| /* Software floating-point emulation. | 
 |    Definitions for IEEE Extended Precision. | 
 |    Copyright (C) 1999 Free Software Foundation, Inc. | 
 |    This file is part of the GNU C Library. | 
 |    Contributed by Jakub Jelinek (jj@ultra.linux.cz). | 
 |  | 
 |    The GNU C Library is free software; you can redistribute it and/or | 
 |    modify it under the terms of the GNU Library General Public License as | 
 |    published by the Free Software Foundation; either version 2 of the | 
 |    License, or (at your option) any later version. | 
 |  | 
 |    The GNU C Library is distributed in the hope that it will be useful, | 
 |    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |    Library General Public License for more details. | 
 |  | 
 |    You should have received a copy of the GNU Library General Public | 
 |    License along with the GNU C Library; see the file COPYING.LIB.  If | 
 |    not, write to the Free Software Foundation, Inc., | 
 |    59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */ | 
 |  | 
 |  | 
 | #ifndef    __MATH_EMU_EXTENDED_H__ | 
 | #define    __MATH_EMU_EXTENDED_H__ | 
 |  | 
 | #if _FP_W_TYPE_SIZE < 32 | 
 | #error "Here's a nickel, kid. Go buy yourself a real computer." | 
 | #endif | 
 |  | 
 | #if _FP_W_TYPE_SIZE < 64 | 
 | #define _FP_FRACTBITS_E         (4*_FP_W_TYPE_SIZE) | 
 | #else | 
 | #define _FP_FRACTBITS_E		(2*_FP_W_TYPE_SIZE) | 
 | #endif | 
 |  | 
 | #define _FP_FRACBITS_E		64 | 
 | #define _FP_FRACXBITS_E		(_FP_FRACTBITS_E - _FP_FRACBITS_E) | 
 | #define _FP_WFRACBITS_E		(_FP_WORKBITS + _FP_FRACBITS_E) | 
 | #define _FP_WFRACXBITS_E	(_FP_FRACTBITS_E - _FP_WFRACBITS_E) | 
 | #define _FP_EXPBITS_E		15 | 
 | #define _FP_EXPBIAS_E		16383 | 
 | #define _FP_EXPMAX_E		32767 | 
 |  | 
 | #define _FP_QNANBIT_E		\ | 
 | 	((_FP_W_TYPE)1 << (_FP_FRACBITS_E-2) % _FP_W_TYPE_SIZE) | 
 | #define _FP_IMPLBIT_E		\ | 
 | 	((_FP_W_TYPE)1 << (_FP_FRACBITS_E-1) % _FP_W_TYPE_SIZE) | 
 | #define _FP_OVERFLOW_E		\ | 
 | 	((_FP_W_TYPE)1 << (_FP_WFRACBITS_E % _FP_W_TYPE_SIZE)) | 
 |  | 
 | #if _FP_W_TYPE_SIZE < 64 | 
 |  | 
 | union _FP_UNION_E | 
 | { | 
 |    long double flt; | 
 |    struct  | 
 |    { | 
 | #if __BYTE_ORDER == __BIG_ENDIAN | 
 |       unsigned long pad1 : _FP_W_TYPE_SIZE; | 
 |       unsigned long pad2 : (_FP_W_TYPE_SIZE - 1 - _FP_EXPBITS_E); | 
 |       unsigned long sign : 1; | 
 |       unsigned long exp : _FP_EXPBITS_E; | 
 |       unsigned long frac1 : _FP_W_TYPE_SIZE; | 
 |       unsigned long frac0 : _FP_W_TYPE_SIZE; | 
 | #else | 
 |       unsigned long frac0 : _FP_W_TYPE_SIZE; | 
 |       unsigned long frac1 : _FP_W_TYPE_SIZE; | 
 |       unsigned exp : _FP_EXPBITS_E; | 
 |       unsigned sign : 1; | 
