| /* | 
 |  *  kernel/sched.c | 
 |  * | 
 |  *  Kernel scheduler and related syscalls | 
 |  * | 
 |  *  Copyright (C) 1991-2002  Linus Torvalds | 
 |  * | 
 |  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and | 
 |  *		make semaphores SMP safe | 
 |  *  1998-11-19	Implemented schedule_timeout() and related stuff | 
 |  *		by Andrea Arcangeli | 
 |  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar: | 
 |  *		hybrid priority-list and round-robin design with | 
 |  *		an array-switch method of distributing timeslices | 
 |  *		and per-CPU runqueues.  Cleanups and useful suggestions | 
 |  *		by Davide Libenzi, preemptible kernel bits by Robert Love. | 
 |  *  2003-09-03	Interactivity tuning by Con Kolivas. | 
 |  *  2004-04-02	Scheduler domains code by Nick Piggin | 
 |  */ | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/module.h> | 
 | #include <linux/nmi.h> | 
 | #include <linux/init.h> | 
 | #include <asm/uaccess.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/smp_lock.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/completion.h> | 
 | #include <linux/kernel_stat.h> | 
 | #include <linux/security.h> | 
 | #include <linux/notifier.h> | 
 | #include <linux/profile.h> | 
 | #include <linux/suspend.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/threads.h> | 
 | #include <linux/timer.h> | 
 | #include <linux/rcupdate.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/cpuset.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/times.h> | 
 | #include <linux/acct.h> | 
 | #include <asm/tlb.h> | 
 |  | 
 | #include <asm/unistd.h> | 
 |  | 
 | /* | 
 |  * Convert user-nice values [ -20 ... 0 ... 19 ] | 
 |  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], | 
 |  * and back. | 
 |  */ | 
 | #define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20) | 
 | #define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20) | 
 | #define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio) | 
 |  | 
 | /* | 
 |  * 'User priority' is the nice value converted to something we | 
 |  * can work with better when scaling various scheduler parameters, | 
 |  * it's a [ 0 ... 39 ] range. | 
 |  */ | 
 | #define USER_PRIO(p)		((p)-MAX_RT_PRIO) | 
 | #define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio) | 
 | #define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO)) | 
 |  | 
 | /* | 
 |  * Some helpers for converting nanosecond timing to jiffy resolution | 
 |  */ | 
 | #define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ)) | 
 | #define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ)) | 
 |  | 
 | /* | 
 |  * These are the 'tuning knobs' of the scheduler: | 
 |  * | 
 |  * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger), | 
 |  * default timeslice is 100 msecs, maximum timeslice is 800 msecs. | 
 |  * Timeslices get refilled after they expire. | 
 |  */ | 
 | #define MIN_TIMESLICE		max(5 * HZ / 1000, 1) | 
 | #define DEF_TIMESLICE		(100 * HZ / 1000) | 
 | #define ON_RUNQUEUE_WEIGHT	 30 | 
 | #define CHILD_PENALTY		 95 | 
 | #define PARENT_PENALTY		100 | 
 | #define EXIT_WEIGHT		  3 | 
 | #define PRIO_BONUS_RATIO	 25 | 
 | #define MAX_BONUS		(MAX_USER_PRIO * PRIO_BONUS_RATIO / 100) | 
 | #define INTERACTIVE_DELTA	  2 | 
 | #define MAX_SLEEP_AVG		(DEF_TIMESLICE * MAX_BONUS) | 
 | #define STARVATION_LIMIT	(MAX_SLEEP_AVG) | 
 | #define NS_MAX_SLEEP_AVG	(JIFFIES_TO_NS(MAX_SLEEP_AVG)) | 
 |  | 
 | /* | 
 |  * If a task is 'interactive' then we reinsert it in the active | 
 |  * array after it has expired its current timeslice. (it will not | 
 |  * continue to run immediately, it will still roundrobin with | 
 |  * other interactive tasks.) | 
 |  * | 
 |  * This part scales the interactivity limit depending on niceness. | 
 |  * | 
 |  * We scale it linearly, offset by the INTERACTIVE_DELTA delta. | 
 |  * Here are a few examples of different nice levels: | 
 |  * | 
 |  *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0] | 
 |  *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0] | 
 |  *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0] | 
 |  *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0] | 
 |  *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0] | 
 |  * | 
 |  * (the X axis represents the possible -5 ... 0 ... +5 dynamic | 
 |  *  priority range a task can explore, a value of '1' means the | 
 |  *  task is rated interactive.) | 
 |  * | 
 |  * Ie. nice +19 tasks can never get 'interactive' enough to be | 
 |  * reinserted into the active array. And only heavily CPU-hog nice -20 | 
 |  * tasks will be expired. Default nice 0 tasks are somewhere between, | 
 |  * it takes some effort for them to get interactive, but it's not | 
 |  * too hard. | 
 |  */ | 
 |  | 
 | #define CURRENT_BONUS(p) \ | 
 | 	(NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \ | 
 | 		MAX_SLEEP_AVG) | 
 |  | 
 | #define GRANULARITY	(10 * HZ / 1000 ? : 1) | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | #define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \ | 
 | 		(1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \ | 
 | 			num_online_cpus()) | 
 | #else | 
 | #define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \ | 
 | 		(1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1))) | 
 | #endif | 
 |  | 
 | #define SCALE(v1,v1_max,v2_max) \ | 
 | 	(v1) * (v2_max) / (v1_max) | 
 |  | 
 | #define DELTA(p) \ | 
 | 	(SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA) | 
 |  | 
 | #define TASK_INTERACTIVE(p) \ | 
 | 	((p)->prio <= (p)->static_prio - DELTA(p)) | 
 |  | 
 | #define INTERACTIVE_SLEEP(p) \ | 
 | 	(JIFFIES_TO_NS(MAX_SLEEP_AVG * \ | 
 | 		(MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1)) | 
 |  | 
 | #define TASK_PREEMPTS_CURR(p, rq) \ | 
 | 	((p)->prio < (rq)->curr->prio) | 
 |  | 
 | /* | 
 |  * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ] | 
 |  * to time slice values: [800ms ... 100ms ... 5ms] | 
 |  * | 
 |  * The higher a thread's priority, the bigger timeslices | 
 |  * it gets during one round of execution. But even the lowest | 
 |  * priority thread gets MIN_TIMESLICE worth of execution time. | 
 |  */ | 
 |  | 
 | #define SCALE_PRIO(x, prio) \ | 
 | 	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE) | 
 |  | 
 | static unsigned int task_timeslice(task_t *p) | 
 | { | 
 | 	if (p->static_prio < NICE_TO_PRIO(0)) | 
 | 		return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio); | 
 | 	else | 
 | 		return SCALE_PRIO(DEF_TIMESLICE, p->static_prio); | 
 | } | 
 | #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran)	\ | 
 | 				< (long long) (sd)->cache_hot_time) | 
 |  | 
 | /* | 
 |  * These are the runqueue data structures: | 
 |  */ | 
 |  | 
 | #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long)) | 
 |  | 
 | typedef struct runqueue runqueue_t; | 
 |  | 
 | struct prio_array { | 
 | 	unsigned int nr_active; | 
 | 	unsigned long bitmap[BITMAP_SIZE]; | 
 | 	struct list_head queue[MAX_PRIO]; | 
 | }; | 
 |  | 
 | /* | 
 |  * This is the main, per-CPU runqueue data structure. | 
 |  * | 
 |  * Locking rule: those places that want to lock multiple runqueues | 
 |  * (such as the load balancing or the thread migration code), lock | 
 |  * acquire operations must be ordered by ascending &runqueue. | 
 |  */ | 
 | struct runqueue { | 
 | 	spinlock_t lock; | 
 |  | 
 | 	/* | 
 | 	 * nr_running and cpu_load should be in the same cacheline because | 
 | 	 * remote CPUs use both these fields when doing load calculation. | 
 | 	 */ | 
 | 	unsigned long nr_running; | 
 | #ifdef CONFIG_SMP | 
 | 	unsigned long cpu_load[3]; | 
 | #endif | 
 | 	unsigned long long nr_switches; | 
 |  | 
 | 	/* | 
 | 	 * This is part of a global counter where only the total sum | 
 | 	 * over all CPUs matters. A task can increase this counter on | 
 | 	 * one CPU and if it got migrated afterwards it may decrease | 
 | 	 * it on another CPU. Always updated under the runqueue lock: | 
 | 	 */ | 
 | 	unsigned long nr_uninterruptible; | 
 |  | 
 | 	unsigned long expired_timestamp; | 
 | 	unsigned long long timestamp_last_tick; | 
 | 	task_t *curr, *idle; | 
 | 	struct mm_struct *prev_mm; | 
 | 	prio_array_t *active, *expired, arrays[2]; | 
 | 	int best_expired_prio; | 
 | 	atomic_t nr_iowait; | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	struct sched_domain *sd; | 
 |  | 
 | 	/* For active balancing */ | 
 | 	int active_balance; | 
 | 	int push_cpu; | 
 |  | 
 | 	task_t *migration_thread; | 
 | 	struct list_head migration_queue; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | 	/* latency stats */ | 
 | 	struct sched_info rq_sched_info; | 
 |  | 
 | 	/* sys_sched_yield() stats */ | 
 | 	unsigned long yld_exp_empty; | 
 | 	unsigned long yld_act_empty; | 
 | 	unsigned long yld_both_empty; | 
 | 	unsigned long yld_cnt; | 
 |  | 
 | 	/* schedule() stats */ | 
 | 	unsigned long sched_switch; | 
 | 	unsigned long sched_cnt; | 
 | 	unsigned long sched_goidle; | 
 |  | 
 | 	/* try_to_wake_up() stats */ | 
 | 	unsigned long ttwu_cnt; | 
 | 	unsigned long ttwu_local; | 
 | #endif | 
 | }; | 
 |  | 
 | static DEFINE_PER_CPU(struct runqueue, runqueues); | 
 |  | 
 | /* | 
 |  * The domain tree (rq->sd) is protected by RCU's quiescent state transition. | 
 |  * See detach_destroy_domains: synchronize_sched for details. | 
 |  * | 
 |  * The domain tree of any CPU may only be accessed from within | 
 |  * preempt-disabled sections. | 
 |  */ | 
 | #define for_each_domain(cpu, domain) \ | 
 | for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent) | 
 |  | 
 | #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu))) | 
 | #define this_rq()		(&__get_cpu_var(runqueues)) | 
 | #define task_rq(p)		cpu_rq(task_cpu(p)) | 
 | #define cpu_curr(cpu)		(cpu_rq(cpu)->curr) | 
 |  | 
 | #ifndef prepare_arch_switch | 
 | # define prepare_arch_switch(next)	do { } while (0) | 
 | #endif | 
 | #ifndef finish_arch_switch | 
 | # define finish_arch_switch(prev)	do { } while (0) | 
 | #endif | 
 |  | 
 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | 
 | static inline int task_running(runqueue_t *rq, task_t *p) | 
 | { | 
 | 	return rq->curr == p; | 
 | } | 
 |  | 
 | static inline void prepare_lock_switch(runqueue_t *rq, task_t *next) | 
 | { | 
 | } | 
 |  | 
 | static inline void finish_lock_switch(runqueue_t *rq, task_t *prev) | 
 | { | 
 | #ifdef CONFIG_DEBUG_SPINLOCK | 
 | 	/* this is a valid case when another task releases the spinlock */ | 
 | 	rq->lock.owner = current; | 
 | #endif | 
 | 	spin_unlock_irq(&rq->lock); | 
 | } | 
 |  | 
 | #else /* __ARCH_WANT_UNLOCKED_CTXSW */ | 
 | static inline int task_running(runqueue_t *rq, task_t *p) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	return p->oncpu; | 
 | #else | 
 | 	return rq->curr == p; | 
 | #endif | 
 | } | 
 |  | 
 | static inline void prepare_lock_switch(runqueue_t *rq, task_t *next) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	/* | 
 | 	 * We can optimise this out completely for !SMP, because the | 
 | 	 * SMP rebalancing from interrupt is the only thing that cares | 
 | 	 * here. | 
 | 	 */ | 
 | 	next->oncpu = 1; | 
 | #endif | 
 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | 
 | 	spin_unlock_irq(&rq->lock); | 
 | #else | 
 | 	spin_unlock(&rq->lock); | 
 | #endif | 
 | } | 
 |  | 
 | static inline void finish_lock_switch(runqueue_t *rq, task_t *prev) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	/* | 
 | 	 * After ->oncpu is cleared, the task can be moved to a different CPU. | 
 | 	 * We must ensure this doesn't happen until the switch is completely | 
 | 	 * finished. | 
 | 	 */ | 
 | 	smp_wmb(); | 
 | 	prev->oncpu = 0; | 
 | #endif | 
 | #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW | 
 | 	local_irq_enable(); | 
 | #endif | 
 | } | 
 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ | 
 |  | 
 | /* | 
 |  * task_rq_lock - lock the runqueue a given task resides on and disable | 
 |  * interrupts.  Note the ordering: we can safely lookup the task_rq without | 
 |  * explicitly disabling preemption. | 
 |  */ | 
 | static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags) | 
 | 	__acquires(rq->lock) | 
 | { | 
 | 	struct runqueue *rq; | 
 |  | 
 | repeat_lock_task: | 
 | 	local_irq_save(*flags); | 
 | 	rq = task_rq(p); | 
 | 	spin_lock(&rq->lock); | 
 | 	if (unlikely(rq != task_rq(p))) { | 
 | 		spin_unlock_irqrestore(&rq->lock, *flags); | 
 | 		goto repeat_lock_task; | 
 | 	} | 
 | 	return rq; | 
 | } | 
 |  | 
 | static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags) | 
 | 	__releases(rq->lock) | 
 | { | 
 | 	spin_unlock_irqrestore(&rq->lock, *flags); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | /* | 
 |  * bump this up when changing the output format or the meaning of an existing | 
 |  * format, so that tools can adapt (or abort) | 
 |  */ | 
 | #define SCHEDSTAT_VERSION 12 | 
 |  | 
 | static int show_schedstat(struct seq_file *seq, void *v) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION); | 
 | 	seq_printf(seq, "timestamp %lu\n", jiffies); | 
 | 	for_each_online_cpu(cpu) { | 
 | 		runqueue_t *rq = cpu_rq(cpu); | 
 | #ifdef CONFIG_SMP | 
 | 		struct sched_domain *sd; | 
 | 		int dcnt = 0; | 
 | #endif | 
 |  | 
 | 		/* runqueue-specific stats */ | 
 | 		seq_printf(seq, | 
 | 		    "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu", | 
 | 		    cpu, rq->yld_both_empty, | 
 | 		    rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt, | 
 | 		    rq->sched_switch, rq->sched_cnt, rq->sched_goidle, | 
 | 		    rq->ttwu_cnt, rq->ttwu_local, | 
 | 		    rq->rq_sched_info.cpu_time, | 
 | 		    rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt); | 
 |  | 
 | 		seq_printf(seq, "\n"); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 		/* domain-specific stats */ | 
 | 		preempt_disable(); | 
 | 		for_each_domain(cpu, sd) { | 
 | 			enum idle_type itype; | 
 | 			char mask_str[NR_CPUS]; | 
 |  | 
 | 			cpumask_scnprintf(mask_str, NR_CPUS, sd->span); | 
 | 			seq_printf(seq, "domain%d %s", dcnt++, mask_str); | 
 | 			for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES; | 
 | 					itype++) { | 
 | 				seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu", | 
 | 				    sd->lb_cnt[itype], | 
 | 				    sd->lb_balanced[itype], | 
 | 				    sd->lb_failed[itype], | 
 | 				    sd->lb_imbalance[itype], | 
 | 				    sd->lb_gained[itype], | 
 | 				    sd->lb_hot_gained[itype], | 
 | 				    sd->lb_nobusyq[itype], | 
 | 				    sd->lb_nobusyg[itype]); | 
 | 			} | 
 | 			seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n", | 
 | 			    sd->alb_cnt, sd->alb_failed, sd->alb_pushed, | 
 | 			    sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed, | 
 | 			    sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed, | 
 | 			    sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance); | 
 | 		} | 
 | 		preempt_enable(); | 
 | #endif | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int schedstat_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32); | 
 | 	char *buf = kmalloc(size, GFP_KERNEL); | 
 | 	struct seq_file *m; | 
 | 	int res; | 
 |  | 
 | 	if (!buf) | 
 | 		return -ENOMEM; | 
 | 	res = single_open(file, show_schedstat, NULL); | 
 | 	if (!res) { | 
 | 		m = file->private_data; | 
 | 		m->buf = buf; | 
 | 		m->size = size; | 
 | 	} else | 
 | 		kfree(buf); | 
 | 	return res; | 
 | } | 
 |  | 
 | struct file_operations proc_schedstat_operations = { | 
 | 	.open    = schedstat_open, | 
 | 	.read    = seq_read, | 
 | 	.llseek  = seq_lseek, | 
 | 	.release = single_release, | 
 | }; | 
 |  | 
 | # define schedstat_inc(rq, field)	do { (rq)->field++; } while (0) | 
 | # define schedstat_add(rq, field, amt)	do { (rq)->field += (amt); } while (0) | 
 | #else /* !CONFIG_SCHEDSTATS */ | 
 | # define schedstat_inc(rq, field)	do { } while (0) | 
 | # define schedstat_add(rq, field, amt)	do { } while (0) | 
 | #endif | 
 |  | 
 | /* | 
 |  * rq_lock - lock a given runqueue and disable interrupts. | 
 |  */ | 
 | static inline runqueue_t *this_rq_lock(void) | 
 | 	__acquires(rq->lock) | 
 | { | 
 | 	runqueue_t *rq; | 
 |  | 
 | 	local_irq_disable(); | 
 | 	rq = this_rq(); | 
 | 	spin_lock(&rq->lock); | 
 |  | 
 | 	return rq; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | /* | 
 |  * Called when a process is dequeued from the active array and given | 
 |  * the cpu.  We should note that with the exception of interactive | 
 |  * tasks, the expired queue will become the active queue after the active | 
 |  * queue is empty, without explicitly dequeuing and requeuing tasks in the | 
 |  * expired queue.  (Interactive tasks may be requeued directly to the | 
 |  * active queue, thus delaying tasks in the expired queue from running; | 
 |  * see scheduler_tick()). | 
 |  * | 
 |  * This function is only called from sched_info_arrive(), rather than | 
 |  * dequeue_task(). Even though a task may be queued and dequeued multiple | 
 |  * times as it is shuffled about, we're really interested in knowing how | 
 |  * long it was from the *first* time it was queued to the time that it | 
 |  * finally hit a cpu. | 
 |  */ | 
 | static inline void sched_info_dequeued(task_t *t) | 
 | { | 
 | 	t->sched_info.last_queued = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Called when a task finally hits the cpu.  We can now calculate how | 
 |  * long it was waiting to run.  We also note when it began so that we | 
 |  * can keep stats on how long its timeslice is. | 
 |  */ | 
 | static inline void sched_info_arrive(task_t *t) | 
 | { | 
 | 	unsigned long now = jiffies, diff = 0; | 
 | 	struct runqueue *rq = task_rq(t); | 
 |  | 
 | 	if (t->sched_info.last_queued) | 
 | 		diff = now - t->sched_info.last_queued; | 
 | 	sched_info_dequeued(t); | 
 | 	t->sched_info.run_delay += diff; | 
 | 	t->sched_info.last_arrival = now; | 
 | 	t->sched_info.pcnt++; | 
 |  | 
 | 	if (!rq) | 
 | 		return; | 
 |  | 
 | 	rq->rq_sched_info.run_delay += diff; | 
 | 	rq->rq_sched_info.pcnt++; | 
 | } | 
 |  | 
 | /* | 
 |  * Called when a process is queued into either the active or expired | 
 |  * array.  The time is noted and later used to determine how long we | 
 |  * had to wait for us to reach the cpu.  Since the expired queue will | 
 |  * become the active queue after active queue is empty, without dequeuing | 
 |  * and requeuing any tasks, we are interested in queuing to either. It | 
 |  * is unusual but not impossible for tasks to be dequeued and immediately | 
 |  * requeued in the same or another array: this can happen in sched_yield(), | 
 |  * set_user_nice(), and even load_balance() as it moves tasks from runqueue | 
 |  * to runqueue. | 
 |  * | 
 |  * This function is only called from enqueue_task(), but also only updates | 
 |  * the timestamp if it is already not set.  It's assumed that | 
 |  * sched_info_dequeued() will clear that stamp when appropriate. | 
 |  */ | 
 | static inline void sched_info_queued(task_t *t) | 
 | { | 
 | 	if (!t->sched_info.last_queued) | 
 | 		t->sched_info.last_queued = jiffies; | 
 | } | 
 |  | 
 | /* | 
 |  * Called when a process ceases being the active-running process, either | 
 |  * voluntarily or involuntarily.  Now we can calculate how long we ran. | 
 |  */ | 
 | static inline void sched_info_depart(task_t *t) | 
 | { | 
 | 	struct runqueue *rq = task_rq(t); | 
 | 	unsigned long diff = jiffies - t->sched_info.last_arrival; | 
 |  | 
 | 	t->sched_info.cpu_time += diff; | 
 |  | 
 | 	if (rq) | 
 | 		rq->rq_sched_info.cpu_time += diff; | 
 | } | 
 |  | 
 | /* | 
 |  * Called when tasks are switched involuntarily due, typically, to expiring | 
 |  * their time slice.  (This may also be called when switching to or from | 
 |  * the idle task.)  We are only called when prev != next. | 
 |  */ | 
 | static inline void sched_info_switch(task_t *prev, task_t *next) | 
 | { | 
 | 	struct runqueue *rq = task_rq(prev); | 
 |  | 
 | 	/* | 
 | 	 * prev now departs the cpu.  It's not interesting to record | 
 | 	 * stats about how efficient we were at scheduling the idle | 
 | 	 * process, however. | 
 | 	 */ | 
 | 	if (prev != rq->idle) | 
 | 		sched_info_depart(prev); | 
 |  | 
 | 	if (next != rq->idle) | 
 | 		sched_info_arrive(next); | 
 | } | 
 | #else | 
 | #define sched_info_queued(t)		do { } while (0) | 
 | #define sched_info_switch(t, next)	do { } while (0) | 
 | #endif /* CONFIG_SCHEDSTATS */ | 
 |  | 
 | /* | 
 |  * Adding/removing a task to/from a priority array: | 
 |  */ | 
 | static void dequeue_task(struct task_struct *p, prio_array_t *array) | 
 | { | 
 | 	array->nr_active--; | 
 | 	list_del(&p->run_list); | 
 | 	if (list_empty(array->queue + p->prio)) | 
 | 		__clear_bit(p->prio, array->bitmap); | 
 | } | 
 |  | 
 | static void enqueue_task(struct task_struct *p, prio_array_t *array) | 
 | { | 
 | 	sched_info_queued(p); | 
 | 	list_add_tail(&p->run_list, array->queue + p->prio); | 
 | 	__set_bit(p->prio, array->bitmap); | 
 | 	array->nr_active++; | 
 | 	p->array = array; | 
 | } | 
 |  | 
 | /* | 
 |  * Put task to the end of the run list without the overhead of dequeue | 
 |  * followed by enqueue. | 
 |  */ | 
 | static void requeue_task(struct task_struct *p, prio_array_t *array) | 
 | { | 
 | 	list_move_tail(&p->run_list, array->queue + p->prio); | 
 | } | 
 |  | 
 | static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array) | 
 | { | 
 | 	list_add(&p->run_list, array->queue + p->prio); | 
 | 	__set_bit(p->prio, array->bitmap); | 
 | 	array->nr_active++; | 
 | 	p->array = array; | 
 | } | 
 |  | 
 | /* | 
 |  * effective_prio - return the priority that is based on the static | 
 |  * priority but is modified by bonuses/penalties. | 
 |  * | 
 |  * We scale the actual sleep average [0 .... MAX_SLEEP_AVG] | 
 |  * into the -5 ... 0 ... +5 bonus/penalty range. | 
 |  * | 
 |  * We use 25% of the full 0...39 priority range so that: | 
 |  * | 
 |  * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs. | 
 |  * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks. | 
