filled up the last buffer, leave queue stopped. | 
|  | The higher layers must wait until we have a DMA buffer | 
|  | to accept the data. */ | 
|  | if (priv->tx_count < NUM_TX_BUF) | 
|  | netif_wake_queue(dev); | 
|  |  | 
|  | /* Set new TX state */ | 
|  | if (priv->state == IDLE) { | 
|  | /* Assert RTS, start timer */ | 
|  | priv->state = TX_HEAD; | 
|  | priv->tx_start = jiffies; | 
|  | write_scc(priv, R5, TxCRC_ENAB | RTS | TxENAB | Tx8); | 
|  | write_scc(priv, R15, 0); | 
|  | start_timer(priv, priv->param.txdelay, 0); | 
|  | } | 
|  |  | 
|  | /* Turn interrupts back on and free buffer */ | 
|  | spin_unlock_irqrestore(&priv->ring_lock, flags); | 
|  | dev_kfree_skb(skb); | 
|  |  | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int scc_set_mac_address(struct net_device *dev, void *sa) | 
|  | { | 
|  | memcpy(dev->dev_addr, ((struct sockaddr *) sa)->sa_data, | 
|  | dev->addr_len); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline void tx_on(struct scc_priv *priv) | 
|  | { | 
|  | int i, n; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (priv->param.dma >= 0) { | 
|  | n = (priv->chip == Z85230) ? 3 : 1; | 
|  | /* Program DMA controller */ | 
|  | flags = claim_dma_lock(); | 
|  | set_dma_mode(priv->param.dma, DMA_MODE_WRITE); | 
|  | set_dma_addr(priv->param.dma, | 
|  | (int) priv->tx_buf[priv->tx_tail] + n); | 
|  | set_dma_count(priv->param.dma, | 
|  | priv->tx_len[priv->tx_tail] - n); | 
|  | release_dma_lock(flags); | 
|  | /* Enable TX underrun interrupt */ | 
|  | write_scc(priv, R15, TxUIE); | 
|  | /* Configure DREQ */ | 
|  | if (priv->type == TYPE_TWIN) | 
|  | outb((priv->param.dma == | 
|  | 1) ? TWIN_DMA_HDX_T1 : TWIN_DMA_HDX_T3, | 
|  | priv->card_base + TWIN_DMA_CFG); | 
|  | else | 
|  | write_scc(priv, R1, | 
|  | EXT_INT_ENAB | WT_FN_RDYFN | | 
|  | WT_RDY_ENAB); | 
|  | /* Write first byte(s) */ | 
|  | spin_lock_irqsave(priv->register_lock, flags); | 
|  | for (i = 0; i < n; i++) | 
|  | write_scc_data(priv, | 
|  | priv->tx_buf[priv->tx_tail][i], 1); | 
|  | enable_dma(priv->param.dma); | 
|  | spin_unlock_irqrestore(priv->register_lock, flags); | 
|  | } else { | 
|  | write_scc(priv, R15, TxUIE); | 
|  | write_scc(priv, R1, | 
|  | EXT_INT_ENAB | WT_FN_RDYFN | TxINT_ENAB); | 
|  | tx_isr(priv); | 
|  | } | 
|  | /* Reset EOM latch if we do not have the AUTOEOM feature */ | 
|  | if (priv->chip == Z8530) | 
|  | write_scc(priv, R0, RES_EOM_L); | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline void rx_on(struct scc_priv *priv) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | /* Clear RX FIFO */ | 
|  | while (read_scc(priv, R0) & Rx_CH_AV) | 
|  | read_scc_data(priv); | 
|  | priv->rx_over = 0; | 
|  | if (priv->param.dma >= 0) { | 
|  | /* Program DMA controller */ | 
|  | flags = claim_dma_lock(); | 
|  | set_dma_mode(priv->param.dma, DMA_MODE_READ); | 
|  | set_dma_addr(priv->param.dma, | 
|  | (int) priv->rx_buf[priv->rx_head]); | 
|  | set_dma_count(priv->param.dma, BUF_SIZE); | 
|  | release_dma_lock(flags); | 
|  | enable_dma(priv->param.dma); | 
|  | /* Configure PackeTwin DMA */ | 
|  | if (priv->type == TYPE_TWIN) { | 
|  | outb((priv->param.dma == | 
|  | 1) ? TWIN_DMA_HDX_R1 : TWIN_DMA_HDX_R3, | 
|  | priv->card_base + TWIN_DMA_CFG); | 
