|  | /* | 
|  | * Copyright (c) 2000-2004 Silicon Graphics, Inc.  All Rights Reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of version 2 of the GNU General Public License as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it would be useful, but | 
|  | * WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. | 
|  | * | 
|  | * Further, this software is distributed without any warranty that it is | 
|  | * free of the rightful claim of any third person regarding infringement | 
|  | * or the like.  Any license provided herein, whether implied or | 
|  | * otherwise, applies only to this software file.  Patent licenses, if | 
|  | * any, provided herein do not apply to combinations of this program with | 
|  | * other software, or any other product whatsoever. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License along | 
|  | * with this program; if not, write the Free Software Foundation, Inc., 59 | 
|  | * Temple Place - Suite 330, Boston MA 02111-1307, USA. | 
|  | * | 
|  | * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, | 
|  | * Mountain View, CA  94043, or: | 
|  | * | 
|  | * http://www.sgi.com | 
|  | * | 
|  | * For further information regarding this notice, see: | 
|  | * | 
|  | * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/ | 
|  | */ | 
|  |  | 
|  | /* | 
|  | *	The xfs_buf.c code provides an abstract buffer cache model on top | 
|  | *	of the Linux page cache.  Cached metadata blocks for a file system | 
|  | *	are hashed to the inode for the block device.  xfs_buf.c assembles | 
|  | *	buffers (xfs_buf_t) on demand to aggregate such cached pages for I/O. | 
|  | * | 
|  | *      Written by Steve Lord, Jim Mostek, Russell Cattelan | 
|  | *		    and Rajagopal Ananthanarayanan ("ananth") at SGI. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/stddef.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/sysctl.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/hash.h> | 
|  |  | 
|  | #include "xfs_linux.h" | 
|  |  | 
|  | /* | 
|  | * File wide globals | 
|  | */ | 
|  |  | 
|  | STATIC kmem_cache_t *pagebuf_zone; | 
|  | STATIC kmem_shaker_t pagebuf_shake; | 
|  | STATIC int xfsbufd_wakeup(int, unsigned int); | 
|  | STATIC void pagebuf_delwri_queue(xfs_buf_t *, int); | 
|  |  | 
|  | STATIC struct workqueue_struct *xfslogd_workqueue; | 
|  | STATIC struct workqueue_struct *xfsdatad_workqueue; | 
|  |  | 
|  | /* | 
|  | * Pagebuf debugging | 
|  | */ | 
|  |  | 
|  | #ifdef PAGEBUF_TRACE | 
|  | void | 
|  | pagebuf_trace( | 
|  | xfs_buf_t	*pb, | 
|  | char		*id, | 
|  | void		*data, | 
|  | void		*ra) | 
|  | { | 
|  | ktrace_enter(pagebuf_trace_buf, | 
|  | pb, id, | 
|  | (void *)(unsigned long)pb->pb_flags, | 
|  | (void *)(unsigned long)pb->pb_hold.counter, | 
|  | (void *)(unsigned long)pb->pb_sema.count.counter, | 
|  | (void *)current, | 
|  | data, ra, | 
|  | (void *)(unsigned long)((pb->pb_file_offset>>32) & 0xffffffff), | 
|  | (void *)(unsigned long)(pb->pb_file_offset & 0xffffffff), | 
|  | (void *)(unsigned long)pb->pb_buffer_length, | 
|  | NULL, NULL, NULL, NULL, NULL); | 
|  | } | 
|  | ktrace_t *pagebuf_trace_buf; | 
|  | #define PAGEBUF_TRACE_SIZE	4096 | 
|  | #define PB_TRACE(pb, id, data)	\ | 
|  | pagebuf_trace(pb, id, (void *)data, (void *)__builtin_return_address(0)) | 
|  | #else | 
|  | #define PB_TRACE(pb, id, data)	do { } while (0) | 
|  | #endif | 
|  |  | 
|  | #ifdef PAGEBUF_LOCK_TRACKING | 
|  | # define PB_SET_OWNER(pb)	((pb)->pb_last_holder = current->pid) | 
|  | # define PB_CLEAR_OWNER(pb)	((pb)->pb_last_holder = -1) | 
|  | # define PB_GET_OWNER(pb)	((pb)->pb_last_holder) | 
|  | #else | 
|  | # define PB_SET_OWNER(pb)	do { } while (0) | 
|  | # define PB_CLEAR_OWNER(pb)	do { } while (0) | 
|  | # define PB_GET_OWNER(pb)	do { } while (0) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Pagebuf allocation / freeing. | 
|  | */ | 
|  |  | 
|  | #define pb_to_gfp(flags) \ | 
|  | ((((flags) & PBF_READ_AHEAD) ? __GFP_NORETRY : \ | 
|  | ((flags) & PBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN) | 
|  |  | 
|  | #define pb_to_km(flags) \ | 
|  | (((flags) & PBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP) | 
|  |  | 
|  |  | 
|  | #define pagebuf_allocate(flags) \ | 
|  | kmem_zone_alloc(pagebuf_zone, pb_to_km(flags)) | 
|  | #define pagebuf_deallocate(pb) \ | 
|  | kmem_zone_free(pagebuf_zone, (pb)); | 
|  |  | 
|  | /* | 
|  | * Page Region interfaces. | 
|  | * | 
|  | * For pages in filesystems where the blocksize is smaller than the | 
|  | * pagesize, we use the page->private field (long) to hold a bitmap | 
|  | * of uptodate regions within the page. | 
|  | * | 
|  | * Each such region is "bytes per page / bits per long" bytes long. | 
|  | * | 
|  | * NBPPR == number-of-bytes-per-page-region | 
|  | * BTOPR == bytes-to-page-region (rounded up) | 
|  | * BTOPRT == bytes-to-page-region-truncated (rounded down) | 
|  | */ | 
|  | #if (BITS_PER_LONG == 32) | 
|  | #define PRSHIFT		(PAGE_CACHE_SHIFT - 5)	/* (32 == 1<<5) */ | 
|  | #elif (BITS_PER_LONG == 64) | 
|  | #define PRSHIFT		(PAGE_CACHE_SHIFT - 6)	/* (64 == 1<<6) */ | 
|  | #else | 
|  | #error BITS_PER_LONG must be 32 or 64 | 
|  | #endif | 
|  | #define NBPPR		(PAGE_CACHE_SIZE/BITS_PER_LONG) | 
|  | #define BTOPR(b)	(((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT) | 
|  | #define BTOPRT(b)	(((unsigned int)(b) >> PRSHIFT)) | 
|  |  | 
|  | STATIC unsigned long | 
|  | page_region_mask( | 
|  | size_t		offset, | 
|  | size_t		length) | 
|  | { | 
|  | unsigned long	mask; | 
|  | int		first, final; | 
|  |  | 
|  | first = BTOPR(offset); | 
|  | final = BTOPRT(offset + length - 1); | 
|  | first = min(first, final); | 
|  |  | 
|  | mask = ~0UL; | 
|  | mask <<= BITS_PER_LONG - (final - first); | 
|  | mask >>= BITS_PER_LONG - (final); | 
|  |  | 
|  | ASSERT(offset + length <= PAGE_CACHE_SIZE); | 
|  | ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0); | 
|  |  | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | STATIC inline void | 
|  | set_page_region( | 
|  | struct page	*page, | 
|  | size_t		offset, | 
|  | size_t		length) | 
|  | { | 
|  | page->private |= page_region_mask(offset, length); | 
|  | if (page->private == ~0UL) | 
|  | SetPageUptodate(page); | 
|  | } | 
|  |  | 
|  | STATIC inline int | 
|  | test_page_region( | 
|  | struct page	*page, | 
|  | size_t		offset, | 
|  | size_t		length) | 
|  | { | 
|  | unsigned long	mask = page_region_mask(offset, length); | 
|  |  | 
|  | return (mask && (page->private & mask) == mask); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mapping of multi-page buffers into contiguous virtual space | 
|  | */ | 
|  |  | 
|  | typedef struct a_list { | 
|  | void		*vm_addr; | 
|  | struct a_list	*next; | 
|  | } a_list_t; | 
|  |  | 
|  | STATIC a_list_t		*as_free_head; | 
|  | STATIC int		as_list_len; | 
|  | STATIC DEFINE_SPINLOCK(as_lock); | 
|  |  | 
|  | /* | 
|  | * Try to batch vunmaps because they are costly. | 
|  | */ | 
|  | STATIC void | 
|  | free_address( | 
|  | void		*addr) | 
|  | { | 
|  | a_list_t	*aentry; | 
|  |  | 
|  | aentry = kmalloc(sizeof(a_list_t), GFP_ATOMIC & ~__GFP_HIGH); | 
|  | if (likely(aentry)) { | 
|  | spin_lock(&as_lock); | 
|  | aentry->next = as_free_head; | 
|  | aentry->vm_addr = addr; | 
|  | as_free_head = aentry; | 