 |  * | 
 |  * Both properties are important to certain workloads. | 
 |  */ | 
 | static int effective_prio(task_t *p) | 
 | { | 
 | 	int bonus, prio; | 
 |  | 
 | 	if (rt_task(p)) | 
 | 		return p->prio; | 
 |  | 
 | 	bonus = CURRENT_BONUS(p) - MAX_BONUS / 2; | 
 |  | 
 | 	prio = p->static_prio - bonus; | 
 | 	if (prio < MAX_RT_PRIO) | 
 | 		prio = MAX_RT_PRIO; | 
 | 	if (prio > MAX_PRIO-1) | 
 | 		prio = MAX_PRIO-1; | 
 | 	return prio; | 
 | } | 
 |  | 
 | /* | 
 |  * __activate_task - move a task to the runqueue. | 
 |  */ | 
 | static inline void __activate_task(task_t *p, runqueue_t *rq) | 
 | { | 
 | 	enqueue_task(p, rq->active); | 
 | 	rq->nr_running++; | 
 | } | 
 |  | 
 | /* | 
 |  * __activate_idle_task - move idle task to the _front_ of runqueue. | 
 |  */ | 
 | static inline void __activate_idle_task(task_t *p, runqueue_t *rq) | 
 | { | 
 | 	enqueue_task_head(p, rq->active); | 
 | 	rq->nr_running++; | 
 | } | 
 |  | 
 | static int recalc_task_prio(task_t *p, unsigned long long now) | 
 | { | 
 | 	/* Caller must always ensure 'now >= p->timestamp' */ | 
 | 	unsigned long long __sleep_time = now - p->timestamp; | 
 | 	unsigned long sleep_time; | 
 |  | 
 | 	if (__sleep_time > NS_MAX_SLEEP_AVG) | 
 | 		sleep_time = NS_MAX_SLEEP_AVG; | 
 | 	else | 
 | 		sleep_time = (unsigned long)__sleep_time; | 
 |  | 
 | 	if (likely(sleep_time > 0)) { | 
 | 		/* | 
 | 		 * User tasks that sleep a long time are categorised as | 
 | 		 * idle and will get just interactive status to stay active & | 
 | 		 * prevent them suddenly becoming cpu hogs and starving | 
 | 		 * other processes. | 
 | 		 */ | 
 | 		if (p->mm && p->activated != -1 && | 
 | 			sleep_time > INTERACTIVE_SLEEP(p)) { | 
 | 				p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG - | 
 | 						DEF_TIMESLICE); | 
 | 		} else { | 
 | 			/* | 
 | 			 * The lower the sleep avg a task has the more | 
 | 			 * rapidly it will rise with sleep time. | 
 | 			 */ | 
 | 			sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1; | 
 |  | 
 | 			/* | 
 | 			 * Tasks waking from uninterruptible sleep are | 
 | 			 * limited in their sleep_avg rise as they | 
 | 			 * are likely to be waiting on I/O | 
 | 			 */ | 
 | 			if (p->activated == -1 && p->mm) { | 
 | 				if (p->sleep_avg >= INTERACTIVE_SLEEP(p)) | 
 | 					sleep_time = 0; | 
 | 				else if (p->sleep_avg + sleep_time >= | 
 | 						INTERACTIVE_SLEEP(p)) { | 
 | 					p->sleep_avg = INTERACTIVE_SLEEP(p); | 
 | 					sleep_time = 0; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * This code gives a bonus to interactive tasks. | 
 | 			 * | 
 | 			 * The boost works by updating the 'average sleep time' | 
 | 			 * value here, based on ->timestamp. The more time a | 
 | 			 * task spends sleeping, the higher the average gets - | 
 | 			 * and the higher the priority boost gets as well. | 
 | 			 */ | 
 | 			p->sleep_avg += sleep_time; | 
 |  | 
 | 			if (p->sleep_avg > NS_MAX_SLEEP_AVG) | 
 | 				p->sleep_avg = NS_MAX_SLEEP_AVG; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return effective_prio(p); | 
 | } | 
 |  | 
 | /* | 
 |  * activate_task - move a task to the runqueue and do priority recalculation | 
 |  * | 
 |  * Update all the scheduling statistics stuff. (sleep average | 
 |  * calculation, priority modifiers, etc.) | 
 |  */ | 
 | static void activate_task(task_t *p, runqueue_t *rq, int local) | 
 | { | 
 | 	unsigned long long now; | 
 |  | 
 | 	now = sched_clock(); | 
 | #ifdef CONFIG_SMP | 
 | 	if (!local) { | 
 | 		/* Compensate for drifting sched_clock */ | 
 | 		runqueue_t *this_rq = this_rq(); | 
 | 		now = (now - this_rq->timestamp_last_tick) | 
 | 			+ rq->timestamp_last_tick; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	p->prio = recalc_task_prio(p, now); | 
 |  | 
 | 	/* | 
 | 	 * This checks to make sure it's not an uninterruptible task | 
 | 	 * that is now waking up. | 
 | 	 */ | 
 | 	if (!p->activated) { | 
 | 		/* | 
 | 		 * Tasks which were woken up by interrupts (ie. hw events) | 
 | 		 * are most likely of interactive nature. So we give them | 
 | 		 * the credit of extending their sleep time to the period | 
 | 		 * of time they spend on the runqueue, waiting for execution | 
 | 		 * on a CPU, first time around: | 
 | 		 */ | 
 | 		if (in_interrupt()) | 
 | 			p->activated = 2; | 
 | 		else { | 
 | 			/* | 
 | 			 * Normal first-time wakeups get a credit too for | 
 | 			 * on-runqueue time, but it will be weighted down: | 
 | 			 */ | 
 | 			p->activated = 1; | 
 | 		} | 
 | 	} | 
 | 	p->timestamp = now; | 
 |  | 
 | 	__activate_task(p, rq); | 
 | } | 
 |  | 
 | /* | 
 |  * deactivate_task - remove a task from the runqueue. | 
 |  */ | 
 | static void deactivate_task(struct task_struct *p, runqueue_t *rq) | 
 | { | 
 | 	rq->nr_running--; | 
 | 	dequeue_task(p, p->array); | 
 | 	p->array = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * resched_task - mark a task 'to be rescheduled now'. | 
 |  * | 
 |  * On UP this means the setting of the need_resched flag, on SMP it | 
 |  * might also involve a cross-CPU call to trigger the scheduler on | 
 |  * the target CPU. | 
 |  */ | 
 | #ifdef CONFIG_SMP | 
 | static void resched_task(task_t *p) | 
 | { | 
 | 	int need_resched, nrpolling; | 
 |  | 
 | 	assert_spin_locked(&task_rq(p)->lock); | 
 |  | 
 | 	/* minimise the chance of sending an interrupt to poll_idle() */ | 
 | 	nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG); | 
 | 	need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED); | 
 | 	nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG); | 
 |  | 
 | 	if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id())) | 
 | 		smp_send_reschedule(task_cpu(p)); | 
 | } | 
 | #else | 
 | static inline void resched_task(task_t *p) | 
 | { | 
 | 	set_tsk_need_resched(p); | 
 | } | 
 | #endif | 
 |  | 
 | /** | 
 |  * task_curr - is this task currently executing on a CPU? | 
 |  * @p: the task in question. | 
 |  */ | 
 | inline int task_curr(const task_t *p) | 
 | { | 
 | 	return cpu_curr(task_cpu(p)) == p; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | typedef struct { | 
 | 	struct list_head list; | 
 |  | 
 | 	task_t *task; | 
 | 	int dest_cpu; | 
 |  | 
 | 	struct completion done; | 
 | } migration_req_t; | 
 |  | 
 | /* | 
 |  * The task's runqueue lock must be held. | 
 |  * Returns true if you have to wait for migration thread. | 
 |  */ | 
 | static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req) | 
 | { | 
 | 	runqueue_t *rq = task_rq(p); | 
 |  | 
 | 	/* | 
 | 	 * If the task is not on a runqueue (and not running), then | 
 | 	 * it is sufficient to simply update the task's cpu field. | 
 | 	 */ | 
 | 	if (!p->array && !task_running(rq, p)) { | 
 | 		set_task_cpu(p, dest_cpu); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	init_completion(&req->done); | 
 | 	req->task = p; | 
 | 	req->dest_cpu = dest_cpu; | 
 | 	list_add(&req->list, &rq->migration_queue); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * wait_task_inactive - wait for a thread to unschedule. | 
 |  * | 
 |  * The caller must ensure that the task *will* unschedule sometime soon, | 
 |  * else this function might spin for a *long* time. This function can't | 
 |  * be called with interrupts off, or it may introduce deadlock with | 
 |  * smp_call_function() if an IPI is sent by the same process we are | 
 |  * waiting to become inactive. | 
 |  */ | 
 | void wait_task_inactive(task_t *p) | 
 | { | 
 | 	unsigned long flags; | 
 | 	runqueue_t *rq; | 
 | 	int preempted; | 
 |  | 
 | repeat: | 
 | 	rq = task_rq_lock(p, &flags); | 
 | 	/* Must be off runqueue entirely, not preempted. */ | 
 | 	if (unlikely(p->array || task_running(rq, p))) { | 
 | 		/* If it's preempted, we yield.  It could be a while. */ | 
 | 		preempted = !task_running(rq, p); | 
 | 		task_rq_unlock(rq, &flags); | 
 | 		cpu_relax(); | 
 | 		if (preempted) | 
 | 			yield(); | 
 | 		goto repeat; | 
 | 	} | 
 | 	task_rq_unlock(rq, &flags); | 
 | } | 
 |  | 
 | /*** | 
 |  * kick_process - kick a running thread to enter/exit the kernel | 
 |  * @p: the to-be-kicked thread | 
 |  * | 
 |  * Cause a process which is running on another CPU to enter | 
 |  * kernel-mode, without any delay. (to get signals handled.) | 
 |  * | 
 |  * NOTE: this function doesnt have to take the runqueue lock, | 
 |  * because all it wants to ensure is that the remote task enters | 
 |  * the kernel. If the IPI races and the task has been migrated | 
 |  * to another CPU then no harm is done and the purpose has been | 
 |  * achieved as well. | 
 |  */ | 
 | void kick_process(task_t *p) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	preempt_disable(); | 
 | 	cpu = task_cpu(p); | 
 | 	if ((cpu != smp_processor_id()) && task_curr(p)) | 
 | 		smp_send_reschedule(cpu); | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | /* | 
 |  * Return a low guess at the load of a migration-source cpu. | 
 |  * | 
 |  * We want to under-estimate the load of migration sources, to | 
 |  * balance conservatively. | 
 |  */ | 
 | static inline unsigned long source_load(int cpu, int type) | 
 | { | 
 | 	runqueue_t *rq = cpu_rq(cpu); | 
 | 	unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE; | 
 | 	if (type == 0) | 
 | 		return load_now; | 
 |  | 
 | 	return min(rq->cpu_load[type-1], load_now); | 
 | } | 
 |  | 
 | /* | 
 |  * Return a high guess at the load of a migration-target cpu | 
 |  */ | 
 | static inline unsigned long target_load(int cpu, int type) | 
 | { | 
 | 	runqueue_t *rq = cpu_rq(cpu); | 
 | 	unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE; | 
 | 	if (type == 0) | 
 | 		return load_now; | 
 |  | 
 | 	return max(rq->cpu_load[type-1], load_now); | 
 | } | 
 |  | 
 | /* | 
 |  * find_idlest_group finds and returns the least busy CPU group within the | 
 |  * domain. | 
 |  */ | 
 | static struct sched_group * | 
 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) | 
 | { | 
 | 	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups; | 
 | 	unsigned long min_load = ULONG_MAX, this_load = 0; | 
 | 	int load_idx = sd->forkexec_idx; | 
 | 	int imbalance = 100 + (sd->imbalance_pct-100)/2; | 
 |  | 
 | 	do { | 
 | 		unsigned long load, avg_load; | 
 | 		int local_group; | 
 | 		int i; | 
 |  | 
 | 		/* Skip over this group if it has no CPUs allowed */ | 
 | 		if (!cpus_intersects(group->cpumask, p->cpus_allowed)) | 
 | 			goto nextgroup; | 
 |  | 
 | 		local_group = cpu_isset(this_cpu, group->cpumask); | 
 |  | 
 | 		/* Tally up the load of all CPUs in the group */ | 
 | 		avg_load = 0; | 
 |  | 
 | 		for_each_cpu_mask(i, group->cpumask) { | 
 | 			/* Bias balancing toward cpus of our domain */ | 
 | 			if (local_group) | 
 | 				load = source_load(i, load_idx); | 
 | 			else | 
 | 				load = target_load(i, load_idx); | 
 |  | 
 | 			avg_load += load; | 
 | 		} | 
 |  | 
 | 		/* Adjust by relative CPU power of the group */ | 
 | 		avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power; | 
 |  | 
 | 		if (local_group) { | 
 | 			this_load = avg_load; | 
 | 			this = group; | 
 | 		} else if (avg_load < min_load) { | 
 | 			min_load = avg_load; | 
 | 			idlest = group; | 
 | 		} | 
 | nextgroup: | 
 | 		group = group->next; | 
 | 	} while (group != sd->groups); | 
 |  | 
 | 	if (!idlest || 100*this_load < imbalance*min_load) | 
 | 		return NULL; | 
 | 	return idlest; | 
 | } | 
 |  | 
 | /* | 
 |  * find_idlest_queue - find the idlest runqueue among the cpus in group. | 
 |  */ | 
 | static int | 
 | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) | 
 | { | 
 | 	cpumask_t tmp; | 
 | 	unsigned long load, min_load = ULONG_MAX; | 
 | 	int idlest = -1; | 
 | 	int i; | 
 |  | 
 | 	/* Traverse only the allowed CPUs */ | 
 | 	cpus_and(tmp, group->cpumask, p->cpus_allowed); | 
 |  | 
 | 	for_each_cpu_mask(i, tmp) { | 
 | 		load = source_load(i, 0); | 
 |  | 
 | 		if (load < min_load || (load == min_load && i == this_cpu)) { | 
 | 			min_load = load; | 
 | 			idlest = i; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return idlest; | 
 | } | 
 |  | 
 | /* | 
 |  * sched_balance_self: balance the current task (running on cpu) in domains | 
 |  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and | 
 |  * SD_BALANCE_EXEC. | 
 |  * | 
 |  * Balance, ie. select the least loaded group. | 
 |  * | 
 |  * Returns the target CPU number, or the same CPU if no balancing is needed. | 
 |  * | 
 |  * preempt must be disabled. | 
 |  */ | 
 | static int sched_balance_self(int cpu, int flag) | 
 | { | 
 | 	struct task_struct *t = current; | 
 | 	struct sched_domain *tmp, *sd = NULL; | 
 |  | 
 | 	for_each_domain(cpu, tmp) | 
 | 		if (tmp->flags & flag) | 
 | 			sd = tmp; | 
 |  | 
 | 	while (sd) { | 
 | 		cpumask_t span; | 
 | 		struct sched_group *group; | 
 | 		int new_cpu; | 
 | 		int weight; | 
 |  | 
 | 		span = sd->span; | 
 | 		group = find_idlest_group(sd, t, cpu); | 
 | 		if (!group) | 
 | 			goto nextlevel; | 
 |  | 
 | 		new_cpu = find_idlest_cpu(group, t, cpu); | 
 | 		if (new_cpu == -1 || new_cpu == cpu) | 
 | 			goto nextlevel; | 
 |  | 
 | 		/* Now try balancing at a lower domain level */ | 
 | 		cpu = new_cpu; | 
 | nextlevel: | 
 | 		sd = NULL; | 
 | 		weight = cpus_weight(span); | 
 | 		for_each_domain(cpu, tmp) { | 
 | 			if (weight <= cpus_weight(tmp->span)) | 
 | 				break; | 
 | 			if (tmp->flags & flag) | 
 | 				sd = tmp; | 
 | 		} | 
 | 		/* while loop will break here if sd == NULL */ | 
 | 	} | 
 |  | 
 | 	return cpu; | 
 | } | 
 |  | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | /* | 
 |  * wake_idle() will wake a task on an idle cpu if task->cpu is | 
 |  * not idle and an idle cpu is available.  The span of cpus to | 
 |  * search starts with cpus closest then further out as needed, | 
 |  * so we always favor a closer, idle cpu. | 
 |  * | 
 |  * Returns the CPU we should wake onto. | 
 |  */ | 
 | #if defined(ARCH_HAS_SCHED_WAKE_IDLE) | 
 | static int wake_idle(int cpu, task_t *p) | 
 | { | 
 | 	cpumask_t tmp; | 
 | 	struct sched_domain *sd; | 
 | 	int i; | 
 |  | 
 | 	if (idle_cpu(cpu)) | 
 | 		return cpu; | 
 |  | 
 | 	for_each_domain(cpu, sd) { | 
 | 		if (sd->flags & SD_WAKE_IDLE) { | 
 | 			cpus_and(tmp, sd->span, p->cpus_allowed); | 
 | 			for_each_cpu_mask(i, tmp) { | 
 | 				if (idle_cpu(i)) | 
 | 					return i; | 
 | 			} | 
 | 		} | 
 | 		else | 
 | 			break; | 
 | 	} | 
 | 	return cpu; | 
 | } | 
 | #else | 
 | static inline int wake_idle(int cpu, task_t *p) | 
 | { | 
 | 	return cpu; | 
 | } | 
 | #endif | 
 |  | 
 | /*** | 
 |  * try_to_wake_up - wake up a thread | 
 |  * @p: the to-be-woken-up thread | 
 |  * @state: the mask of task states that can be woken | 
 |  * @sync: do a synchronous wakeup? | 
 |  * | 
 |  * Put it on the run-queue if it's not already there. The "current" | 
 |  * thread is always on the run-queue (except when the actual | 
 |  * re-schedule is in progress), and as such you're allowed to do | 
 |  * the simpler "current->state = TASK_RUNNING" to mark yourself | 
 |  * runnable without the overhead of this. | 
 |  * | 
 |  * returns failure only if the task is already active. | 
 |  */ | 
 | static int try_to_wake_up(task_t *p, unsigned int state, int sync) | 
 | { | 
 | 	int cpu, this_cpu, success = 0; | 
 | 	unsigned long flags; | 
 | 	long old_state; | 
 | 	runqueue_t *rq; | 
 | #ifdef CONFIG_SMP | 
 | 	unsigned long load, this_load; | 
 | 	struct sched_domain *sd, *this_sd = NULL; | 
 | 	int new_cpu; | 
 | #endif | 
 |  | 
 | 	rq = task_rq_lock(p, &flags); | 
 | 	old_state = p->state; | 
 | 	if (!(old_state & state)) | 
 | 		goto out; | 
 |  | 
 | 	if (p->array) | 
 | 		goto out_running; | 
 |  | 
 | 	cpu = task_cpu(p); | 
 | 	this_cpu = smp_processor_id(); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	if (unlikely(task_running(rq, p))) | 
 | 		goto out_activate; | 
 |  | 
 | 	new_cpu = cpu; | 
 |  | 
 | 	schedstat_inc(rq, ttwu_cnt); | 
 | 	if (cpu == this_cpu) { | 
 | 		schedstat_inc(rq, ttwu_local); | 
 | 		goto out_set_cpu; | 
 | 	} | 
 |  | 
 | 	for_each_domain(this_cpu, sd) { | 
 | 		if (cpu_isset(cpu, sd->span)) { | 
 | 			schedstat_inc(sd, ttwu_wake_remote); | 
 | 			this_sd = sd; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed))) | 
 | 		goto out_set_cpu; | 
 |  | 
 | 	/* | 
 | 	 * Check for affine wakeup and passive balancing possibilities. | 
 | 	 */ | 
 | 	if (this_sd) { | 
 | 		int idx = this_sd->wake_idx; | 
 | 		unsigned int imbalance; | 
 |  | 
 | 		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2; | 
 |  | 
 | 		load = source_load(cpu, idx); | 
 | 		this_load = target_load(this_cpu, idx); | 
 |  | 
 | 		new_cpu = this_cpu; /* Wake to this CPU if we can */ | 
 |  | 
 | 		if (this_sd->flags & SD_WAKE_AFFINE) { | 
 | 			unsigned long tl = this_load; | 
 | 			/* | 
 | 			 * If sync wakeup then subtract the (maximum possible) | 
 | 			 * effect of the currently running task from the load | 
 | 			 * of the current CPU: | 
 | 			 */ | 
 | 			if (sync) | 
 | 				tl -= SCHED_LOAD_SCALE; | 
 |  | 
 | 			if ((tl <= load && | 
 | 				tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) || | 
 | 				100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) { | 
 | 				/* | 
 | 				 * This domain has SD_WAKE_AFFINE and | 
 | 				 * p is cache cold in this domain, and | 
 | 				 * there is no bad imbalance. | 
 | 				 */ | 
 | 				schedstat_inc(this_sd, ttwu_move_affine); | 
 | 				goto out_set_cpu; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Start passive balancing when half the imbalance_pct | 
 | 		 * limit is reached. | 
 | 		 */ | 
 | 		if (this_sd->flags & SD_WAKE_BALANCE) { | 
 | 			if (imbalance*this_load <= 100*load) { | 
 | 				schedstat_inc(this_sd, ttwu_move_balance); | 
 | 				goto out_set_cpu; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */ | 
 | out_set_cpu: | 
 | 	new_cpu = wake_idle(new_cpu, p); | 
 | 	if (new_cpu != cpu) { | 
 | 		set_task_cpu(p, new_cpu); | 
 | 		task_rq_unlock(rq, &flags); | 
 | 		/* might preempt at this point */ | 
 | 		rq = task_rq_lock(p, &flags); | 
 | 		old_state = p->state; | 
 | 		if (!(old_state & state)) | 
 | 			goto out; | 
 | 		if (p->array) | 
 | 			goto out_running; | 
 |  | 
 | 		this_cpu = smp_processor_id(); | 
 | 		cpu = task_cpu(p); | 
 | 	} | 
 |  | 
 | out_activate: | 
 | #endif /* CONFIG_SMP */ | 
 | 	if (old_state == TASK_UNINTERRUPTIBLE) { | 
 | 		rq->nr_uninterruptible--; | 
 | 		/* | 
 | 		 * Tasks on involuntary sleep don't earn | 
 | 		 * sleep_avg beyond just interactive state. | 
 | 		 */ | 
 | 		p->activated = -1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Tasks that have marked their sleep as noninteractive get | 
 | 	 * woken up without updating their sleep average. (i.e. their | 
 | 	 * sleep is handled in a priority-neutral manner, no priority | 
 | 	 * boost and no penalty.) | 
 | 	 */ | 
 | 	if (old_state & TASK_NONINTERACTIVE) | 
 | 		__activate_task(p, rq); | 
 | 	else | 
 | 		activate_task(p, rq, cpu == this_cpu); | 
 | 	/* | 
 | 	 * Sync wakeups (i.e. those types of wakeups where the waker | 
 | 	 * has indicated that it will leave the CPU in short order) | 
 | 	 * don't trigger a preemption, if the woken up task will run on | 
 | 	 * this cpu. (in this case the 'I will reschedule' promise of | 
 | 	 * the waker guarantees that the freshly woken up task is going | 
 | 	 * to be considered on this CPU.) | 
 | 	 */ | 
 | 	if (!sync || cpu != this_cpu) { | 
 | 		if (TASK_PREEMPTS_CURR(p, rq)) | 
 | 			resched_task(rq->curr); | 
 | 	} | 
 | 	success = 1; | 
 |  | 
 | out_running: | 
 | 	p->state = TASK_RUNNING; | 
 | out: | 
 | 	task_rq_unlock(rq, &flags); | 
 |  | 
 | 	return success; | 
 | } | 
 |  | 
 | int fastcall wake_up_process(task_t *p) | 
 | { | 
 | 	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED | | 
 | 				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(wake_up_process); | 
 |  | 
 | int fastcall wake_up_state(task_t *p, unsigned int state) | 
 | { | 
 | 	return try_to_wake_up(p, state, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Perform scheduler related setup for a newly forked process p. | 
 |  * p is forked by current. | 
 |  */ | 
 | void fastcall sched_fork(task_t *p, int clone_flags) | 
 | { | 
 | 	int cpu = get_cpu(); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	cpu = sched_balance_self(cpu, SD_BALANCE_FORK); | 
 | #endif | 
 | 	set_task_cpu(p, cpu); | 
 |  | 
 | 	/* | 
 | 	 * We mark the process as running here, but have not actually | 
 | 	 * inserted it onto the runqueue yet. This guarantees that | 
 | 	 * nobody will actually run it, and a signal or other external | 
 | 	 * event cannot wake it up and insert it on the runqueue either. | 
 | 	 */ | 
 | 	p->state = TASK_RUNNING; | 
 | 	INIT_LIST_HEAD(&p->run_list); | 
 | 	p->array = NULL; | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | 	memset(&p->sched_info, 0, sizeof(p->sched_info)); | 
 | #endif | 
 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) | 
 | 	p->oncpu = 0; | 
 | #endif | 
 | #ifdef CONFIG_PREEMPT | 
 | 	/* Want to start with kernel preemption disabled. */ | 
 | 	p->thread_info->preempt_count = 1; | 
 | #endif | 
 | 	/* | 
 | 	 * Share the timeslice between parent and child, thus the | 
 | 	 * total amount of pending timeslices in the system doesn't change, | 
 | 	 * resulting in more scheduling fairness. | 
 | 	 */ | 
 | 	local_irq_disable(); | 
 | 	p->time_slice = (current->time_slice + 1) >> 1; | 
 | 	/* | 
 | 	 * The remainder of the first timeslice might be recovered by | 
 | 	 * the parent if the child exits early enough. | 
 | 	 */ | 
 | 	p->first_time_slice = 1; | 
 | 	current->time_slice >>= 1; | 
 | 	p->timestamp = sched_clock(); | 
 | 	if (unlikely(!current->time_slice)) { | 
 | 		/* | 
 | 		 * This case is rare, it happens when the parent has only | 
 | 		 * a single jiffy left from its timeslice. Taking the | 
 | 		 * runqueue lock is not a problem. | 
 | 		 */ | 
 | 		current->time_slice = 1; | 
 | 		scheduler_tick(); | 
 | 	} | 
 | 	local_irq_enable(); | 
 | 	put_cpu(); | 
 | } | 
 |  | 