|  | } | 
|  | /* Sp. cond. intr. only, ext int enable, RX DMA enable */ | 
|  | write_scc(priv, R1, EXT_INT_ENAB | INT_ERR_Rx | | 
|  | WT_RDY_RT | WT_FN_RDYFN | WT_RDY_ENAB); | 
|  | } else { | 
|  | /* Reset current frame */ | 
|  | priv->rx_ptr = 0; | 
|  | /* Intr. on all Rx characters and Sp. cond., ext int enable */ | 
|  | write_scc(priv, R1, EXT_INT_ENAB | INT_ALL_Rx | WT_RDY_RT | | 
|  | WT_FN_RDYFN); | 
|  | } | 
|  | write_scc(priv, R0, ERR_RES); | 
|  | write_scc(priv, R3, RxENABLE | Rx8 | RxCRC_ENAB); | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline void rx_off(struct scc_priv *priv) | 
|  | { | 
|  | /* Disable receiver */ | 
|  | write_scc(priv, R3, Rx8); | 
|  | /* Disable DREQ / RX interrupt */ | 
|  | if (priv->param.dma >= 0 && priv->type == TYPE_TWIN) | 
|  | outb(0, priv->card_base + TWIN_DMA_CFG); | 
|  | else | 
|  | write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN); | 
|  | /* Disable DMA */ | 
|  | if (priv->param.dma >= 0) | 
|  | disable_dma(priv->param.dma); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void start_timer(struct scc_priv *priv, int t, int r15) | 
|  | { | 
|  | outb(priv->tmr_mode, priv->tmr_ctrl); | 
|  | if (t == 0) { | 
|  | tm_isr(priv); | 
|  | } else if (t > 0) { | 
|  | outb(t & 0xFF, priv->tmr_cnt); | 
|  | outb((t >> 8) & 0xFF, priv->tmr_cnt); | 
|  | if (priv->type != TYPE_TWIN) { | 
|  | write_scc(priv, R15, r15 | CTSIE); | 
|  | priv->rr0 |= CTS; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline unsigned char random(void) | 
|  | { | 
|  | /* See "Numerical Recipes in C", second edition, p. 284 */ | 
|  | rand = rand * 1664525L + 1013904223L; | 
|  | return (unsigned char) (rand >> 24); | 
|  | } | 
|  |  | 
|  | static inline void z8530_isr(struct scc_info *info) | 
|  | { | 
|  | int is, i = 100; | 
|  |  | 
|  | while ((is = read_scc(&info->priv[0], R3)) && i--) { | 
|  | if (is & CHARxIP) { | 
|  | rx_isr(&info->priv[0]); | 
|  | } else if (is & CHATxIP) { | 
|  | tx_isr(&info->priv[0]); | 
|  | } else if (is & CHAEXT) { | 
|  | es_isr(&info->priv[0]); | 
|  | } else if (is & CHBRxIP) { | 
|  | rx_isr(&info->priv[1]); | 
|  | } else if (is & CHBTxIP) { | 
|  | tx_isr(&info->priv[1]); | 
|  | } else { | 
|  | es_isr(&info->priv[1]); | 
|  | } | 
|  | write_scc(&info->priv[0], R0, RES_H_IUS); | 
|  | i++; | 
|  | } | 
|  | if (i < 0) { | 
|  | printk(KERN_ERR "dmascc: stuck in ISR with RR3=0x%02x.\n", | 
|  | is); | 
|  | } | 
|  | /* Ok, no interrupts pending from this 8530. The INT line should | 
|  | be inactive now. */ | 
|  | } | 
|  |  | 
|  |  | 
|  | static irqreturn_t scc_isr(int irq, void *dev_id) | 
|  | { | 
|  | struct scc_info *info = dev_id; | 
|  |  | 
|  | spin_lock(info->priv[0].register_lock); | 
|  | /* At this point interrupts are enabled, and the interrupt under service | 
|  | is already acknowledged, but masked off. | 
|  |  | 
|  | Interrupt processing: We loop until we know that the IRQ line is | 
|  | low. If another positive edge occurs afterwards during the ISR, | 
|  | another interrupt will be triggered by the interrupt controller | 
|  | as soon as the IRQ level is enabled again (see asm/irq.h). | 
|  |  | 
|  | Bottom-half handlers will be processed after scc_isr(). This is | 