|  | as_list_len++; | 
|  | spin_unlock(&as_lock); | 
|  | } else { | 
|  | vunmap(addr); | 
|  | } | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | purge_addresses(void) | 
|  | { | 
|  | a_list_t	*aentry, *old; | 
|  |  | 
|  | if (as_free_head == NULL) | 
|  | return; | 
|  |  | 
|  | spin_lock(&as_lock); | 
|  | aentry = as_free_head; | 
|  | as_free_head = NULL; | 
|  | as_list_len = 0; | 
|  | spin_unlock(&as_lock); | 
|  |  | 
|  | while ((old = aentry) != NULL) { | 
|  | vunmap(aentry->vm_addr); | 
|  | aentry = aentry->next; | 
|  | kfree(old); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Internal pagebuf object manipulation | 
|  | */ | 
|  |  | 
|  | STATIC void | 
|  | _pagebuf_initialize( | 
|  | xfs_buf_t		*pb, | 
|  | xfs_buftarg_t		*target, | 
|  | loff_t			range_base, | 
|  | size_t			range_length, | 
|  | page_buf_flags_t	flags) | 
|  | { | 
|  | /* | 
|  | * We don't want certain flags to appear in pb->pb_flags. | 
|  | */ | 
|  | flags &= ~(PBF_LOCK|PBF_MAPPED|PBF_DONT_BLOCK|PBF_READ_AHEAD); | 
|  |  | 
|  | memset(pb, 0, sizeof(xfs_buf_t)); | 
|  | atomic_set(&pb->pb_hold, 1); | 
|  | init_MUTEX_LOCKED(&pb->pb_iodonesema); | 
|  | INIT_LIST_HEAD(&pb->pb_list); | 
|  | INIT_LIST_HEAD(&pb->pb_hash_list); | 
|  | init_MUTEX_LOCKED(&pb->pb_sema); /* held, no waiters */ | 
|  | PB_SET_OWNER(pb); | 
|  | pb->pb_target = target; | 
|  | pb->pb_file_offset = range_base; | 
|  | /* | 
|  | * Set buffer_length and count_desired to the same value initially. | 
|  | * I/O routines should use count_desired, which will be the same in | 
|  | * most cases but may be reset (e.g. XFS recovery). | 
|  | */ | 
|  | pb->pb_buffer_length = pb->pb_count_desired = range_length; | 
|  | pb->pb_flags = flags | PBF_NONE; | 
|  | pb->pb_bn = XFS_BUF_DADDR_NULL; | 
|  | atomic_set(&pb->pb_pin_count, 0); | 
|  | init_waitqueue_head(&pb->pb_waiters); | 
|  |  | 
|  | XFS_STATS_INC(pb_create); | 
|  | PB_TRACE(pb, "initialize", target); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a page array capable of holding a specified number | 
|  | * of pages, and point the page buf at it. | 
|  | */ | 
|  | STATIC int | 
|  | _pagebuf_get_pages( | 
|  | xfs_buf_t		*pb, | 
|  | int			page_count, | 
|  | page_buf_flags_t	flags) | 
|  | { | 
|  | /* Make sure that we have a page list */ | 
|  | if (pb->pb_pages == NULL) { | 
|  | pb->pb_offset = page_buf_poff(pb->pb_file_offset); | 
|  | pb->pb_page_count = page_count; | 
|  | if (page_count <= PB_PAGES) { | 
|  | pb->pb_pages = pb->pb_page_array; | 
|  | } else { | 
|  | pb->pb_pages = kmem_alloc(sizeof(struct page *) * | 
|  | page_count, pb_to_km(flags)); | 
|  | if (pb->pb_pages == NULL) | 
|  | return -ENOMEM; | 
|  | } | 
|  | memset(pb->pb_pages, 0, sizeof(struct page *) * page_count); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Frees pb_pages if it was malloced. | 
|  | */ | 
|  | STATIC void | 
|  | _pagebuf_free_pages( | 
|  | xfs_buf_t	*bp) | 
|  | { | 
|  | if (bp->pb_pages != bp->pb_page_array) { | 
|  | kmem_free(bp->pb_pages, | 
|  | bp->pb_page_count * sizeof(struct page *)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Releases the specified buffer. | 
|  | * | 
|  | * 	The modification state of any associated pages is left unchanged. | 
|  | * 	The buffer most not be on any hash - use pagebuf_rele instead for | 
|  | * 	hashed and refcounted buffers | 
|  | */ | 
|  | void | 
|  | pagebuf_free( | 
|  | xfs_buf_t		*bp) | 
|  | { | 
|  | PB_TRACE(bp, "free", 0); | 
|  |  | 
|  | ASSERT(list_empty(&bp->pb_hash_list)); | 
|  |  | 
|  | if (bp->pb_flags & _PBF_PAGE_CACHE) { | 
|  | uint		i; | 
|  |  | 
|  | if ((bp->pb_flags & PBF_MAPPED) && (bp->pb_page_count > 1)) | 
|  | free_address(bp->pb_addr - bp->pb_offset); | 
|  |  | 
|  | for (i = 0; i < bp->pb_page_count; i++) | 
|  | page_cache_release(bp->pb_pages[i]); | 
|  | _pagebuf_free_pages(bp); | 
|  | } else if (bp->pb_flags & _PBF_KMEM_ALLOC) { | 
|  | /* | 
|  | * XXX(hch): bp->pb_count_desired might be incorrect (see | 
|  | * pagebuf_associate_memory for details), but fortunately | 
|  | * the Linux version of kmem_free ignores the len argument.. | 
|  | */ | 
|  | kmem_free(bp->pb_addr, bp->pb_count_desired); | 
|  | _pagebuf_free_pages(bp); | 
|  | } | 
|  |  | 
|  | pagebuf_deallocate(bp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Finds all pages for buffer in question and builds it's page list. | 
|  | */ | 
|  | STATIC int | 
|  | _pagebuf_lookup_pages( | 
|  | xfs_buf_t		*bp, | 
|  | uint			flags) | 
|  | { | 
|  | struct address_space	*mapping = bp->pb_target->pbr_mapping; | 
|  | size_t			blocksize = bp->pb_target->pbr_bsize; | 
|  | size_t			size = bp->pb_count_desired; | 
|  | size_t			nbytes, offset; | 
|  | int			gfp_mask = pb_to_gfp(flags); | 
|  | unsigned short		page_count, i; | 
|  | pgoff_t			first; | 
|  | loff_t			end; | 
|  | int			error; | 
|  |  | 
|  | end = bp->pb_file_offset + bp->pb_buffer_length; | 
|  | page_count = page_buf_btoc(end) - page_buf_btoct(bp->pb_file_offset); | 
|  |  | 
|  | error = _pagebuf_get_pages(bp, page_count, flags); | 
|  | if (unlikely(error)) | 
|  | return error; | 
|  | bp->pb_flags |= _PBF_PAGE_CACHE; | 
|  |  | 
|  | offset = bp->pb_offset; | 
|  | first = bp->pb_file_offset >> PAGE_CACHE_SHIFT; | 
|  |  | 
|  | for (i = 0; i < bp->pb_page_count; i++) { | 
|  | struct page	*page; | 
|  | uint		retries = 0; | 
|  |  | 
|  | retry: | 
|  | page = find_or_create_page(mapping, first + i, gfp_mask); | 
|  | if (unlikely(page == NULL)) { | 
|  | if (flags & PBF_READ_AHEAD) { | 
|  | bp->pb_page_count = i; | 
|  | for (i = 0; i < bp->pb_page_count; i++) | 
|  | unlock_page(bp->pb_pages[i]); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This could deadlock. | 
|  | * | 
|  | * But until all the XFS lowlevel code is revamped to | 
|  | * handle buffer allocation failures we can't do much. | 
|  | */ | 
|  | if (!(++retries % 100)) | 
|  | printk(KERN_ERR | 
|  | "XFS: possible memory allocation " | 
|  | "deadlock in %s (mode:0x%x)\n", | 
|  | __FUNCTION__, gfp_mask); | 
|  |  | 
|  | XFS_STATS_INC(pb_page_retries); | 
|  | xfsbufd_wakeup(0, gfp_mask); | 
|  | blk_congestion_wait(WRITE, HZ/50); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | XFS_STATS_INC(pb_page_found); | 
|  |  | 
|  | nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset); | 
|  | size -= nbytes; | 
|  |  | 
|  | if (!PageUptodate(page)) { | 
|  | page_count--; | 
|  | if (blocksize >= PAGE_CACHE_SIZE) { | 
|  | if (flags & PBF_READ) | 
|  | bp->pb_locked = 1; | 
|  | } else if (!PagePrivate(page)) { | 
|  | if (test_page_region(page, offset, nbytes)) | 
|  | page_count++; | 
|  | } | 
|  | } | 
|  |  | 
|  | bp->pb_pages[i] = page; | 
|  | offset = 0; | 
|  | } | 
|  |  | 
|  | if (!bp->pb_locked) { | 
|  | for (i = 0; i < bp->pb_page_count; i++) | 
|  | unlock_page(bp->pb_pages[i]); | 
|  | } | 
|  |  | 
|  | if (page_count) { | 
|  | /* if we have any uptodate pages, mark that in the buffer */ | 
|  | bp->pb_flags &= ~PBF_NONE; | 
|  |  | 
|  | /* if some pages aren't uptodate, mark that in the buffer */ | 
|  | if (page_count != bp->pb_page_count) | 
|  | bp->pb_flags |= PBF_PARTIAL; | 
|  | } | 
|  |  | 
|  | PB_TRACE(bp, "lookup_pages", (long)page_count); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Map buffer into kernel address-space if nessecary. | 