 | #endif /* not bigendian */ | 
 |    } bits __attribute__((packed)); | 
 | }; | 
 |  | 
 |  | 
 | #define FP_DECL_E(X)		_FP_DECL(4,X) | 
 |  | 
 | #define FP_UNPACK_RAW_E(X, val)				\ | 
 |   do {							\ | 
 |     union _FP_UNION_E _flo; _flo.flt = (val);		\ | 
 | 							\ | 
 |     X##_f[2] = 0; X##_f[3] = 0;				\ | 
 |     X##_f[0] = _flo.bits.frac0;				\ | 
 |     X##_f[1] = _flo.bits.frac1;				\ | 
 |     X##_e  = _flo.bits.exp;				\ | 
 |     X##_s  = _flo.bits.sign;				\ | 
 |     if (!X##_e && (X##_f[1] || X##_f[0])		\ | 
 |         && !(X##_f[1] & _FP_IMPLBIT_E))			\ | 
 |       {							\ | 
 |         X##_e++;					\ | 
 |         FP_SET_EXCEPTION(FP_EX_DENORM);			\ | 
 |       }							\ | 
 |   } while (0) | 
 |  | 
 | #define FP_UNPACK_RAW_EP(X, val)			\ | 
 |   do {							\ | 
 |     union _FP_UNION_E *_flo =				\ | 
 |     (union _FP_UNION_E *)(val);				\ | 
 | 							\ | 
 |     X##_f[2] = 0; X##_f[3] = 0;				\ | 
 |     X##_f[0] = _flo->bits.frac0;			\ | 
 |     X##_f[1] = _flo->bits.frac1;			\ | 
 |     X##_e  = _flo->bits.exp;				\ | 
 |     X##_s  = _flo->bits.sign;				\ | 
 |     if (!X##_e && (X##_f[1] || X##_f[0])		\ | 
 |         && !(X##_f[1] & _FP_IMPLBIT_E))			\ | 
 |       {							\ | 
 |         X##_e++;					\ | 
 |         FP_SET_EXCEPTION(FP_EX_DENORM);			\ | 
 |       }							\ | 
 |   } while (0) | 
 |  | 
 | #define FP_PACK_RAW_E(val, X)				\ | 
 |   do {							\ | 
 |     union _FP_UNION_E _flo;				\ | 
 | 							\ | 
 |     if (X##_e) X##_f[1] |= _FP_IMPLBIT_E;		\ | 
 |     else X##_f[1] &= ~(_FP_IMPLBIT_E);			\ | 
 |     _flo.bits.frac0 = X##_f[0];				\ | 
 |     _flo.bits.frac1 = X##_f[1];				\ | 
 |     _flo.bits.exp   = X##_e;				\ | 
 |     _flo.bits.sign  = X##_s;				\ | 
 | 							\ | 
 |     (val) = _flo.flt;					\ | 
 |   } while (0) | 
 |  | 
 | #define FP_PACK_RAW_EP(val, X)				\ | 
 |   do {							\ | 
 |     if (!FP_INHIBIT_RESULTS)				\ | 
 |       {							\ | 
 | 	union _FP_UNION_E *_flo =			\ | 
 | 	  (union _FP_UNION_E *)(val);			\ | 
 | 							\ | 
 | 	if (X##_e) X##_f[1] |= _FP_IMPLBIT_E;		\ | 
 | 	else X##_f[1] &= ~(_FP_IMPLBIT_E);		\ | 
 | 	_flo->bits.frac0 = X##_f[0];			\ | 
 | 	_flo->bits.frac1 = X##_f[1];			\ | 
 | 	_flo->bits.exp   = X##_e;			\ | 
 | 	_flo->bits.sign  = X##_s;			\ | 
 |       }							\ | 
 |   } while (0) | 
 |  | 
 | #define FP_UNPACK_E(X,val)		\ | 
 |   do {					\ | 
 |     FP_UNPACK_RAW_E(X,val);		\ | 
 |     _FP_UNPACK_CANONICAL(E,4,X);	\ | 
 |   } while (0) | 
 |  | 
 | #define FP_UNPACK_EP(X,val)		\ | 
 |   do {					\ | 
 |     FP_UNPACK_RAW_2_P(X,val);		\ | 
 |     _FP_UNPACK_CANONICAL(E,4,X);	\ | 
 |   } while (0) | 
 |  | 
 | #define FP_PACK_E(val,X)		\ | 
 |   do {					\ | 
 |     _FP_PACK_CANONICAL(E,4,X);		\ | 