|  | important, since we only have small ringbuffers and want new data | 
|  | to be fetched/delivered immediately. */ | 
|  |  | 
|  | if (info->priv[0].type == TYPE_TWIN) { | 
|  | int is, card_base = info->priv[0].card_base; | 
|  | while ((is = ~inb(card_base + TWIN_INT_REG)) & | 
|  | TWIN_INT_MSK) { | 
|  | if (is & TWIN_SCC_MSK) { | 
|  | z8530_isr(info); | 
|  | } else if (is & TWIN_TMR1_MSK) { | 
|  | inb(card_base + TWIN_CLR_TMR1); | 
|  | tm_isr(&info->priv[0]); | 
|  | } else { | 
|  | inb(card_base + TWIN_CLR_TMR2); | 
|  | tm_isr(&info->priv[1]); | 
|  | } | 
|  | } | 
|  | } else | 
|  | z8530_isr(info); | 
|  | spin_unlock(info->priv[0].register_lock); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void rx_isr(struct scc_priv *priv) | 
|  | { | 
|  | if (priv->param.dma >= 0) { | 
|  | /* Check special condition and perform error reset. See 2.4.7.5. */ | 
|  | special_condition(priv, read_scc(priv, R1)); | 
|  | write_scc(priv, R0, ERR_RES); | 
|  | } else { | 
|  | /* Check special condition for each character. Error reset not necessary. | 
|  | Same algorithm for SCC and ESCC. See 2.4.7.1 and 2.4.7.4. */ | 
|  | int rc; | 
|  | while (read_scc(priv, R0) & Rx_CH_AV) { | 
|  | rc = read_scc(priv, R1); | 
|  | if (priv->rx_ptr < BUF_SIZE) | 
|  | priv->rx_buf[priv->rx_head][priv-> | 
|  | rx_ptr++] = | 
|  | read_scc_data(priv); | 
|  | else { | 
|  | priv->rx_over = 2; | 
|  | read_scc_data(priv); | 
|  | } | 
|  | special_condition(priv, rc); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static void special_condition(struct scc_priv *priv, int rc) | 
|  | { | 
|  | int cb; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* See Figure 2-15. Only overrun and EOF need to be checked. */ | 
|  |  | 
|  | if (rc & Rx_OVR) { | 
|  | /* Receiver overrun */ | 
|  | priv->rx_over = 1; | 
|  | if (priv->param.dma < 0) | 
|  | write_scc(priv, R0, ERR_RES); | 
|  | } else if (rc & END_FR) { | 
|  | /* End of frame. Get byte count */ | 
|  | if (priv->param.dma >= 0) { | 
|  | flags = claim_dma_lock(); | 
|  | cb = BUF_SIZE - get_dma_residue(priv->param.dma) - | 
|  | 2; | 
|  | release_dma_lock(flags); | 
|  | } else { | 
|  | cb = priv->rx_ptr - 2; | 
|  | } | 
|  | if (priv->rx_over) { | 
|  | /* We had an overrun */ | 
|  | priv->dev->stats.rx_errors++; | 
|  | if (priv->rx_over == 2) | 
|  | priv->dev->stats.rx_length_errors++; | 
|  | else | 
|  | priv->dev->stats.rx_fifo_errors++; | 
|  | priv->rx_over = 0; | 
|  | } else if (rc & CRC_ERR) { | 
|  | /* Count invalid CRC only if packet length >= minimum */ | 
|  | if (cb >= 15) { | 
|  | priv->dev->stats.rx_errors++; | 
|  | priv->dev->stats.rx_crc_errors++; | 
|  | } | 
|  | } else { | 
|  | if (cb >= 15) { | 
|  | if (priv->rx_count < NUM_RX_BUF - 1) { | 
|  | /* Put good frame in FIFO */ | 
|  | priv->rx_len[priv->rx_head] = cb; | 
|  | priv->rx_head = | 
|  | (priv->rx_head + | 
|  | 1) % NUM_RX_BUF; | 
|  | priv->rx_count++; | 
|  | schedule_work(&priv->rx_work); | 
|  | } else { | 
|  | priv->dev->stats.rx_errors++; | 
|  | priv->dev->stats.rx_over_errors++; | 
|  | } | 
|  | } | 
|  | } | 
|  | /* Get ready for new frame */ | 
|  | if (priv->param.dma >= 0) { | 
|  | flags = claim_dma_lock(); | 