|  | */ | 
|  | STATIC int | 
|  | _pagebuf_map_pages( | 
|  | xfs_buf_t		*bp, | 
|  | uint			flags) | 
|  | { | 
|  | /* A single page buffer is always mappable */ | 
|  | if (bp->pb_page_count == 1) { | 
|  | bp->pb_addr = page_address(bp->pb_pages[0]) + bp->pb_offset; | 
|  | bp->pb_flags |= PBF_MAPPED; | 
|  | } else if (flags & PBF_MAPPED) { | 
|  | if (as_list_len > 64) | 
|  | purge_addresses(); | 
|  | bp->pb_addr = vmap(bp->pb_pages, bp->pb_page_count, | 
|  | VM_MAP, PAGE_KERNEL); | 
|  | if (unlikely(bp->pb_addr == NULL)) | 
|  | return -ENOMEM; | 
|  | bp->pb_addr += bp->pb_offset; | 
|  | bp->pb_flags |= PBF_MAPPED; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Finding and Reading Buffers | 
|  | */ | 
|  |  | 
|  | /* | 
|  | *	_pagebuf_find | 
|  | * | 
|  | *	Looks up, and creates if absent, a lockable buffer for | 
|  | *	a given range of an inode.  The buffer is returned | 
|  | *	locked.	 If other overlapping buffers exist, they are | 
|  | *	released before the new buffer is created and locked, | 
|  | *	which may imply that this call will block until those buffers | 
|  | *	are unlocked.  No I/O is implied by this call. | 
|  | */ | 
|  | xfs_buf_t * | 
|  | _pagebuf_find( | 
|  | xfs_buftarg_t		*btp,	/* block device target		*/ | 
|  | loff_t			ioff,	/* starting offset of range	*/ | 
|  | size_t			isize,	/* length of range		*/ | 
|  | page_buf_flags_t	flags,	/* PBF_TRYLOCK			*/ | 
|  | xfs_buf_t		*new_pb)/* newly allocated buffer	*/ | 
|  | { | 
|  | loff_t			range_base; | 
|  | size_t			range_length; | 
|  | xfs_bufhash_t		*hash; | 
|  | xfs_buf_t		*pb, *n; | 
|  |  | 
|  | range_base = (ioff << BBSHIFT); | 
|  | range_length = (isize << BBSHIFT); | 
|  |  | 
|  | /* Check for IOs smaller than the sector size / not sector aligned */ | 
|  | ASSERT(!(range_length < (1 << btp->pbr_sshift))); | 
|  | ASSERT(!(range_base & (loff_t)btp->pbr_smask)); | 
|  |  | 
|  | hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)]; | 
|  |  | 
|  | spin_lock(&hash->bh_lock); | 
|  |  | 
|  | list_for_each_entry_safe(pb, n, &hash->bh_list, pb_hash_list) { | 
|  | ASSERT(btp == pb->pb_target); | 
|  | if (pb->pb_file_offset == range_base && | 
|  | pb->pb_buffer_length == range_length) { | 
|  | /* | 
|  | * If we look at something bring it to the | 
|  | * front of the list for next time. | 
|  | */ | 
|  | atomic_inc(&pb->pb_hold); | 
|  | list_move(&pb->pb_hash_list, &hash->bh_list); | 
|  | goto found; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* No match found */ | 
|  | if (new_pb) { | 
|  | _pagebuf_initialize(new_pb, btp, range_base, | 
|  | range_length, flags); | 
|  | new_pb->pb_hash = hash; | 
|  | list_add(&new_pb->pb_hash_list, &hash->bh_list); | 
|  | } else { | 
|  | XFS_STATS_INC(pb_miss_locked); | 
|  | } | 
|  |  | 
|  | spin_unlock(&hash->bh_lock); | 
|  | return new_pb; | 
|  |  | 
|  | found: | 
|  | spin_unlock(&hash->bh_lock); | 
|  |  | 
|  | /* Attempt to get the semaphore without sleeping, | 
|  | * if this does not work then we need to drop the | 
|  | * spinlock and do a hard attempt on the semaphore. | 
|  | */ | 
|  | if (down_trylock(&pb->pb_sema)) { | 
|  | if (!(flags & PBF_TRYLOCK)) { | 
|  | /* wait for buffer ownership */ | 
|  | PB_TRACE(pb, "get_lock", 0); | 
|  | pagebuf_lock(pb); | 
|  | XFS_STATS_INC(pb_get_locked_waited); | 
|  | } else { | 
|  | /* We asked for a trylock and failed, no need | 
|  | * to look at file offset and length here, we | 
|  | * know that this pagebuf at least overlaps our | 
|  | * pagebuf and is locked, therefore our buffer | 
|  | * either does not exist, or is this buffer | 
|  | */ | 
|  |  | 
|  | pagebuf_rele(pb); | 
|  | XFS_STATS_INC(pb_busy_locked); | 
|  | return (NULL); | 
|  | } | 
|  | } else { | 
|  | /* trylock worked */ | 
|  | PB_SET_OWNER(pb); | 
|  | } | 
|  |  | 
|  | if (pb->pb_flags & PBF_STALE) | 
|  | pb->pb_flags &= PBF_MAPPED; | 
|  | PB_TRACE(pb, "got_lock", 0); | 
|  | XFS_STATS_INC(pb_get_locked); | 
|  | return (pb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	xfs_buf_get_flags assembles a buffer covering the specified range. | 
|  | * | 
|  | *	Storage in memory for all portions of the buffer will be allocated, | 
|  | *	although backing storage may not be. | 
|  | */ | 
|  | xfs_buf_t * | 
|  | xfs_buf_get_flags(			/* allocate a buffer		*/ | 
|  | xfs_buftarg_t		*target,/* target for buffer		*/ | 
|  | loff_t			ioff,	/* starting offset of range	*/ | 
|  | size_t			isize,	/* length of range		*/ | 
|  | page_buf_flags_t	flags)	/* PBF_TRYLOCK			*/ | 
|  | { | 
|  | xfs_buf_t		*pb, *new_pb; | 
|  | int			error = 0, i; | 
|  |  | 
|  | new_pb = pagebuf_allocate(flags); | 
|  | if (unlikely(!new_pb)) | 
|  | return NULL; | 
|  |  | 
|  | pb = _pagebuf_find(target, ioff, isize, flags, new_pb); | 
|  | if (pb == new_pb) { | 
|  | error = _pagebuf_lookup_pages(pb, flags); | 
|  | if (error) | 
|  | goto no_buffer; | 
|  | } else { | 
|  | pagebuf_deallocate(new_pb); | 
|  | if (unlikely(pb == NULL)) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < pb->pb_page_count; i++) | 
|  | mark_page_accessed(pb->pb_pages[i]); | 
|  |  | 
|  | if (!(pb->pb_flags & PBF_MAPPED)) { | 
|  | error = _pagebuf_map_pages(pb, flags); | 
|  | if (unlikely(error)) { | 
|  | printk(KERN_WARNING "%s: failed to map pages\n", | 
|  | __FUNCTION__); | 
|  | goto no_buffer; | 
|  | } | 
|  | } | 
|  |  | 
|  | XFS_STATS_INC(pb_get); | 
|  |  | 
|  | /* | 
|  | * Always fill in the block number now, the mapped cases can do | 
|  | * their own overlay of this later. | 
|  | */ | 
|  | pb->pb_bn = ioff; | 
|  | pb->pb_count_desired = pb->pb_buffer_length; | 
|  |  | 
|  | PB_TRACE(pb, "get", (unsigned long)flags); | 
|  | return pb; | 
|  |  | 
|  | no_buffer: | 
|  | if (flags & (PBF_LOCK | PBF_TRYLOCK)) | 
|  | pagebuf_unlock(pb); | 
|  | pagebuf_rele(pb); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | xfs_buf_t * | 
|  | xfs_buf_read_flags( | 
|  | xfs_buftarg_t		*target, | 
|  | loff_t			ioff, | 
|  | size_t			isize, | 
|  | page_buf_flags_t	flags) | 
|  | { | 
|  | xfs_buf_t		*pb; | 
|  |  | 
|  | flags |= PBF_READ; | 
|  |  | 
|  | pb = xfs_buf_get_flags(target, ioff, isize, flags); | 
|  | if (pb) { | 
|  | if (PBF_NOT_DONE(pb)) { | 
|  | PB_TRACE(pb, "read", (unsigned long)flags); | 
|  | XFS_STATS_INC(pb_get_read); | 
|  | pagebuf_iostart(pb, flags); | 
|  | } else if (flags & PBF_ASYNC) { | 
|  | PB_TRACE(pb, "read_async", (unsigned long)flags); | 
|  | /* | 
|  | * Read ahead call which is already satisfied, | 
|  | * drop the buffer | 
|  | */ | 
|  | goto no_buffer; | 
|  | } else { | 
|  | PB_TRACE(pb, "read_done", (unsigned long)flags); | 
|  | /* We do not want read in the flags */ | 
|  | pb->pb_flags &= ~PBF_READ; | 
|  | } | 
|  | } | 
|  |  | 
|  | return pb; | 
|  |  | 
|  | no_buffer: | 
|  | if (flags & (PBF_LOCK | PBF_TRYLOCK)) | 
|  | pagebuf_unlock(pb); | 
|  | pagebuf_rele(pb); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create a skeletal pagebuf (no pages associated with it). | 
|  | */ | 
|  | xfs_buf_t * | 
|  | pagebuf_lookup( | 
|  | xfs_buftarg_t		*target, | 
|  | loff_t			ioff, | 
|  | size_t			isize, | 
|  | page_buf_flags_t	flags) | 
|  | { | 
|  | xfs_buf_t		*pb; | 
|  |  | 
|  | pb = pagebuf_allocate(flags); | 
|  | if (pb) { | 