 |     FP_PACK_RAW_E(val,X);		\ | 
 |   } while (0) | 
 |  | 
 | #define FP_PACK_EP(val,X)		\ | 
 |   do {					\ | 
 |     _FP_PACK_CANONICAL(E,4,X);		\ | 
 |     FP_PACK_RAW_EP(val,X);		\ | 
 |   } while (0) | 
 |  | 
 | #define FP_ISSIGNAN_E(X)	_FP_ISSIGNAN(E,4,X) | 
 | #define FP_NEG_E(R,X)		_FP_NEG(E,4,R,X) | 
 | #define FP_ADD_E(R,X,Y)		_FP_ADD(E,4,R,X,Y) | 
 | #define FP_SUB_E(R,X,Y)		_FP_SUB(E,4,R,X,Y) | 
 | #define FP_MUL_E(R,X,Y)		_FP_MUL(E,4,R,X,Y) | 
 | #define FP_DIV_E(R,X,Y)		_FP_DIV(E,4,R,X,Y) | 
 | #define FP_SQRT_E(R,X)		_FP_SQRT(E,4,R,X) | 
 |  | 
 | /* | 
 |  * Square root algorithms: | 
 |  * We have just one right now, maybe Newton approximation | 
 |  * should be added for those machines where division is fast. | 
 |  * This has special _E version because standard _4 square | 
 |  * root would not work (it has to start normally with the | 
 |  * second word and not the first), but as we have to do it | 
 |  * anyway, we optimize it by doing most of the calculations | 
 |  * in two UWtype registers instead of four. | 
 |  */ | 
 |   | 
 | #define _FP_SQRT_MEAT_E(R, S, T, X, q)			\ | 
 |   do {							\ | 
 |     q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1);		\ | 
 |     _FP_FRAC_SRL_4(X, (_FP_WORKBITS));			\ | 
 |     while (q)						\ | 
 |       {							\ | 
 | 	T##_f[1] = S##_f[1] + q;			\ | 
 | 	if (T##_f[1] <= X##_f[1])			\ | 
 | 	  {						\ | 
 | 	    S##_f[1] = T##_f[1] + q;			\ | 
 | 	    X##_f[1] -= T##_f[1];			\ | 
 | 	    R##_f[1] += q;				\ | 
 | 	  }						\ | 
 | 	_FP_FRAC_SLL_2(X, 1);				\ | 
 | 	q >>= 1;					\ | 
 |       }							\ | 
 |     q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1);		\ | 
 |     while (q)						\ | 
 |       {							\ | 
 | 	T##_f[0] = S##_f[0] + q;			\ | 
 | 	T##_f[1] = S##_f[1];				\ | 
 | 	if (T##_f[1] < X##_f[1] || 			\ | 
 | 	    (T##_f[1] == X##_f[1] &&			\ | 
 | 	     T##_f[0] <= X##_f[0]))			\ | 
 | 	  {						\ | 
 | 	    S##_f[0] = T##_f[0] + q;			\ | 
 | 	    S##_f[1] += (T##_f[0] > S##_f[0]);		\ | 
 | 	    _FP_FRAC_DEC_2(X, T);			\ | 
 | 	    R##_f[0] += q;				\ | 
 | 	  }						\ | 
 | 	_FP_FRAC_SLL_2(X, 1);				\ | 
 | 	q >>= 1;					\ | 
 |       }							\ | 
 |     _FP_FRAC_SLL_4(R, (_FP_WORKBITS));			\ | 
 |     if (X##_f[0] | X##_f[1])				\ | 
 |       {							\ | 
 | 	if (S##_f[1] < X##_f[1] || 			\ | 
 | 	    (S##_f[1] == X##_f[1] &&			\ | 
 | 	     S##_f[0] < X##_f[0]))			\ | 
 | 	  R##_f[0] |= _FP_WORK_ROUND;			\ | 
 | 	R##_f[0] |= _FP_WORK_STICKY;			\ | 
 |       }							\ | 
 |   } while (0) | 
 |  | 
 | #define FP_CMP_E(r,X,Y,un)	_FP_CMP(E,4,r,X,Y,un) | 
 | #define FP_CMP_EQ_E(r,X,Y)	_FP_CMP_EQ(E,4,r,X,Y) | 
 |  | 
 | #define FP_TO_INT_E(r,X,rsz,rsg)	_FP_TO_INT(E,4,r,X,rsz,rsg) | 