 | /* | 
 |  * wake_up_new_task - wake up a newly created task for the first time. | 
 |  * | 
 |  * This function will do some initial scheduler statistics housekeeping | 
 |  * that must be done for every newly created context, then puts the task | 
 |  * on the runqueue and wakes it. | 
 |  */ | 
 | void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int this_cpu, cpu; | 
 | 	runqueue_t *rq, *this_rq; | 
 |  | 
 | 	rq = task_rq_lock(p, &flags); | 
 | 	BUG_ON(p->state != TASK_RUNNING); | 
 | 	this_cpu = smp_processor_id(); | 
 | 	cpu = task_cpu(p); | 
 |  | 
 | 	/* | 
 | 	 * We decrease the sleep average of forking parents | 
 | 	 * and children as well, to keep max-interactive tasks | 
 | 	 * from forking tasks that are max-interactive. The parent | 
 | 	 * (current) is done further down, under its lock. | 
 | 	 */ | 
 | 	p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) * | 
 | 		CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS); | 
 |  | 
 | 	p->prio = effective_prio(p); | 
 |  | 
 | 	if (likely(cpu == this_cpu)) { | 
 | 		if (!(clone_flags & CLONE_VM)) { | 
 | 			/* | 
 | 			 * The VM isn't cloned, so we're in a good position to | 
 | 			 * do child-runs-first in anticipation of an exec. This | 
 | 			 * usually avoids a lot of COW overhead. | 
 | 			 */ | 
 | 			if (unlikely(!current->array)) | 
 | 				__activate_task(p, rq); | 
 | 			else { | 
 | 				p->prio = current->prio; | 
 | 				list_add_tail(&p->run_list, ¤t->run_list); | 
 | 				p->array = current->array; | 
 | 				p->array->nr_active++; | 
 | 				rq->nr_running++; | 
 | 			} | 
 | 			set_need_resched(); | 
 | 		} else | 
 | 			/* Run child last */ | 
 | 			__activate_task(p, rq); | 
 | 		/* | 
 | 		 * We skip the following code due to cpu == this_cpu | 
 | 	 	 * | 
 | 		 *   task_rq_unlock(rq, &flags); | 
 | 		 *   this_rq = task_rq_lock(current, &flags); | 
 | 		 */ | 
 | 		this_rq = rq; | 
 | 	} else { | 
 | 		this_rq = cpu_rq(this_cpu); | 
 |  | 
 | 		/* | 
 | 		 * Not the local CPU - must adjust timestamp. This should | 
 | 		 * get optimised away in the !CONFIG_SMP case. | 
 | 		 */ | 
 | 		p->timestamp = (p->timestamp - this_rq->timestamp_last_tick) | 
 | 					+ rq->timestamp_last_tick; | 
 | 		__activate_task(p, rq); | 
 | 		if (TASK_PREEMPTS_CURR(p, rq)) | 
 | 			resched_task(rq->curr); | 
 |  | 
 | 		/* | 
 | 		 * Parent and child are on different CPUs, now get the | 
 | 		 * parent runqueue to update the parent's ->sleep_avg: | 
 | 		 */ | 
 | 		task_rq_unlock(rq, &flags); | 
 | 		this_rq = task_rq_lock(current, &flags); | 
 | 	} | 
 | 	current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) * | 
 | 		PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS); | 
 | 	task_rq_unlock(this_rq, &flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Potentially available exiting-child timeslices are | 
 |  * retrieved here - this way the parent does not get | 
 |  * penalized for creating too many threads. | 
 |  * | 
 |  * (this cannot be used to 'generate' timeslices | 
 |  * artificially, because any timeslice recovered here | 
 |  * was given away by the parent in the first place.) | 
 |  */ | 
 | void fastcall sched_exit(task_t *p) | 
 | { | 
 | 	unsigned long flags; | 
 | 	runqueue_t *rq; | 
 |  | 
 | 	/* | 
 | 	 * If the child was a (relative-) CPU hog then decrease | 
 | 	 * the sleep_avg of the parent as well. | 
 | 	 */ | 
 | 	rq = task_rq_lock(p->parent, &flags); | 
 | 	if (p->first_time_slice) { | 
 | 		p->parent->time_slice += p->time_slice; | 
 | 		if (unlikely(p->parent->time_slice > task_timeslice(p))) | 
 | 			p->parent->time_slice = task_timeslice(p); | 
 | 	} | 
 | 	if (p->sleep_avg < p->parent->sleep_avg) | 
 | 		p->parent->sleep_avg = p->parent->sleep_avg / | 
 | 		(EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg / | 
 | 		(EXIT_WEIGHT + 1); | 
 | 	task_rq_unlock(rq, &flags); | 
 | } | 
 |  | 
 | /** | 
 |  * prepare_task_switch - prepare to switch tasks | 
 |  * @rq: the runqueue preparing to switch | 
 |  * @next: the task we are going to switch to. | 
 |  * | 
 |  * This is called with the rq lock held and interrupts off. It must | 
 |  * be paired with a subsequent finish_task_switch after the context | 
 |  * switch. | 
 |  * | 
 |  * prepare_task_switch sets up locking and calls architecture specific | 
 |  * hooks. | 
 |  */ | 
 | static inline void prepare_task_switch(runqueue_t *rq, task_t *next) | 
 | { | 
 | 	prepare_lock_switch(rq, next); | 
 | 	prepare_arch_switch(next); | 
 | } | 
 |  | 
 | /** | 
 |  * finish_task_switch - clean up after a task-switch | 
 |  * @rq: runqueue associated with task-switch | 
 |  * @prev: the thread we just switched away from. | 
 |  * | 
 |  * finish_task_switch must be called after the context switch, paired | 
 |  * with a prepare_task_switch call before the context switch. | 
 |  * finish_task_switch will reconcile locking set up by prepare_task_switch, | 
 |  * and do any other architecture-specific cleanup actions. | 
 |  * | 
 |  * Note that we may have delayed dropping an mm in context_switch(). If | 
 |  * so, we finish that here outside of the runqueue lock.  (Doing it | 
 |  * with the lock held can cause deadlocks; see schedule() for | 
 |  * details.) | 
 |  */ | 
 | static inline void finish_task_switch(runqueue_t *rq, task_t *prev) | 
 | 	__releases(rq->lock) | 
 | { | 
 | 	struct mm_struct *mm = rq->prev_mm; | 
 | 	unsigned long prev_task_flags; | 
 |  | 
 | 	rq->prev_mm = NULL; | 
 |  | 
 | 	/* | 
 | 	 * A task struct has one reference for the use as "current". | 
 | 	 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and | 
 | 	 * calls schedule one last time. The schedule call will never return, | 
 | 	 * and the scheduled task must drop that reference. | 
 | 	 * The test for EXIT_ZOMBIE must occur while the runqueue locks are | 
 | 	 * still held, otherwise prev could be scheduled on another cpu, die | 
 | 	 * there before we look at prev->state, and then the reference would | 
 | 	 * be dropped twice. | 
 | 	 *		Manfred Spraul <manfred@colorfullife.com> | 
 | 	 */ | 
 | 	prev_task_flags = prev->flags; | 
 | 	finish_arch_switch(prev); | 
 | 	finish_lock_switch(rq, prev); | 
 | 	if (mm) | 
 | 		mmdrop(mm); | 
 | 	if (unlikely(prev_task_flags & PF_DEAD)) | 
 | 		put_task_struct(prev); | 
 | } | 
 |  | 
 | /** | 
 |  * schedule_tail - first thing a freshly forked thread must call. | 
 |  * @prev: the thread we just switched away from. | 
 |  */ | 
 | asmlinkage void schedule_tail(task_t *prev) | 
 | 	__releases(rq->lock) | 
 | { | 
 | 	runqueue_t *rq = this_rq(); | 
 | 	finish_task_switch(rq, prev); | 
 | #ifdef __ARCH_WANT_UNLOCKED_CTXSW | 
 | 	/* In this case, finish_task_switch does not reenable preemption */ | 
 | 	preempt_enable(); | 
 | #endif | 
 | 	if (current->set_child_tid) | 
 | 		put_user(current->pid, current->set_child_tid); | 
 | } | 
 |  | 
 | /* | 
 |  * context_switch - switch to the new MM and the new | 
 |  * thread's register state. | 
 |  */ | 
 | static inline | 
 | task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next) | 
 | { | 
 | 	struct mm_struct *mm = next->mm; | 
 | 	struct mm_struct *oldmm = prev->active_mm; | 
 |  | 
 | 	if (unlikely(!mm)) { | 
 | 		next->active_mm = oldmm; | 
 | 		atomic_inc(&oldmm->mm_count); | 
 | 		enter_lazy_tlb(oldmm, next); | 
 | 	} else | 
 | 		switch_mm(oldmm, mm, next); | 
 |  | 
 | 	if (unlikely(!prev->mm)) { | 
 | 		prev->active_mm = NULL; | 
 | 		WARN_ON(rq->prev_mm); | 
 | 		rq->prev_mm = oldmm; | 
 | 	} | 
 |  | 
 | 	/* Here we just switch the register state and the stack. */ | 
 | 	switch_to(prev, next, prev); | 
 |  | 
 | 	return prev; | 
 | } | 
 |  | 
 | /* | 
 |  * nr_running, nr_uninterruptible and nr_context_switches: | 
 |  * | 
 |  * externally visible scheduler statistics: current number of runnable | 
 |  * threads, current number of uninterruptible-sleeping threads, total | 
 |  * number of context switches performed since bootup. | 
 |  */ | 
 | unsigned long nr_running(void) | 
 | { | 
 | 	unsigned long i, sum = 0; | 
 |  | 
 | 	for_each_online_cpu(i) | 
 | 		sum += cpu_rq(i)->nr_running; | 
 |  | 
 | 	return sum; | 
 | } | 
 |  | 
 | unsigned long nr_uninterruptible(void) | 
 | { | 
 | 	unsigned long i, sum = 0; | 
 |  | 
 | 	for_each_cpu(i) | 
 | 		sum += cpu_rq(i)->nr_uninterruptible; | 
 |  | 
 | 	/* | 
 | 	 * Since we read the counters lockless, it might be slightly | 
 | 	 * inaccurate. Do not allow it to go below zero though: | 
 | 	 */ | 
 | 	if (unlikely((long)sum < 0)) | 
 | 		sum = 0; | 
 |  | 
 | 	return sum; | 
 | } | 
 |  | 
 | unsigned long long nr_context_switches(void) | 
 | { | 
 | 	unsigned long long i, sum = 0; | 
 |  | 
 | 	for_each_cpu(i) | 
 | 		sum += cpu_rq(i)->nr_switches; | 
 |  | 
 | 	return sum; | 
 | } | 
 |  | 
 | unsigned long nr_iowait(void) | 
 | { | 
 | 	unsigned long i, sum = 0; | 
 |  | 
 | 	for_each_cpu(i) | 
 | 		sum += atomic_read(&cpu_rq(i)->nr_iowait); | 
 |  | 
 | 	return sum; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | /* | 
 |  * double_rq_lock - safely lock two runqueues | 
 |  * | 
 |  * Note this does not disable interrupts like task_rq_lock, | 
 |  * you need to do so manually before calling. | 
 |  */ | 
 | static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2) | 
 | 	__acquires(rq1->lock) | 
 | 	__acquires(rq2->lock) | 
 | { | 
 | 	if (rq1 == rq2) { | 
 | 		spin_lock(&rq1->lock); | 
 | 		__acquire(rq2->lock);	/* Fake it out ;) */ | 
 | 	} else { | 
 | 		if (rq1 < rq2) { | 
 | 			spin_lock(&rq1->lock); | 
 | 			spin_lock(&rq2->lock); | 
 | 		} else { | 
 | 			spin_lock(&rq2->lock); | 
 | 			spin_lock(&rq1->lock); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * double_rq_unlock - safely unlock two runqueues | 
 |  * | 
 |  * Note this does not restore interrupts like task_rq_unlock, | 
 |  * you need to do so manually after calling. | 
 |  */ | 
 | static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2) | 
 | 	__releases(rq1->lock) | 
 | 	__releases(rq2->lock) | 
 | { | 
 | 	spin_unlock(&rq1->lock); | 
 | 	if (rq1 != rq2) | 
 | 		spin_unlock(&rq2->lock); | 
 | 	else | 
 | 		__release(rq2->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | 
 |  */ | 
 | static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest) | 
 | 	__releases(this_rq->lock) | 
 | 	__acquires(busiest->lock) | 
 | 	__acquires(this_rq->lock) | 
 | { | 
 | 	if (unlikely(!spin_trylock(&busiest->lock))) { | 
 | 		if (busiest < this_rq) { | 
 | 			spin_unlock(&this_rq->lock); | 
 | 			spin_lock(&busiest->lock); | 
 | 			spin_lock(&this_rq->lock); | 
 | 		} else | 
 | 			spin_lock(&busiest->lock); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * If dest_cpu is allowed for this process, migrate the task to it. | 
 |  * This is accomplished by forcing the cpu_allowed mask to only | 
 |  * allow dest_cpu, which will force the cpu onto dest_cpu.  Then | 
 |  * the cpu_allowed mask is restored. | 
 |  */ | 
 | static void sched_migrate_task(task_t *p, int dest_cpu) | 
 | { | 
 | 	migration_req_t req; | 
 | 	runqueue_t *rq; | 
 | 	unsigned long flags; | 
 |  | 
 | 	rq = task_rq_lock(p, &flags); | 
 | 	if (!cpu_isset(dest_cpu, p->cpus_allowed) | 
 | 	    || unlikely(cpu_is_offline(dest_cpu))) | 
 | 		goto out; | 
 |  | 
 | 	/* force the process onto the specified CPU */ | 
 | 	if (migrate_task(p, dest_cpu, &req)) { | 
 | 		/* Need to wait for migration thread (might exit: take ref). */ | 
 | 		struct task_struct *mt = rq->migration_thread; | 
 | 		get_task_struct(mt); | 
 | 		task_rq_unlock(rq, &flags); | 
 | 		wake_up_process(mt); | 
 | 		put_task_struct(mt); | 
 | 		wait_for_completion(&req.done); | 
 | 		return; | 
 | 	} | 
 | out: | 
 | 	task_rq_unlock(rq, &flags); | 
 | } | 
 |  | 
 | /* | 
 |  * sched_exec - execve() is a valuable balancing opportunity, because at | 
 |  * this point the task has the smallest effective memory and cache footprint. | 
 |  */ | 
 | void sched_exec(void) | 
 | { | 
 | 	int new_cpu, this_cpu = get_cpu(); | 
 | 	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC); | 
 | 	put_cpu(); | 
 | 	if (new_cpu != this_cpu) | 
 | 		sched_migrate_task(current, new_cpu); | 
 | } | 
 |  | 
 | /* | 
 |  * pull_task - move a task from a remote runqueue to the local runqueue. | 
 |  * Both runqueues must be locked. | 
 |  */ | 
 | static inline | 
 | void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p, | 
 | 	       runqueue_t *this_rq, prio_array_t *this_array, int this_cpu) | 
 | { | 
 | 	dequeue_task(p, src_array); | 
 | 	src_rq->nr_running--; | 
 | 	set_task_cpu(p, this_cpu); | 
 | 	this_rq->nr_running++; | 
 | 	enqueue_task(p, this_array); | 
 | 	p->timestamp = (p->timestamp - src_rq->timestamp_last_tick) | 
 | 				+ this_rq->timestamp_last_tick; | 
 | 	/* | 
 | 	 * Note that idle threads have a prio of MAX_PRIO, for this test | 
 | 	 * to be always true for them. | 
 | 	 */ | 
 | 	if (TASK_PREEMPTS_CURR(p, this_rq)) | 
 | 		resched_task(this_rq->curr); | 
 | } | 
 |  | 
 | /* | 
 |  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | 
 |  */ | 
 | static inline | 
 | int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu, | 
 | 		     struct sched_domain *sd, enum idle_type idle, | 
 | 		     int *all_pinned) | 
 | { | 
 | 	/* | 
 | 	 * We do not migrate tasks that are: | 
 | 	 * 1) running (obviously), or | 
 | 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or | 
 | 	 * 3) are cache-hot on their current CPU. | 
 | 	 */ | 
 | 	if (!cpu_isset(this_cpu, p->cpus_allowed)) | 
 | 		return 0; | 
 | 	*all_pinned = 0; | 
 |  | 
 | 	if (task_running(rq, p)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Aggressive migration if: | 
 | 	 * 1) task is cache cold, or | 
 | 	 * 2) too many balance attempts have failed. | 
 | 	 */ | 
 |  | 
 | 	if (sd->nr_balance_failed > sd->cache_nice_tries) | 
 | 		return 1; | 
 |  | 
 | 	if (task_hot(p, rq->timestamp_last_tick, sd)) | 
 | 		return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq, | 
 |  * as part of a balancing operation within "domain". Returns the number of | 
 |  * tasks moved. | 
 |  * | 
 |  * Called with both runqueues locked. | 
 |  */ | 
 | static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest, | 
 | 		      unsigned long max_nr_move, struct sched_domain *sd, | 
 | 		      enum idle_type idle, int *all_pinned) | 
 | { | 
 | 	prio_array_t *array, *dst_array; | 
 | 	struct list_head *head, *curr; | 
 | 	int idx, pulled = 0, pinned = 0; | 
 | 	task_t *tmp; | 
 |  | 
 | 	if (max_nr_move == 0) | 
 | 		goto out; | 
 |  | 
 | 	pinned = 1; | 
 |  | 
 | 	/* | 
 | 	 * We first consider expired tasks. Those will likely not be | 
 | 	 * executed in the near future, and they are most likely to | 
 | 	 * be cache-cold, thus switching CPUs has the least effect | 
 | 	 * on them. | 
 | 	 */ | 
 | 	if (busiest->expired->nr_active) { | 
 | 		array = busiest->expired; | 
 | 		dst_array = this_rq->expired; | 
 | 	} else { | 
 | 		array = busiest->active; | 
 | 		dst_array = this_rq->active; | 
 | 	} | 
 |  | 
 | new_array: | 
 | 	/* Start searching at priority 0: */ | 
 | 	idx = 0; | 
 | skip_bitmap: | 
 | 	if (!idx) | 
 | 		idx = sched_find_first_bit(array->bitmap); | 
 | 	else | 
 | 		idx = find_next_bit(array->bitmap, MAX_PRIO, idx); | 
 | 	if (idx >= MAX_PRIO) { | 
 | 		if (array == busiest->expired && busiest->active->nr_active) { | 
 | 			array = busiest->active; | 
 | 			dst_array = this_rq->active; | 
 | 			goto new_array; | 
 | 		} | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	head = array->queue + idx; | 
 | 	curr = head->prev; | 
 | skip_queue: | 
 | 	tmp = list_entry(curr, task_t, run_list); | 
 |  | 
 | 	curr = curr->prev; | 
 |  | 
 | 	if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) { | 
 | 		if (curr != head) | 
 | 			goto skip_queue; | 
 | 		idx++; | 
 | 		goto skip_bitmap; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | 	if (task_hot(tmp, busiest->timestamp_last_tick, sd)) | 
 | 		schedstat_inc(sd, lb_hot_gained[idle]); | 
 | #endif | 
 |  | 
 | 	pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu); | 
 | 	pulled++; | 
 |  | 
 | 	/* We only want to steal up to the prescribed number of tasks. */ | 
 | 	if (pulled < max_nr_move) { | 
 | 		if (curr != head) | 
 | 			goto skip_queue; | 
 | 		idx++; | 
 | 		goto skip_bitmap; | 
 | 	} | 
 | out: | 
 | 	/* | 
 | 	 * Right now, this is the only place pull_task() is called, | 
 | 	 * so we can safely collect pull_task() stats here rather than | 
 | 	 * inside pull_task(). | 
 | 	 */ | 
 | 	schedstat_add(sd, lb_gained[idle], pulled); | 
 |  | 
 | 	if (all_pinned) | 
 | 		*all_pinned = pinned; | 
 | 	return pulled; | 
 | } | 
 |  | 
 | /* | 
 |  * find_busiest_group finds and returns the busiest CPU group within the | 
 |  * domain. It calculates and returns the number of tasks which should be | 
 |  * moved to restore balance via the imbalance parameter. | 
 |  */ | 
 | static struct sched_group * | 
 | find_busiest_group(struct sched_domain *sd, int this_cpu, | 
 | 		   unsigned long *imbalance, enum idle_type idle, int *sd_idle) | 
 | { | 
 | 	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups; | 
 | 	unsigned long max_load, avg_load, total_load, this_load, total_pwr; | 
 | 	unsigned long max_pull; | 
 | 	int load_idx; | 
 |  | 
 | 	max_load = this_load = total_load = total_pwr = 0; | 
 | 	if (idle == NOT_IDLE) | 
 | 		load_idx = sd->busy_idx; | 
 | 	else if (idle == NEWLY_IDLE) | 
 | 		load_idx = sd->newidle_idx; | 
 | 	else | 
 | 		load_idx = sd->idle_idx; | 
 |  | 
 | 	do { | 
 | 		unsigned long load; | 
 | 		int local_group; | 
 | 		int i; | 
 |  | 
 | 		local_group = cpu_isset(this_cpu, group->cpumask); | 
 |  | 
 | 		/* Tally up the load of all CPUs in the group */ | 
 | 		avg_load = 0; | 
 |  | 
 | 		for_each_cpu_mask(i, group->cpumask) { | 
 | 			if (*sd_idle && !idle_cpu(i)) | 
 | 				*sd_idle = 0; | 
 |  | 
 | 			/* Bias balancing toward cpus of our domain */ | 
 | 			if (local_group) | 
 | 				load = target_load(i, load_idx); | 
 | 			else | 
 | 				load = source_load(i, load_idx); | 
 |  | 
 | 			avg_load += load; | 
 | 		} | 
 |  | 
 | 		total_load += avg_load; | 
 | 		total_pwr += group->cpu_power; | 
 |  | 
 | 		/* Adjust by relative CPU power of the group */ | 
 | 		avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power; | 
 |  | 
 | 		if (local_group) { | 
 | 			this_load = avg_load; | 
 | 			this = group; | 
 | 		} else if (avg_load > max_load) { | 
 | 			max_load = avg_load; | 
 | 			busiest = group; | 
 | 		} | 
 | 		group = group->next; | 
 | 	} while (group != sd->groups); | 
 |  | 
 | 	if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE) | 
 | 		goto out_balanced; | 
 |  | 
 | 	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr; | 
 |  | 
 | 	if (this_load >= avg_load || | 
 | 			100*max_load <= sd->imbalance_pct*this_load) | 
 | 		goto out_balanced; | 
 |  | 
 | 	/* | 
 | 	 * We're trying to get all the cpus to the average_load, so we don't | 
 | 	 * want to push ourselves above the average load, nor do we wish to | 
 | 	 * reduce the max loaded cpu below the average load, as either of these | 
 | 	 * actions would just result in more rebalancing later, and ping-pong | 
 | 	 * tasks around. Thus we look for the minimum possible imbalance. | 
 | 	 * Negative imbalances (*we* are more loaded than anyone else) will | 
 | 	 * be counted as no imbalance for these purposes -- we can't fix that | 
 | 	 * by pulling tasks to us.  Be careful of negative numbers as they'll | 
 | 	 * appear as very large values with unsigned longs. | 
 | 	 */ | 
 |  | 
 | 	/* Don't want to pull so many tasks that a group would go idle */ | 
 | 	max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE); | 
 |  | 
 | 	/* How much load to actually move to equalise the imbalance */ | 
 | 	*imbalance = min(max_pull * busiest->cpu_power, | 
 | 				(avg_load - this_load) * this->cpu_power) | 
 | 			/ SCHED_LOAD_SCALE; | 
 |  | 
 | 	if (*imbalance < SCHED_LOAD_SCALE) { | 
 | 		unsigned long pwr_now = 0, pwr_move = 0; | 
 | 		unsigned long tmp; | 
 |  | 
 | 		if (max_load - this_load >= SCHED_LOAD_SCALE*2) { | 
 | 			*imbalance = 1; | 
 | 			return busiest; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * OK, we don't have enough imbalance to justify moving tasks, | 
 | 		 * however we may be able to increase total CPU power used by | 
 | 		 * moving them. | 
 | 		 */ | 
 |  | 
 | 		pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load); | 
 | 		pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load); | 
 | 		pwr_now /= SCHED_LOAD_SCALE; | 
 |  | 
 | 		/* Amount of load we'd subtract */ | 
 | 		tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power; | 
 | 		if (max_load > tmp) | 
 | 			pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE, | 
 | 							max_load - tmp); | 
 |  | 
 | 		/* Amount of load we'd add */ | 
 | 		if (max_load*busiest->cpu_power < | 
 | 				SCHED_LOAD_SCALE*SCHED_LOAD_SCALE) | 
 | 			tmp = max_load*busiest->cpu_power/this->cpu_power; | 
 | 		else | 
 | 			tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power; | 
 | 		pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp); | 
 | 		pwr_move /= SCHED_LOAD_SCALE; | 
 |  | 
 | 		/* Move if we gain throughput */ | 
 | 		if (pwr_move <= pwr_now) | 
 | 			goto out_balanced; | 
 |  | 
 | 		*imbalance = 1; | 
 | 		return busiest; | 
 | 	} | 
 |  | 
 | 	/* Get rid of the scaling factor, rounding down as we divide */ | 
 | 	*imbalance = *imbalance / SCHED_LOAD_SCALE; | 
 | 	return busiest; | 
 |  | 
 | out_balanced: | 
 |  | 
 | 	*imbalance = 0; | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * find_busiest_queue - find the busiest runqueue among the cpus in group. | 
 |  */ | 
 | static runqueue_t *find_busiest_queue(struct sched_group *group) | 
 | { | 
 | 	unsigned long load, max_load = 0; | 
 | 	runqueue_t *busiest = NULL; | 
 | 	int i; | 
 |  | 
 | 	for_each_cpu_mask(i, group->cpumask) { | 
 | 		load = source_load(i, 0); | 
 |  | 
 | 		if (load > max_load) { | 
 | 			max_load = load; | 