|  | _pagebuf_initialize(pb, target, ioff, isize, flags); | 
|  | } | 
|  | return pb; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we are not low on memory then do the readahead in a deadlock | 
|  | * safe manner. | 
|  | */ | 
|  | void | 
|  | pagebuf_readahead( | 
|  | xfs_buftarg_t		*target, | 
|  | loff_t			ioff, | 
|  | size_t			isize, | 
|  | page_buf_flags_t	flags) | 
|  | { | 
|  | struct backing_dev_info *bdi; | 
|  |  | 
|  | bdi = target->pbr_mapping->backing_dev_info; | 
|  | if (bdi_read_congested(bdi)) | 
|  | return; | 
|  |  | 
|  | flags |= (PBF_TRYLOCK|PBF_ASYNC|PBF_READ_AHEAD); | 
|  | xfs_buf_read_flags(target, ioff, isize, flags); | 
|  | } | 
|  |  | 
|  | xfs_buf_t * | 
|  | pagebuf_get_empty( | 
|  | size_t			len, | 
|  | xfs_buftarg_t		*target) | 
|  | { | 
|  | xfs_buf_t		*pb; | 
|  |  | 
|  | pb = pagebuf_allocate(0); | 
|  | if (pb) | 
|  | _pagebuf_initialize(pb, target, 0, len, 0); | 
|  | return pb; | 
|  | } | 
|  |  | 
|  | static inline struct page * | 
|  | mem_to_page( | 
|  | void			*addr) | 
|  | { | 
|  | if (((unsigned long)addr < VMALLOC_START) || | 
|  | ((unsigned long)addr >= VMALLOC_END)) { | 
|  | return virt_to_page(addr); | 
|  | } else { | 
|  | return vmalloc_to_page(addr); | 
|  | } | 
|  | } | 
|  |  | 
|  | int | 
|  | pagebuf_associate_memory( | 
|  | xfs_buf_t		*pb, | 
|  | void			*mem, | 
|  | size_t			len) | 
|  | { | 
|  | int			rval; | 
|  | int			i = 0; | 
|  | size_t			ptr; | 
|  | size_t			end, end_cur; | 
|  | off_t			offset; | 
|  | int			page_count; | 
|  |  | 
|  | page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT; | 
|  | offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK); | 
|  | if (offset && (len > PAGE_CACHE_SIZE)) | 
|  | page_count++; | 
|  |  | 
|  | /* Free any previous set of page pointers */ | 
|  | if (pb->pb_pages) | 
|  | _pagebuf_free_pages(pb); | 
|  |  | 
|  | pb->pb_pages = NULL; | 
|  | pb->pb_addr = mem; | 
|  |  | 
|  | rval = _pagebuf_get_pages(pb, page_count, 0); | 
|  | if (rval) | 
|  | return rval; | 
|  |  | 
|  | pb->pb_offset = offset; | 
|  | ptr = (size_t) mem & PAGE_CACHE_MASK; | 
|  | end = PAGE_CACHE_ALIGN((size_t) mem + len); | 
|  | end_cur = end; | 
|  | /* set up first page */ | 
|  | pb->pb_pages[0] = mem_to_page(mem); | 
|  |  | 
|  | ptr += PAGE_CACHE_SIZE; | 
|  | pb->pb_page_count = ++i; | 
|  | while (ptr < end) { | 
|  | pb->pb_pages[i] = mem_to_page((void *)ptr); | 
|  | pb->pb_page_count = ++i; | 
|  | ptr += PAGE_CACHE_SIZE; | 
|  | } | 
|  | pb->pb_locked = 0; | 
|  |  | 
|  | pb->pb_count_desired = pb->pb_buffer_length = len; | 
|  | pb->pb_flags |= PBF_MAPPED; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | xfs_buf_t * | 
|  | pagebuf_get_no_daddr( | 
|  | size_t			len, | 
|  | xfs_buftarg_t		*target) | 
|  | { | 
|  | size_t			malloc_len = len; | 
|  | xfs_buf_t		*bp; | 
|  | void			*data; | 
|  | int			error; | 
|  |  | 
|  | bp = pagebuf_allocate(0); | 
|  | if (unlikely(bp == NULL)) | 
|  | goto fail; | 
|  | _pagebuf_initialize(bp, target, 0, len, PBF_FORCEIO); | 
|  |  | 
|  | try_again: | 
|  | data = kmem_alloc(malloc_len, KM_SLEEP | KM_MAYFAIL); | 
|  | if (unlikely(data == NULL)) | 
|  | goto fail_free_buf; | 
|  |  | 
|  | /* check whether alignment matches.. */ | 
|  | if ((__psunsigned_t)data != | 
|  | ((__psunsigned_t)data & ~target->pbr_smask)) { | 
|  | /* .. else double the size and try again */ | 
|  | kmem_free(data, malloc_len); | 
|  | malloc_len <<= 1; | 
|  | goto try_again; | 
|  | } | 
|  |  | 
|  | error = pagebuf_associate_memory(bp, data, len); | 
|  | if (error) | 
|  | goto fail_free_mem; | 
|  | bp->pb_flags |= _PBF_KMEM_ALLOC; | 
|  |  | 
|  | pagebuf_unlock(bp); | 
|  |  | 
|  | PB_TRACE(bp, "no_daddr", data); | 
|  | return bp; | 
|  | fail_free_mem: | 
|  | kmem_free(data, malloc_len); | 
|  | fail_free_buf: | 
|  | pagebuf_free(bp); | 
|  | fail: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	pagebuf_hold | 
|  | * | 
|  | *	Increment reference count on buffer, to hold the buffer concurrently | 
|  | *	with another thread which may release (free) the buffer asynchronously. | 
|  | * | 
|  | *	Must hold the buffer already to call this function. | 
|  | */ | 
|  | void | 
|  | pagebuf_hold( | 
|  | xfs_buf_t		*pb) | 
|  | { | 
|  | atomic_inc(&pb->pb_hold); | 
|  | PB_TRACE(pb, "hold", 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	pagebuf_rele | 
|  | * | 
|  | *	pagebuf_rele releases a hold on the specified buffer.  If the | 
|  | *	the hold count is 1, pagebuf_rele calls pagebuf_free. | 
|  | */ | 
|  | void | 
|  | pagebuf_rele( | 
|  | xfs_buf_t		*pb) | 
|  | { | 
|  | xfs_bufhash_t		*hash = pb->pb_hash; | 
|  |  | 
|  | PB_TRACE(pb, "rele", pb->pb_relse); | 
|  |  | 
|  | /* | 
|  | * pagebuf_lookup buffers are not hashed, not delayed write, | 
|  | * and don't have their own release routines.  Special case. | 
|  | */ | 
|  | if (unlikely(!hash)) { | 
|  | ASSERT(!pb->pb_relse); | 
|  | if (atomic_dec_and_test(&pb->pb_hold)) | 
|  | xfs_buf_free(pb); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (atomic_dec_and_lock(&pb->pb_hold, &hash->bh_lock)) { | 
|  | int		do_free = 1; | 
|  |  | 
|  | if (pb->pb_relse) { | 
|  | atomic_inc(&pb->pb_hold); | 
|  | spin_unlock(&hash->bh_lock); | 
|  | (*(pb->pb_relse)) (pb); | 
|  | spin_lock(&hash->bh_lock); | 
|  | do_free = 0; | 
|  | } | 
|  |  | 
|  | if (pb->pb_flags & PBF_DELWRI) { | 
|  | pb->pb_flags |= PBF_ASYNC; | 
|  | atomic_inc(&pb->pb_hold); | 
|  | pagebuf_delwri_queue(pb, 0); | 
|  | do_free = 0; | 
|  | } else if (pb->pb_flags & PBF_FS_MANAGED) { | 
|  | do_free = 0; | 
|  | } | 
|  |  | 
|  | if (do_free) { | 
|  | list_del_init(&pb->pb_hash_list); | 
|  | spin_unlock(&hash->bh_lock); | 
|  | pagebuf_free(pb); | 
|  | } else { | 
|  | spin_unlock(&hash->bh_lock); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | *	Mutual exclusion on buffers.  Locking model: | 
|  | * | 
|  | *	Buffers associated with inodes for which buffer locking | 
|  | *	is not enabled are not protected by semaphores, and are | 
|  | *	assumed to be exclusively owned by the caller.  There is a | 
|  | *	spinlock in the buffer, used by the caller when concurrent | 
|  | *	access is possible. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | *	pagebuf_cond_lock | 
|  | * | 
|  | *	pagebuf_cond_lock locks a buffer object, if it is not already locked. | 
|  | *	Note that this in no way | 
|  | *	locks the underlying pages, so it is only useful for synchronizing | 
|  | *	concurrent use of page buffer objects, not for synchronizing independent | 
|  | *	access to the underlying pages. | 
|  | */ | 
|  | int | 
|  | pagebuf_cond_lock(			/* lock buffer, if not locked	*/ | 
|  | /* returns -EBUSY if locked)	*/ | 
|  | xfs_buf_t		*pb) | 
|  | { | 
|  | int			locked; | 
|  |  | 
|  | locked = down_trylock(&pb->pb_sema) == 0; | 
|  | if (locked) { | 
|  | PB_SET_OWNER(pb); | 
|  | } | 
|  | PB_TRACE(pb, "cond_lock", (long)locked); | 
|  | return(locked ? 0 : -EBUSY); | 
|  | } | 
|  |  | 
|  | #if defined(DEBUG) || defined(XFS_BLI_TRACE) | 
|  | /* | 
|  | *	pagebuf_lock_value | 
|  | * | 
|  | *	Return lock value for a pagebuf | 
|  | */ | 
|  | int | 
|  | pagebuf_lock_value( | 
|  | xfs_buf_t		*pb) | 
|  | { | 