 | #define FP_TO_INT_ROUND_E(r,X,rsz,rsg)	_FP_TO_INT_ROUND(E,4,r,X,rsz,rsg) | 
 | #define FP_FROM_INT_E(X,r,rs,rt)	_FP_FROM_INT(E,4,X,r,rs,rt) | 
 |  | 
 | #define _FP_FRAC_HIGH_E(X)	(X##_f[2]) | 
 | #define _FP_FRAC_HIGH_RAW_E(X)	(X##_f[1]) | 
 |  | 
 | #else   /* not _FP_W_TYPE_SIZE < 64 */ | 
 | union _FP_UNION_E | 
 | { | 
 |   long double flt /* __attribute__((mode(TF))) */ ; | 
 |   struct { | 
 | #if __BYTE_ORDER == __BIG_ENDIAN | 
 |     unsigned long pad : (_FP_W_TYPE_SIZE - 1 - _FP_EXPBITS_E); | 
 |     unsigned sign  : 1; | 
 |     unsigned exp   : _FP_EXPBITS_E; | 
 |     unsigned long frac : _FP_W_TYPE_SIZE; | 
 | #else | 
 |     unsigned long frac : _FP_W_TYPE_SIZE; | 
 |     unsigned exp   : _FP_EXPBITS_E; | 
 |     unsigned sign  : 1; | 
 | #endif | 
 |   } bits; | 
 | }; | 
 |  | 
 | #define FP_DECL_E(X)		_FP_DECL(2,X) | 
 |  | 
 | #define FP_UNPACK_RAW_E(X, val)					\ | 
 |   do {								\ | 
 |     union _FP_UNION_E _flo; _flo.flt = (val);			\ | 
 | 								\ | 
 |     X##_f0 = _flo.bits.frac;					\ | 
 |     X##_f1 = 0;							\ | 
 |     X##_e = _flo.bits.exp;					\ | 
 |     X##_s = _flo.bits.sign;					\ | 
 |     if (!X##_e && X##_f0 && !(X##_f0 & _FP_IMPLBIT_E))		\ | 
 |       {								\ | 
 |         X##_e++;						\ | 
 |         FP_SET_EXCEPTION(FP_EX_DENORM);				\ | 
 |       }								\ | 
 |   } while (0) | 
 |  | 
 | #define FP_UNPACK_RAW_EP(X, val)				\ | 
 |   do {								\ | 
 |     union _FP_UNION_E *_flo =					\ | 
 |       (union _FP_UNION_E *)(val);				\ | 
 | 								\ | 
 |     X##_f0 = _flo->bits.frac;					\ | 
 |     X##_f1 = 0;							\ | 
 |     X##_e = _flo->bits.exp;					\ | 
 |     X##_s = _flo->bits.sign;					\ | 
 |     if (!X##_e && X##_f0 && !(X##_f0 & _FP_IMPLBIT_E))		\ | 
 |       {								\ | 
 |         X##_e++;						\ | 
 |         FP_SET_EXCEPTION(FP_EX_DENORM);				\ | 
 |       }								\ | 
 |   } while (0) | 
 |  | 
 | #define FP_PACK_RAW_E(val, X)					\ | 
 |   do {								\ | 
 |     union _FP_UNION_E _flo;					\ | 
 | 								\ | 
 |     if (X##_e) X##_f0 |= _FP_IMPLBIT_E;				\ | 
 |     else X##_f0 &= ~(_FP_IMPLBIT_E);				\ | 
 |     _flo.bits.frac = X##_f0;					\ | 
 |     _flo.bits.exp  = X##_e;					\ | 
 |     _flo.bits.sign = X##_s;					\ | 
 | 								\ | 
 |     (val) = _flo.flt;						\ | 
 |   } while (0) | 
 |  | 
 | #define FP_PACK_RAW_EP(fs, val, X)				\ | 
 |   do {								\ | 
 |     if (!FP_INHIBIT_RESULTS)					\ | 
 |       {								\ | 
 | 	union _FP_UNION_E *_flo =				\ | 
 | 	  (union _FP_UNION_E *)(val);				\ | 
 | 								\ | 
 | 	if (X##_e) X##_f0 |= _FP_IMPLBIT_E;			\ | 
 | 	else X##_f0 &= ~(_FP_IMPLBIT_E);			\ | 
 | 	_flo->bits.frac = X##_f0;				\ | 
 | 	_flo->bits.exp  = X##_e;				\ | 
 | 	_flo->bits.sign = X##_s;				\ | 