 | 			busiest = cpu_rq(i); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return busiest; | 
 | } | 
 |  | 
 | /* | 
 |  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | 
 |  * so long as it is large enough. | 
 |  */ | 
 | #define MAX_PINNED_INTERVAL	512 | 
 |  | 
 | /* | 
 |  * Check this_cpu to ensure it is balanced within domain. Attempt to move | 
 |  * tasks if there is an imbalance. | 
 |  * | 
 |  * Called with this_rq unlocked. | 
 |  */ | 
 | static int load_balance(int this_cpu, runqueue_t *this_rq, | 
 | 			struct sched_domain *sd, enum idle_type idle) | 
 | { | 
 | 	struct sched_group *group; | 
 | 	runqueue_t *busiest; | 
 | 	unsigned long imbalance; | 
 | 	int nr_moved, all_pinned = 0; | 
 | 	int active_balance = 0; | 
 | 	int sd_idle = 0; | 
 |  | 
 | 	if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER) | 
 | 		sd_idle = 1; | 
 |  | 
 | 	schedstat_inc(sd, lb_cnt[idle]); | 
 |  | 
 | 	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle); | 
 | 	if (!group) { | 
 | 		schedstat_inc(sd, lb_nobusyg[idle]); | 
 | 		goto out_balanced; | 
 | 	} | 
 |  | 
 | 	busiest = find_busiest_queue(group); | 
 | 	if (!busiest) { | 
 | 		schedstat_inc(sd, lb_nobusyq[idle]); | 
 | 		goto out_balanced; | 
 | 	} | 
 |  | 
 | 	BUG_ON(busiest == this_rq); | 
 |  | 
 | 	schedstat_add(sd, lb_imbalance[idle], imbalance); | 
 |  | 
 | 	nr_moved = 0; | 
 | 	if (busiest->nr_running > 1) { | 
 | 		/* | 
 | 		 * Attempt to move tasks. If find_busiest_group has found | 
 | 		 * an imbalance but busiest->nr_running <= 1, the group is | 
 | 		 * still unbalanced. nr_moved simply stays zero, so it is | 
 | 		 * correctly treated as an imbalance. | 
 | 		 */ | 
 | 		double_rq_lock(this_rq, busiest); | 
 | 		nr_moved = move_tasks(this_rq, this_cpu, busiest, | 
 | 					imbalance, sd, idle, &all_pinned); | 
 | 		double_rq_unlock(this_rq, busiest); | 
 |  | 
 | 		/* All tasks on this runqueue were pinned by CPU affinity */ | 
 | 		if (unlikely(all_pinned)) | 
 | 			goto out_balanced; | 
 | 	} | 
 |  | 
 | 	if (!nr_moved) { | 
 | 		schedstat_inc(sd, lb_failed[idle]); | 
 | 		sd->nr_balance_failed++; | 
 |  | 
 | 		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { | 
 |  | 
 | 			spin_lock(&busiest->lock); | 
 |  | 
 | 			/* don't kick the migration_thread, if the curr | 
 | 			 * task on busiest cpu can't be moved to this_cpu | 
 | 			 */ | 
 | 			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) { | 
 | 				spin_unlock(&busiest->lock); | 
 | 				all_pinned = 1; | 
 | 				goto out_one_pinned; | 
 | 			} | 
 |  | 
 | 			if (!busiest->active_balance) { | 
 | 				busiest->active_balance = 1; | 
 | 				busiest->push_cpu = this_cpu; | 
 | 				active_balance = 1; | 
 | 			} | 
 | 			spin_unlock(&busiest->lock); | 
 | 			if (active_balance) | 
 | 				wake_up_process(busiest->migration_thread); | 
 |  | 
 | 			/* | 
 | 			 * We've kicked active balancing, reset the failure | 
 | 			 * counter. | 
 | 			 */ | 
 | 			sd->nr_balance_failed = sd->cache_nice_tries+1; | 
 | 		} | 
 | 	} else | 
 | 		sd->nr_balance_failed = 0; | 
 |  | 
 | 	if (likely(!active_balance)) { | 
 | 		/* We were unbalanced, so reset the balancing interval */ | 
 | 		sd->balance_interval = sd->min_interval; | 
 | 	} else { | 
 | 		/* | 
 | 		 * If we've begun active balancing, start to back off. This | 
 | 		 * case may not be covered by the all_pinned logic if there | 
 | 		 * is only 1 task on the busy runqueue (because we don't call | 
 | 		 * move_tasks). | 
 | 		 */ | 
 | 		if (sd->balance_interval < sd->max_interval) | 
 | 			sd->balance_interval *= 2; | 
 | 	} | 
 |  | 
 | 	if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER) | 
 | 		return -1; | 
 | 	return nr_moved; | 
 |  | 
 | out_balanced: | 
 | 	schedstat_inc(sd, lb_balanced[idle]); | 
 |  | 
 | 	sd->nr_balance_failed = 0; | 
 |  | 
 | out_one_pinned: | 
 | 	/* tune up the balancing interval */ | 
 | 	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || | 
 | 			(sd->balance_interval < sd->max_interval)) | 
 | 		sd->balance_interval *= 2; | 
 |  | 
 | 	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER) | 
 | 		return -1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Check this_cpu to ensure it is balanced within domain. Attempt to move | 
 |  * tasks if there is an imbalance. | 
 |  * | 
 |  * Called from schedule when this_rq is about to become idle (NEWLY_IDLE). | 
 |  * this_rq is locked. | 
 |  */ | 
 | static int load_balance_newidle(int this_cpu, runqueue_t *this_rq, | 
 | 				struct sched_domain *sd) | 
 | { | 
 | 	struct sched_group *group; | 
 | 	runqueue_t *busiest = NULL; | 
 | 	unsigned long imbalance; | 
 | 	int nr_moved = 0; | 
 | 	int sd_idle = 0; | 
 |  | 
 | 	if (sd->flags & SD_SHARE_CPUPOWER) | 
 | 		sd_idle = 1; | 
 |  | 
 | 	schedstat_inc(sd, lb_cnt[NEWLY_IDLE]); | 
 | 	group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle); | 
 | 	if (!group) { | 
 | 		schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]); | 
 | 		goto out_balanced; | 
 | 	} | 
 |  | 
 | 	busiest = find_busiest_queue(group); | 
 | 	if (!busiest) { | 
 | 		schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]); | 
 | 		goto out_balanced; | 
 | 	} | 
 |  | 
 | 	BUG_ON(busiest == this_rq); | 
 |  | 
 | 	schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance); | 
 |  | 
 | 	nr_moved = 0; | 
 | 	if (busiest->nr_running > 1) { | 
 | 		/* Attempt to move tasks */ | 
 | 		double_lock_balance(this_rq, busiest); | 
 | 		nr_moved = move_tasks(this_rq, this_cpu, busiest, | 
 | 					imbalance, sd, NEWLY_IDLE, NULL); | 
 | 		spin_unlock(&busiest->lock); | 
 | 	} | 
 |  | 
 | 	if (!nr_moved) { | 
 | 		schedstat_inc(sd, lb_failed[NEWLY_IDLE]); | 
 | 		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER) | 
 | 			return -1; | 
 | 	} else | 
 | 		sd->nr_balance_failed = 0; | 
 |  | 
 | 	return nr_moved; | 
 |  | 
 | out_balanced: | 
 | 	schedstat_inc(sd, lb_balanced[NEWLY_IDLE]); | 
 | 	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER) | 
 | 		return -1; | 
 | 	sd->nr_balance_failed = 0; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * idle_balance is called by schedule() if this_cpu is about to become | 
 |  * idle. Attempts to pull tasks from other CPUs. | 
 |  */ | 
 | static inline void idle_balance(int this_cpu, runqueue_t *this_rq) | 
 | { | 
 | 	struct sched_domain *sd; | 
 |  | 
 | 	for_each_domain(this_cpu, sd) { | 
 | 		if (sd->flags & SD_BALANCE_NEWIDLE) { | 
 | 			if (load_balance_newidle(this_cpu, this_rq, sd)) { | 
 | 				/* We've pulled tasks over so stop searching */ | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * active_load_balance is run by migration threads. It pushes running tasks | 
 |  * off the busiest CPU onto idle CPUs. It requires at least 1 task to be | 
 |  * running on each physical CPU where possible, and avoids physical / | 
 |  * logical imbalances. | 
 |  * | 
 |  * Called with busiest_rq locked. | 
 |  */ | 
 | static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu) | 
 | { | 
 | 	struct sched_domain *sd; | 
 | 	runqueue_t *target_rq; | 
 | 	int target_cpu = busiest_rq->push_cpu; | 
 |  | 
 | 	if (busiest_rq->nr_running <= 1) | 
 | 		/* no task to move */ | 
 | 		return; | 
 |  | 
 | 	target_rq = cpu_rq(target_cpu); | 
 |  | 
 | 	/* | 
 | 	 * This condition is "impossible", if it occurs | 
 | 	 * we need to fix it.  Originally reported by | 
 | 	 * Bjorn Helgaas on a 128-cpu setup. | 
 | 	 */ | 
 | 	BUG_ON(busiest_rq == target_rq); | 
 |  | 
 | 	/* move a task from busiest_rq to target_rq */ | 
 | 	double_lock_balance(busiest_rq, target_rq); | 
 |  | 
 | 	/* Search for an sd spanning us and the target CPU. */ | 
 | 	for_each_domain(target_cpu, sd) | 
 | 		if ((sd->flags & SD_LOAD_BALANCE) && | 
 | 			cpu_isset(busiest_cpu, sd->span)) | 
 | 				break; | 
 |  | 
 | 	if (unlikely(sd == NULL)) | 
 | 		goto out; | 
 |  | 
 | 	schedstat_inc(sd, alb_cnt); | 
 |  | 
 | 	if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL)) | 
 | 		schedstat_inc(sd, alb_pushed); | 
 | 	else | 
 | 		schedstat_inc(sd, alb_failed); | 
 | out: | 
 | 	spin_unlock(&target_rq->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * rebalance_tick will get called every timer tick, on every CPU. | 
 |  * | 
 |  * It checks each scheduling domain to see if it is due to be balanced, | 
 |  * and initiates a balancing operation if so. | 
 |  * | 
 |  * Balancing parameters are set up in arch_init_sched_domains. | 
 |  */ | 
 |  | 
 | /* Don't have all balancing operations going off at once */ | 
 | #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS) | 
 |  | 
 | static void rebalance_tick(int this_cpu, runqueue_t *this_rq, | 
 | 			   enum idle_type idle) | 
 | { | 
 | 	unsigned long old_load, this_load; | 
 | 	unsigned long j = jiffies + CPU_OFFSET(this_cpu); | 
 | 	struct sched_domain *sd; | 
 | 	int i; | 
 |  | 
 | 	this_load = this_rq->nr_running * SCHED_LOAD_SCALE; | 
 | 	/* Update our load */ | 
 | 	for (i = 0; i < 3; i++) { | 
 | 		unsigned long new_load = this_load; | 
 | 		int scale = 1 << i; | 
 | 		old_load = this_rq->cpu_load[i]; | 
 | 		/* | 
 | 		 * Round up the averaging division if load is increasing. This | 
 | 		 * prevents us from getting stuck on 9 if the load is 10, for | 
 | 		 * example. | 
 | 		 */ | 
 | 		if (new_load > old_load) | 
 | 			new_load += scale-1; | 
 | 		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale; | 
 | 	} | 
 |  | 
 | 	for_each_domain(this_cpu, sd) { | 
 | 		unsigned long interval; | 
 |  | 
 | 		if (!(sd->flags & SD_LOAD_BALANCE)) | 
 | 			continue; | 
 |  | 
 | 		interval = sd->balance_interval; | 
 | 		if (idle != SCHED_IDLE) | 
 | 			interval *= sd->busy_factor; | 
 |  | 
 | 		/* scale ms to jiffies */ | 
 | 		interval = msecs_to_jiffies(interval); | 
 | 		if (unlikely(!interval)) | 
 | 			interval = 1; | 
 |  | 
 | 		if (j - sd->last_balance >= interval) { | 
 | 			if (load_balance(this_cpu, this_rq, sd, idle)) { | 
 | 				/* | 
 | 				 * We've pulled tasks over so either we're no | 
 | 				 * longer idle, or one of our SMT siblings is | 
 | 				 * not idle. | 
 | 				 */ | 
 | 				idle = NOT_IDLE; | 
 | 			} | 
 | 			sd->last_balance += interval; | 
 | 		} | 
 | 	} | 
 | } | 
 | #else | 
 | /* | 
 |  * on UP we do not need to balance between CPUs: | 
 |  */ | 
 | static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle) | 
 | { | 
 | } | 
 | static inline void idle_balance(int cpu, runqueue_t *rq) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | static inline int wake_priority_sleeper(runqueue_t *rq) | 
 | { | 
 | 	int ret = 0; | 
 | #ifdef CONFIG_SCHED_SMT | 
 | 	spin_lock(&rq->lock); | 
 | 	/* | 
 | 	 * If an SMT sibling task has been put to sleep for priority | 
 | 	 * reasons reschedule the idle task to see if it can now run. | 
 | 	 */ | 
 | 	if (rq->nr_running) { | 
 | 		resched_task(rq->idle); | 
 | 		ret = 1; | 
 | 	} | 
 | 	spin_unlock(&rq->lock); | 
 | #endif | 
 | 	return ret; | 
 | } | 
 |  | 
 | DEFINE_PER_CPU(struct kernel_stat, kstat); | 
 |  | 
 | EXPORT_PER_CPU_SYMBOL(kstat); | 
 |  | 
 | /* | 
 |  * This is called on clock ticks and on context switches. | 
 |  * Bank in p->sched_time the ns elapsed since the last tick or switch. | 
 |  */ | 
 | static inline void update_cpu_clock(task_t *p, runqueue_t *rq, | 
 | 				    unsigned long long now) | 
 | { | 
 | 	unsigned long long last = max(p->timestamp, rq->timestamp_last_tick); | 
 | 	p->sched_time += now - last; | 
 | } | 
 |  | 
 | /* | 
 |  * Return current->sched_time plus any more ns on the sched_clock | 
 |  * that have not yet been banked. | 
 |  */ | 
 | unsigned long long current_sched_time(const task_t *tsk) | 
 | { | 
 | 	unsigned long long ns; | 
 | 	unsigned long flags; | 
 | 	local_irq_save(flags); | 
 | 	ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick); | 
 | 	ns = tsk->sched_time + (sched_clock() - ns); | 
 | 	local_irq_restore(flags); | 
 | 	return ns; | 
 | } | 
 |  | 
 | /* | 
 |  * We place interactive tasks back into the active array, if possible. | 
 |  * | 
 |  * To guarantee that this does not starve expired tasks we ignore the | 
 |  * interactivity of a task if the first expired task had to wait more | 
 |  * than a 'reasonable' amount of time. This deadline timeout is | 
 |  * load-dependent, as the frequency of array switched decreases with | 
 |  * increasing number of running tasks. We also ignore the interactivity | 
 |  * if a better static_prio task has expired: | 
 |  */ | 
 | #define EXPIRED_STARVING(rq) \ | 
 | 	((STARVATION_LIMIT && ((rq)->expired_timestamp && \ | 
 | 		(jiffies - (rq)->expired_timestamp >= \ | 
 | 			STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \ | 
 | 			((rq)->curr->static_prio > (rq)->best_expired_prio)) | 
 |  | 
 | /* | 
 |  * Account user cpu time to a process. | 
 |  * @p: the process that the cpu time gets accounted to | 
 |  * @hardirq_offset: the offset to subtract from hardirq_count() | 
 |  * @cputime: the cpu time spent in user space since the last update | 
 |  */ | 
 | void account_user_time(struct task_struct *p, cputime_t cputime) | 
 | { | 
 | 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 
 | 	cputime64_t tmp; | 
 |  | 
 | 	p->utime = cputime_add(p->utime, cputime); | 
 |  | 
 | 	/* Add user time to cpustat. */ | 
 | 	tmp = cputime_to_cputime64(cputime); | 
 | 	if (TASK_NICE(p) > 0) | 
 | 		cpustat->nice = cputime64_add(cpustat->nice, tmp); | 
 | 	else | 
 | 		cpustat->user = cputime64_add(cpustat->user, tmp); | 
 | } | 
 |  | 
 | /* | 
 |  * Account system cpu time to a process. | 
 |  * @p: the process that the cpu time gets accounted to | 
 |  * @hardirq_offset: the offset to subtract from hardirq_count() | 
 |  * @cputime: the cpu time spent in kernel space since the last update | 
 |  */ | 
 | void account_system_time(struct task_struct *p, int hardirq_offset, | 
 | 			 cputime_t cputime) | 
 | { | 
 | 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 
 | 	runqueue_t *rq = this_rq(); | 
 | 	cputime64_t tmp; | 
 |  | 
 | 	p->stime = cputime_add(p->stime, cputime); | 
 |  | 
 | 	/* Add system time to cpustat. */ | 
 | 	tmp = cputime_to_cputime64(cputime); | 
 | 	if (hardirq_count() - hardirq_offset) | 
 | 		cpustat->irq = cputime64_add(cpustat->irq, tmp); | 
 | 	else if (softirq_count()) | 
 | 		cpustat->softirq = cputime64_add(cpustat->softirq, tmp); | 
 | 	else if (p != rq->idle) | 
 | 		cpustat->system = cputime64_add(cpustat->system, tmp); | 
 | 	else if (atomic_read(&rq->nr_iowait) > 0) | 
 | 		cpustat->iowait = cputime64_add(cpustat->iowait, tmp); | 
 | 	else | 
 | 		cpustat->idle = cputime64_add(cpustat->idle, tmp); | 
 | 	/* Account for system time used */ | 
 | 	acct_update_integrals(p); | 
 | 	/* Update rss highwater mark */ | 
 | 	update_mem_hiwater(p); | 
 | } | 
 |  | 
 | /* | 
 |  * Account for involuntary wait time. | 
 |  * @p: the process from which the cpu time has been stolen | 
 |  * @steal: the cpu time spent in involuntary wait | 
 |  */ | 
 | void account_steal_time(struct task_struct *p, cputime_t steal) | 
 | { | 
 | 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 
 | 	cputime64_t tmp = cputime_to_cputime64(steal); | 
 | 	runqueue_t *rq = this_rq(); | 
 |  | 
 | 	if (p == rq->idle) { | 
 | 		p->stime = cputime_add(p->stime, steal); | 
 | 		if (atomic_read(&rq->nr_iowait) > 0) | 
 | 			cpustat->iowait = cputime64_add(cpustat->iowait, tmp); | 
 | 		else | 
 | 			cpustat->idle = cputime64_add(cpustat->idle, tmp); | 
 | 	} else | 
 | 		cpustat->steal = cputime64_add(cpustat->steal, tmp); | 
 | } | 
 |  | 
 | /* | 
 |  * This function gets called by the timer code, with HZ frequency. | 
 |  * We call it with interrupts disabled. | 
 |  * | 
 |  * It also gets called by the fork code, when changing the parent's | 
 |  * timeslices. | 
 |  */ | 
 | void scheduler_tick(void) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 | 	runqueue_t *rq = this_rq(); | 
 | 	task_t *p = current; | 
 | 	unsigned long long now = sched_clock(); | 
 |  | 
 | 	update_cpu_clock(p, rq, now); | 
 |  | 
 | 	rq->timestamp_last_tick = now; | 
 |  | 
 | 	if (p == rq->idle) { | 
 | 		if (wake_priority_sleeper(rq)) | 
 | 			goto out; | 
 | 		rebalance_tick(cpu, rq, SCHED_IDLE); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Task might have expired already, but not scheduled off yet */ | 
 | 	if (p->array != rq->active) { | 
 | 		set_tsk_need_resched(p); | 
 | 		goto out; | 
 | 	} | 
 | 	spin_lock(&rq->lock); | 
 | 	/* | 
 | 	 * The task was running during this tick - update the | 
 | 	 * time slice counter. Note: we do not update a thread's | 
 | 	 * priority until it either goes to sleep or uses up its | 
 | 	 * timeslice. This makes it possible for interactive tasks | 
 | 	 * to use up their timeslices at their highest priority levels. | 
 | 	 */ | 
 | 	if (rt_task(p)) { | 
 | 		/* | 
 | 		 * RR tasks need a special form of timeslice management. | 
 | 		 * FIFO tasks have no timeslices. | 
 | 		 */ | 
 | 		if ((p->policy == SCHED_RR) && !--p->time_slice) { | 
 | 			p->time_slice = task_timeslice(p); | 
 | 			p->first_time_slice = 0; | 
 | 			set_tsk_need_resched(p); | 
 |  | 
 | 			/* put it at the end of the queue: */ | 
 | 			requeue_task(p, rq->active); | 
 | 		} | 
 | 		goto out_unlock; | 
 | 	} | 
 | 	if (!--p->time_slice) { | 
 | 		dequeue_task(p, rq->active); | 
 | 		set_tsk_need_resched(p); | 
 | 		p->prio = effective_prio(p); | 
 | 		p->time_slice = task_timeslice(p); | 
 | 		p->first_time_slice = 0; | 
 |  | 
 | 		if (!rq->expired_timestamp) | 
 | 			rq->expired_timestamp = jiffies; | 
 | 		if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) { | 
 | 			enqueue_task(p, rq->expired); | 
 | 			if (p->static_prio < rq->best_expired_prio) | 
 | 				rq->best_expired_prio = p->static_prio; | 
 | 		} else | 
 | 			enqueue_task(p, rq->active); | 
 | 	} else { | 
 | 		/* | 
 | 		 * Prevent a too long timeslice allowing a task to monopolize | 
 | 		 * the CPU. We do this by splitting up the timeslice into | 
 | 		 * smaller pieces. | 
 | 		 * | 
 | 		 * Note: this does not mean the task's timeslices expire or | 
 | 		 * get lost in any way, they just might be preempted by | 
 | 		 * another task of equal priority. (one with higher | 
 | 		 * priority would have preempted this task already.) We | 
 | 		 * requeue this task to the end of the list on this priority | 
 | 		 * level, which is in essence a round-robin of tasks with | 
 | 		 * equal priority. | 
 | 		 * | 
 | 		 * This only applies to tasks in the interactive | 
 | 		 * delta range with at least TIMESLICE_GRANULARITY to requeue. | 
 | 		 */ | 
 | 		if (TASK_INTERACTIVE(p) && !((task_timeslice(p) - | 
 | 			p->time_slice) % TIMESLICE_GRANULARITY(p)) && | 
 | 			(p->time_slice >= TIMESLICE_GRANULARITY(p)) && | 
 | 			(p->array == rq->active)) { | 
 |  | 
 | 			requeue_task(p, rq->active); | 
 | 			set_tsk_need_resched(p); | 
 | 		} | 
 | 	} | 
 | out_unlock: | 
 | 	spin_unlock(&rq->lock); | 
 | out: | 
 | 	rebalance_tick(cpu, rq, NOT_IDLE); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SCHED_SMT | 
 | static inline void wakeup_busy_runqueue(runqueue_t *rq) | 
 | { | 
 | 	/* If an SMT runqueue is sleeping due to priority reasons wake it up */ | 
 | 	if (rq->curr == rq->idle && rq->nr_running) | 
 | 		resched_task(rq->idle); | 
 | } | 
 |  | 
 | static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq) | 
 | { | 
 | 	struct sched_domain *tmp, *sd = NULL; | 
 | 	cpumask_t sibling_map; | 
 | 	int i; | 
 |  | 
 | 	for_each_domain(this_cpu, tmp) | 
 | 		if (tmp->flags & SD_SHARE_CPUPOWER) | 
 | 			sd = tmp; | 
 |  | 
 | 	if (!sd) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Unlock the current runqueue because we have to lock in | 
 | 	 * CPU order to avoid deadlocks. Caller knows that we might | 
 | 	 * unlock. We keep IRQs disabled. | 
 | 	 */ | 
 | 	spin_unlock(&this_rq->lock); | 
 |  | 
 | 	sibling_map = sd->span; | 
 |  | 
 | 	for_each_cpu_mask(i, sibling_map) | 
 | 		spin_lock(&cpu_rq(i)->lock); | 
 | 	/* | 
 | 	 * We clear this CPU from the mask. This both simplifies the | 
 | 	 * inner loop and keps this_rq locked when we exit: | 
 | 	 */ | 
 | 	cpu_clear(this_cpu, sibling_map); | 
 |  | 
 | 	for_each_cpu_mask(i, sibling_map) { | 
 | 		runqueue_t *smt_rq = cpu_rq(i); | 
 |  | 
 | 		wakeup_busy_runqueue(smt_rq); | 
 | 	} | 
 |  | 
 | 	for_each_cpu_mask(i, sibling_map) | 
 | 		spin_unlock(&cpu_rq(i)->lock); | 
 | 	/* | 
 | 	 * We exit with this_cpu's rq still held and IRQs | 
 | 	 * still disabled: | 
 | 	 */ | 
 | } | 
 |  | 
 | /* | 
 |  * number of 'lost' timeslices this task wont be able to fully | 
 |  * utilize, if another task runs on a sibling. This models the | 
 |  * slowdown effect of other tasks running on siblings: | 
 |  */ | 
 | static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd) | 
 | { | 
 | 	return p->time_slice * (100 - sd->per_cpu_gain) / 100; | 
 | } | 
 |  | 
 | static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq) | 
 | { | 
 | 	struct sched_domain *tmp, *sd = NULL; | 
 | 	cpumask_t sibling_map; | 
 | 	prio_array_t *array; | 
 | 	int ret = 0, i; | 
 | 	task_t *p; | 
 |  | 
 | 	for_each_domain(this_cpu, tmp) | 
 | 		if (tmp->flags & SD_SHARE_CPUPOWER) | 
 | 			sd = tmp; | 
 |  | 
 | 	if (!sd) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * The same locking rules and details apply as for | 
 | 	 * wake_sleeping_dependent(): | 
 | 	 */ | 
 | 	spin_unlock(&this_rq->lock); | 
 | 	sibling_map = sd->span; | 
 | 	for_each_cpu_mask(i, sibling_map) | 
 | 		spin_lock(&cpu_rq(i)->lock); | 
 | 	cpu_clear(this_cpu, sibling_map); | 
 |  | 
 | 	/* | 
 | 	 * Establish next task to be run - it might have gone away because | 
 | 	 * we released the runqueue lock above: | 
 | 	 */ | 
 | 	if (!this_rq->nr_running) | 
 | 		goto out_unlock; | 
 | 	array = this_rq->active; | 
 | 	if (!array->nr_active) | 
 | 		array = this_rq->expired; | 
 | 	BUG_ON(!array->nr_active); | 
 |  | 
 | 	p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next, | 
 | 		task_t, run_list); | 
 |  | 
 | 	for_each_cpu_mask(i, sibling_map) { | 