|  | return(atomic_read(&pb->pb_sema.count)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | *	pagebuf_lock | 
|  | * | 
|  | *	pagebuf_lock locks a buffer object.  Note that this in no way | 
|  | *	locks the underlying pages, so it is only useful for synchronizing | 
|  | *	concurrent use of page buffer objects, not for synchronizing independent | 
|  | *	access to the underlying pages. | 
|  | */ | 
|  | int | 
|  | pagebuf_lock( | 
|  | xfs_buf_t		*pb) | 
|  | { | 
|  | PB_TRACE(pb, "lock", 0); | 
|  | if (atomic_read(&pb->pb_io_remaining)) | 
|  | blk_run_address_space(pb->pb_target->pbr_mapping); | 
|  | down(&pb->pb_sema); | 
|  | PB_SET_OWNER(pb); | 
|  | PB_TRACE(pb, "locked", 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	pagebuf_unlock | 
|  | * | 
|  | *	pagebuf_unlock releases the lock on the buffer object created by | 
|  | *	pagebuf_lock or pagebuf_cond_lock (not any | 
|  | *	pinning of underlying pages created by pagebuf_pin). | 
|  | */ | 
|  | void | 
|  | pagebuf_unlock(				/* unlock buffer		*/ | 
|  | xfs_buf_t		*pb)	/* buffer to unlock		*/ | 
|  | { | 
|  | PB_CLEAR_OWNER(pb); | 
|  | up(&pb->pb_sema); | 
|  | PB_TRACE(pb, "unlock", 0); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | *	Pinning Buffer Storage in Memory | 
|  | */ | 
|  |  | 
|  | /* | 
|  | *	pagebuf_pin | 
|  | * | 
|  | *	pagebuf_pin locks all of the memory represented by a buffer in | 
|  | *	memory.  Multiple calls to pagebuf_pin and pagebuf_unpin, for | 
|  | *	the same or different buffers affecting a given page, will | 
|  | *	properly count the number of outstanding "pin" requests.  The | 
|  | *	buffer may be released after the pagebuf_pin and a different | 
|  | *	buffer used when calling pagebuf_unpin, if desired. | 
|  | *	pagebuf_pin should be used by the file system when it wants be | 
|  | *	assured that no attempt will be made to force the affected | 
|  | *	memory to disk.	 It does not assure that a given logical page | 
|  | *	will not be moved to a different physical page. | 
|  | */ | 
|  | void | 
|  | pagebuf_pin( | 
|  | xfs_buf_t		*pb) | 
|  | { | 
|  | atomic_inc(&pb->pb_pin_count); | 
|  | PB_TRACE(pb, "pin", (long)pb->pb_pin_count.counter); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	pagebuf_unpin | 
|  | * | 
|  | *	pagebuf_unpin reverses the locking of memory performed by | 
|  | *	pagebuf_pin.  Note that both functions affected the logical | 
|  | *	pages associated with the buffer, not the buffer itself. | 
|  | */ | 
|  | void | 
|  | pagebuf_unpin( | 
|  | xfs_buf_t		*pb) | 
|  | { | 
|  | if (atomic_dec_and_test(&pb->pb_pin_count)) { | 
|  | wake_up_all(&pb->pb_waiters); | 
|  | } | 
|  | PB_TRACE(pb, "unpin", (long)pb->pb_pin_count.counter); | 
|  | } | 
|  |  | 
|  | int | 
|  | pagebuf_ispin( | 
|  | xfs_buf_t		*pb) | 
|  | { | 
|  | return atomic_read(&pb->pb_pin_count); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	pagebuf_wait_unpin | 
|  | * | 
|  | *	pagebuf_wait_unpin waits until all of the memory associated | 
|  | *	with the buffer is not longer locked in memory.  It returns | 
|  | *	immediately if none of the affected pages are locked. | 
|  | */ | 
|  | static inline void | 
|  | _pagebuf_wait_unpin( | 
|  | xfs_buf_t		*pb) | 
|  | { | 
|  | DECLARE_WAITQUEUE	(wait, current); | 
|  |  | 
|  | if (atomic_read(&pb->pb_pin_count) == 0) | 
|  | return; | 
|  |  | 
|  | add_wait_queue(&pb->pb_waiters, &wait); | 
|  | for (;;) { | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | if (atomic_read(&pb->pb_pin_count) == 0) | 
|  | break; | 
|  | if (atomic_read(&pb->pb_io_remaining)) | 
|  | blk_run_address_space(pb->pb_target->pbr_mapping); | 
|  | schedule(); | 
|  | } | 
|  | remove_wait_queue(&pb->pb_waiters, &wait); | 
|  | set_current_state(TASK_RUNNING); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Buffer Utility Routines | 
|  | */ | 
|  |  | 
|  | /* | 
|  | *	pagebuf_iodone | 
|  | * | 
|  | *	pagebuf_iodone marks a buffer for which I/O is in progress | 
|  | *	done with respect to that I/O.	The pb_iodone routine, if | 
|  | *	present, will be called as a side-effect. | 
|  | */ | 
|  | STATIC void | 
|  | pagebuf_iodone_work( | 
|  | void			*v) | 
|  | { | 
|  | xfs_buf_t		*bp = (xfs_buf_t *)v; | 
|  |  | 
|  | if (bp->pb_iodone) | 
|  | (*(bp->pb_iodone))(bp); | 
|  | else if (bp->pb_flags & PBF_ASYNC) | 
|  | xfs_buf_relse(bp); | 
|  | } | 
|  |  | 
|  | void | 
|  | pagebuf_iodone( | 
|  | xfs_buf_t		*pb, | 
|  | int			dataio, | 
|  | int			schedule) | 
|  | { | 
|  | pb->pb_flags &= ~(PBF_READ | PBF_WRITE); | 
|  | if (pb->pb_error == 0) { | 
|  | pb->pb_flags &= ~(PBF_PARTIAL | PBF_NONE); | 
|  | } | 
|  |  | 
|  | PB_TRACE(pb, "iodone", pb->pb_iodone); | 
|  |  | 
|  | if ((pb->pb_iodone) || (pb->pb_flags & PBF_ASYNC)) { | 
|  | if (schedule) { | 
|  | INIT_WORK(&pb->pb_iodone_work, pagebuf_iodone_work, pb); | 
|  | queue_work(dataio ? xfsdatad_workqueue : | 
|  | xfslogd_workqueue, &pb->pb_iodone_work); | 
|  | } else { | 
|  | pagebuf_iodone_work(pb); | 
|  | } | 
|  | } else { | 
|  | up(&pb->pb_iodonesema); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	pagebuf_ioerror | 
|  | * | 
|  | *	pagebuf_ioerror sets the error code for a buffer. | 
|  | */ | 
|  | void | 
|  | pagebuf_ioerror(			/* mark/clear buffer error flag */ | 
|  | xfs_buf_t		*pb,	/* buffer to mark		*/ | 
|  | int			error)	/* error to store (0 if none)	*/ | 
|  | { | 
|  | ASSERT(error >= 0 && error <= 0xffff); | 
|  | pb->pb_error = (unsigned short)error; | 
|  | PB_TRACE(pb, "ioerror", (unsigned long)error); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	pagebuf_iostart | 
|  | * | 
|  | *	pagebuf_iostart initiates I/O on a buffer, based on the flags supplied. | 
|  | *	If necessary, it will arrange for any disk space allocation required, | 
|  | *	and it will break up the request if the block mappings require it. | 
|  | *	The pb_iodone routine in the buffer supplied will only be called | 
|  | *	when all of the subsidiary I/O requests, if any, have been completed. | 
|  | *	pagebuf_iostart calls the pagebuf_ioinitiate routine or | 
|  | *	pagebuf_iorequest, if the former routine is not defined, to start | 
|  | *	the I/O on a given low-level request. | 
|  | */ | 
|  | int | 
|  | pagebuf_iostart(			/* start I/O on a buffer	  */ | 
|  | xfs_buf_t		*pb,	/* buffer to start		  */ | 
|  | page_buf_flags_t	flags)	/* PBF_LOCK, PBF_ASYNC, PBF_READ, */ | 
|  | /* PBF_WRITE, PBF_DELWRI,	  */ | 
|  | /* PBF_DONT_BLOCK		  */ | 
|  | { | 
|  | int			status = 0; | 
|  |  | 
|  | PB_TRACE(pb, "iostart", (unsigned long)flags); | 
|  |  | 
|  | if (flags & PBF_DELWRI) { | 
|  | pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC); | 
|  | pb->pb_flags |= flags & (PBF_DELWRI | PBF_ASYNC); | 
|  | pagebuf_delwri_queue(pb, 1); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC | PBF_DELWRI | \ | 
|  | PBF_READ_AHEAD | _PBF_RUN_QUEUES); | 
|  | pb->pb_flags |= flags & (PBF_READ | PBF_WRITE | PBF_ASYNC | \ | 
|  | PBF_READ_AHEAD | _PBF_RUN_QUEUES); | 
|  |  | 
|  | BUG_ON(pb->pb_bn == XFS_BUF_DADDR_NULL); | 
|  |  | 
|  | /* For writes allow an alternate strategy routine to precede | 
|  | * the actual I/O request (which may not be issued at all in | 
|  | * a shutdown situation, for example). | 
|  | */ | 
|  | status = (flags & PBF_WRITE) ? | 
|  | pagebuf_iostrategy(pb) : pagebuf_iorequest(pb); | 