 |       }								\ | 
 |   } while (0) | 
 |  | 
 |  | 
 | #define FP_UNPACK_E(X,val)		\ | 
 |   do {					\ | 
 |     FP_UNPACK_RAW_E(X,val);		\ | 
 |     _FP_UNPACK_CANONICAL(E,2,X);	\ | 
 |   } while (0) | 
 |  | 
 | #define FP_UNPACK_EP(X,val)		\ | 
 |   do {					\ | 
 |     FP_UNPACK_RAW_EP(X,val);		\ | 
 |     _FP_UNPACK_CANONICAL(E,2,X);	\ | 
 |   } while (0) | 
 |  | 
 | #define FP_PACK_E(val,X)		\ | 
 |   do {					\ | 
 |     _FP_PACK_CANONICAL(E,2,X);		\ | 
 |     FP_PACK_RAW_E(val,X);		\ | 
 |   } while (0) | 
 |  | 
 | #define FP_PACK_EP(val,X)		\ | 
 |   do {					\ | 
 |     _FP_PACK_CANONICAL(E,2,X);		\ | 
 |     FP_PACK_RAW_EP(val,X);		\ | 
 |   } while (0) | 
 |  | 
 | #define FP_ISSIGNAN_E(X)	_FP_ISSIGNAN(E,2,X) | 
 | #define FP_NEG_E(R,X)		_FP_NEG(E,2,R,X) | 
 | #define FP_ADD_E(R,X,Y)		_FP_ADD(E,2,R,X,Y) | 
 | #define FP_SUB_E(R,X,Y)		_FP_SUB(E,2,R,X,Y) | 
 | #define FP_MUL_E(R,X,Y)		_FP_MUL(E,2,R,X,Y) | 
 | #define FP_DIV_E(R,X,Y)		_FP_DIV(E,2,R,X,Y) | 
 | #define FP_SQRT_E(R,X)		_FP_SQRT(E,2,R,X) | 
 |  | 
 | /* | 
 |  * Square root algorithms: | 
 |  * We have just one right now, maybe Newton approximation | 
 |  * should be added for those machines where division is fast. | 
 |  * We optimize it by doing most of the calculations | 
 |  * in one UWtype registers instead of two, although we don't | 
 |  * have to. | 
 |  */ | 
 | #define _FP_SQRT_MEAT_E(R, S, T, X, q)			\ | 
 |   do {							\ | 
 |     q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1);		\ | 
 |     _FP_FRAC_SRL_2(X, (_FP_WORKBITS));			\ | 
 |     while (q)						\ | 
 |       {							\ | 
 |         T##_f0 = S##_f0 + q;				\ | 
 |         if (T##_f0 <= X##_f0)				\ | 
 |           {						\ | 
 |             S##_f0 = T##_f0 + q;			\ | 
 |             X##_f0 -= T##_f0;				\ | 
 |             R##_f0 += q;				\ | 
 |           }						\ | 
 |         _FP_FRAC_SLL_1(X, 1);				\ | 
 |         q >>= 1;					\ | 
 |       }							\ | 
 |     _FP_FRAC_SLL_2(R, (_FP_WORKBITS));			\ | 
 |     if (X##_f0)						\ | 
 |       {							\ | 
 | 	if (S##_f0 < X##_f0)				\ | 
 | 	  R##_f0 |= _FP_WORK_ROUND;			\ | 
 | 	R##_f0 |= _FP_WORK_STICKY;			\ | 
 |       }							\ | 
 |   } while (0) | 
 |   | 
 | #define FP_CMP_E(r,X,Y,un)	_FP_CMP(E,2,r,X,Y,un) | 
 | #define FP_CMP_EQ_E(r,X,Y)	_FP_CMP_EQ(E,2,r,X,Y) | 
 |  | 
 | #define FP_TO_INT_E(r,X,rsz,rsg)	_FP_TO_INT(E,2,r,X,rsz,rsg) | 
 | #define FP_TO_INT_ROUND_E(r,X,rsz,rsg)	_FP_TO_INT_ROUND(E,2,r,X,rsz,rsg) | 
 | #define FP_FROM_INT_E(X,r,rs,rt)	_FP_FROM_INT(E,2,X,r,rs,rt) | 
 |  | 
 | #define _FP_FRAC_HIGH_E(X)	(X##_f1) | 
 | #define _FP_FRAC_HIGH_RAW_E(X)	(X##_f0) | 
 |  | 
 | #endif /* not _FP_W_TYPE_SIZE < 64 */ | 
 |  | 
 | #endif /* __MATH_EMU_EXTENDED_H__ */ |