 | 		runqueue_t *smt_rq = cpu_rq(i); | 
 | 		task_t *smt_curr = smt_rq->curr; | 
 |  | 
 | 		/* Kernel threads do not participate in dependent sleeping */ | 
 | 		if (!p->mm || !smt_curr->mm || rt_task(p)) | 
 | 			goto check_smt_task; | 
 |  | 
 | 		/* | 
 | 		 * If a user task with lower static priority than the | 
 | 		 * running task on the SMT sibling is trying to schedule, | 
 | 		 * delay it till there is proportionately less timeslice | 
 | 		 * left of the sibling task to prevent a lower priority | 
 | 		 * task from using an unfair proportion of the | 
 | 		 * physical cpu's resources. -ck | 
 | 		 */ | 
 | 		if (rt_task(smt_curr)) { | 
 | 			/* | 
 | 			 * With real time tasks we run non-rt tasks only | 
 | 			 * per_cpu_gain% of the time. | 
 | 			 */ | 
 | 			if ((jiffies % DEF_TIMESLICE) > | 
 | 				(sd->per_cpu_gain * DEF_TIMESLICE / 100)) | 
 | 					ret = 1; | 
 | 		} else | 
 | 			if (smt_curr->static_prio < p->static_prio && | 
 | 				!TASK_PREEMPTS_CURR(p, smt_rq) && | 
 | 				smt_slice(smt_curr, sd) > task_timeslice(p)) | 
 | 					ret = 1; | 
 |  | 
 | check_smt_task: | 
 | 		if ((!smt_curr->mm && smt_curr != smt_rq->idle) || | 
 | 			rt_task(smt_curr)) | 
 | 				continue; | 
 | 		if (!p->mm) { | 
 | 			wakeup_busy_runqueue(smt_rq); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Reschedule a lower priority task on the SMT sibling for | 
 | 		 * it to be put to sleep, or wake it up if it has been put to | 
 | 		 * sleep for priority reasons to see if it should run now. | 
 | 		 */ | 
 | 		if (rt_task(p)) { | 
 | 			if ((jiffies % DEF_TIMESLICE) > | 
 | 				(sd->per_cpu_gain * DEF_TIMESLICE / 100)) | 
 | 					resched_task(smt_curr); | 
 | 		} else { | 
 | 			if (TASK_PREEMPTS_CURR(p, smt_rq) && | 
 | 				smt_slice(p, sd) > task_timeslice(smt_curr)) | 
 | 					resched_task(smt_curr); | 
 | 			else | 
 | 				wakeup_busy_runqueue(smt_rq); | 
 | 		} | 
 | 	} | 
 | out_unlock: | 
 | 	for_each_cpu_mask(i, sibling_map) | 
 | 		spin_unlock(&cpu_rq(i)->lock); | 
 | 	return ret; | 
 | } | 
 | #else | 
 | static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq) | 
 | { | 
 | } | 
 |  | 
 | static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT) | 
 |  | 
 | void fastcall add_preempt_count(int val) | 
 | { | 
 | 	/* | 
 | 	 * Underflow? | 
 | 	 */ | 
 | 	BUG_ON((preempt_count() < 0)); | 
 | 	preempt_count() += val; | 
 | 	/* | 
 | 	 * Spinlock count overflowing soon? | 
 | 	 */ | 
 | 	BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10); | 
 | } | 
 | EXPORT_SYMBOL(add_preempt_count); | 
 |  | 
 | void fastcall sub_preempt_count(int val) | 
 | { | 
 | 	/* | 
 | 	 * Underflow? | 
 | 	 */ | 
 | 	BUG_ON(val > preempt_count()); | 
 | 	/* | 
 | 	 * Is the spinlock portion underflowing? | 
 | 	 */ | 
 | 	BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK)); | 
 | 	preempt_count() -= val; | 
 | } | 
 | EXPORT_SYMBOL(sub_preempt_count); | 
 |  | 
 | #endif | 
 |  | 
 | /* | 
 |  * schedule() is the main scheduler function. | 
 |  */ | 
 | asmlinkage void __sched schedule(void) | 
 | { | 
 | 	long *switch_count; | 
 | 	task_t *prev, *next; | 
 | 	runqueue_t *rq; | 
 | 	prio_array_t *array; | 
 | 	struct list_head *queue; | 
 | 	unsigned long long now; | 
 | 	unsigned long run_time; | 
 | 	int cpu, idx, new_prio; | 
 |  | 
 | 	/* | 
 | 	 * Test if we are atomic.  Since do_exit() needs to call into | 
 | 	 * schedule() atomically, we ignore that path for now. | 
 | 	 * Otherwise, whine if we are scheduling when we should not be. | 
 | 	 */ | 
 | 	if (likely(!current->exit_state)) { | 
 | 		if (unlikely(in_atomic())) { | 
 | 			printk(KERN_ERR "scheduling while atomic: " | 
 | 				"%s/0x%08x/%d\n", | 
 | 				current->comm, preempt_count(), current->pid); | 
 | 			dump_stack(); | 
 | 		} | 
 | 	} | 
 | 	profile_hit(SCHED_PROFILING, __builtin_return_address(0)); | 
 |  | 
 | need_resched: | 
 | 	preempt_disable(); | 
 | 	prev = current; | 
 | 	release_kernel_lock(prev); | 
 | need_resched_nonpreemptible: | 
 | 	rq = this_rq(); | 
 |  | 
 | 	/* | 
 | 	 * The idle thread is not allowed to schedule! | 
 | 	 * Remove this check after it has been exercised a bit. | 
 | 	 */ | 
 | 	if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) { | 
 | 		printk(KERN_ERR "bad: scheduling from the idle thread!\n"); | 
 | 		dump_stack(); | 
 | 	} | 
 |  | 
 | 	schedstat_inc(rq, sched_cnt); | 
 | 	now = sched_clock(); | 
 | 	if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) { | 
 | 		run_time = now - prev->timestamp; | 
 | 		if (unlikely((long long)(now - prev->timestamp) < 0)) | 
 | 			run_time = 0; | 
 | 	} else | 
 | 		run_time = NS_MAX_SLEEP_AVG; | 
 |  | 
 | 	/* | 
 | 	 * Tasks charged proportionately less run_time at high sleep_avg to | 
 | 	 * delay them losing their interactive status | 
 | 	 */ | 
 | 	run_time /= (CURRENT_BONUS(prev) ? : 1); | 
 |  | 
 | 	spin_lock_irq(&rq->lock); | 
 |  | 
 | 	if (unlikely(prev->flags & PF_DEAD)) | 
 | 		prev->state = EXIT_DEAD; | 
 |  | 
 | 	switch_count = &prev->nivcsw; | 
 | 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { | 
 | 		switch_count = &prev->nvcsw; | 
 | 		if (unlikely((prev->state & TASK_INTERRUPTIBLE) && | 
 | 				unlikely(signal_pending(prev)))) | 
 | 			prev->state = TASK_RUNNING; | 
 | 		else { | 
 | 			if (prev->state == TASK_UNINTERRUPTIBLE) | 
 | 				rq->nr_uninterruptible++; | 
 | 			deactivate_task(prev, rq); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	cpu = smp_processor_id(); | 
 | 	if (unlikely(!rq->nr_running)) { | 
 | go_idle: | 
 | 		idle_balance(cpu, rq); | 
 | 		if (!rq->nr_running) { | 
 | 			next = rq->idle; | 
 | 			rq->expired_timestamp = 0; | 
 | 			wake_sleeping_dependent(cpu, rq); | 
 | 			/* | 
 | 			 * wake_sleeping_dependent() might have released | 
 | 			 * the runqueue, so break out if we got new | 
 | 			 * tasks meanwhile: | 
 | 			 */ | 
 | 			if (!rq->nr_running) | 
 | 				goto switch_tasks; | 
 | 		} | 
 | 	} else { | 
 | 		if (dependent_sleeper(cpu, rq)) { | 
 | 			next = rq->idle; | 
 | 			goto switch_tasks; | 
 | 		} | 
 | 		/* | 
 | 		 * dependent_sleeper() releases and reacquires the runqueue | 
 | 		 * lock, hence go into the idle loop if the rq went | 
 | 		 * empty meanwhile: | 
 | 		 */ | 
 | 		if (unlikely(!rq->nr_running)) | 
 | 			goto go_idle; | 
 | 	} | 
 |  | 
 | 	array = rq->active; | 
 | 	if (unlikely(!array->nr_active)) { | 
 | 		/* | 
 | 		 * Switch the active and expired arrays. | 
 | 		 */ | 
 | 		schedstat_inc(rq, sched_switch); | 
 | 		rq->active = rq->expired; | 
 | 		rq->expired = array; | 
 | 		array = rq->active; | 
 | 		rq->expired_timestamp = 0; | 
 | 		rq->best_expired_prio = MAX_PRIO; | 
 | 	} | 
 |  | 
 | 	idx = sched_find_first_bit(array->bitmap); | 
 | 	queue = array->queue + idx; | 
 | 	next = list_entry(queue->next, task_t, run_list); | 
 |  | 
 | 	if (!rt_task(next) && next->activated > 0) { | 
 | 		unsigned long long delta = now - next->timestamp; | 
 | 		if (unlikely((long long)(now - next->timestamp) < 0)) | 
 | 			delta = 0; | 
 |  | 
 | 		if (next->activated == 1) | 
 | 			delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128; | 
 |  | 
 | 		array = next->array; | 
 | 		new_prio = recalc_task_prio(next, next->timestamp + delta); | 
 |  | 
 | 		if (unlikely(next->prio != new_prio)) { | 
 | 			dequeue_task(next, array); | 
 | 			next->prio = new_prio; | 
 | 			enqueue_task(next, array); | 
 | 		} else | 
 | 			requeue_task(next, array); | 
 | 	} | 
 | 	next->activated = 0; | 
 | switch_tasks: | 
 | 	if (next == rq->idle) | 
 | 		schedstat_inc(rq, sched_goidle); | 
 | 	prefetch(next); | 
 | 	prefetch_stack(next); | 
 | 	clear_tsk_need_resched(prev); | 
 | 	rcu_qsctr_inc(task_cpu(prev)); | 
 |  | 
 | 	update_cpu_clock(prev, rq, now); | 
 |  | 
 | 	prev->sleep_avg -= run_time; | 
 | 	if ((long)prev->sleep_avg <= 0) | 
 | 		prev->sleep_avg = 0; | 
 | 	prev->timestamp = prev->last_ran = now; | 
 |  | 
 | 	sched_info_switch(prev, next); | 
 | 	if (likely(prev != next)) { | 
 | 		next->timestamp = now; | 
 | 		rq->nr_switches++; | 
 | 		rq->curr = next; | 
 | 		++*switch_count; | 
 |  | 
 | 		prepare_task_switch(rq, next); | 
 | 		prev = context_switch(rq, prev, next); | 
 | 		barrier(); | 
 | 		/* | 
 | 		 * this_rq must be evaluated again because prev may have moved | 
 | 		 * CPUs since it called schedule(), thus the 'rq' on its stack | 
 | 		 * frame will be invalid. | 
 | 		 */ | 
 | 		finish_task_switch(this_rq(), prev); | 
 | 	} else | 
 | 		spin_unlock_irq(&rq->lock); | 
 |  | 
 | 	prev = current; | 
 | 	if (unlikely(reacquire_kernel_lock(prev) < 0)) | 
 | 		goto need_resched_nonpreemptible; | 
 | 	preempt_enable_no_resched(); | 
 | 	if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | 
 | 		goto need_resched; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(schedule); | 
 |  | 
 | #ifdef CONFIG_PREEMPT | 
 | /* | 
 |  * this is is the entry point to schedule() from in-kernel preemption | 
 |  * off of preempt_enable.  Kernel preemptions off return from interrupt | 
 |  * occur there and call schedule directly. | 
 |  */ | 
 | asmlinkage void __sched preempt_schedule(void) | 
 | { | 
 | 	struct thread_info *ti = current_thread_info(); | 
 | #ifdef CONFIG_PREEMPT_BKL | 
 | 	struct task_struct *task = current; | 
 | 	int saved_lock_depth; | 
 | #endif | 
 | 	/* | 
 | 	 * If there is a non-zero preempt_count or interrupts are disabled, | 
 | 	 * we do not want to preempt the current task.  Just return.. | 
 | 	 */ | 
 | 	if (unlikely(ti->preempt_count || irqs_disabled())) | 
 | 		return; | 
 |  | 
 | need_resched: | 
 | 	add_preempt_count(PREEMPT_ACTIVE); | 
 | 	/* | 
 | 	 * We keep the big kernel semaphore locked, but we | 
 | 	 * clear ->lock_depth so that schedule() doesnt | 
 | 	 * auto-release the semaphore: | 
 | 	 */ | 
 | #ifdef CONFIG_PREEMPT_BKL | 
 | 	saved_lock_depth = task->lock_depth; | 
 | 	task->lock_depth = -1; | 
 | #endif | 
 | 	schedule(); | 
 | #ifdef CONFIG_PREEMPT_BKL | 
 | 	task->lock_depth = saved_lock_depth; | 
 | #endif | 
 | 	sub_preempt_count(PREEMPT_ACTIVE); | 
 |  | 
 | 	/* we could miss a preemption opportunity between schedule and now */ | 
 | 	barrier(); | 
 | 	if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | 
 | 		goto need_resched; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(preempt_schedule); | 
 |  | 
 | /* | 
 |  * this is is the entry point to schedule() from kernel preemption | 
 |  * off of irq context. | 
 |  * Note, that this is called and return with irqs disabled. This will | 
 |  * protect us against recursive calling from irq. | 
 |  */ | 
 | asmlinkage void __sched preempt_schedule_irq(void) | 
 | { | 
 | 	struct thread_info *ti = current_thread_info(); | 
 | #ifdef CONFIG_PREEMPT_BKL | 
 | 	struct task_struct *task = current; | 
 | 	int saved_lock_depth; | 
 | #endif | 
 | 	/* Catch callers which need to be fixed*/ | 
 | 	BUG_ON(ti->preempt_count || !irqs_disabled()); | 
 |  | 
 | need_resched: | 
 | 	add_preempt_count(PREEMPT_ACTIVE); | 
 | 	/* | 
 | 	 * We keep the big kernel semaphore locked, but we | 
 | 	 * clear ->lock_depth so that schedule() doesnt | 
 | 	 * auto-release the semaphore: | 
 | 	 */ | 
 | #ifdef CONFIG_PREEMPT_BKL | 
 | 	saved_lock_depth = task->lock_depth; | 
 | 	task->lock_depth = -1; | 
 | #endif | 
 | 	local_irq_enable(); | 
 | 	schedule(); | 
 | 	local_irq_disable(); | 
 | #ifdef CONFIG_PREEMPT_BKL | 
 | 	task->lock_depth = saved_lock_depth; | 
 | #endif | 
 | 	sub_preempt_count(PREEMPT_ACTIVE); | 
 |  | 
 | 	/* we could miss a preemption opportunity between schedule and now */ | 
 | 	barrier(); | 
 | 	if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | 
 | 		goto need_resched; | 
 | } | 
 |  | 
 | #endif /* CONFIG_PREEMPT */ | 
 |  | 
 | int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, | 
 | 			  void *key) | 
 | { | 
 | 	task_t *p = curr->private; | 
 | 	return try_to_wake_up(p, mode, sync); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(default_wake_function); | 
 |  | 
 | /* | 
 |  * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just | 
 |  * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve | 
 |  * number) then we wake all the non-exclusive tasks and one exclusive task. | 
 |  * | 
 |  * There are circumstances in which we can try to wake a task which has already | 
 |  * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns | 
 |  * zero in this (rare) case, and we handle it by continuing to scan the queue. | 
 |  */ | 
 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, | 
 | 			     int nr_exclusive, int sync, void *key) | 
 | { | 
 | 	struct list_head *tmp, *next; | 
 |  | 
 | 	list_for_each_safe(tmp, next, &q->task_list) { | 
 | 		wait_queue_t *curr; | 
 | 		unsigned flags; | 
 | 		curr = list_entry(tmp, wait_queue_t, task_list); | 
 | 		flags = curr->flags; | 
 | 		if (curr->func(curr, mode, sync, key) && | 
 | 		    (flags & WQ_FLAG_EXCLUSIVE) && | 
 | 		    !--nr_exclusive) | 
 | 			break; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * __wake_up - wake up threads blocked on a waitqueue. | 
 |  * @q: the waitqueue | 
 |  * @mode: which threads | 
 |  * @nr_exclusive: how many wake-one or wake-many threads to wake up | 
 |  * @key: is directly passed to the wakeup function | 
 |  */ | 
 | void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode, | 
 | 			int nr_exclusive, void *key) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&q->lock, flags); | 
 | 	__wake_up_common(q, mode, nr_exclusive, 0, key); | 
 | 	spin_unlock_irqrestore(&q->lock, flags); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(__wake_up); | 
 |  | 
 | /* | 
 |  * Same as __wake_up but called with the spinlock in wait_queue_head_t held. | 
 |  */ | 
 | void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode) | 
 | { | 
 | 	__wake_up_common(q, mode, 1, 0, NULL); | 
 | } | 
 |  | 
 | /** | 
 |  * __wake_up_sync - wake up threads blocked on a waitqueue. | 
 |  * @q: the waitqueue | 
 |  * @mode: which threads | 
 |  * @nr_exclusive: how many wake-one or wake-many threads to wake up | 
 |  * | 
 |  * The sync wakeup differs that the waker knows that it will schedule | 
 |  * away soon, so while the target thread will be woken up, it will not | 
 |  * be migrated to another CPU - ie. the two threads are 'synchronized' | 
 |  * with each other. This can prevent needless bouncing between CPUs. | 
 |  * | 
 |  * On UP it can prevent extra preemption. | 
 |  */ | 
 | void fastcall | 
 | __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int sync = 1; | 
 |  | 
 | 	if (unlikely(!q)) | 
 | 		return; | 
 |  | 
 | 	if (unlikely(!nr_exclusive)) | 
 | 		sync = 0; | 
 |  | 
 | 	spin_lock_irqsave(&q->lock, flags); | 
 | 	__wake_up_common(q, mode, nr_exclusive, sync, NULL); | 
 | 	spin_unlock_irqrestore(&q->lock, flags); | 
 | } | 
 | EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */ | 
 |  | 
 | void fastcall complete(struct completion *x) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&x->wait.lock, flags); | 
 | 	x->done++; | 
 | 	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, | 
 | 			 1, 0, NULL); | 
 | 	spin_unlock_irqrestore(&x->wait.lock, flags); | 
 | } | 
 | EXPORT_SYMBOL(complete); | 
 |  | 
 | void fastcall complete_all(struct completion *x) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&x->wait.lock, flags); | 
 | 	x->done += UINT_MAX/2; | 
 | 	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, | 
 | 			 0, 0, NULL); | 
 | 	spin_unlock_irqrestore(&x->wait.lock, flags); | 
 | } | 
 | EXPORT_SYMBOL(complete_all); | 
 |  | 
 | void fastcall __sched wait_for_completion(struct completion *x) | 
 | { | 
 | 	might_sleep(); | 
 | 	spin_lock_irq(&x->wait.lock); | 
 | 	if (!x->done) { | 
 | 		DECLARE_WAITQUEUE(wait, current); | 
 |  | 
 | 		wait.flags |= WQ_FLAG_EXCLUSIVE; | 
 | 		__add_wait_queue_tail(&x->wait, &wait); | 
 | 		do { | 
 | 			__set_current_state(TASK_UNINTERRUPTIBLE); | 
 | 			spin_unlock_irq(&x->wait.lock); | 
 | 			schedule(); | 
 | 			spin_lock_irq(&x->wait.lock); | 
 | 		} while (!x->done); | 
 | 		__remove_wait_queue(&x->wait, &wait); | 
 | 	} | 
 | 	x->done--; | 
 | 	spin_unlock_irq(&x->wait.lock); | 
 | } | 
 | EXPORT_SYMBOL(wait_for_completion); | 
 |  | 
 | unsigned long fastcall __sched | 
 | wait_for_completion_timeout(struct completion *x, unsigned long timeout) | 
 | { | 
 | 	might_sleep(); | 
 |  | 
 | 	spin_lock_irq(&x->wait.lock); | 
 | 	if (!x->done) { | 
 | 		DECLARE_WAITQUEUE(wait, current); | 
 |  | 
 | 		wait.flags |= WQ_FLAG_EXCLUSIVE; | 
 | 		__add_wait_queue_tail(&x->wait, &wait); | 
 | 		do { | 
 | 			__set_current_state(TASK_UNINTERRUPTIBLE); | 
 | 			spin_unlock_irq(&x->wait.lock); | 
 | 			timeout = schedule_timeout(timeout); | 
 | 			spin_lock_irq(&x->wait.lock); | 
 | 			if (!timeout) { | 
 | 				__remove_wait_queue(&x->wait, &wait); | 
 | 				goto out; | 
 | 			} | 
 | 		} while (!x->done); | 
 | 		__remove_wait_queue(&x->wait, &wait); | 
 | 	} | 
 | 	x->done--; | 
 | out: | 
 | 	spin_unlock_irq(&x->wait.lock); | 
 | 	return timeout; | 
 | } | 
 | EXPORT_SYMBOL(wait_for_completion_timeout); | 
 |  | 
 | int fastcall __sched wait_for_completion_interruptible(struct completion *x) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	might_sleep(); | 
 |  | 
 | 	spin_lock_irq(&x->wait.lock); | 
 | 	if (!x->done) { | 
 | 		DECLARE_WAITQUEUE(wait, current); | 
 |  | 
 | 		wait.flags |= WQ_FLAG_EXCLUSIVE; | 
 | 		__add_wait_queue_tail(&x->wait, &wait); | 
 | 		do { | 
 | 			if (signal_pending(current)) { | 
 | 				ret = -ERESTARTSYS; | 
 | 				__remove_wait_queue(&x->wait, &wait); | 
 | 				goto out; | 
 | 			} | 
 | 			__set_current_state(TASK_INTERRUPTIBLE); | 
 | 			spin_unlock_irq(&x->wait.lock); | 
 | 			schedule(); | 
 | 			spin_lock_irq(&x->wait.lock); | 
 | 		} while (!x->done); | 
 | 		__remove_wait_queue(&x->wait, &wait); | 
 | 	} | 
 | 	x->done--; | 
 | out: | 
 | 	spin_unlock_irq(&x->wait.lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(wait_for_completion_interruptible); | 
 |  | 
 | unsigned long fastcall __sched | 
 | wait_for_completion_interruptible_timeout(struct completion *x, | 
 | 					  unsigned long timeout) | 
 | { | 
 | 	might_sleep(); | 
 |  | 
 | 	spin_lock_irq(&x->wait.lock); | 
 | 	if (!x->done) { | 
 | 		DECLARE_WAITQUEUE(wait, current); | 
 |  | 
 | 		wait.flags |= WQ_FLAG_EXCLUSIVE; | 
 | 		__add_wait_queue_tail(&x->wait, &wait); | 
 | 		do { | 
 | 			if (signal_pending(current)) { | 
 | 				timeout = -ERESTARTSYS; | 
 | 				__remove_wait_queue(&x->wait, &wait); | 
 | 				goto out; | 
 | 			} | 
 | 			__set_current_state(TASK_INTERRUPTIBLE); | 
 | 			spin_unlock_irq(&x->wait.lock); | 
 | 			timeout = schedule_timeout(timeout); | 
 | 			spin_lock_irq(&x->wait.lock); | 
 | 			if (!timeout) { | 
 | 				__remove_wait_queue(&x->wait, &wait); | 
 | 				goto out; | 
 | 			} | 
 | 		} while (!x->done); | 
 | 		__remove_wait_queue(&x->wait, &wait); | 
 | 	} | 
 | 	x->done--; | 
 | out: | 
 | 	spin_unlock_irq(&x->wait.lock); | 
 | 	return timeout; | 
 | } | 
 | EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); | 
 |  | 
 |  | 
 | #define	SLEEP_ON_VAR					\ | 
 | 	unsigned long flags;				\ | 
 | 	wait_queue_t wait;				\ | 
 | 	init_waitqueue_entry(&wait, current); | 
 |  | 
 | #define SLEEP_ON_HEAD					\ | 
 | 	spin_lock_irqsave(&q->lock,flags);		\ | 
 | 	__add_wait_queue(q, &wait);			\ | 
 | 	spin_unlock(&q->lock); | 
 |  | 
 | #define	SLEEP_ON_TAIL					\ | 
 | 	spin_lock_irq(&q->lock);			\ | 
 | 	__remove_wait_queue(q, &wait);			\ | 
 | 	spin_unlock_irqrestore(&q->lock, flags); | 
 |  | 
 | void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q) | 
 | { | 
 | 	SLEEP_ON_VAR | 
 |  | 
 | 	current->state = TASK_INTERRUPTIBLE; | 
 |  | 
 | 	SLEEP_ON_HEAD | 
 | 	schedule(); | 
 | 	SLEEP_ON_TAIL | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(interruptible_sleep_on); | 
 |  | 
 | long fastcall __sched | 
 | interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) | 
 | { | 
 | 	SLEEP_ON_VAR | 
 |  | 
 | 	current->state = TASK_INTERRUPTIBLE; | 
 |  | 
 | 	SLEEP_ON_HEAD | 
 | 	timeout = schedule_timeout(timeout); | 
 | 	SLEEP_ON_TAIL | 
 |  | 
 | 	return timeout; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(interruptible_sleep_on_timeout); | 
 |  | 
 | void fastcall __sched sleep_on(wait_queue_head_t *q) | 
 | { | 
 | 	SLEEP_ON_VAR | 
 |  | 
 | 	current->state = TASK_UNINTERRUPTIBLE; | 
 |  | 
 | 	SLEEP_ON_HEAD | 
 | 	schedule(); | 
 | 	SLEEP_ON_TAIL | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(sleep_on); | 
 |  | 
 | long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) | 
 | { | 
 | 	SLEEP_ON_VAR | 
 |  | 
 | 	current->state = TASK_UNINTERRUPTIBLE; | 
 |  | 
 | 	SLEEP_ON_HEAD | 
 | 	timeout = schedule_timeout(timeout); | 
 | 	SLEEP_ON_TAIL | 
 |  | 
 | 	return timeout; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(sleep_on_timeout); | 
 |  | 
 | void set_user_nice(task_t *p, long nice) | 
 | { | 
 | 	unsigned long flags; | 
 | 	prio_array_t *array; | 
 | 	runqueue_t *rq; | 
 | 	int old_prio, new_prio, delta; | 
 |  | 
 | 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19) | 
 | 		return; | 
 | 	/* | 
 | 	 * We have to be careful, if called from sys_setpriority(), | 
 | 	 * the task might be in the middle of scheduling on another CPU. | 
 | 	 */ | 
 | 	rq = task_rq_lock(p, &flags); | 
 | 	/* | 
 | 	 * The RT priorities are set via sched_setscheduler(), but we still | 
 | 	 * allow the 'normal' nice value to be set - but as expected | 
 | 	 * it wont have any effect on scheduling until the task is | 
 | 	 * not SCHED_NORMAL: | 
 | 	 */ | 
 | 	if (rt_task(p)) { | 
 | 		p->static_prio = NICE_TO_PRIO(nice); | 
 | 		goto out_unlock; | 
 | 	} | 
 | 	array = p->array; | 
 | 	if (array) | 
 | 		dequeue_task(p, array); | 
 |  | 
 | 	old_prio = p->prio; | 
 | 	new_prio = NICE_TO_PRIO(nice); | 
 | 	delta = new_prio - old_prio; | 
 | 	p->static_prio = NICE_TO_PRIO(nice); | 
 | 	p->prio += delta; | 
 |  | 
 | 	if (array) { | 
 | 		enqueue_task(p, array); | 
 | 		/* | 