|  |  | 
|  | /* Wait for I/O if we are not an async request. | 
|  | * Note: async I/O request completion will release the buffer, | 
|  | * and that can already be done by this point.  So using the | 
|  | * buffer pointer from here on, after async I/O, is invalid. | 
|  | */ | 
|  | if (!status && !(flags & PBF_ASYNC)) | 
|  | status = pagebuf_iowait(pb); | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper routine for pagebuf_iorequest | 
|  | */ | 
|  |  | 
|  | STATIC __inline__ int | 
|  | _pagebuf_iolocked( | 
|  | xfs_buf_t		*pb) | 
|  | { | 
|  | ASSERT(pb->pb_flags & (PBF_READ|PBF_WRITE)); | 
|  | if (pb->pb_flags & PBF_READ) | 
|  | return pb->pb_locked; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | STATIC __inline__ void | 
|  | _pagebuf_iodone( | 
|  | xfs_buf_t		*pb, | 
|  | int			schedule) | 
|  | { | 
|  | if (atomic_dec_and_test(&pb->pb_io_remaining) == 1) { | 
|  | pb->pb_locked = 0; | 
|  | pagebuf_iodone(pb, (pb->pb_flags & PBF_FS_DATAIOD), schedule); | 
|  | } | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | bio_end_io_pagebuf( | 
|  | struct bio		*bio, | 
|  | unsigned int		bytes_done, | 
|  | int			error) | 
|  | { | 
|  | xfs_buf_t		*pb = (xfs_buf_t *)bio->bi_private; | 
|  | unsigned int		i, blocksize = pb->pb_target->pbr_bsize; | 
|  | struct bio_vec		*bvec = bio->bi_io_vec; | 
|  |  | 
|  | if (bio->bi_size) | 
|  | return 1; | 
|  |  | 
|  | if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) | 
|  | pb->pb_error = EIO; | 
|  |  | 
|  | for (i = 0; i < bio->bi_vcnt; i++, bvec++) { | 
|  | struct page	*page = bvec->bv_page; | 
|  |  | 
|  | if (pb->pb_error) { | 
|  | SetPageError(page); | 
|  | } else if (blocksize == PAGE_CACHE_SIZE) { | 
|  | SetPageUptodate(page); | 
|  | } else if (!PagePrivate(page) && | 
|  | (pb->pb_flags & _PBF_PAGE_CACHE)) { | 
|  | set_page_region(page, bvec->bv_offset, bvec->bv_len); | 
|  | } | 
|  |  | 
|  | if (_pagebuf_iolocked(pb)) { | 
|  | unlock_page(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | _pagebuf_iodone(pb, 1); | 
|  | bio_put(bio); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | _pagebuf_ioapply( | 
|  | xfs_buf_t		*pb) | 
|  | { | 
|  | int			i, rw, map_i, total_nr_pages, nr_pages; | 
|  | struct bio		*bio; | 
|  | int			offset = pb->pb_offset; | 
|  | int			size = pb->pb_count_desired; | 
|  | sector_t		sector = pb->pb_bn; | 
|  | unsigned int		blocksize = pb->pb_target->pbr_bsize; | 
|  | int			locking = _pagebuf_iolocked(pb); | 
|  |  | 
|  | total_nr_pages = pb->pb_page_count; | 
|  | map_i = 0; | 
|  |  | 
|  | if (pb->pb_flags & _PBF_RUN_QUEUES) { | 
|  | pb->pb_flags &= ~_PBF_RUN_QUEUES; | 
|  | rw = (pb->pb_flags & PBF_READ) ? READ_SYNC : WRITE_SYNC; | 
|  | } else { | 
|  | rw = (pb->pb_flags & PBF_READ) ? READ : WRITE; | 
|  | } | 
|  |  | 
|  | /* Special code path for reading a sub page size pagebuf in -- | 
|  | * we populate up the whole page, and hence the other metadata | 
|  | * in the same page.  This optimization is only valid when the | 
|  | * filesystem block size and the page size are equal. | 
|  | */ | 
|  | if ((pb->pb_buffer_length < PAGE_CACHE_SIZE) && | 
|  | (pb->pb_flags & PBF_READ) && locking && | 
|  | (blocksize == PAGE_CACHE_SIZE)) { | 
|  | bio = bio_alloc(GFP_NOIO, 1); | 
|  |  | 
|  | bio->bi_bdev = pb->pb_target->pbr_bdev; | 
|  | bio->bi_sector = sector - (offset >> BBSHIFT); | 
|  | bio->bi_end_io = bio_end_io_pagebuf; | 
|  | bio->bi_private = pb; | 
|  |  | 
|  | bio_add_page(bio, pb->pb_pages[0], PAGE_CACHE_SIZE, 0); | 
|  | size = 0; | 
|  |  | 
|  | atomic_inc(&pb->pb_io_remaining); | 
|  |  | 
|  | goto submit_io; | 
|  | } | 
|  |  | 
|  | /* Lock down the pages which we need to for the request */ | 
|  | if (locking && (pb->pb_flags & PBF_WRITE) && (pb->pb_locked == 0)) { | 
|  | for (i = 0; size; i++) { | 
|  | int		nbytes = PAGE_CACHE_SIZE - offset; | 
|  | struct page	*page = pb->pb_pages[i]; | 
|  |  | 
|  | if (nbytes > size) | 
|  | nbytes = size; | 
|  |  | 
|  | lock_page(page); | 
|  |  | 
|  | size -= nbytes; | 
|  | offset = 0; | 
|  | } | 
|  | offset = pb->pb_offset; | 
|  | size = pb->pb_count_desired; | 
|  | } | 
|  |  | 
|  | next_chunk: | 
|  | atomic_inc(&pb->pb_io_remaining); | 
|  | nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT); | 
|  | if (nr_pages > total_nr_pages) | 
|  | nr_pages = total_nr_pages; | 
|  |  | 
|  | bio = bio_alloc(GFP_NOIO, nr_pages); | 
|  | bio->bi_bdev = pb->pb_target->pbr_bdev; | 
|  | bio->bi_sector = sector; | 
|  | bio->bi_end_io = bio_end_io_pagebuf; | 
|  | bio->bi_private = pb; | 
|  |  | 
|  | for (; size && nr_pages; nr_pages--, map_i++) { | 
|  | int	nbytes = PAGE_CACHE_SIZE - offset; | 
|  |  | 
|  | if (nbytes > size) | 
|  | nbytes = size; | 
|  |  | 
|  | if (bio_add_page(bio, pb->pb_pages[map_i], | 
|  | nbytes, offset) < nbytes) | 
|  | break; | 
|  |  | 
|  | offset = 0; | 
|  | sector += nbytes >> BBSHIFT; | 
|  | size -= nbytes; | 
|  | total_nr_pages--; | 
|  | } | 
|  |  | 
|  | submit_io: | 
|  | if (likely(bio->bi_size)) { | 
|  | submit_bio(rw, bio); | 
|  | if (size) | 
|  | goto next_chunk; | 
|  | } else { | 
|  | bio_put(bio); | 
|  | pagebuf_ioerror(pb, EIO); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	pagebuf_iorequest -- the core I/O request routine. | 
|  | */ | 
|  | int | 
|  | pagebuf_iorequest(			/* start real I/O		*/ | 
|  | xfs_buf_t		*pb)	/* buffer to convey to device	*/ | 
|  | { | 
|  | PB_TRACE(pb, "iorequest", 0); | 
|  |  | 
|  | if (pb->pb_flags & PBF_DELWRI) { | 
|  | pagebuf_delwri_queue(pb, 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (pb->pb_flags & PBF_WRITE) { | 
|  | _pagebuf_wait_unpin(pb); | 
|  | } | 
|  |  | 
|  | pagebuf_hold(pb); | 
|  |  | 
|  | /* Set the count to 1 initially, this will stop an I/O | 
|  | * completion callout which happens before we have started | 
|  | * all the I/O from calling pagebuf_iodone too early. | 
|  | */ | 
|  | atomic_set(&pb->pb_io_remaining, 1); | 
|  | _pagebuf_ioapply(pb); | 
|  | _pagebuf_iodone(pb, 0); | 
|  |  | 
|  | pagebuf_rele(pb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	pagebuf_iowait | 
|  | * | 
|  | *	pagebuf_iowait waits for I/O to complete on the buffer supplied. | 
|  | *	It returns immediately if no I/O is pending.  In any case, it returns | 
|  | *	the error code, if any, or 0 if there is no error. | 
|  | */ | 
|  | int | 
|  | pagebuf_iowait( | 
|  | xfs_buf_t		*pb) | 
|  | { | 
|  | PB_TRACE(pb, "iowait", 0); | 
|  | if (atomic_read(&pb->pb_io_remaining)) | 
|  | blk_run_address_space(pb->pb_target->pbr_mapping); | 
|  | down(&pb->pb_iodonesema); | 
|  | PB_TRACE(pb, "iowaited", (long)pb->pb_error); | 
|  | return pb->pb_error; | 
|  | } | 
|  |  | 
|  | caddr_t | 
|  | pagebuf_offset( | 
|  | xfs_buf_t		*pb, | 
|  | size_t			offset) | 
|  | { | 
|  | struct page		*page; | 
|  |  | 
|  | offset += pb->pb_offset; | 
|  |  | 
|  | page = pb->pb_pages[offset >> PAGE_CACHE_SHIFT]; | 
|  | return (caddr_t) page_address(page) + (offset & (PAGE_CACHE_SIZE - 1)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	pagebuf_iomove | 
|  | * | 
|  | *	Move data into or out of a buffer. | 
|  | */ | 
|  | void | 
|  | pagebuf_iomove( | 
|  | xfs_buf_t		*pb,	/* buffer to process		*/ | 
|  | size_t			boff,	/* starting buffer offset	*/ | 
|  | size_t			bsize,	/* length to copy		*/ | 