|  | set_dma_addr(priv->param.dma, | 
|  | (int) priv->rx_buf[priv->rx_head]); | 
|  | set_dma_count(priv->param.dma, BUF_SIZE); | 
|  | release_dma_lock(flags); | 
|  | } else { | 
|  | priv->rx_ptr = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static void rx_bh(struct work_struct *ugli_api) | 
|  | { | 
|  | struct scc_priv *priv = container_of(ugli_api, struct scc_priv, rx_work); | 
|  | int i = priv->rx_tail; | 
|  | int cb; | 
|  | unsigned long flags; | 
|  | struct sk_buff *skb; | 
|  | unsigned char *data; | 
|  |  | 
|  | spin_lock_irqsave(&priv->ring_lock, flags); | 
|  | while (priv->rx_count) { | 
|  | spin_unlock_irqrestore(&priv->ring_lock, flags); | 
|  | cb = priv->rx_len[i]; | 
|  | /* Allocate buffer */ | 
|  | skb = dev_alloc_skb(cb + 1); | 
|  | if (skb == NULL) { | 
|  | /* Drop packet */ | 
|  | priv->dev->stats.rx_dropped++; | 
|  | } else { | 
|  | /* Fill buffer */ | 
|  | data = skb_put(skb, cb + 1); | 
|  | data[0] = 0; | 
|  | memcpy(&data[1], priv->rx_buf[i], cb); | 
|  | skb->protocol = ax25_type_trans(skb, priv->dev); | 
|  | netif_rx(skb); | 
|  | priv->dev->stats.rx_packets++; | 
|  | priv->dev->stats.rx_bytes += cb; | 
|  | } | 
|  | spin_lock_irqsave(&priv->ring_lock, flags); | 
|  | /* Move tail */ | 
|  | priv->rx_tail = i = (i + 1) % NUM_RX_BUF; | 
|  | priv->rx_count--; | 
|  | } | 
|  | spin_unlock_irqrestore(&priv->ring_lock, flags); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void tx_isr(struct scc_priv *priv) | 
|  | { | 
|  | int i = priv->tx_tail, p = priv->tx_ptr; | 
|  |  | 
|  | /* Suspend TX interrupts if we don't want to send anything. | 
|  | See Figure 2-22. */ | 
|  | if (p == priv->tx_len[i]) { | 
|  | write_scc(priv, R0, RES_Tx_P); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Write characters */ | 
|  | while ((read_scc(priv, R0) & Tx_BUF_EMP) && p < priv->tx_len[i]) { | 
|  | write_scc_data(priv, priv->tx_buf[i][p++], 0); | 
|  | } | 
|  |  | 
|  | /* Reset EOM latch of Z8530 */ | 
|  | if (!priv->tx_ptr && p && priv->chip == Z8530) | 
|  | write_scc(priv, R0, RES_EOM_L); | 
|  |  | 
|  | priv->tx_ptr = p; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void es_isr(struct scc_priv *priv) | 
|  | { | 
|  | int i, rr0, drr0, res; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* Read status, reset interrupt bit (open latches) */ | 
|  | rr0 = read_scc(priv, R0); | 
|  | write_scc(priv, R0, RES_EXT_INT); | 
|  | drr0 = priv->rr0 ^ rr0; | 
|  | priv->rr0 = rr0; | 
|  |  | 
|  | /* Transmit underrun (2.4.9.6). We can't check the TxEOM flag, since | 
|  | it might have already been cleared again by AUTOEOM. */ | 
|  | if (priv->state == TX_DATA) { | 
|  | /* Get remaining bytes */ | 
|  | i = priv->tx_tail; | 
|  | if (priv->param.dma >= 0) { | 
|  | disable_dma(priv->param.dma); | 
|  | flags = claim_dma_lock(); | 
|  | res = get_dma_residue(priv->param.dma); | 
|  | release_dma_lock(flags); | 
|  | } else { | 
|  | res = priv->tx_len[i] - priv->tx_ptr; | 
|  | priv->tx_ptr = 0; | 
|  | } | 
|  | /* Disable DREQ / TX interrupt */ | 
|  | if (priv->param.dma >= 0 && priv->type == TYPE_TWIN) | 
|  | outb(0, priv->card_base + TWIN_DMA_CFG); | 
|  | else | 
|  | write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN); | 