 | 		 * If the task increased its priority or is running and | 
 | 		 * lowered its priority, then reschedule its CPU: | 
 | 		 */ | 
 | 		if (delta < 0 || (delta > 0 && task_running(rq, p))) | 
 | 			resched_task(rq->curr); | 
 | 	} | 
 | out_unlock: | 
 | 	task_rq_unlock(rq, &flags); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(set_user_nice); | 
 |  | 
 | /* | 
 |  * can_nice - check if a task can reduce its nice value | 
 |  * @p: task | 
 |  * @nice: nice value | 
 |  */ | 
 | int can_nice(const task_t *p, const int nice) | 
 | { | 
 | 	/* convert nice value [19,-20] to rlimit style value [1,40] */ | 
 | 	int nice_rlim = 20 - nice; | 
 | 	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur || | 
 | 		capable(CAP_SYS_NICE)); | 
 | } | 
 |  | 
 | #ifdef __ARCH_WANT_SYS_NICE | 
 |  | 
 | /* | 
 |  * sys_nice - change the priority of the current process. | 
 |  * @increment: priority increment | 
 |  * | 
 |  * sys_setpriority is a more generic, but much slower function that | 
 |  * does similar things. | 
 |  */ | 
 | asmlinkage long sys_nice(int increment) | 
 | { | 
 | 	int retval; | 
 | 	long nice; | 
 |  | 
 | 	/* | 
 | 	 * Setpriority might change our priority at the same moment. | 
 | 	 * We don't have to worry. Conceptually one call occurs first | 
 | 	 * and we have a single winner. | 
 | 	 */ | 
 | 	if (increment < -40) | 
 | 		increment = -40; | 
 | 	if (increment > 40) | 
 | 		increment = 40; | 
 |  | 
 | 	nice = PRIO_TO_NICE(current->static_prio) + increment; | 
 | 	if (nice < -20) | 
 | 		nice = -20; | 
 | 	if (nice > 19) | 
 | 		nice = 19; | 
 |  | 
 | 	if (increment < 0 && !can_nice(current, nice)) | 
 | 		return -EPERM; | 
 |  | 
 | 	retval = security_task_setnice(current, nice); | 
 | 	if (retval) | 
 | 		return retval; | 
 |  | 
 | 	set_user_nice(current, nice); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /** | 
 |  * task_prio - return the priority value of a given task. | 
 |  * @p: the task in question. | 
 |  * | 
 |  * This is the priority value as seen by users in /proc. | 
 |  * RT tasks are offset by -200. Normal tasks are centered | 
 |  * around 0, value goes from -16 to +15. | 
 |  */ | 
 | int task_prio(const task_t *p) | 
 | { | 
 | 	return p->prio - MAX_RT_PRIO; | 
 | } | 
 |  | 
 | /** | 
 |  * task_nice - return the nice value of a given task. | 
 |  * @p: the task in question. | 
 |  */ | 
 | int task_nice(const task_t *p) | 
 | { | 
 | 	return TASK_NICE(p); | 
 | } | 
 | EXPORT_SYMBOL_GPL(task_nice); | 
 |  | 
 | /** | 
 |  * idle_cpu - is a given cpu idle currently? | 
 |  * @cpu: the processor in question. | 
 |  */ | 
 | int idle_cpu(int cpu) | 
 | { | 
 | 	return cpu_curr(cpu) == cpu_rq(cpu)->idle; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL_GPL(idle_cpu); | 
 |  | 
 | /** | 
 |  * idle_task - return the idle task for a given cpu. | 
 |  * @cpu: the processor in question. | 
 |  */ | 
 | task_t *idle_task(int cpu) | 
 | { | 
 | 	return cpu_rq(cpu)->idle; | 
 | } | 
 |  | 
 | /** | 
 |  * find_process_by_pid - find a process with a matching PID value. | 
 |  * @pid: the pid in question. | 
 |  */ | 
 | static inline task_t *find_process_by_pid(pid_t pid) | 
 | { | 
 | 	return pid ? find_task_by_pid(pid) : current; | 
 | } | 
 |  | 
 | /* Actually do priority change: must hold rq lock. */ | 
 | static void __setscheduler(struct task_struct *p, int policy, int prio) | 
 | { | 
 | 	BUG_ON(p->array); | 
 | 	p->policy = policy; | 
 | 	p->rt_priority = prio; | 
 | 	if (policy != SCHED_NORMAL) | 
 | 		p->prio = MAX_RT_PRIO-1 - p->rt_priority; | 
 | 	else | 
 | 		p->prio = p->static_prio; | 
 | } | 
 |  | 
 | /** | 
 |  * sched_setscheduler - change the scheduling policy and/or RT priority of | 
 |  * a thread. | 
 |  * @p: the task in question. | 
 |  * @policy: new policy. | 
 |  * @param: structure containing the new RT priority. | 
 |  */ | 
 | int sched_setscheduler(struct task_struct *p, int policy, | 
 | 		       struct sched_param *param) | 
 | { | 
 | 	int retval; | 
 | 	int oldprio, oldpolicy = -1; | 
 | 	prio_array_t *array; | 
 | 	unsigned long flags; | 
 | 	runqueue_t *rq; | 
 |  | 
 | recheck: | 
 | 	/* double check policy once rq lock held */ | 
 | 	if (policy < 0) | 
 | 		policy = oldpolicy = p->policy; | 
 | 	else if (policy != SCHED_FIFO && policy != SCHED_RR && | 
 | 				policy != SCHED_NORMAL) | 
 | 			return -EINVAL; | 
 | 	/* | 
 | 	 * Valid priorities for SCHED_FIFO and SCHED_RR are | 
 | 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0. | 
 | 	 */ | 
 | 	if (param->sched_priority < 0 || | 
 | 	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || | 
 | 	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) | 
 | 		return -EINVAL; | 
 | 	if ((policy == SCHED_NORMAL) != (param->sched_priority == 0)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Allow unprivileged RT tasks to decrease priority: | 
 | 	 */ | 
 | 	if (!capable(CAP_SYS_NICE)) { | 
 | 		/* can't change policy */ | 
 | 		if (policy != p->policy && | 
 | 			!p->signal->rlim[RLIMIT_RTPRIO].rlim_cur) | 
 | 			return -EPERM; | 
 | 		/* can't increase priority */ | 
 | 		if (policy != SCHED_NORMAL && | 
 | 		    param->sched_priority > p->rt_priority && | 
 | 		    param->sched_priority > | 
 | 				p->signal->rlim[RLIMIT_RTPRIO].rlim_cur) | 
 | 			return -EPERM; | 
 | 		/* can't change other user's priorities */ | 
 | 		if ((current->euid != p->euid) && | 
 | 		    (current->euid != p->uid)) | 
 | 			return -EPERM; | 
 | 	} | 
 |  | 
 | 	retval = security_task_setscheduler(p, policy, param); | 
 | 	if (retval) | 
 | 		return retval; | 
 | 	/* | 
 | 	 * To be able to change p->policy safely, the apropriate | 
 | 	 * runqueue lock must be held. | 
 | 	 */ | 
 | 	rq = task_rq_lock(p, &flags); | 
 | 	/* recheck policy now with rq lock held */ | 
 | 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { | 
 | 		policy = oldpolicy = -1; | 
 | 		task_rq_unlock(rq, &flags); | 
 | 		goto recheck; | 
 | 	} | 
 | 	array = p->array; | 
 | 	if (array) | 
 | 		deactivate_task(p, rq); | 
 | 	oldprio = p->prio; | 
 | 	__setscheduler(p, policy, param->sched_priority); | 
 | 	if (array) { | 
 | 		__activate_task(p, rq); | 
 | 		/* | 
 | 		 * Reschedule if we are currently running on this runqueue and | 
 | 		 * our priority decreased, or if we are not currently running on | 
 | 		 * this runqueue and our priority is higher than the current's | 
 | 		 */ | 
 | 		if (task_running(rq, p)) { | 
 | 			if (p->prio > oldprio) | 
 | 				resched_task(rq->curr); | 
 | 		} else if (TASK_PREEMPTS_CURR(p, rq)) | 
 | 			resched_task(rq->curr); | 
 | 	} | 
 | 	task_rq_unlock(rq, &flags); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(sched_setscheduler); | 
 |  | 
 | static int | 
 | do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) | 
 | { | 
 | 	int retval; | 
 | 	struct sched_param lparam; | 
 | 	struct task_struct *p; | 
 |  | 
 | 	if (!param || pid < 0) | 
 | 		return -EINVAL; | 
 | 	if (copy_from_user(&lparam, param, sizeof(struct sched_param))) | 
 | 		return -EFAULT; | 
 | 	read_lock_irq(&tasklist_lock); | 
 | 	p = find_process_by_pid(pid); | 
 | 	if (!p) { | 
 | 		read_unlock_irq(&tasklist_lock); | 
 | 		return -ESRCH; | 
 | 	} | 
 | 	retval = sched_setscheduler(p, policy, &lparam); | 
 | 	read_unlock_irq(&tasklist_lock); | 
 | 	return retval; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_setscheduler - set/change the scheduler policy and RT priority | 
 |  * @pid: the pid in question. | 
 |  * @policy: new policy. | 
 |  * @param: structure containing the new RT priority. | 
 |  */ | 
 | asmlinkage long sys_sched_setscheduler(pid_t pid, int policy, | 
 | 				       struct sched_param __user *param) | 
 | { | 
 | 	return do_sched_setscheduler(pid, policy, param); | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_setparam - set/change the RT priority of a thread | 
 |  * @pid: the pid in question. | 
 |  * @param: structure containing the new RT priority. | 
 |  */ | 
 | asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param) | 
 | { | 
 | 	return do_sched_setscheduler(pid, -1, param); | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_getscheduler - get the policy (scheduling class) of a thread | 
 |  * @pid: the pid in question. | 
 |  */ | 
 | asmlinkage long sys_sched_getscheduler(pid_t pid) | 
 | { | 
 | 	int retval = -EINVAL; | 
 | 	task_t *p; | 
 |  | 
 | 	if (pid < 0) | 
 | 		goto out_nounlock; | 
 |  | 
 | 	retval = -ESRCH; | 
 | 	read_lock(&tasklist_lock); | 
 | 	p = find_process_by_pid(pid); | 
 | 	if (p) { | 
 | 		retval = security_task_getscheduler(p); | 
 | 		if (!retval) | 
 | 			retval = p->policy; | 
 | 	} | 
 | 	read_unlock(&tasklist_lock); | 
 |  | 
 | out_nounlock: | 
 | 	return retval; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_getscheduler - get the RT priority of a thread | 
 |  * @pid: the pid in question. | 
 |  * @param: structure containing the RT priority. | 
 |  */ | 
 | asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param) | 
 | { | 
 | 	struct sched_param lp; | 
 | 	int retval = -EINVAL; | 
 | 	task_t *p; | 
 |  | 
 | 	if (!param || pid < 0) | 
 | 		goto out_nounlock; | 
 |  | 
 | 	read_lock(&tasklist_lock); | 
 | 	p = find_process_by_pid(pid); | 
 | 	retval = -ESRCH; | 
 | 	if (!p) | 
 | 		goto out_unlock; | 
 |  | 
 | 	retval = security_task_getscheduler(p); | 
 | 	if (retval) | 
 | 		goto out_unlock; | 
 |  | 
 | 	lp.sched_priority = p->rt_priority; | 
 | 	read_unlock(&tasklist_lock); | 
 |  | 
 | 	/* | 
 | 	 * This one might sleep, we cannot do it with a spinlock held ... | 
 | 	 */ | 
 | 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; | 
 |  | 
 | out_nounlock: | 
 | 	return retval; | 
 |  | 
 | out_unlock: | 
 | 	read_unlock(&tasklist_lock); | 
 | 	return retval; | 
 | } | 
 |  | 
 | long sched_setaffinity(pid_t pid, cpumask_t new_mask) | 
 | { | 
 | 	task_t *p; | 
 | 	int retval; | 
 | 	cpumask_t cpus_allowed; | 
 |  | 
 | 	lock_cpu_hotplug(); | 
 | 	read_lock(&tasklist_lock); | 
 |  | 
 | 	p = find_process_by_pid(pid); | 
 | 	if (!p) { | 
 | 		read_unlock(&tasklist_lock); | 
 | 		unlock_cpu_hotplug(); | 
 | 		return -ESRCH; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * It is not safe to call set_cpus_allowed with the | 
 | 	 * tasklist_lock held.  We will bump the task_struct's | 
 | 	 * usage count and then drop tasklist_lock. | 
 | 	 */ | 
 | 	get_task_struct(p); | 
 | 	read_unlock(&tasklist_lock); | 
 |  | 
 | 	retval = -EPERM; | 
 | 	if ((current->euid != p->euid) && (current->euid != p->uid) && | 
 | 			!capable(CAP_SYS_NICE)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	cpus_allowed = cpuset_cpus_allowed(p); | 
 | 	cpus_and(new_mask, new_mask, cpus_allowed); | 
 | 	retval = set_cpus_allowed(p, new_mask); | 
 |  | 
 | out_unlock: | 
 | 	put_task_struct(p); | 
 | 	unlock_cpu_hotplug(); | 
 | 	return retval; | 
 | } | 
 |  | 
 | static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, | 
 | 			     cpumask_t *new_mask) | 
 | { | 
 | 	if (len < sizeof(cpumask_t)) { | 
 | 		memset(new_mask, 0, sizeof(cpumask_t)); | 
 | 	} else if (len > sizeof(cpumask_t)) { | 
 | 		len = sizeof(cpumask_t); | 
 | 	} | 
 | 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_setaffinity - set the cpu affinity of a process | 
 |  * @pid: pid of the process | 
 |  * @len: length in bytes of the bitmask pointed to by user_mask_ptr | 
 |  * @user_mask_ptr: user-space pointer to the new cpu mask | 
 |  */ | 
 | asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len, | 
 | 				      unsigned long __user *user_mask_ptr) | 
 | { | 
 | 	cpumask_t new_mask; | 
 | 	int retval; | 
 |  | 
 | 	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask); | 
 | 	if (retval) | 
 | 		return retval; | 
 |  | 
 | 	return sched_setaffinity(pid, new_mask); | 
 | } | 
 |  | 
 | /* | 
 |  * Represents all cpu's present in the system | 
 |  * In systems capable of hotplug, this map could dynamically grow | 
 |  * as new cpu's are detected in the system via any platform specific | 
 |  * method, such as ACPI for e.g. | 
 |  */ | 
 |  | 
 | cpumask_t cpu_present_map; | 
 | EXPORT_SYMBOL(cpu_present_map); | 
 |  | 
 | #ifndef CONFIG_SMP | 
 | cpumask_t cpu_online_map = CPU_MASK_ALL; | 
 | EXPORT_SYMBOL_GPL(cpu_online_map); | 
 | cpumask_t cpu_possible_map = CPU_MASK_ALL; | 
 | #endif | 
 |  | 
 | long sched_getaffinity(pid_t pid, cpumask_t *mask) | 
 | { | 
 | 	int retval; | 
 | 	task_t *p; | 
 |  | 
 | 	lock_cpu_hotplug(); | 
 | 	read_lock(&tasklist_lock); | 
 |  | 
 | 	retval = -ESRCH; | 
 | 	p = find_process_by_pid(pid); | 
 | 	if (!p) | 
 | 		goto out_unlock; | 
 |  | 
 | 	retval = 0; | 
 | 	cpus_and(*mask, p->cpus_allowed, cpu_possible_map); | 
 |  | 
 | out_unlock: | 
 | 	read_unlock(&tasklist_lock); | 
 | 	unlock_cpu_hotplug(); | 
 | 	if (retval) | 
 | 		return retval; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_getaffinity - get the cpu affinity of a process | 
 |  * @pid: pid of the process | 
 |  * @len: length in bytes of the bitmask pointed to by user_mask_ptr | 
 |  * @user_mask_ptr: user-space pointer to hold the current cpu mask | 
 |  */ | 
 | asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len, | 
 | 				      unsigned long __user *user_mask_ptr) | 
 | { | 
 | 	int ret; | 
 | 	cpumask_t mask; | 
 |  | 
 | 	if (len < sizeof(cpumask_t)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ret = sched_getaffinity(pid, &mask); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	return sizeof(cpumask_t); | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_yield - yield the current processor to other threads. | 
 |  * | 
 |  * this function yields the current CPU by moving the calling thread | 
 |  * to the expired array. If there are no other threads running on this | 
 |  * CPU then this function will return. | 
 |  */ | 
 | asmlinkage long sys_sched_yield(void) | 
 | { | 
 | 	runqueue_t *rq = this_rq_lock(); | 
 | 	prio_array_t *array = current->array; | 
 | 	prio_array_t *target = rq->expired; | 
 |  | 
 | 	schedstat_inc(rq, yld_cnt); | 
 | 	/* | 
 | 	 * We implement yielding by moving the task into the expired | 
 | 	 * queue. | 
 | 	 * | 
 | 	 * (special rule: RT tasks will just roundrobin in the active | 
 | 	 *  array.) | 
 | 	 */ | 
 | 	if (rt_task(current)) | 
 | 		target = rq->active; | 
 |  | 
 | 	if (array->nr_active == 1) { | 
 | 		schedstat_inc(rq, yld_act_empty); | 
 | 		if (!rq->expired->nr_active) | 
 | 			schedstat_inc(rq, yld_both_empty); | 
 | 	} else if (!rq->expired->nr_active) | 
 | 		schedstat_inc(rq, yld_exp_empty); | 
 |  | 
 | 	if (array != target) { | 
 | 		dequeue_task(current, array); | 
 | 		enqueue_task(current, target); | 
 | 	} else | 
 | 		/* | 
 | 		 * requeue_task is cheaper so perform that if possible. | 
 | 		 */ | 
 | 		requeue_task(current, array); | 
 |  | 
 | 	/* | 
 | 	 * Since we are going to call schedule() anyway, there's | 
 | 	 * no need to preempt or enable interrupts: | 
 | 	 */ | 
 | 	__release(rq->lock); | 
 | 	_raw_spin_unlock(&rq->lock); | 
 | 	preempt_enable_no_resched(); | 
 |  | 
 | 	schedule(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void __cond_resched(void) | 
 | { | 
 | 	/* | 
 | 	 * The BKS might be reacquired before we have dropped | 
 | 	 * PREEMPT_ACTIVE, which could trigger a second | 
 | 	 * cond_resched() call. | 
 | 	 */ | 
 | 	if (unlikely(preempt_count())) | 
 | 		return; | 
 | 	do { | 
 | 		add_preempt_count(PREEMPT_ACTIVE); | 
 | 		schedule(); | 
 | 		sub_preempt_count(PREEMPT_ACTIVE); | 
 | 	} while (need_resched()); | 
 | } | 
 |  | 
 | int __sched cond_resched(void) | 
 | { | 
 | 	if (need_resched()) { | 
 | 		__cond_resched(); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(cond_resched); | 
 |  | 
 | /* | 
 |  * cond_resched_lock() - if a reschedule is pending, drop the given lock, | 
 |  * call schedule, and on return reacquire the lock. | 
 |  * | 
 |  * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level | 
 |  * operations here to prevent schedule() from being called twice (once via | 
 |  * spin_unlock(), once by hand). | 
 |  */ | 
 | int cond_resched_lock(spinlock_t *lock) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	if (need_lockbreak(lock)) { | 
 | 		spin_unlock(lock); | 
 | 		cpu_relax(); | 
 | 		ret = 1; | 
 | 		spin_lock(lock); | 
 | 	} | 
 | 	if (need_resched()) { | 
 | 		_raw_spin_unlock(lock); | 
 | 		preempt_enable_no_resched(); | 
 | 		__cond_resched(); | 
 | 		ret = 1; | 
 | 		spin_lock(lock); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(cond_resched_lock); | 
 |  | 
 | int __sched cond_resched_softirq(void) | 
 | { | 
 | 	BUG_ON(!in_softirq()); | 
 |  | 
 | 	if (need_resched()) { | 
 | 		__local_bh_enable(); | 
 | 		__cond_resched(); | 
 | 		local_bh_disable(); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(cond_resched_softirq); | 
 |  | 
 |  | 
 | /** | 
 |  * yield - yield the current processor to other threads. | 
 |  * | 
 |  * this is a shortcut for kernel-space yielding - it marks the | 
 |  * thread runnable and calls sys_sched_yield(). | 
 |  */ | 
 | void __sched yield(void) | 
 | { | 
 | 	set_current_state(TASK_RUNNING); | 
 | 	sys_sched_yield(); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(yield); | 
 |  | 
 | /* | 
 |  * This task is about to go to sleep on IO.  Increment rq->nr_iowait so | 
 |  * that process accounting knows that this is a task in IO wait state. | 
 |  * | 
 |  * But don't do that if it is a deliberate, throttling IO wait (this task | 
 |  * has set its backing_dev_info: the queue against which it should throttle) | 
 |  */ | 
 | void __sched io_schedule(void) | 
 | { | 
 | 	struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id()); | 
 |  | 
 | 	atomic_inc(&rq->nr_iowait); | 
 | 	schedule(); | 
 | 	atomic_dec(&rq->nr_iowait); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(io_schedule); | 
 |  | 
 | long __sched io_schedule_timeout(long timeout) | 
 | { | 
 | 	struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id()); | 
 | 	long ret; | 
 |  | 
 | 	atomic_inc(&rq->nr_iowait); | 
 | 	ret = schedule_timeout(timeout); | 
 | 	atomic_dec(&rq->nr_iowait); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_get_priority_max - return maximum RT priority. | 
 |  * @policy: scheduling class. | 
 |  * | 
 |  * this syscall returns the maximum rt_priority that can be used | 
 |  * by a given scheduling class. | 
 |  */ | 
 | asmlinkage long sys_sched_get_priority_max(int policy) | 
 | { | 
 | 	int ret = -EINVAL; | 
 |  | 
 | 	switch (policy) { | 
 | 	case SCHED_FIFO: | 
 | 	case SCHED_RR: | 
 | 		ret = MAX_USER_RT_PRIO-1; | 
 | 		break; | 
 | 	case SCHED_NORMAL: | 
 | 		ret = 0; | 
 | 		break; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_get_priority_min - return minimum RT priority. | 
 |  * @policy: scheduling class. | 
 |  * | 
 |  * this syscall returns the minimum rt_priority that can be used | 
 |  * by a given scheduling class. | 
 |  */ | 
 | asmlinkage long sys_sched_get_priority_min(int policy) | 
 | { | 
 | 	int ret = -EINVAL; | 
 |  | 
 | 	switch (policy) { | 
 | 	case SCHED_FIFO: | 
 | 	case SCHED_RR: | 
 | 		ret = 1; | 
 | 		break; | 
 | 	case SCHED_NORMAL: | 
 | 		ret = 0; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_rr_get_interval - return the default timeslice of a process. | 
 |  * @pid: pid of the process. | 
 |  * @interval: userspace pointer to the timeslice value. | 
 |  * | 
 |  * this syscall writes the default timeslice value of a given process | 
 |  * into the user-space timespec buffer. A value of '0' means infinity. | 
 |  */ | 
 | asmlinkage | 
 | long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval) | 
 | { | 
 | 	int retval = -EINVAL; | 
 | 	struct timespec t; | 
 | 	task_t *p; | 
 |  | 
 | 	if (pid < 0) | 
 | 		goto out_nounlock; | 
 |  | 
 | 	retval = -ESRCH; | 
 | 	read_lock(&tasklist_lock); | 
 | 	p = find_process_by_pid(pid); | 
 | 	if (!p) | 
 | 		goto out_unlock; | 
 |  | 
 | 	retval = security_task_getscheduler(p); | 
 | 	if (retval) | 
 | 		goto out_unlock; | 
 |  | 
 | 	jiffies_to_timespec(p->policy & SCHED_FIFO ? | 
 | 				0 : task_timeslice(p), &t); | 
 | 	read_unlock(&tasklist_lock); | 
 | 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; | 
 | out_nounlock: | 
 | 	return retval; | 
 | out_unlock: | 
 | 	read_unlock(&tasklist_lock); | 
 | 	return retval; | 
 | } | 
 |  | 
 | static inline struct task_struct *eldest_child(struct task_struct *p) | 
 | { | 
 | 	if (list_empty(&p->children)) return NULL; | 
 | 	return list_entry(p->children.next,struct task_struct,sibling); | 
 | } | 
 |  | 
 | static inline struct task_struct *older_sibling(struct task_struct *p) | 
 | { | 
 | 	if (p->sibling.prev==&p->parent->children) return NULL; | 
 | 	return list_entry(p->sibling.prev,struct task_struct,sibling); | 
 | } | 
 |  | 
 | static inline struct task_struct *younger_sibling(struct task_struct *p) | 
 | { | 
 | 	if (p->sibling.next==&p->parent->children) return NULL; | 
 | 	return list_entry(p->sibling.next,struct task_struct,sibling); | 
 | } | 
 |  | 
 | static void show_task(task_t *p) | 
 | { | 
 | 	task_t *relative; | 
 | 	unsigned state; | 
 | 	unsigned long free = 0; | 
 | 	static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" }; | 
 |  | 
 | 	printk("%-13.13s ", p->comm); | 
 | 	state = p->state ? __ffs(p->state) + 1 : 0; | 
 | 	if (state < ARRAY_SIZE(stat_nam)) | 
 | 		printk(stat_nam[state]); | 
 | 	else | 
 | 		printk("?"); | 
 | #if (BITS_PER_LONG == 32) | 
 | 	if (state == TASK_RUNNING) | 
 | 		printk(" running "); | 
 | 	else | 
 | 		printk(" %08lX ", thread_saved_pc(p)); | 
 | #else | 
 | 	if (state == TASK_RUNNING) | 
 | 		printk("  running task   "); | 
 | 	else | 
 | 		printk(" %016lx ", thread_saved_pc(p)); | 
 | #endif | 
 | #ifdef CONFIG_DEBUG_STACK_USAGE | 
 | 	{ | 
 | 		unsigned long *n = (unsigned long *) (p->thread_info+1); | 
 | 		while (!*n) | 
 | 			n++; | 
 | 		free = (unsigned long) n - (unsigned long)(p->thread_info+1); | 
 | 	} | 
 | #endif | 
 | 	printk("%5lu %5d %6d ", free, p->pid, p->parent->pid); | 
 | 	if ((relative = eldest_child(p))) | 
 | 		printk("%5d ", relative->pid); | 
 | 	else | 
 | 		printk("      "); | 
 | 	if ((relative = younger_sibling(p))) | 
 | 		printk("%7d", relative->pid); | 
 | 	else | 
 | 		printk("       "); | 
 | 	if ((relative = older_sibling(p))) | 
 | 		printk(" %5d", relative->pid); | 
 | 	else | 
 | 		printk("      "); | 
 | 	if (!p->mm) | 
 | 		printk(" (L-TLB)\n"); | 
 | 	else | 
 | 		printk(" (NOTLB)\n"); | 
 |  | 
 | 	if (state != TASK_RUNNING) | 
 | 		show_stack(p, NULL); | 
 | } | 
 |  | 
 | void show_state(void) | 
 | { | 
 | 	task_t *g, *p; | 
 |  | 
 | #if (BITS_PER_LONG == 32) | 
 | 	printk("\n" | 
 | 	       "                                               sibling\n"); | 
 | 	printk("  task             PC      pid father child younger older\n"); | 
 | #else | 
 | 	printk("\n" | 
 | 	       "                                                       sibling\n"); | 
 | 	printk("  task                 PC          pid father child younger older\n"); | 
 | #endif | 
 | 	read_lock(&tasklist_lock); | 
 | 	do_each_thread(g, p) { | 
 | 		/* | 
 | 		 * reset the NMI-timeout, listing all files on a slow | 
 | 		 * console might take alot of time: | 
 | 		 */ | 
 | 		touch_nmi_watchdog(); | 
 | 		show_task(p); | 
 | 	} while_each_thread(g, p); | 
 |  | 
 | 	read_unlock(&tasklist_lock); | 
 | } | 
 |  | 
 | /** | 
 |  * init_idle - set up an idle thread for a given CPU | 
 |  * @idle: task in question | 
 |  * @cpu: cpu the idle task belongs to | 
 |  * | 
 |  * NOTE: this function does not set the idle thread's NEED_RESCHED | 
 |  * flag, to make booting more robust. | 
 |  */ | 
 | void __devinit init_idle(task_t *idle, int cpu) | 
 | { | 
 | 	runqueue_t *rq = cpu_rq(cpu); | 
 | 	unsigned long flags; | 
 |  | 
 | 	idle->sleep_avg = 0; | 
 | 	idle->array = NULL; | 
 | 	idle->prio = MAX_PRIO; | 
 | 	idle->state = TASK_RUNNING; | 
 | 	idle->cpus_allowed = cpumask_of_cpu(cpu); | 
 | 	set_task_cpu(idle, cpu); | 
 |  | 
 | 	spin_lock_irqsave(&rq->lock, flags); | 
 | 	rq->curr = rq->idle = idle; | 
 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) | 
 | 	idle->oncpu = 1; | 
 | #endif | 
 | 	spin_unlock_irqrestore(&rq->lock, flags); | 
 |  | 
 | 	/* Set the preempt count _outside_ the spinlocks! */ | 
 | #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL) | 
 | 	idle->thread_info->preempt_count = (idle->lock_depth >= 0); | 
 | #else | 
 | 	idle->thread_info->preempt_count = 0; | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * In a system that switches off the HZ timer nohz_cpu_mask | 
 |  * indicates which cpus entered this state. This is used | 
 |  * in the rcu update to wait only for active cpus. For system | 
 |  * which do not switch off the HZ timer nohz_cpu_mask should | 
 |  * always be CPU_MASK_NONE. | 
 |  */ | 
 | cpumask_t nohz_cpu_mask = CPU_MASK_NONE; | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | /* | 
 |  * This is how migration works: | 
 |  * | 
 |  * 1) we queue a migration_req_t structure in the source CPU's | 
 |  *    runqueue and wake up that CPU's migration thread. | 
 |  * 2) we down() the locked semaphore => thread blocks. | 
 |  * 3) migration thread wakes up (implicitly it forces the migrated | 
 |  *    thread off the CPU) | 
 |  * 4) it gets the migration request and checks whether the migrated | 
 |  *    task is still in the wrong runqueue. | 
 |  * 5) if it's in the wrong runqueue then the migration thread removes | 
 |  *    it and puts it into the right queue. | 
 |  * 6) migration thread up()s the semaphore. | 
 |  * 7) we wake up and the migration is done. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Change a given task's CPU affinity. Migrate the thread to a | 
 |  * proper CPU and schedule it away if the CPU it's executing on | 
 |  * is removed from the allowed bitmask. | 
 |  * | 
 |  * NOTE: the caller must have a valid reference to the task, the | 
 |  * task must not exit() & deallocate itself prematurely.  The | 
 |  * call is not atomic; no spinlocks may be held. | 
 |  */ | 
 | int set_cpus_allowed(task_t *p, cpumask_t new_mask) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int ret = 0; | 
 | 	migration_req_t req; | 
 | 	runqueue_t *rq; | 
 |  | 
 | 	rq = task_rq_lock(p, &flags); | 
 | 	if (!cpus_intersects(new_mask, cpu_online_map)) { | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	p->cpus_allowed = new_mask; | 
 | 	/* Can the task run on the task's current CPU? If so, we're done */ | 
 | 	if (cpu_isset(task_cpu(p), new_mask)) | 
 | 		goto out; | 
 |  | 
 | 	if (migrate_task(p, any_online_cpu(new_mask), &req)) { | 
 | 		/* Need help from migration thread: drop lock and wait. */ | 
 | 		task_rq_unlock(rq, &flags); | 
 | 		wake_up_process(rq->migration_thread); | 
 | 		wait_for_completion(&req.done); | 
 | 		tlb_migrate_finish(p->mm); | 
 | 		return 0; | 
 | 	} | 
 | out: | 
 | 	task_rq_unlock(rq, &flags); | 
 | 	return ret; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL_GPL(set_cpus_allowed); | 
 |  | 
 | /* | 
 |  * Move (not current) task off this cpu, onto dest cpu.  We're doing | 
 |  * this because either it can't run here any more (set_cpus_allowed() | 
 |  * away from this CPU, or CPU going down), or because we're | 
 |  * attempting to rebalance this task on exec (sched_exec). | 
 |  * | 
 |  * So we race with normal scheduler movements, but that's OK, as long | 
 |  * as the task is no longer on this CPU. | 
 |  */ | 
 | static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) | 
 | { | 
 | 	runqueue_t *rq_dest, *rq_src; | 
 |  | 
 | 	if (unlikely(cpu_is_offline(dest_cpu))) | 
 | 		return; | 
 |  | 
 | 	rq_src = cpu_rq(src_cpu); | 
 | 	rq_dest = cpu_rq(dest_cpu); | 
 |  | 
 | 	double_rq_lock(rq_src, rq_dest); | 
 | 	/* Already moved. */ | 
 | 	if (task_cpu(p) != src_cpu) | 
 | 		goto out; | 
 | 	/* Affinity changed (again). */ | 
 | 	if (!cpu_isset(dest_cpu, p->cpus_allowed)) | 
 | 		goto out; | 
 |  | 
 | 	set_task_cpu(p, dest_cpu); | 
 | 	if (p->array) { | 
 | 		/* | 
 | 		 * Sync timestamp with rq_dest's before activating. | 
 | 		 * The same thing could be achieved by doing this step | 
 | 		 * afterwards, and pretending it was a local activate. | 
 | 		 * This way is cleaner and logically correct. | 
 | 		 */ | 
 | 		p->timestamp = p->timestamp - rq_src->timestamp_last_tick | 
 | 				+ rq_dest->timestamp_last_tick; | 
 | 		deactivate_task(p, rq_src); | 
 | 		activate_task(p, rq_dest, 0); | 
 | 		if (TASK_PREEMPTS_CURR(p, rq_dest)) | 
 | 			resched_task(rq_dest->curr); | 
 | 	} | 
 |  | 
 | out: | 
 | 	double_rq_unlock(rq_src, rq_dest); | 
 | } | 
 |  | 
 | /* | 
 |  * migration_thread - this is a highprio system thread that performs | 
 |  * thread migration by bumping thread off CPU then 'pushing' onto | 
 |  * another runqueue. | 
 |  */ | 
 | static int migration_thread(void *data) | 
 | { | 
 | 	runqueue_t *rq; | 
 | 	int cpu = (long)data; | 
 |  | 
 | 	rq = cpu_rq(cpu); | 
 | 	BUG_ON(rq->migration_thread != current); | 
 |  | 
 | 	set_current_state(TASK_INTERRUPTIBLE); | 
 | 	while (!kthread_should_stop()) { | 
 | 		struct list_head *head; | 
 | 		migration_req_t *req; | 
 |  | 
 | 		try_to_freeze(); | 
 |  | 
 | 		spin_lock_irq(&rq->lock); | 
 |  | 
 | 		if (cpu_is_offline(cpu)) { | 
 | 			spin_unlock_irq(&rq->lock); | 
 | 			goto wait_to_die; | 
 | 		} | 
 |  | 
 | 		if (rq->active_balance) { | 
 | 			active_load_balance(rq, cpu); | 
 | 			rq->active_balance = 0; | 
 | 		} | 
 |  | 
 | 		head = &rq->migration_queue; | 
 |  | 
 | 		if (list_empty(head)) { | 
 | 			spin_unlock_irq(&rq->lock); | 
 | 			schedule(); | 
 | 			set_current_state(TASK_INTERRUPTIBLE); | 
 | 			continue; | 
 | 		} | 
 | 		req = list_entry(head->next, migration_req_t, list); | 
 | 		list_del_init(head->next); | 
 |  | 
 | 		spin_unlock(&rq->lock); | 
 | 		__migrate_task(req->task, cpu, req->dest_cpu); | 
 | 		local_irq_enable(); | 
 |  | 
 | 		complete(&req->done); | 
 | 	} | 
 | 	__set_current_state(TASK_RUNNING); | 
 | 	return 0; | 
 |  | 
 | wait_to_die: | 
 | 	/* Wait for kthread_stop */ | 
 | 	set_current_state(TASK_INTERRUPTIBLE); | 
 | 	while (!kthread_should_stop()) { | 
 | 		schedule(); | 
 | 		set_current_state(TASK_INTERRUPTIBLE); | 
 | 	} | 
 | 	__set_current_state(TASK_RUNNING); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | /* Figure out where task on dead CPU should go, use force if neccessary. */ | 
 | static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk) | 
 | { | 
 | 	int dest_cpu; | 
 | 	cpumask_t mask; | 
 |  | 
 | 	/* On same node? */ | 
 | 	mask = node_to_cpumask(cpu_to_node(dead_cpu)); | 
 | 	cpus_and(mask, mask, tsk->cpus_allowed); | 
 | 	dest_cpu = any_online_cpu(mask); | 
 |  | 
 | 	/* On any allowed CPU? */ | 
 | 	if (dest_cpu == NR_CPUS) | 
 | 		dest_cpu = any_online_cpu(tsk->cpus_allowed); | 
 |  | 
 | 	/* No more Mr. Nice Guy. */ | 
 | 	if (dest_cpu == NR_CPUS) { | 
 | 		cpus_setall(tsk->cpus_allowed); | 
 | 		dest_cpu = any_online_cpu(tsk->cpus_allowed); | 
 |  | 
 | 		/* | 
 | 		 * Don't tell them about moving exiting tasks or | 
 | 		 * kernel threads (both mm NULL), since they never | 
 | 		 * leave kernel. | 
 | 		 */ | 
 | 		if (tsk->mm && printk_ratelimit()) | 
 | 			printk(KERN_INFO "process %d (%s) no " | 
 | 			       "longer affine to cpu%d\n", | 
 | 			       tsk->pid, tsk->comm, dead_cpu); | 
 | 	} | 
 | 	__migrate_task(tsk, dead_cpu, dest_cpu); | 
 | } | 
 |  | 
 | /* | 
 |  * While a dead CPU has no uninterruptible tasks queued at this point, | 
 |  * it might still have a nonzero ->nr_uninterruptible counter, because | 
 |  * for performance reasons the counter is not stricly tracking tasks to | 
 |  * their home CPUs. So we just add the counter to another CPU's counter, | 
 |  * to keep the global sum constant after CPU-down: | 
 |  */ | 
 | static void migrate_nr_uninterruptible(runqueue_t *rq_src) | 
 | { | 
 | 	runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL)); | 
 | 	unsigned long flags; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	double_rq_lock(rq_src, rq_dest); | 
 | 	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; | 
 | 	rq_src->nr_uninterruptible = 0; | 
 | 	double_rq_unlock(rq_src, rq_dest); | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /* Run through task list and migrate tasks from the dead cpu. */ | 
 | static void migrate_live_tasks(int src_cpu) | 
 | { | 
 | 	struct task_struct *tsk, *t; | 
 |  | 
 | 	write_lock_irq(&tasklist_lock); | 
 |  | 
 | 	do_each_thread(t, tsk) { | 
 | 		if (tsk == current) | 
 | 			continue; | 
 |  | 
 | 		if (task_cpu(tsk) == src_cpu) | 
 | 			move_task_off_dead_cpu(src_cpu, tsk); | 
 | 	} while_each_thread(t, tsk); | 
 |  | 
 | 	write_unlock_irq(&tasklist_lock); | 
 | } | 
 |  | 
 | /* Schedules idle task to be the next runnable task on current CPU. | 
 |  * It does so by boosting its priority to highest possible and adding it to | 
 |  * the _front_ of runqueue. Used by CPU offline code. | 
 |  */ | 
 | void sched_idle_next(void) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 | 	runqueue_t *rq = this_rq(); | 
 | 	struct task_struct *p = rq->idle; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* cpu has to be offline */ | 
 | 	BUG_ON(cpu_online(cpu)); | 
 |  | 
 | 	/* Strictly not necessary since rest of the CPUs are stopped by now | 
 | 	 * and interrupts disabled on current cpu. | 
 | 	 */ | 
 | 	spin_lock_irqsave(&rq->lock, flags); | 
 |  | 
 | 	__setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1); | 
 | 	/* Add idle task to _front_ of it's priority queue */ | 
 | 	__activate_idle_task(p, rq); | 
 |  | 
 | 	spin_unlock_irqrestore(&rq->lock, flags); | 
 | } | 
 |  | 
 | /* Ensures that the idle task is using init_mm right before its cpu goes | 
 |  * offline. | 
 |  */ | 
 | void idle_task_exit(void) | 
 | { | 
 | 	struct mm_struct *mm = current->active_mm; | 
 |  | 
 | 	BUG_ON(cpu_online(smp_processor_id())); | 
 |  | 
 | 	if (mm != &init_mm) | 
 | 		switch_mm(mm, &init_mm, current); | 
 | 	mmdrop(mm); | 
 | } | 
 |  | 
 | static void migrate_dead(unsigned int dead_cpu, task_t *tsk) | 
 | { | 
 | 	struct runqueue *rq = cpu_rq(dead_cpu); | 
 |  | 
 | 	/* Must be exiting, otherwise would be on tasklist. */ | 
 | 	BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD); | 
 |  | 
 | 	/* Cannot have done final schedule yet: would have vanished. */ | 
 | 	BUG_ON(tsk->flags & PF_DEAD); | 
 |  | 
 | 	get_task_struct(tsk); | 
 |  | 
 | 	/* | 
 | 	 * Drop lock around migration; if someone else moves it, | 
 | 	 * that's OK.  No task can be added to this CPU, so iteration is | 
 | 	 * fine. | 
 | 	 */ | 
 | 	spin_unlock_irq(&rq->lock); | 
 | 	move_task_off_dead_cpu(dead_cpu, tsk); | 
 | 	spin_lock_irq(&rq->lock); | 
 |  | 
 | 	put_task_struct(tsk); | 
 | } | 
 |  | 
 | /* release_task() removes task from tasklist, so we won't find dead tasks. */ | 
 | static void migrate_dead_tasks(unsigned int dead_cpu) | 
 | { | 
 | 	unsigned arr, i; | 
 | 	struct runqueue *rq = cpu_rq(dead_cpu); | 
 |  | 
 | 	for (arr = 0; arr < 2; arr++) { | 
 | 		for (i = 0; i < MAX_PRIO; i++) { | 
 | 			struct list_head *list = &rq->arrays[arr].queue[i]; | 
 | 			while (!list_empty(list)) | 
 | 				migrate_dead(dead_cpu, | 
 | 					     list_entry(list->next, task_t, | 
 | 							run_list)); | 
 | 		} | 
 | 	} | 
 | } | 
 | #endif /* CONFIG_HOTPLUG_CPU */ | 
 |  | 
 | /* | 
 |  * migration_call - callback that gets triggered when a CPU is added. | 
 |  * Here we can start up the necessary migration thread for the new CPU. | 
 |  */ | 
 | static int migration_call(struct notifier_block *nfb, unsigned long action, | 
 | 			  void *hcpu) | 
 | { | 
 | 	int cpu = (long)hcpu; | 
 | 	struct task_struct *p; | 
 | 	struct runqueue *rq; | 
 | 	unsigned long flags; | 
 |  | 
 | 	switch (action) { | 
 | 	case CPU_UP_PREPARE: | 
 | 		p = kthread_create(migration_thread, hcpu, "migration/%d",cpu); | 
 | 		if (IS_ERR(p)) | 
 | 			return NOTIFY_BAD; | 
 | 		p->flags |= PF_NOFREEZE; | 
 | 		kthread_bind(p, cpu); | 
 | 		/* Must be high prio: stop_machine expects to yield to it. */ | 
 | 		rq = task_rq_lock(p, &flags); | 
 | 		__setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1); | 
 | 		task_rq_unlock(rq, &flags); | 
 | 		cpu_rq(cpu)->migration_thread = p; | 
 | 		break; | 
 | 	case CPU_ONLINE: | 
 | 		/* Strictly unneccessary, as first user will wake it. */ | 
 | 		wake_up_process(cpu_rq(cpu)->migration_thread); | 
 | 		break; | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | 	case CPU_UP_CANCELED: | 
 | 		/* Unbind it from offline cpu so it can run.  Fall thru. */ | 
 | 		kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id()); | 
 | 		kthread_stop(cpu_rq(cpu)->migration_thread); | 
 | 		cpu_rq(cpu)->migration_thread = NULL; | 
 | 		break; | 
 | 	case CPU_DEAD: | 
 | 		migrate_live_tasks(cpu); | 
 | 		rq = cpu_rq(cpu); | 
 | 		kthread_stop(rq->migration_thread); | 
 | 		rq->migration_thread = NULL; | 
 | 		/* Idle task back to normal (off runqueue, low prio) */ | 
 | 		rq = task_rq_lock(rq->idle, &flags); | 
 | 		deactivate_task(rq->idle, rq); | 
 | 		rq->idle->static_prio = MAX_PRIO; | 
 | 		__setscheduler(rq->idle, SCHED_NORMAL, 0); | 
 | 		migrate_dead_tasks(cpu); | 
 | 		task_rq_unlock(rq, &flags); | 
 | 		migrate_nr_uninterruptible(rq); | 
 | 		BUG_ON(rq->nr_running != 0); | 
 |  | 
 | 		/* No need to migrate the tasks: it was best-effort if | 
 | 		 * they didn't do lock_cpu_hotplug().  Just wake up | 
 | 		 * the requestors. */ | 
 | 		spin_lock_irq(&rq->lock); | 
 | 		while (!list_empty(&rq->migration_queue)) { | 
 | 			migration_req_t *req; | 
 | 			req = list_entry(rq->migration_queue.next, | 
 | 					 migration_req_t, list); | 
 | 			list_del_init(&req->list); | 
 | 			complete(&req->done); | 
 | 		} | 
 | 		spin_unlock_irq(&rq->lock); | 
 | 		break; | 
 | #endif | 
 | 	} | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | /* Register at highest priority so that task migration (migrate_all_tasks) | 
 |  * happens before everything else. | 
 |  */ | 
 | static struct notifier_block __devinitdata migration_notifier = { | 
 | 	.notifier_call = migration_call, | 
 | 	.priority = 10 | 
 | }; | 
 |  | 
 | int __init migration_init(void) | 
 | { | 
 | 	void *cpu = (void *)(long)smp_processor_id(); | 
 | 	/* Start one for boot CPU. */ | 
 | 	migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); | 
 | 	migration_call(&migration_notifier, CPU_ONLINE, cpu); | 
 | 	register_cpu_notifier(&migration_notifier); | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | #undef SCHED_DOMAIN_DEBUG | 
 | #ifdef SCHED_DOMAIN_DEBUG | 
 | static void sched_domain_debug(struct sched_domain *sd, int cpu) | 
 | { | 
 | 	int level = 0; | 
 |  | 
 | 	if (!sd) { | 
 | 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); | 
 |  | 
 | 	do { | 
 | 		int i; | 
 | 		char str[NR_CPUS]; | 
 | 		struct sched_group *group = sd->groups; | 
 | 		cpumask_t groupmask; | 
 |  | 
 | 		cpumask_scnprintf(str, NR_CPUS, sd->span); | 
 | 		cpus_clear(groupmask); | 
 |  | 
 | 		printk(KERN_DEBUG); | 
 | 		for (i = 0; i < level + 1; i++) | 
 | 			printk(" "); | 
 | 		printk("domain %d: ", level); | 
 |  | 
 | 		if (!(sd->flags & SD_LOAD_BALANCE)) { | 
 | 			printk("does not load-balance\n"); | 
 | 			if (sd->parent) | 
 | 				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent"); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		printk("span %s\n", str); | 
 |  | 
 | 		if (!cpu_isset(cpu, sd->span)) | 
 | 			printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); | 
 | 		if (!cpu_isset(cpu, group->cpumask)) | 
 | 			printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); | 
 |  | 
 | 		printk(KERN_DEBUG); | 
 | 		for (i = 0; i < level + 2; i++) | 
 | 			printk(" "); | 
 | 		printk("groups:"); | 
 | 		do { | 
 | 			if (!group) { | 
 | 				printk("\n"); | 
 | 				printk(KERN_ERR "ERROR: group is NULL\n"); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			if (!group->cpu_power) { | 
 | 				printk("\n"); | 
 | 				printk(KERN_ERR "ERROR: domain->cpu_power not set\n"); | 
 | 			} | 
 |  | 
 | 			if (!cpus_weight(group->cpumask)) { | 
 | 				printk("\n"); | 
 | 				printk(KERN_ERR "ERROR: empty group\n"); | 
 | 			} | 
 |  | 
 | 			if (cpus_intersects(groupmask, group->cpumask)) { | 
 | 				printk("\n"); | 
 | 				printk(KERN_ERR "ERROR: repeated CPUs\n"); | 
 | 			} | 
 |  | 
 | 			cpus_or(groupmask, groupmask, group->cpumask); | 
 |  | 
 | 			cpumask_scnprintf(str, NR_CPUS, group->cpumask); | 
 | 			printk(" %s", str); | 
 |  | 
 | 			group = group->next; | 
 | 		} while (group != sd->groups); | 
 | 		printk("\n"); | 
 |  | 
 | 		if (!cpus_equal(sd->span, groupmask)) | 
 | 			printk(KERN_ERR "ERROR: groups don't span domain->span\n"); | 
 |  | 
 | 		level++; | 
 | 		sd = sd->parent; | 
 |  | 
 | 		if (sd) { | 
 | 			if (!cpus_subset(groupmask, sd->span)) | 
 | 				printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n"); | 
 | 		} | 
 |  | 
 | 	} while (sd); | 
 | } | 
 | #else | 
 | #define sched_domain_debug(sd, cpu) {} | 
 | #endif | 
 |  | 
 | static int sd_degenerate(struct sched_domain *sd) | 
 | { | 
 | 	if (cpus_weight(sd->span) == 1) | 
 | 		return 1; | 
 |  | 
 | 	/* Following flags need at least 2 groups */ | 
 | 	if (sd->flags & (SD_LOAD_BALANCE | | 
 | 			 SD_BALANCE_NEWIDLE | | 
 | 			 SD_BALANCE_FORK | | 
 | 			 SD_BALANCE_EXEC)) { | 
 | 		if (sd->groups != sd->groups->next) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	/* Following flags don't use groups */ | 
 | 	if (sd->flags & (SD_WAKE_IDLE | | 
 | 			 SD_WAKE_AFFINE | | 
 | 			 SD_WAKE_BALANCE)) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int sd_parent_degenerate(struct sched_domain *sd, | 
 | 						struct sched_domain *parent) | 
 | { | 
 | 	unsigned long cflags = sd->flags, pflags = parent->flags; | 
 |  | 
 | 	if (sd_degenerate(parent)) | 
 | 		return 1; | 
 |  | 
 | 	if (!cpus_equal(sd->span, parent->span)) | 
 | 		return 0; | 
 |  | 
 | 	/* Does parent contain flags not in child? */ | 
 | 	/* WAKE_BALANCE is a subset of WAKE_AFFINE */ | 
 | 	if (cflags & SD_WAKE_AFFINE) | 
 | 		pflags &= ~SD_WAKE_BALANCE; | 
 | 	/* Flags needing groups don't count if only 1 group in parent */ | 
 | 	if (parent->groups == parent->groups->next) { | 
 | 		pflags &= ~(SD_LOAD_BALANCE | | 
 | 				SD_BALANCE_NEWIDLE | | 
 | 				SD_BALANCE_FORK | | 
 | 				SD_BALANCE_EXEC); | 
 | 	} | 
 | 	if (~cflags & pflags) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must | 
 |  * hold the hotplug lock. | 
 |  */ | 
 | static void cpu_attach_domain(struct sched_domain *sd, int cpu) | 
 | { | 
 | 	runqueue_t *rq = cpu_rq(cpu); | 
 | 	struct sched_domain *tmp; | 
 |  | 
 | 	/* Remove the sched domains which do not contribute to scheduling. */ | 
 | 	for (tmp = sd; tmp; tmp = tmp->parent) { | 
 | 		struct sched_domain *parent = tmp->parent; | 
 | 		if (!parent) | 
 | 			break; | 
 | 		if (sd_parent_degenerate(tmp, parent)) | 
 | 			tmp->parent = parent->parent; | 
 | 	} | 
 |  | 
 | 	if (sd && sd_degenerate(sd)) | 
 | 		sd = sd->parent; | 
 |  | 
 | 	sched_domain_debug(sd, cpu); | 
 |  | 
 | 	rcu_assign_pointer(rq->sd, sd); | 
 | } | 
 |  | 
 | /* cpus with isolated domains */ | 
 | static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE; | 
 |  | 
 | /* Setup the mask of cpus configured for isolated domains */ | 
 | static int __init isolated_cpu_setup(char *str) | 
 | { | 
 | 	int ints[NR_CPUS], i; | 
 |  | 
 | 	str = get_options(str, ARRAY_SIZE(ints), ints); | 
 | 	cpus_clear(cpu_isolated_map); | 
 | 	for (i = 1; i <= ints[0]; i++) | 
 | 		if (ints[i] < NR_CPUS) | 
 | 			cpu_set(ints[i], cpu_isolated_map); | 
 | 	return 1; | 
 | } | 
 |  | 
 | __setup ("isolcpus=", isolated_cpu_setup); | 
 |  | 
 | /* | 
 |  * init_sched_build_groups takes an array of groups, the cpumask we wish | 
 |  * to span, and a pointer to a function which identifies what group a CPU | 
 |  * belongs to. The return value of group_fn must be a valid index into the | 
 |  * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we | 
 |  * keep track of groups covered with a cpumask_t). | 
 |  * | 
 |  * init_sched_build_groups will build a circular linked list of the groups | 
 |  * covered by the given span, and will set each group's ->cpumask correctly, | 
 |  * and ->cpu_power to 0. | 
 |  */ | 
 | static void init_sched_build_groups(struct sched_group groups[], cpumask_t span, | 
 | 				    int (*group_fn)(int cpu)) | 
 | { | 
 | 	struct sched_group *first = NULL, *last = NULL; | 
 | 	cpumask_t covered = CPU_MASK_NONE; | 
 | 	int i; | 
 |  | 
 | 	for_each_cpu_mask(i, span) { | 
 | 		int group = group_fn(i); | 
 | 		struct sched_group *sg = &groups[group]; | 
 | 		int j; | 
 |  | 
 | 		if (cpu_isset(i, covered)) | 
 | 			continue; | 
 |  | 
 | 		sg->cpumask = CPU_MASK_NONE; | 
 | 		sg->cpu_power = 0; | 
 |  | 
 | 		for_each_cpu_mask(j, span) { | 
 | 			if (group_fn(j) != group) | 
 | 				continue; | 
 |  | 
 | 			cpu_set(j, covered); | 
 | 			cpu_set(j, sg->cpumask); | 
 | 		} | 
 | 		if (!first) | 
 | 			first = sg; | 
 | 		if (last) | 
 | 			last->next = sg; | 
 | 		last = sg; | 
 | 	} | 
 | 	last->next = first; | 
 | } | 
 |  | 
 | #define SD_NODES_PER_DOMAIN 16 | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | /** | 
 |  * find_next_best_node - find the next node to include in a sched_domain | 
 |  * @node: node whose sched_domain we're building | 
 |  * @used_nodes: nodes already in the sched_domain | 
 |  * | 
 |  * Find the next node to include in a given scheduling domain.  Simply | 
 |  * finds the closest node not already in the @used_nodes map. | 
 |  * | 
 |  * Should use nodemask_t. | 
 |  */ | 
 | static int find_next_best_node(int node, unsigned long *used_nodes) | 
 | { | 
 | 	int i, n, val, min_val, best_node = 0; | 
 |  | 
 | 	min_val = INT_MAX; | 
 |  | 
 | 	for (i = 0; i < MAX_NUMNODES; i++) { | 
 | 		/* Start at @node */ | 
 | 		n = (node + i) % MAX_NUMNODES; | 
 |  | 
 | 		if (!nr_cpus_node(n)) | 
 | 			continue; | 
 |  | 
 | 		/* Skip already used nodes */ | 
 | 		if (test_bit(n, used_nodes)) | 
 | 			continue; | 
 |  | 
 | 		/* Simple min distance search */ | 
 | 		val = node_distance(node, n); | 
 |  | 
 | 		if (val < min_val) { | 
 | 			min_val = val; | 
 | 			best_node = n; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	set_bit(best_node, used_nodes); | 
 | 	return best_node; | 
 | } | 
 |  | 
 | /** | 
 |  * sched_domain_node_span - get a cpumask for a node's sched_domain | 
 |  * @node: node whose cpumask we're constructing | 
 |  * @size: number of nodes to include in this span | 
 |  * | 
 |  * Given a node, construct a good cpumask for its sched_domain to span.  It | 
 |  * should be one that prevents unnecessary balancing, but also spreads tasks | 
 |  * out optimally. | 
 |  */ | 
 | static cpumask_t sched_domain_node_span(int node) | 
 | { | 
 | 	int i; | 
 | 	cpumask_t span, nodemask; | 
 | 	DECLARE_BITMAP(used_nodes, MAX_NUMNODES); | 
 |  | 
 | 	cpus_clear(span); | 
 | 	bitmap_zero(used_nodes, MAX_NUMNODES); | 
 |  | 
 | 	nodemask = node_to_cpumask(node); | 
 | 	cpus_or(span, span, nodemask); | 
 | 	set_bit(node, used_nodes); | 
 |  | 
 | 	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { | 
 | 		int next_node = find_next_best_node(node, used_nodes); | 
 | 		nodemask = node_to_cpumask(next_node); | 
 | 		cpus_or(span, span, nodemask); | 
 | 	} | 
 |  | 
 | 	return span; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we | 
 |  * can switch it on easily if needed. | 
 |  */ | 
 | #ifdef CONFIG_SCHED_SMT | 
 | static DEFINE_PER_CPU(struct sched_domain, cpu_domains); | 
 | static struct sched_group sched_group_cpus[NR_CPUS]; | 
 | static int cpu_to_cpu_group(int cpu) | 
 | { | 
 | 	return cpu; | 
 | } | 
 | #endif | 
 |  | 
 | static DEFINE_PER_CPU(struct sched_domain, phys_domains); | 
 | static struct sched_group sched_group_phys[NR_CPUS]; | 
 | static int cpu_to_phys_group(int cpu) | 
 | { | 
 | #ifdef CONFIG_SCHED_SMT | 
 | 	return first_cpu(cpu_sibling_map[cpu]); | 
 | #else | 
 | 	return cpu; | 
 | #endif | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | /* | 
 |  * The init_sched_build_groups can't handle what we want to do with node | 
 |  * groups, so roll our own. Now each node has its own list of groups which | 
 |  * gets dynamically allocated. | 
 |  */ | 
 | static DEFINE_PER_CPU(struct sched_domain, node_domains); | 
 | static struct sched_group **sched_group_nodes_bycpu[NR_CPUS]; | 
 |  | 
 | static DEFINE_PER_CPU(struct sched_domain, allnodes_domains); | 
 | static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS]; | 
 |  | 
 | static int cpu_to_allnodes_group(int cpu) | 
 | { | 
 | 	return cpu_to_node(cpu); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Build sched domains for a given set of cpus and attach the sched domains | 
 |  * to the individual cpus | 
 |  */ | 
 | void build_sched_domains(const cpumask_t *cpu_map) | 
 | { | 
 | 	int i; | 
 | #ifdef CONFIG_NUMA | 
 | 	struct sched_group **sched_group_nodes = NULL; | 
 | 	struct sched_group *sched_group_allnodes = NULL; | 
 |  | 
 | 	/* | 
 | 	 * Allocate the per-node list of sched groups | 
 | 	 */ | 
 | 	sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES, | 
 | 					   GFP_ATOMIC); | 
 | 	if (!sched_group_nodes) { | 
 | 		printk(KERN_WARNING "Can not alloc sched group node list\n"); | 
 | 		return; | 
 | 	} | 
 | 	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes; | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Set up domains for cpus specified by the cpu_map. | 
 | 	 */ | 
 | 	for_each_cpu_mask(i, *cpu_map) { | 
 | 		int group; | 
 | 		struct sched_domain *sd = NULL, *p; | 
 | 		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i)); | 
 |  | 
 | 		cpus_and(nodemask, nodemask, *cpu_map); | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 		if (cpus_weight(*cpu_map) | 
 | 				> SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) { | 
 | 			if (!sched_group_allnodes) { | 
 | 				sched_group_allnodes | 
 | 					= kmalloc(sizeof(struct sched_group) | 
 | 							* MAX_NUMNODES, | 
 | 						  GFP_KERNEL); | 
 | 				if (!sched_group_allnodes) { | 
 | 					printk(KERN_WARNING | 
 | 					"Can not alloc allnodes sched group\n"); | 
 | 					break; | 
 | 				} | 
 | 				sched_group_allnodes_bycpu[i] | 
 | 						= sched_group_allnodes; | 
 | 			} | 
 | 			sd = &per_cpu(allnodes_domains, i); | 
 | 			*sd = SD_ALLNODES_INIT; | 
 | 			sd->span = *cpu_map; | 
 | 			group = cpu_to_allnodes_group(i); | 
 | 			sd->groups = &sched_group_allnodes[group]; | 
 | 			p = sd; | 
 | 		} else | 
 | 			p = NULL; | 
 |  | 
 | 		sd = &per_cpu(node_domains, i); | 
 | 		*sd = SD_NODE_INIT; | 
 | 		sd->span = sched_domain_node_span(cpu_to_node(i)); | 
 | 		sd->parent = p; | 
 | 		cpus_and(sd->span, sd->span, *cpu_map); | 
 | #endif | 
 |  | 
 | 		p = sd; | 
 | 		sd = &per_cpu(phys_domains, i); | 
 | 		group = cpu_to_phys_group(i); | 
 | 		*sd = SD_CPU_INIT; | 
 | 		sd->span = nodemask; | 
 | 		sd->parent = p; | 
 | 		sd->groups = &sched_group_phys[group]; | 
 |  | 
 | #ifdef CONFIG_SCHED_SMT | 
 | 		p = sd; | 
 | 		sd = &per_cpu(cpu_domains, i); | 
 | 		group = cpu_to_cpu_group(i); | 
 | 		*sd = SD_SIBLING_INIT; | 
 | 		sd->span = cpu_sibling_map[i]; | 
 | 		cpus_and(sd->span, sd->span, *cpu_map); | 
 | 		sd->parent = p; | 
 | 		sd->groups = &sched_group_cpus[group]; | 
 | #endif | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_SCHED_SMT | 
 | 	/* Set up CPU (sibling) groups */ | 
 | 	for_each_cpu_mask(i, *cpu_map) { | 
 | 		cpumask_t this_sibling_map = cpu_sibling_map[i]; | 
 | 		cpus_and(this_sibling_map, this_sibling_map, *cpu_map); | 
 | 		if (i != first_cpu(this_sibling_map)) | 
 | 			continue; | 
 |  | 
 | 		init_sched_build_groups(sched_group_cpus, this_sibling_map, | 
 | 						&cpu_to_cpu_group); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* Set up physical groups */ | 
 | 	for (i = 0; i < MAX_NUMNODES; i++) { | 
 | 		cpumask_t nodemask = node_to_cpumask(i); | 
 |  | 
 | 		cpus_and(nodemask, nodemask, *cpu_map); | 
 | 		if (cpus_empty(nodemask)) | 
 | 			continue; | 
 |  | 
 | 		init_sched_build_groups(sched_group_phys, nodemask, | 
 | 						&cpu_to_phys_group); | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 	/* Set up node groups */ | 
 | 	if (sched_group_allnodes) | 
 | 		init_sched_build_groups(sched_group_allnodes, *cpu_map, | 
 | 					&cpu_to_allnodes_group); | 
 |  | 
 | 	for (i = 0; i < MAX_NUMNODES; i++) { | 
 | 		/* Set up node groups */ | 
 | 		struct sched_group *sg, *prev; | 
 | 		cpumask_t nodemask = node_to_cpumask(i); | 
 | 		cpumask_t domainspan; | 
 | 		cpumask_t covered = CPU_MASK_NONE; | 
 | 		int j; | 
 |  | 
 | 		cpus_and(nodemask, nodemask, *cpu_map); | 
 | 		if (cpus_empty(nodemask)) { | 
 | 			sched_group_nodes[i] = NULL; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		domainspan = sched_domain_node_span(i); | 
 | 		cpus_and(domainspan, domainspan, *cpu_map); | 
 |  | 
 | 		sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL); | 
 | 		sched_group_nodes[i] = sg; | 
 | 		for_each_cpu_mask(j, nodemask) { | 
 | 			struct sched_domain *sd; | 
 | 			sd = &per_cpu(node_domains, j); | 
 | 			sd->groups = sg; | 
 | 			if (sd->groups == NULL) { | 
 | 				/* Turn off balancing if we have no groups */ | 
 | 				sd->flags = 0; | 
 | 			} | 
 | 		} | 
 | 		if (!sg) { | 
 | 			printk(KERN_WARNING | 
 | 			"Can not alloc domain group for node %d\n", i); | 
 | 			continue; | 
 | 		} | 
 | 		sg->cpu_power = 0; | 
 | 		sg->cpumask = nodemask; | 
 | 		cpus_or(covered, covered, nodemask); | 
 | 		prev = sg; | 
 |  | 
 | 		for (j = 0; j < MAX_NUMNODES; j++) { | 
 | 			cpumask_t tmp, notcovered; | 
 | 			int n = (i + j) % MAX_NUMNODES; | 
 |  | 
 | 			cpus_complement(notcovered, covered); | 
 | 			cpus_and(tmp, notcovered, *cpu_map); | 
 | 			cpus_and(tmp, tmp, domainspan); | 
 | 			if (cpus_empty(tmp)) | 
 | 				break; | 
 |  | 
 | 			nodemask = node_to_cpumask(n); | 
 | 			cpus_and(tmp, tmp, nodemask); | 
 | 			if (cpus_empty(tmp)) | 
 | 				continue; | 
 |  | 
 | 			sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL); | 
 | 			if (!sg) { | 
 | 				printk(KERN_WARNING | 
 | 				"Can not alloc domain group for node %d\n", j); | 
 | 				break; | 
 | 			} | 
 | 			sg->cpu_power = 0; | 
 | 			sg->cpumask = tmp; | 
 | 			cpus_or(covered, covered, tmp); | 
 | 			prev->next = sg; | 
 | 			prev = sg; | 
 | 		} | 
 | 		prev->next = sched_group_nodes[i]; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* Calculate CPU power for physical packages and nodes */ | 
 | 	for_each_cpu_mask(i, *cpu_map) { | 
 | 		int power; | 
 | 		struct sched_domain *sd; | 
 | #ifdef CONFIG_SCHED_SMT | 
 | 		sd = &per_cpu(cpu_domains, i); | 
 | 		power = SCHED_LOAD_SCALE; | 
 | 		sd->groups->cpu_power = power; | 
 | #endif | 
 |  | 
 | 		sd = &per_cpu(phys_domains, i); | 
 | 		power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE * | 
 | 				(cpus_weight(sd->groups->cpumask)-1) / 10; | 
 | 		sd->groups->cpu_power = power; | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 		sd = &per_cpu(allnodes_domains, i); | 
 | 		if (sd->groups) { | 
 | 			power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE * | 
 | 				(cpus_weight(sd->groups->cpumask)-1) / 10; | 
 | 			sd->groups->cpu_power = power; | 
 | 		} | 
 | #endif | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 	for (i = 0; i < MAX_NUMNODES; i++) { | 
 | 		struct sched_group *sg = sched_group_nodes[i]; | 
 | 		int j; | 
 |  | 
 | 		if (sg == NULL) | 
 | 			continue; | 
 | next_sg: | 
 | 		for_each_cpu_mask(j, sg->cpumask) { | 
 | 			struct sched_domain *sd; | 
 | 			int power; | 
 |  | 
 | 			sd = &per_cpu(phys_domains, j); | 
 | 			if (j != first_cpu(sd->groups->cpumask)) { | 
 | 				/* | 
 | 				 * Only add "power" once for each | 
 | 				 * physical package. | 
 | 				 */ | 
 | 				continue; | 
 | 			} | 
 | 			power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE * | 
 | 				(cpus_weight(sd->groups->cpumask)-1) / 10; | 
 |  | 
 | 			sg->cpu_power += power; | 
 | 		} | 
 | 		sg = sg->next; | 
 | 		if (sg != sched_group_nodes[i]) | 
 | 			goto next_sg; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* Attach the domains */ | 
 | 	for_each_cpu_mask(i, *cpu_map) { | 
 | 		struct sched_domain *sd; | 
 | #ifdef CONFIG_SCHED_SMT | 
 | 		sd = &per_cpu(cpu_domains, i); | 
 | #else | 
 | 		sd = &per_cpu(phys_domains, i); | 
 | #endif | 
 | 		cpu_attach_domain(sd, i); | 
 | 	} | 
 | } | 
 | /* | 
 |  * Set up scheduler domains and groups.  Callers must hold the hotplug lock. | 
 |  */ | 
 | static void arch_init_sched_domains(const cpumask_t *cpu_map) | 
 | { | 
 | 	cpumask_t cpu_default_map; | 
 |  | 
 | 	/* | 
 | 	 * Setup mask for cpus without special case scheduling requirements. | 
 | 	 * For now this just excludes isolated cpus, but could be used to | 
 | 	 * exclude other special cases in the future. | 
 | 	 */ | 
 | 	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map); | 
 |  | 
 | 	build_sched_domains(&cpu_default_map); | 
 | } | 
 |  | 
 | static void arch_destroy_sched_domains(const cpumask_t *cpu_map) | 
 | { | 
 | #ifdef CONFIG_NUMA | 
 | 	int i; | 
 | 	int cpu; | 
 |  | 
 | 	for_each_cpu_mask(cpu, *cpu_map) { | 
 | 		struct sched_group *sched_group_allnodes | 
 | 			= sched_group_allnodes_bycpu[cpu]; | 
 | 		struct sched_group **sched_group_nodes | 
 | 			= sched_group_nodes_bycpu[cpu]; | 
 |  | 
 | 		if (sched_group_allnodes) { | 
 | 			kfree(sched_group_allnodes); | 
 | 			sched_group_allnodes_bycpu[cpu] = NULL; | 
 | 		} | 
 |  | 
 | 		if (!sched_group_nodes) | 
 | 			continue; | 
 |  | 
 | 		for (i = 0; i < MAX_NUMNODES; i++) { | 
 | 			cpumask_t nodemask = node_to_cpumask(i); | 
 | 			struct sched_group *oldsg, *sg = sched_group_nodes[i]; | 
 |  | 
 | 			cpus_and(nodemask, nodemask, *cpu_map); | 
 | 			if (cpus_empty(nodemask)) | 
 | 				continue; | 
 |  | 
 | 			if (sg == NULL) | 
 | 				continue; | 
 | 			sg = sg->next; | 
 | next_sg: | 
 | 			oldsg = sg; | 
 | 			sg = sg->next; | 
 | 			kfree(oldsg); | 
 | 			if (oldsg != sched_group_nodes[i]) | 
 | 				goto next_sg; | 
 | 		} | 
 | 		kfree(sched_group_nodes); | 
 | 		sched_group_nodes_bycpu[cpu] = NULL; | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Detach sched domains from a group of cpus specified in cpu_map | 
 |  * These cpus will now be attached to the NULL domain | 
 |  */ | 
 | static inline void detach_destroy_domains(const cpumask_t *cpu_map) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for_each_cpu_mask(i, *cpu_map) | 
 | 		cpu_attach_domain(NULL, i); | 
 | 	synchronize_sched(); | 
 | 	arch_destroy_sched_domains(cpu_map); | 
 | } | 
 |  | 
 | /* | 
 |  * Partition sched domains as specified by the cpumasks below. | 
 |  * This attaches all cpus from the cpumasks to the NULL domain, | 
 |  * waits for a RCU quiescent period, recalculates sched | 
 |  * domain information and then attaches them back to the | 
 |  * correct sched domains | 
 |  * Call with hotplug lock held | 
 |  */ | 
 | void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2) | 
 | { | 
 | 	cpumask_t change_map; | 
 |  | 
 | 	cpus_and(*partition1, *partition1, cpu_online_map); | 
 | 	cpus_and(*partition2, *partition2, cpu_online_map); | 
 | 	cpus_or(change_map, *partition1, *partition2); | 
 |  | 
 | 	/* Detach sched domains from all of the affected cpus */ | 
 | 	detach_destroy_domains(&change_map); | 
 | 	if (!cpus_empty(*partition1)) | 
 | 		build_sched_domains(partition1); | 
 | 	if (!cpus_empty(*partition2)) | 
 | 		build_sched_domains(partition2); | 
 | } | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | /* | 
 |  * Force a reinitialization of the sched domains hierarchy.  The domains | 
 |  * and groups cannot be updated in place without racing with the balancing | 
 |  * code, so we temporarily attach all running cpus to the NULL domain | 
 |  * which will prevent rebalancing while the sched domains are recalculated. | 
 |  */ | 
 | static int update_sched_domains(struct notifier_block *nfb, | 
 | 				unsigned long action, void *hcpu) | 
 | { | 
 | 	switch (action) { | 
 | 	case CPU_UP_PREPARE: | 
 | 	case CPU_DOWN_PREPARE: | 
 | 		detach_destroy_domains(&cpu_online_map); | 
 | 		return NOTIFY_OK; | 
 |  | 
 | 	case CPU_UP_CANCELED: | 
 | 	case CPU_DOWN_FAILED: | 
 | 	case CPU_ONLINE: | 
 | 	case CPU_DEAD: | 
 | 		/* | 
 | 		 * Fall through and re-initialise the domains. | 
 | 		 */ | 
 | 		break; | 
 | 	default: | 
 | 		return NOTIFY_DONE; | 
 | 	} | 
 |  | 
 | 	/* The hotplug lock is already held by cpu_up/cpu_down */ | 
 | 	arch_init_sched_domains(&cpu_online_map); | 
 |  | 
 | 	return NOTIFY_OK; | 
 | } | 
 | #endif | 
 |  | 
 | void __init sched_init_smp(void) | 
 | { | 
 | 	lock_cpu_hotplug(); | 
 | 	arch_init_sched_domains(&cpu_online_map); | 
 | 	unlock_cpu_hotplug(); | 
 | 	/* XXX: Theoretical race here - CPU may be hotplugged now */ | 
 | 	hotcpu_notifier(update_sched_domains, 0); | 
 | } | 
 | #else | 
 | void __init sched_init_smp(void) | 
 | { | 
 | } | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | int in_sched_functions(unsigned long addr) | 
 | { | 
 | 	/* Linker adds these: start and end of __sched functions */ | 
 | 	extern char __sched_text_start[], __sched_text_end[]; | 
 | 	return in_lock_functions(addr) || | 
 | 		(addr >= (unsigned long)__sched_text_start | 
 | 		&& addr < (unsigned long)__sched_text_end); | 
 | } | 
 |  | 
 | void __init sched_init(void) | 
 | { | 
 | 	runqueue_t *rq; | 
 | 	int i, j, k; | 
 |  | 
 | 	for (i = 0; i < NR_CPUS; i++) { | 
 | 		prio_array_t *array; | 
 |  | 
 | 		rq = cpu_rq(i); | 
 | 		spin_lock_init(&rq->lock); | 
 | 		rq->nr_running = 0; | 
 | 		rq->active = rq->arrays; | 
 | 		rq->expired = rq->arrays + 1; | 
 | 		rq->best_expired_prio = MAX_PRIO; | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 		rq->sd = NULL; | 
 | 		for (j = 1; j < 3; j++) | 
 | 			rq->cpu_load[j] = 0; | 
 | 		rq->active_balance = 0; | 
 | 		rq->push_cpu = 0; | 
 | 		rq->migration_thread = NULL; | 
 | 		INIT_LIST_HEAD(&rq->migration_queue); | 
 | #endif | 
 | 		atomic_set(&rq->nr_iowait, 0); | 
 |  | 
 | 		for (j = 0; j < 2; j++) { | 
 | 			array = rq->arrays + j; | 
 | 			for (k = 0; k < MAX_PRIO; k++) { | 
 | 				INIT_LIST_HEAD(array->queue + k); | 
 | 				__clear_bit(k, array->bitmap); | 
 | 			} | 
 | 			// delimiter for bitsearch | 
 | 			__set_bit(MAX_PRIO, array->bitmap); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The boot idle thread does lazy MMU switching as well: | 
 | 	 */ | 
 | 	atomic_inc(&init_mm.mm_count); | 
 | 	enter_lazy_tlb(&init_mm, current); | 
 |  | 
 | 	/* | 
 | 	 * Make us the idle thread. Technically, schedule() should not be | 
 | 	 * called from this thread, however somewhere below it might be, | 
 | 	 * but because we are the idle thread, we just pick up running again | 
 | 	 * when this runqueue becomes "idle". | 
 | 	 */ | 
 | 	init_idle(current, smp_processor_id()); | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP | 
 | void __might_sleep(char *file, int line) | 
 | { | 
 | #if defined(in_atomic) | 
 | 	static unsigned long prev_jiffy;	/* ratelimiting */ | 
 |  | 
 | 	if ((in_atomic() || irqs_disabled()) && | 
 | 	    system_state == SYSTEM_RUNNING && !oops_in_progress) { | 
 | 		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) | 
 | 			return; | 
 | 		prev_jiffy = jiffies; | 
 | 		printk(KERN_ERR "Debug: sleeping function called from invalid" | 
 | 				" context at %s:%d\n", file, line); | 
 | 		printk("in_atomic():%d, irqs_disabled():%d\n", | 
 | 			in_atomic(), irqs_disabled()); | 
 | 		dump_stack(); | 
 | 	} | 
 | #endif | 
 | } | 
 | EXPORT_SYMBOL(__might_sleep); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_MAGIC_SYSRQ | 
 | void normalize_rt_tasks(void) | 
 | { | 
 | 	struct task_struct *p; | 
 | 	prio_array_t *array; | 
 | 	unsigned long flags; | 
 | 	runqueue_t *rq; | 
 |  | 
 | 	read_lock_irq(&tasklist_lock); | 
 | 	for_each_process (p) { | 
 | 		if (!rt_task(p)) | 
 | 			continue; | 
 |  | 
 | 		rq = task_rq_lock(p, &flags); | 
 |  | 
 | 		array = p->array; | 
 | 		if (array) | 
 | 			deactivate_task(p, task_rq(p)); | 
 | 		__setscheduler(p, SCHED_NORMAL, 0); | 
 | 		if (array) { | 
 | 			__activate_task(p, task_rq(p)); | 
 | 			resched_task(rq->curr); | 
 | 		} | 
 |  | 
 | 		task_rq_unlock(rq, &flags); | 
 | 	} | 
 | 	read_unlock_irq(&tasklist_lock); | 
 | } | 
 |  | 
 | #endif /* CONFIG_MAGIC_SYSRQ */ | 
 |  | 
 | #ifdef CONFIG_IA64 | 
 | /* | 
 |  * These functions are only useful for the IA64 MCA handling. | 
 |  * | 
 |  * They can only be called when the whole system has been | 
 |  * stopped - every CPU needs to be quiescent, and no scheduling | 
 |  * activity can take place. Using them for anything else would | 
 |  * be a serious bug, and as a result, they aren't even visible | 
 |  * under any other configuration. | 
 |  */ | 
 |  | 
 | /** | 
 |  * curr_task - return the current task for a given cpu. | 
 |  * @cpu: the processor in question. | 
 |  * | 
 |  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | 
 |  */ | 
 | task_t *curr_task(int cpu) | 
 | { | 
 | 	return cpu_curr(cpu); | 
 | } | 
 |  | 
 | /** | 
 |  * set_curr_task - set the current task for a given cpu. | 
 |  * @cpu: the processor in question. | 
 |  * @p: the task pointer to set. | 
 |  * | 
 |  * Description: This function must only be used when non-maskable interrupts | 
 |  * are serviced on a separate stack.  It allows the architecture to switch the | 
 |  * notion of the current task on a cpu in a non-blocking manner.  This function | 
 |  * must be called with all CPU's synchronized, and interrupts disabled, the | 
 |  * and caller must save the original value of the current task (see | 
 |  * curr_task() above) and restore that value before reenabling interrupts and | 
 |  * re-starting the system. | 
 |  * | 
 |  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | 
 |  */ | 
 | void set_curr_task(int cpu, task_t *p) | 
 | { | 
 | 	cpu_curr(cpu) = p; | 
 | } | 
 |  | 
 | #endif |