|  | caddr_t			data,	/* data address			*/ | 
|  | page_buf_rw_t		mode)	/* read/write flag		*/ | 
|  | { | 
|  | size_t			bend, cpoff, csize; | 
|  | struct page		*page; | 
|  |  | 
|  | bend = boff + bsize; | 
|  | while (boff < bend) { | 
|  | page = pb->pb_pages[page_buf_btoct(boff + pb->pb_offset)]; | 
|  | cpoff = page_buf_poff(boff + pb->pb_offset); | 
|  | csize = min_t(size_t, | 
|  | PAGE_CACHE_SIZE-cpoff, pb->pb_count_desired-boff); | 
|  |  | 
|  | ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE)); | 
|  |  | 
|  | switch (mode) { | 
|  | case PBRW_ZERO: | 
|  | memset(page_address(page) + cpoff, 0, csize); | 
|  | break; | 
|  | case PBRW_READ: | 
|  | memcpy(data, page_address(page) + cpoff, csize); | 
|  | break; | 
|  | case PBRW_WRITE: | 
|  | memcpy(page_address(page) + cpoff, data, csize); | 
|  | } | 
|  |  | 
|  | boff += csize; | 
|  | data += csize; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Handling of buftargs. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Wait for any bufs with callbacks that have been submitted but | 
|  | * have not yet returned... walk the hash list for the target. | 
|  | */ | 
|  | void | 
|  | xfs_wait_buftarg( | 
|  | xfs_buftarg_t	*btp) | 
|  | { | 
|  | xfs_buf_t	*bp, *n; | 
|  | xfs_bufhash_t	*hash; | 
|  | uint		i; | 
|  |  | 
|  | for (i = 0; i < (1 << btp->bt_hashshift); i++) { | 
|  | hash = &btp->bt_hash[i]; | 
|  | again: | 
|  | spin_lock(&hash->bh_lock); | 
|  | list_for_each_entry_safe(bp, n, &hash->bh_list, pb_hash_list) { | 
|  | ASSERT(btp == bp->pb_target); | 
|  | if (!(bp->pb_flags & PBF_FS_MANAGED)) { | 
|  | spin_unlock(&hash->bh_lock); | 
|  | delay(100); | 
|  | goto again; | 
|  | } | 
|  | } | 
|  | spin_unlock(&hash->bh_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate buffer hash table for a given target. | 
|  | * For devices containing metadata (i.e. not the log/realtime devices) | 
|  | * we need to allocate a much larger hash table. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_alloc_bufhash( | 
|  | xfs_buftarg_t		*btp, | 
|  | int			external) | 
|  | { | 
|  | unsigned int		i; | 
|  |  | 
|  | btp->bt_hashshift = external ? 3 : 8;	/* 8 or 256 buckets */ | 
|  | btp->bt_hashmask = (1 << btp->bt_hashshift) - 1; | 
|  | btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) * | 
|  | sizeof(xfs_bufhash_t), KM_SLEEP); | 
|  | for (i = 0; i < (1 << btp->bt_hashshift); i++) { | 
|  | spin_lock_init(&btp->bt_hash[i].bh_lock); | 
|  | INIT_LIST_HEAD(&btp->bt_hash[i].bh_list); | 
|  | } | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_free_bufhash( | 
|  | xfs_buftarg_t		*btp) | 
|  | { | 
|  | kmem_free(btp->bt_hash, | 
|  | (1 << btp->bt_hashshift) * sizeof(xfs_bufhash_t)); | 
|  | btp->bt_hash = NULL; | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_free_buftarg( | 
|  | xfs_buftarg_t		*btp, | 
|  | int			external) | 
|  | { | 
|  | xfs_flush_buftarg(btp, 1); | 
|  | if (external) | 
|  | xfs_blkdev_put(btp->pbr_bdev); | 
|  | xfs_free_bufhash(btp); | 
|  | iput(btp->pbr_mapping->host); | 
|  | kmem_free(btp, sizeof(*btp)); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_setsize_buftarg_flags( | 
|  | xfs_buftarg_t		*btp, | 
|  | unsigned int		blocksize, | 
|  | unsigned int		sectorsize, | 
|  | int			verbose) | 
|  | { | 
|  | btp->pbr_bsize = blocksize; | 
|  | btp->pbr_sshift = ffs(sectorsize) - 1; | 
|  | btp->pbr_smask = sectorsize - 1; | 
|  |  | 
|  | if (set_blocksize(btp->pbr_bdev, sectorsize)) { | 
|  | printk(KERN_WARNING | 
|  | "XFS: Cannot set_blocksize to %u on device %s\n", | 
|  | sectorsize, XFS_BUFTARG_NAME(btp)); | 
|  | return EINVAL; | 
|  | } | 
|  |  | 
|  | if (verbose && | 
|  | (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) { | 
|  | printk(KERN_WARNING | 
|  | "XFS: %u byte sectors in use on device %s.  " | 
|  | "This is suboptimal; %u or greater is ideal.\n", | 
|  | sectorsize, XFS_BUFTARG_NAME(btp), | 
|  | (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When allocating the initial buffer target we have not yet | 
|  | * read in the superblock, so don't know what sized sectors | 
|  | * are being used is at this early stage.  Play safe. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_setsize_buftarg_early( | 
|  | xfs_buftarg_t		*btp, | 
|  | struct block_device	*bdev) | 
|  | { | 
|  | return xfs_setsize_buftarg_flags(btp, | 
|  | PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0); | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_setsize_buftarg( | 
|  | xfs_buftarg_t		*btp, | 
|  | unsigned int		blocksize, | 
|  | unsigned int		sectorsize) | 
|  | { | 
|  | return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_mapping_buftarg( | 
|  | xfs_buftarg_t		*btp, | 
|  | struct block_device	*bdev) | 
|  | { | 
|  | struct backing_dev_info	*bdi; | 
|  | struct inode		*inode; | 
|  | struct address_space	*mapping; | 
|  | static struct address_space_operations mapping_aops = { | 
|  | .sync_page = block_sync_page, | 
|  | }; | 
|  |  | 
|  | inode = new_inode(bdev->bd_inode->i_sb); | 
|  | if (!inode) { | 
|  | printk(KERN_WARNING | 
|  | "XFS: Cannot allocate mapping inode for device %s\n", | 
|  | XFS_BUFTARG_NAME(btp)); | 
|  | return ENOMEM; | 
|  | } | 
|  | inode->i_mode = S_IFBLK; | 
|  | inode->i_bdev = bdev; | 
|  | inode->i_rdev = bdev->bd_dev; | 
|  | bdi = blk_get_backing_dev_info(bdev); | 
|  | if (!bdi) | 
|  | bdi = &default_backing_dev_info; | 
|  | mapping = &inode->i_data; | 
|  | mapping->a_ops = &mapping_aops; | 
|  | mapping->backing_dev_info = bdi; | 
|  | mapping_set_gfp_mask(mapping, GFP_NOFS); | 
|  | btp->pbr_mapping = mapping; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | xfs_buftarg_t * | 
|  | xfs_alloc_buftarg( | 
|  | struct block_device	*bdev, | 
|  | int			external) | 
|  | { | 
|  | xfs_buftarg_t		*btp; | 
|  |  | 
|  | btp = kmem_zalloc(sizeof(*btp), KM_SLEEP); | 
|  |  | 
|  | btp->pbr_dev =  bdev->bd_dev; | 
|  | btp->pbr_bdev = bdev; | 
|  | if (xfs_setsize_buftarg_early(btp, bdev)) | 
|  | goto error; | 
|  | if (xfs_mapping_buftarg(btp, bdev)) | 
|  | goto error; | 
|  | xfs_alloc_bufhash(btp, external); | 
|  | return btp; | 
|  |  | 
|  | error: | 
|  | kmem_free(btp, sizeof(*btp)); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Pagebuf delayed write buffer handling | 
|  | */ | 
|  |  | 
|  | STATIC LIST_HEAD(pbd_delwrite_queue); | 
|  | STATIC DEFINE_SPINLOCK(pbd_delwrite_lock); | 
|  |  | 
|  | STATIC void | 
|  | pagebuf_delwri_queue( | 
|  | xfs_buf_t		*pb, | 
|  | int			unlock) | 
|  | { | 
|  | PB_TRACE(pb, "delwri_q", (long)unlock); | 
|  | ASSERT(pb->pb_flags & PBF_DELWRI); | 
|  |  | 
|  | spin_lock(&pbd_delwrite_lock); | 
|  | /* If already in the queue, dequeue and place at tail */ | 
|  | if (!list_empty(&pb->pb_list)) { | 
|  | if (unlock) { | 
|  | atomic_dec(&pb->pb_hold); | 
|  | } | 
|  | list_del(&pb->pb_list); | 
|  | } | 
|  |  | 
|  | list_add_tail(&pb->pb_list, &pbd_delwrite_queue); | 
|  | pb->pb_queuetime = jiffies; | 
|  | spin_unlock(&pbd_delwrite_lock); | 
|  |  | 
|  | if (unlock) | 
|  | pagebuf_unlock(pb); | 
|  | } | 
|  |  | 
|  | void | 
|  | pagebuf_delwri_dequeue( | 
|  | xfs_buf_t		*pb) | 
|  | { | 
|  | int			dequeued = 0; | 
|  |  | 
|  | spin_lock(&pbd_delwrite_lock); | 
|  | if ((pb->pb_flags & PBF_DELWRI) && !list_empty(&pb->pb_list)) { | 
|  | list_del_init(&pb->pb_list); | 
|  | dequeued = 1; | 
|  | } | 
|  | pb->pb_flags &= ~PBF_DELWRI; | 
|  | spin_unlock(&pbd_delwrite_lock); | 
|  |  | 
|  | if (dequeued) | 
|  | pagebuf_rele(pb); | 
|  |  | 
|  | PB_TRACE(pb, "delwri_dq", (long)dequeued); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | pagebuf_runall_queues( | 
|  | struct workqueue_struct	*queue) | 
|  | { | 
|  | flush_workqueue(queue); | 
|  | } | 
|  |  | 
|  | /* Defines for pagebuf daemon */ | 
|  | STATIC DECLARE_COMPLETION(xfsbufd_done); | 
|  | STATIC struct task_struct *xfsbufd_task; | 
|  | STATIC int xfsbufd_active; | 
|  | STATIC int xfsbufd_force_flush; | 
|  | STATIC int xfsbufd_force_sleep; | 
|  |  | 
|  | STATIC int | 
|  | xfsbufd_wakeup( | 
|  | int			priority, | 
|  | unsigned int		mask) | 
|  | { | 
|  | if (xfsbufd_force_sleep) | 
|  | return 0; | 
|  | xfsbufd_force_flush = 1; | 
|  | barrier(); | 
|  | wake_up_process(xfsbufd_task); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfsbufd( | 
|  | void			*data) | 
|  | { | 
|  | struct list_head	tmp; | 
|  | unsigned long		age; | 
|  | xfs_buftarg_t		*target; | 
|  | xfs_buf_t		*pb, *n; | 
|  |  | 
|  | /*  Set up the thread  */ | 
|  | daemonize("xfsbufd"); | 
|  | current->flags |= PF_MEMALLOC; | 
|  |  | 
|  | xfsbufd_task = current; | 
|  | xfsbufd_active = 1; | 
|  | barrier(); | 
|  |  | 
|  | INIT_LIST_HEAD(&tmp); | 
|  | do { | 
|  | if (unlikely(freezing(current))) { | 
|  | xfsbufd_force_sleep = 1; | 
|  | refrigerator(); | 
|  | } else { | 
|  | xfsbufd_force_sleep = 0; | 
|  | } | 
|  |  | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | schedule_timeout((xfs_buf_timer_centisecs * HZ) / 100); | 
|  |  | 
|  | age = (xfs_buf_age_centisecs * HZ) / 100; | 
|  | spin_lock(&pbd_delwrite_lock); | 
|  | list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) { | 
|  | PB_TRACE(pb, "walkq1", (long)pagebuf_ispin(pb)); | 
|  | ASSERT(pb->pb_flags & PBF_DELWRI); | 
|  |  | 
|  | if (!pagebuf_ispin(pb) && !pagebuf_cond_lock(pb)) { | 
|  | if (!xfsbufd_force_flush && | 
|  | time_before(jiffies, | 
|  | pb->pb_queuetime + age)) { | 
|  | pagebuf_unlock(pb); | 
|  | break; | 
|  | } | 
|  |  | 
|  | pb->pb_flags &= ~PBF_DELWRI; | 
|  | pb->pb_flags |= PBF_WRITE; | 
|  | list_move(&pb->pb_list, &tmp); | 
|  | } | 
|  | } | 
|  | spin_unlock(&pbd_delwrite_lock); | 
|  |  | 
|  | while (!list_empty(&tmp)) { | 
|  | pb = list_entry(tmp.next, xfs_buf_t, pb_list); | 
|  | target = pb->pb_target; | 
|  |  | 
|  | list_del_init(&pb->pb_list); | 
|  | pagebuf_iostrategy(pb); | 
|  |  | 
|  | blk_run_address_space(target->pbr_mapping); | 
|  | } | 
|  |  | 
|  | if (as_list_len > 0) | 
|  | purge_addresses(); | 
|  |  | 
|  | xfsbufd_force_flush = 0; | 
|  | } while (xfsbufd_active); | 
|  |  | 
|  | complete_and_exit(&xfsbufd_done, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Go through all incore buffers, and release buffers if they belong to | 
|  | * the given device. This is used in filesystem error handling to | 
|  | * preserve the consistency of its metadata. | 
|  | */ | 
|  | int | 
|  | xfs_flush_buftarg( | 
|  | xfs_buftarg_t		*target, | 
|  | int			wait) | 
|  | { | 
|  | struct list_head	tmp; | 
|  | xfs_buf_t		*pb, *n; | 
|  | int			pincount = 0; | 
|  |  | 
|  | pagebuf_runall_queues(xfsdatad_workqueue); | 
|  | pagebuf_runall_queues(xfslogd_workqueue); | 
|  |  | 
|  | INIT_LIST_HEAD(&tmp); | 
|  | spin_lock(&pbd_delwrite_lock); | 
|  | list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) { | 
|  |  | 
|  | if (pb->pb_target != target) | 
|  | continue; | 
|  |  | 
|  | ASSERT(pb->pb_flags & PBF_DELWRI); | 
|  | PB_TRACE(pb, "walkq2", (long)pagebuf_ispin(pb)); | 
|  | if (pagebuf_ispin(pb)) { | 
|  | pincount++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | pb->pb_flags &= ~PBF_DELWRI; | 
|  | pb->pb_flags |= PBF_WRITE; | 
|  | list_move(&pb->pb_list, &tmp); | 
|  | } | 
|  | spin_unlock(&pbd_delwrite_lock); | 
|  |  | 
|  | /* | 
|  | * Dropped the delayed write list lock, now walk the temporary list | 
|  | */ | 
|  | list_for_each_entry_safe(pb, n, &tmp, pb_list) { | 
|  | if (wait) | 
|  | pb->pb_flags &= ~PBF_ASYNC; | 
|  | else | 
|  | list_del_init(&pb->pb_list); | 
|  |  | 
|  | pagebuf_lock(pb); | 
|  | pagebuf_iostrategy(pb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remaining list items must be flushed before returning | 
|  | */ | 
|  | while (!list_empty(&tmp)) { | 
|  | pb = list_entry(tmp.next, xfs_buf_t, pb_list); | 
|  |  | 
|  | list_del_init(&pb->pb_list); | 
|  | xfs_iowait(pb); | 
|  | xfs_buf_relse(pb); | 
|  | } | 
|  |  | 
|  | if (wait) | 
|  | blk_run_address_space(target->pbr_mapping); | 
|  |  | 
|  | return pincount; | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_buf_daemons_start(void) | 
|  | { | 
|  | int		error = -ENOMEM; | 
|  |  | 
|  | xfslogd_workqueue = create_workqueue("xfslogd"); | 
|  | if (!xfslogd_workqueue) | 
|  | goto out; | 
|  |  | 
|  | xfsdatad_workqueue = create_workqueue("xfsdatad"); | 
|  | if (!xfsdatad_workqueue) | 
|  | goto out_destroy_xfslogd_workqueue; | 
|  |  | 
|  | error = kernel_thread(xfsbufd, NULL, CLONE_FS|CLONE_FILES); | 
|  | if (error < 0) | 
|  | goto out_destroy_xfsdatad_workqueue; | 
|  | return 0; | 
|  |  | 
|  | out_destroy_xfsdatad_workqueue: | 
|  | destroy_workqueue(xfsdatad_workqueue); | 
|  | out_destroy_xfslogd_workqueue: | 
|  | destroy_workqueue(xfslogd_workqueue); | 
|  | out: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note: do not mark as __exit, it is called from pagebuf_terminate. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_buf_daemons_stop(void) | 
|  | { | 
|  | xfsbufd_active = 0; | 
|  | barrier(); | 
|  | wait_for_completion(&xfsbufd_done); | 
|  |  | 
|  | destroy_workqueue(xfslogd_workqueue); | 
|  | destroy_workqueue(xfsdatad_workqueue); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Initialization and Termination | 
|  | */ | 
|  |  | 
|  | int __init | 
|  | pagebuf_init(void) | 
|  | { | 
|  | int		error = -ENOMEM; | 
|  |  | 
|  | pagebuf_zone = kmem_zone_init(sizeof(xfs_buf_t), "xfs_buf"); | 
|  | if (!pagebuf_zone) | 
|  | goto out; | 
|  |  | 
|  | #ifdef PAGEBUF_TRACE | 
|  | pagebuf_trace_buf = ktrace_alloc(PAGEBUF_TRACE_SIZE, KM_SLEEP); | 
|  | #endif | 
|  |  | 
|  | error = xfs_buf_daemons_start(); | 
|  | if (error) | 
|  | goto out_free_buf_zone; | 
|  |  | 
|  | pagebuf_shake = kmem_shake_register(xfsbufd_wakeup); | 
|  | if (!pagebuf_shake) { | 
|  | error = -ENOMEM; | 
|  | goto out_stop_daemons; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_stop_daemons: | 
|  | xfs_buf_daemons_stop(); | 
|  | out_free_buf_zone: | 
|  | #ifdef PAGEBUF_TRACE | 
|  | ktrace_free(pagebuf_trace_buf); | 
|  | #endif | 
|  | kmem_zone_destroy(pagebuf_zone); | 
|  | out: | 
|  | return error; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | *	pagebuf_terminate. | 
|  | * | 
|  | *	Note: do not mark as __exit, this is also called from the __init code. | 
|  | */ | 
|  | void | 
|  | pagebuf_terminate(void) | 
|  | { | 
|  | xfs_buf_daemons_stop(); | 
|  |  | 
|  | #ifdef PAGEBUF_TRACE | 
|  | ktrace_free(pagebuf_trace_buf); | 
|  | #endif | 
|  |  | 
|  | kmem_zone_destroy(pagebuf_zone); | 
|  | kmem_shake_deregister(pagebuf_shake); | 
|  | } |