|  | if (res) { | 
|  | /* Update packet statistics */ | 
|  | priv->dev->stats.tx_errors++; | 
|  | priv->dev->stats.tx_fifo_errors++; | 
|  | /* Other underrun interrupts may already be waiting */ | 
|  | write_scc(priv, R0, RES_EXT_INT); | 
|  | write_scc(priv, R0, RES_EXT_INT); | 
|  | } else { | 
|  | /* Update packet statistics */ | 
|  | priv->dev->stats.tx_packets++; | 
|  | priv->dev->stats.tx_bytes += priv->tx_len[i]; | 
|  | /* Remove frame from FIFO */ | 
|  | priv->tx_tail = (i + 1) % NUM_TX_BUF; | 
|  | priv->tx_count--; | 
|  | /* Inform upper layers */ | 
|  | netif_wake_queue(priv->dev); | 
|  | } | 
|  | /* Switch state */ | 
|  | write_scc(priv, R15, 0); | 
|  | if (priv->tx_count && | 
|  | (jiffies - priv->tx_start) < priv->param.txtimeout) { | 
|  | priv->state = TX_PAUSE; | 
|  | start_timer(priv, priv->param.txpause, 0); | 
|  | } else { | 
|  | priv->state = TX_TAIL; | 
|  | start_timer(priv, priv->param.txtail, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* DCD transition */ | 
|  | if (drr0 & DCD) { | 
|  | if (rr0 & DCD) { | 
|  | switch (priv->state) { | 
|  | case IDLE: | 
|  | case WAIT: | 
|  | priv->state = DCD_ON; | 
|  | write_scc(priv, R15, 0); | 
|  | start_timer(priv, priv->param.dcdon, 0); | 
|  | } | 
|  | } else { | 
|  | switch (priv->state) { | 
|  | case RX_ON: | 
|  | rx_off(priv); | 
|  | priv->state = DCD_OFF; | 
|  | write_scc(priv, R15, 0); | 
|  | start_timer(priv, priv->param.dcdoff, 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* CTS transition */ | 
|  | if ((drr0 & CTS) && (~rr0 & CTS) && priv->type != TYPE_TWIN) | 
|  | tm_isr(priv); | 
|  |  | 
|  | } | 
|  |  | 
|  |  | 
|  | static void tm_isr(struct scc_priv *priv) | 
|  | { | 
|  | switch (priv->state) { | 
|  | case TX_HEAD: | 
|  | case TX_PAUSE: | 
|  | tx_on(priv); | 
|  | priv->state = TX_DATA; | 
|  | break; | 
|  | case TX_TAIL: | 
|  | write_scc(priv, R5, TxCRC_ENAB | Tx8); | 
|  | priv->state = RTS_OFF; | 
|  | if (priv->type != TYPE_TWIN) | 
|  | write_scc(priv, R15, 0); | 
|  | start_timer(priv, priv->param.rtsoff, 0); | 
|  | break; | 
|  | case RTS_OFF: | 
|  | write_scc(priv, R15, DCDIE); | 
|  | priv->rr0 = read_scc(priv, R0); | 
|  | if (priv->rr0 & DCD) { | 
|  | priv->dev->stats.collisions++; | 
|  | rx_on(priv); | 
|  | priv->state = RX_ON; | 
|  | } else { | 
|  | priv->state = WAIT; | 
|  | start_timer(priv, priv->param.waittime, DCDIE); | 
|  | } | 
|  | break; | 
|  | case WAIT: | 
|  | if (priv->tx_count) { | 
|  | priv->state = TX_HEAD; | 
|  | priv->tx_start = jiffies; | 
|  | write_scc(priv, R5, | 
|  | TxCRC_ENAB | RTS | TxENAB | Tx8); | 
|  | write_scc(priv, R15, 0); | 
|  | start_timer(priv, priv->param.txdelay, 0); | 
|  | } else { | 
|  | priv->state = IDLE; | 
|  | if (priv->type != TYPE_TWIN) | 
|  | write_scc(priv, R15, DCDIE); | 
|  | } | 
|  | break; | 
|  | case DCD_ON: | 
|  | case DCD_OFF: | 
|  | write_scc(priv, R15, DCDIE); | 
|  | priv->rr0 = read_scc(priv, R0); | 
|  | if (priv->rr0 & DCD) { | 
|  | rx_on(priv); | 
|  | priv->state = RX_ON; | 
|  | } else { | 
|  | priv->state = WAIT; | 
|  | start_timer(priv, | 
|  | random() / priv->param.persist * | 
|  | priv->param.slottime, DCDIE); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } |