|  | /* | 
|  | * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. | 
|  | * All Rights Reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it would be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write the Free Software Foundation, | 
|  | * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
|  | */ | 
|  | #include "xfs.h" | 
|  | #include "xfs_fs.h" | 
|  | #include "xfs_types.h" | 
|  | #include "xfs_bit.h" | 
|  | #include "xfs_log.h" | 
|  | #include "xfs_inum.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_sb.h" | 
|  | #include "xfs_ag.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_bmap_btree.h" | 
|  | #include "xfs_alloc_btree.h" | 
|  | #include "xfs_ialloc_btree.h" | 
|  | #include "xfs_dinode.h" | 
|  | #include "xfs_inode.h" | 
|  | #include "xfs_btree.h" | 
|  | #include "xfs_alloc.h" | 
|  | #include "xfs_error.h" | 
|  | #include "xfs_trace.h" | 
|  |  | 
|  |  | 
|  | #define XFS_ABSDIFF(a,b)	(((a) <= (b)) ? ((b) - (a)) : ((a) - (b))) | 
|  |  | 
|  | #define	XFSA_FIXUP_BNO_OK	1 | 
|  | #define	XFSA_FIXUP_CNT_OK	2 | 
|  |  | 
|  | static int | 
|  | xfs_alloc_busy_search(struct xfs_mount *mp, xfs_agnumber_t agno, | 
|  | xfs_agblock_t bno, xfs_extlen_t len); | 
|  |  | 
|  | /* | 
|  | * Prototypes for per-ag allocation routines | 
|  | */ | 
|  |  | 
|  | STATIC int xfs_alloc_ag_vextent_exact(xfs_alloc_arg_t *); | 
|  | STATIC int xfs_alloc_ag_vextent_near(xfs_alloc_arg_t *); | 
|  | STATIC int xfs_alloc_ag_vextent_size(xfs_alloc_arg_t *); | 
|  | STATIC int xfs_alloc_ag_vextent_small(xfs_alloc_arg_t *, | 
|  | xfs_btree_cur_t *, xfs_agblock_t *, xfs_extlen_t *, int *); | 
|  |  | 
|  | /* | 
|  | * Internal functions. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Lookup the record equal to [bno, len] in the btree given by cur. | 
|  | */ | 
|  | STATIC int				/* error */ | 
|  | xfs_alloc_lookup_eq( | 
|  | struct xfs_btree_cur	*cur,	/* btree cursor */ | 
|  | xfs_agblock_t		bno,	/* starting block of extent */ | 
|  | xfs_extlen_t		len,	/* length of extent */ | 
|  | int			*stat)	/* success/failure */ | 
|  | { | 
|  | cur->bc_rec.a.ar_startblock = bno; | 
|  | cur->bc_rec.a.ar_blockcount = len; | 
|  | return xfs_btree_lookup(cur, XFS_LOOKUP_EQ, stat); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lookup the first record greater than or equal to [bno, len] | 
|  | * in the btree given by cur. | 
|  | */ | 
|  | STATIC int				/* error */ | 
|  | xfs_alloc_lookup_ge( | 
|  | struct xfs_btree_cur	*cur,	/* btree cursor */ | 
|  | xfs_agblock_t		bno,	/* starting block of extent */ | 
|  | xfs_extlen_t		len,	/* length of extent */ | 
|  | int			*stat)	/* success/failure */ | 
|  | { | 
|  | cur->bc_rec.a.ar_startblock = bno; | 
|  | cur->bc_rec.a.ar_blockcount = len; | 
|  | return xfs_btree_lookup(cur, XFS_LOOKUP_GE, stat); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lookup the first record less than or equal to [bno, len] | 
|  | * in the btree given by cur. | 
|  | */ | 
|  | STATIC int				/* error */ | 
|  | xfs_alloc_lookup_le( | 
|  | struct xfs_btree_cur	*cur,	/* btree cursor */ | 
|  | xfs_agblock_t		bno,	/* starting block of extent */ | 
|  | xfs_extlen_t		len,	/* length of extent */ | 
|  | int			*stat)	/* success/failure */ | 
|  | { | 
|  | cur->bc_rec.a.ar_startblock = bno; | 
|  | cur->bc_rec.a.ar_blockcount = len; | 
|  | return xfs_btree_lookup(cur, XFS_LOOKUP_LE, stat); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the record referred to by cur to the value given | 
|  | * by [bno, len]. | 
|  | * This either works (return 0) or gets an EFSCORRUPTED error. | 
|  | */ | 
|  | STATIC int				/* error */ | 
|  | xfs_alloc_update( | 
|  | struct xfs_btree_cur	*cur,	/* btree cursor */ | 
|  | xfs_agblock_t		bno,	/* starting block of extent */ | 
|  | xfs_extlen_t		len)	/* length of extent */ | 
|  | { | 
|  | union xfs_btree_rec	rec; | 
|  |  | 
|  | rec.alloc.ar_startblock = cpu_to_be32(bno); | 
|  | rec.alloc.ar_blockcount = cpu_to_be32(len); | 
|  | return xfs_btree_update(cur, &rec); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the data from the pointed-to record. | 
|  | */ | 
|  | STATIC int				/* error */ | 
|  | xfs_alloc_get_rec( | 
|  | struct xfs_btree_cur	*cur,	/* btree cursor */ | 
|  | xfs_agblock_t		*bno,	/* output: starting block of extent */ | 
|  | xfs_extlen_t		*len,	/* output: length of extent */ | 
|  | int			*stat)	/* output: success/failure */ | 
|  | { | 
|  | union xfs_btree_rec	*rec; | 
|  | int			error; | 
|  |  | 
|  | error = xfs_btree_get_rec(cur, &rec, stat); | 
|  | if (!error && *stat == 1) { | 
|  | *bno = be32_to_cpu(rec->alloc.ar_startblock); | 
|  | *len = be32_to_cpu(rec->alloc.ar_blockcount); | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute aligned version of the found extent. | 
|  | * Takes alignment and min length into account. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_alloc_compute_aligned( | 
|  | xfs_agblock_t	foundbno,	/* starting block in found extent */ | 
|  | xfs_extlen_t	foundlen,	/* length in found extent */ | 
|  | xfs_extlen_t	alignment,	/* alignment for allocation */ | 
|  | xfs_extlen_t	minlen,		/* minimum length for allocation */ | 
|  | xfs_agblock_t	*resbno,	/* result block number */ | 
|  | xfs_extlen_t	*reslen)	/* result length */ | 
|  | { | 
|  | xfs_agblock_t	bno; | 
|  | xfs_extlen_t	diff; | 
|  | xfs_extlen_t	len; | 
|  |  | 
|  | if (alignment > 1 && foundlen >= minlen) { | 
|  | bno = roundup(foundbno, alignment); | 
|  | diff = bno - foundbno; | 
|  | len = diff >= foundlen ? 0 : foundlen - diff; | 
|  | } else { | 
|  | bno = foundbno; | 
|  | len = foundlen; | 
|  | } | 
|  | *resbno = bno; | 
|  | *reslen = len; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute best start block and diff for "near" allocations. | 
|  | * freelen >= wantlen already checked by caller. | 
|  | */ | 
|  | STATIC xfs_extlen_t			/* difference value (absolute) */ | 
|  | xfs_alloc_compute_diff( | 
|  | xfs_agblock_t	wantbno,	/* target starting block */ | 
|  | xfs_extlen_t	wantlen,	/* target length */ | 
|  | xfs_extlen_t	alignment,	/* target alignment */ | 
|  | xfs_agblock_t	freebno,	/* freespace's starting block */ | 
|  | xfs_extlen_t	freelen,	/* freespace's length */ | 
|  | xfs_agblock_t	*newbnop)	/* result: best start block from free */ | 
|  | { | 
|  | xfs_agblock_t	freeend;	/* end of freespace extent */ | 
|  | xfs_agblock_t	newbno1;	/* return block number */ | 
|  | xfs_agblock_t	newbno2;	/* other new block number */ | 
|  | xfs_extlen_t	newlen1=0;	/* length with newbno1 */ | 
|  | xfs_extlen_t	newlen2=0;	/* length with newbno2 */ | 
|  | xfs_agblock_t	wantend;	/* end of target extent */ | 
|  |  | 
|  | ASSERT(freelen >= wantlen); | 
|  | freeend = freebno + freelen; | 
|  | wantend = wantbno + wantlen; | 
|  | if (freebno >= wantbno) { | 
|  | if ((newbno1 = roundup(freebno, alignment)) >= freeend) | 
|  | newbno1 = NULLAGBLOCK; | 
|  | } else if (freeend >= wantend && alignment > 1) { | 
|  | newbno1 = roundup(wantbno, alignment); | 
|  | newbno2 = newbno1 - alignment; | 
|  | if (newbno1 >= freeend) | 
|  | newbno1 = NULLAGBLOCK; | 
|  | else | 
|  | newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1); | 
|  | if (newbno2 < freebno) | 
|  | newbno2 = NULLAGBLOCK; | 
|  | else | 
|  | newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2); | 
|  | if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) { | 
|  | if (newlen1 < newlen2 || | 
|  | (newlen1 == newlen2 && | 
|  | XFS_ABSDIFF(newbno1, wantbno) > | 
|  | XFS_ABSDIFF(newbno2, wantbno))) | 
|  | newbno1 = newbno2; | 
|  | } else if (newbno2 != NULLAGBLOCK) | 
|  | newbno1 = newbno2; | 
|  | } else if (freeend >= wantend) { | 
|  | newbno1 = wantbno; | 
|  | } else if (alignment > 1) { | 
|  | newbno1 = roundup(freeend - wantlen, alignment); | 
|  | if (newbno1 > freeend - wantlen && | 
|  | newbno1 - alignment >= freebno) | 
|  | newbno1 -= alignment; | 
|  | else if (newbno1 >= freeend) | 
|  | newbno1 = NULLAGBLOCK; | 
|  | } else | 
|  | newbno1 = freeend - wantlen; | 
|  | *newbnop = newbno1; | 
|  | return newbno1 == NULLAGBLOCK ? 0 : XFS_ABSDIFF(newbno1, wantbno); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fix up the length, based on mod and prod. | 
|  | * len should be k * prod + mod for some k. | 
|  | * If len is too small it is returned unchanged. | 
|  | * If len hits maxlen it is left alone. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_alloc_fix_len( | 
|  | xfs_alloc_arg_t	*args)		/* allocation argument structure */ | 
|  | { | 
|  | xfs_extlen_t	k; | 
|  | xfs_extlen_t	rlen; | 
|  |  | 
|  | ASSERT(args->mod < args->prod); | 
|  | rlen = args->len; | 
|  | ASSERT(rlen >= args->minlen); | 
|  | ASSERT(rlen <= args->maxlen); | 
|  | if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen || | 
|  | (args->mod == 0 && rlen < args->prod)) | 
|  | return; | 
|  | k = rlen % args->prod; | 
|  | if (k == args->mod) | 
|  | return; | 
|  | if (k > args->mod) { | 
|  | if ((int)(rlen = rlen - k - args->mod) < (int)args->minlen) | 
|  | return; | 
|  | } else { | 
|  | if ((int)(rlen = rlen - args->prod - (args->mod - k)) < | 
|  | (int)args->minlen) | 
|  | return; | 
|  | } | 
|  | ASSERT(rlen >= args->minlen); | 
|  | ASSERT(rlen <= args->maxlen); | 
|  | args->len = rlen; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fix up length if there is too little space left in the a.g. | 
|  | * Return 1 if ok, 0 if too little, should give up. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_alloc_fix_minleft( | 
|  | xfs_alloc_arg_t	*args)		/* allocation argument structure */ | 
|  | { | 
|  | xfs_agf_t	*agf;		/* a.g. freelist header */ | 
|  | int		diff;		/* free space difference */ | 
|  |  | 
|  | if (args->minleft == 0) | 
|  | return 1; | 
|  | agf = XFS_BUF_TO_AGF(args->agbp); | 
|  | diff = be32_to_cpu(agf->agf_freeblks) | 
|  | + be32_to_cpu(agf->agf_flcount) | 
|  | - args->len - args->minleft; | 
|  | if (diff >= 0) | 
|  | return 1; | 
|  | args->len += diff;		/* shrink the allocated space */ | 
|  | if (args->len >= args->minlen) | 
|  | return 1; | 
|  | args->agbno = NULLAGBLOCK; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the two btrees, logically removing from freespace the extent | 
|  | * starting at rbno, rlen blocks.  The extent is contained within the | 
|  | * actual (current) free extent fbno for flen blocks. | 
|  | * Flags are passed in indicating whether the cursors are set to the | 
|  | * relevant records. | 
|  | */ | 
|  | STATIC int				/* error code */ | 
|  | xfs_alloc_fixup_trees( | 
|  | xfs_btree_cur_t	*cnt_cur,	/* cursor for by-size btree */ | 
|  | xfs_btree_cur_t	*bno_cur,	/* cursor for by-block btree */ | 
|  | xfs_agblock_t	fbno,		/* starting block of free extent */ | 
|  | xfs_extlen_t	flen,		/* length of free extent */ | 
|  | xfs_agblock_t	rbno,		/* starting block of returned extent */ | 
|  | xfs_extlen_t	rlen,		/* length of returned extent */ | 
|  | int		flags)		/* flags, XFSA_FIXUP_... */ | 
|  | { | 
|  | int		error;		/* error code */ | 
|  | int		i;		/* operation results */ | 
|  | xfs_agblock_t	nfbno1;		/* first new free startblock */ | 
|  | xfs_agblock_t	nfbno2;		/* second new free startblock */ | 
|  | xfs_extlen_t	nflen1=0;	/* first new free length */ | 
|  | xfs_extlen_t	nflen2=0;	/* second new free length */ | 
|  |  | 
|  | /* | 
|  | * Look up the record in the by-size tree if necessary. | 
|  | */ | 
|  | if (flags & XFSA_FIXUP_CNT_OK) { | 
|  | #ifdef DEBUG | 
|  | if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i))) | 
|  | return error; | 
|  | XFS_WANT_CORRUPTED_RETURN( | 
|  | i == 1 && nfbno1 == fbno && nflen1 == flen); | 
|  | #endif | 
|  | } else { | 
|  | if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i))) | 
|  | return error; | 
|  | XFS_WANT_CORRUPTED_RETURN(i == 1); | 
|  | } | 
|  | /* | 
|  | * Look up the record in the by-block tree if necessary. | 
|  | */ | 
|  | if (flags & XFSA_FIXUP_BNO_OK) { | 
|  | #ifdef DEBUG | 
|  | if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i))) | 
|  | return error; | 
|  | XFS_WANT_CORRUPTED_RETURN( | 
|  | i == 1 && nfbno1 == fbno && nflen1 == flen); | 
|  | #endif | 
|  | } else { | 
|  | if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i))) | 
|  | return error; | 
|  | XFS_WANT_CORRUPTED_RETURN(i == 1); | 
|  | } | 
|  |  | 
|  | #ifdef DEBUG | 
|  | if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) { | 
|  | struct xfs_btree_block	*bnoblock; | 
|  | struct xfs_btree_block	*cntblock; | 
|  |  | 
|  | bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_bufs[0]); | 
|  | cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_bufs[0]); | 
|  |  | 
|  | XFS_WANT_CORRUPTED_RETURN( | 
|  | bnoblock->bb_numrecs == cntblock->bb_numrecs); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Deal with all four cases: the allocated record is contained | 
|  | * within the freespace record, so we can have new freespace | 
|  | * at either (or both) end, or no freespace remaining. | 
|  | */ | 
|  | if (rbno == fbno && rlen == flen) | 
|  | nfbno1 = nfbno2 = NULLAGBLOCK; | 
|  | else if (rbno == fbno) { | 
|  | nfbno1 = rbno + rlen; | 
|  | nflen1 = flen - rlen; | 
|  | nfbno2 = NULLAGBLOCK; | 
|  | } else if (rbno + rlen == fbno + flen) { | 
|  | nfbno1 = fbno; | 
|  | nflen1 = flen - rlen; | 
|  | nfbno2 = NULLAGBLOCK; | 
|  | } else { | 
|  | nfbno1 = fbno; | 
|  | nflen1 = rbno - fbno; | 
|  | nfbno2 = rbno + rlen; | 
|  | nflen2 = (fbno + flen) - nfbno2; | 
|  | } | 
|  | /* | 
|  | * Delete the entry from the by-size btree. | 
|  | */ | 
|  | if ((error = xfs_btree_delete(cnt_cur, &i))) | 
|  | return error; | 
|  | XFS_WANT_CORRUPTED_RETURN(i == 1); | 
|  | /* | 
|  | * Add new by-size btree entry(s). | 
|  | */ | 
|  | if (nfbno1 != NULLAGBLOCK) { | 
|  | if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i))) | 
|  | return error; | 
|  | XFS_WANT_CORRUPTED_RETURN(i == 0); | 
|  | if ((error = xfs_btree_insert(cnt_cur, &i))) | 
|  | return error; | 
|  | XFS_WANT_CORRUPTED_RETURN(i == 1); | 
|  | } | 
|  | if (nfbno2 != NULLAGBLOCK) { | 
|  | if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i))) | 
|  | return error; | 
|  | XFS_WANT_CORRUPTED_RETURN(i == 0); | 
|  | if ((error = xfs_btree_insert(cnt_cur, &i))) | 
|  | return error; | 
|  | XFS_WANT_CORRUPTED_RETURN(i == 1); | 
|  | } | 
|  | /* | 
|  | * Fix up the by-block btree entry(s). | 
|  | */ | 
|  | if (nfbno1 == NULLAGBLOCK) { | 
|  | /* | 
|  | * No remaining freespace, just delete the by-block tree entry. | 
|  | */ | 
|  | if ((error = xfs_btree_delete(bno_cur, &i))) | 
|  | return error; | 
|  | XFS_WANT_CORRUPTED_RETURN(i == 1); | 
|  | } else { | 
|  | /* | 
|  | * Update the by-block entry to start later|be shorter. | 
|  | */ | 
|  | if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1))) | 
|  | return error; | 
|  | } | 
|  | if (nfbno2 != NULLAGBLOCK) { | 
|  | /* | 
|  | * 2 resulting free entries, need to add one. | 
|  | */ | 
|  | if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i))) | 
|  | return error; | 
|  | XFS_WANT_CORRUPTED_RETURN(i == 0); | 
|  | if ((error = xfs_btree_insert(bno_cur, &i))) | 
|  | return error; | 
|  | XFS_WANT_CORRUPTED_RETURN(i == 1); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read in the allocation group free block array. | 
|  | */ | 
|  | STATIC int				/* error */ | 
|  | xfs_alloc_read_agfl( | 
|  | xfs_mount_t	*mp,		/* mount point structure */ | 
|  | xfs_trans_t	*tp,		/* transaction pointer */ | 
|  | xfs_agnumber_t	agno,		/* allocation group number */ | 
|  | xfs_buf_t	**bpp)		/* buffer for the ag free block array */ | 
|  | { | 
|  | xfs_buf_t	*bp;		/* return value */ | 
|  | int		error; | 
|  |  | 
|  | ASSERT(agno != NULLAGNUMBER); | 
|  | error = xfs_trans_read_buf( | 
|  | mp, tp, mp->m_ddev_targp, | 
|  | XFS_AG_DADDR(mp, agno, XFS_AGFL_DADDR(mp)), | 
|  | XFS_FSS_TO_BB(mp, 1), 0, &bp); | 
|  | if (error) | 
|  | return error; | 
|  | ASSERT(bp); | 
|  | ASSERT(!XFS_BUF_GETERROR(bp)); | 
|  | XFS_BUF_SET_VTYPE_REF(bp, B_FS_AGFL, XFS_AGFL_REF); | 
|  | *bpp = bp; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocation group level functions. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Allocate a variable extent in the allocation group agno. | 
|  | * Type and bno are used to determine where in the allocation group the | 
|  | * extent will start. | 
|  | * Extent's length (returned in *len) will be between minlen and maxlen, | 
|  | * and of the form k * prod + mod unless there's nothing that large. | 
|  | * Return the starting a.g. block, or NULLAGBLOCK if we can't do it. | 
|  | */ | 
|  | STATIC int			/* error */ | 
|  | xfs_alloc_ag_vextent( | 
|  | xfs_alloc_arg_t	*args)	/* argument structure for allocation */ | 
|  | { | 
|  | int		error=0; | 
|  |  | 
|  | ASSERT(args->minlen > 0); | 
|  | ASSERT(args->maxlen > 0); | 
|  | ASSERT(args->minlen <= args->maxlen); | 
|  | ASSERT(args->mod < args->prod); | 
|  | ASSERT(args->alignment > 0); | 
|  | /* | 
|  | * Branch to correct routine based on the type. | 
|  | */ | 
|  | args->wasfromfl = 0; | 
|  | switch (args->type) { | 
|  | case XFS_ALLOCTYPE_THIS_AG: | 
|  | error = xfs_alloc_ag_vextent_size(args); | 
|  | break; | 
|  | case XFS_ALLOCTYPE_NEAR_BNO: | 
|  | error = xfs_alloc_ag_vextent_near(args); | 
|  | break; | 
|  | case XFS_ALLOCTYPE_THIS_BNO: | 
|  | error = xfs_alloc_ag_vextent_exact(args); | 
|  | break; | 
|  | default: | 
|  | ASSERT(0); | 
|  | /* NOTREACHED */ | 
|  | } | 
|  | if (error) | 
|  | return error; | 
|  | /* | 
|  | * If the allocation worked, need to change the agf structure | 
|  | * (and log it), and the superblock. | 
|  | */ | 
|  | if (args->agbno != NULLAGBLOCK) { | 
|  | xfs_agf_t	*agf;	/* allocation group freelist header */ | 
|  | long		slen = (long)args->len; | 
|  |  | 
|  | ASSERT(args->len >= args->minlen && args->len <= args->maxlen); | 
|  | ASSERT(!(args->wasfromfl) || !args->isfl); | 
|  | ASSERT(args->agbno % args->alignment == 0); | 
|  | if (!(args->wasfromfl)) { | 
|  |  | 
|  | agf = XFS_BUF_TO_AGF(args->agbp); | 
|  | be32_add_cpu(&agf->agf_freeblks, -(args->len)); | 
|  | xfs_trans_agblocks_delta(args->tp, | 
|  | -((long)(args->len))); | 
|  | args->pag->pagf_freeblks -= args->len; | 
|  | ASSERT(be32_to_cpu(agf->agf_freeblks) <= | 
|  | be32_to_cpu(agf->agf_length)); | 
|  | xfs_alloc_log_agf(args->tp, args->agbp, | 
|  | XFS_AGF_FREEBLKS); | 
|  | /* | 
|  | * Search the busylist for these blocks and mark the | 
|  | * transaction as synchronous if blocks are found. This | 
|  | * avoids the need to block due to a synchronous log | 
|  | * force to ensure correct ordering as the synchronous | 
|  | * transaction will guarantee that for us. | 
|  | */ | 
|  | if (xfs_alloc_busy_search(args->mp, args->agno, | 
|  | args->agbno, args->len)) | 
|  | xfs_trans_set_sync(args->tp); | 
|  | } | 
|  | if (!args->isfl) | 
|  | xfs_trans_mod_sb(args->tp, | 
|  | args->wasdel ? XFS_TRANS_SB_RES_FDBLOCKS : | 
|  | XFS_TRANS_SB_FDBLOCKS, -slen); | 
|  | XFS_STATS_INC(xs_allocx); | 
|  | XFS_STATS_ADD(xs_allocb, args->len); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a variable extent at exactly agno/bno. | 
|  | * Extent's length (returned in *len) will be between minlen and maxlen, | 
|  | * and of the form k * prod + mod unless there's nothing that large. | 
|  | * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it. | 
|  | */ | 
|  | STATIC int			/* error */ | 
|  | xfs_alloc_ag_vextent_exact( | 
|  | xfs_alloc_arg_t	*args)	/* allocation argument structure */ | 
|  | { | 
|  | xfs_btree_cur_t	*bno_cur;/* by block-number btree cursor */ | 
|  | xfs_btree_cur_t	*cnt_cur;/* by count btree cursor */ | 
|  | xfs_agblock_t	end;	/* end of allocated extent */ | 
|  | int		error; | 
|  | xfs_agblock_t	fbno;	/* start block of found extent */ | 
|  | xfs_agblock_t	fend;	/* end block of found extent */ | 
|  | xfs_extlen_t	flen;	/* length of found extent */ | 
|  | int		i;	/* success/failure of operation */ | 
|  | xfs_agblock_t	maxend;	/* end of maximal extent */ | 
|  | xfs_agblock_t	minend;	/* end of minimal extent */ | 
|  | xfs_extlen_t	rlen;	/* length of returned extent */ | 
|  |  | 
|  | ASSERT(args->alignment == 1); | 
|  | /* | 
|  | * Allocate/initialize a cursor for the by-number freespace btree. | 
|  | */ | 
|  | bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp, | 
|  | args->agno, XFS_BTNUM_BNO); | 
|  | /* | 
|  | * Lookup bno and minlen in the btree (minlen is irrelevant, really). | 
|  | * Look for the closest free block <= bno, it must contain bno | 
|  | * if any free block does. | 
|  | */ | 
|  | if ((error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i))) | 
|  | goto error0; | 
|  | if (!i) { | 
|  | /* | 
|  | * Didn't find it, return null. | 
|  | */ | 
|  | xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); | 
|  | args->agbno = NULLAGBLOCK; | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | * Grab the freespace record. | 
|  | */ | 
|  | if ((error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i))) | 
|  | goto error0; | 
|  | XFS_WANT_CORRUPTED_GOTO(i == 1, error0); | 
|  | ASSERT(fbno <= args->agbno); | 
|  | minend = args->agbno + args->minlen; | 
|  | maxend = args->agbno + args->maxlen; | 
|  | fend = fbno + flen; | 
|  | /* | 
|  | * Give up if the freespace isn't long enough for the minimum request. | 
|  | */ | 
|  | if (fend < minend) { | 
|  | xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); | 
|  | args->agbno = NULLAGBLOCK; | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | * End of extent will be smaller of the freespace end and the | 
|  | * maximal requested end. | 
|  | */ | 
|  | end = XFS_AGBLOCK_MIN(fend, maxend); | 
|  | /* | 
|  | * Fix the length according to mod and prod if given. | 
|  | */ | 
|  | args->len = end - args->agbno; | 
|  | xfs_alloc_fix_len(args); | 
|  | if (!xfs_alloc_fix_minleft(args)) { | 
|  | xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); | 
|  | return 0; | 
|  | } | 
|  | rlen = args->len; | 
|  | ASSERT(args->agbno + rlen <= fend); | 
|  | end = args->agbno + rlen; | 
|  | /* | 
|  | * We are allocating agbno for rlen [agbno .. end] | 
|  | * Allocate/initialize a cursor for the by-size btree. | 
|  | */ | 
|  | cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp, | 
|  | args->agno, XFS_BTNUM_CNT); | 
|  | ASSERT(args->agbno + args->len <= | 
|  | be32_to_cpu(XFS_BUF_TO_AGF(args->agbp)->agf_length)); | 
|  | if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, | 
|  | args->agbno, args->len, XFSA_FIXUP_BNO_OK))) { | 
|  | xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR); | 
|  | goto error0; | 
|  | } | 
|  | xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); | 
|  | xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); | 
|  |  | 
|  | trace_xfs_alloc_exact_done(args); | 
|  | args->wasfromfl = 0; | 
|  | return 0; | 
|  |  | 
|  | error0: | 
|  | xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR); | 
|  | trace_xfs_alloc_exact_error(args); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a variable extent near bno in the allocation group agno. | 
|  | * Extent's length (returned in len) will be between minlen and maxlen, | 
|  | * and of the form k * prod + mod unless there's nothing that large. | 
|  | * Return the starting a.g. block, or NULLAGBLOCK if we can't do it. | 
|  | */ | 
|  | STATIC int				/* error */ | 
|  | xfs_alloc_ag_vextent_near( | 
|  | xfs_alloc_arg_t	*args)		/* allocation argument structure */ | 
|  | { | 
|  | xfs_btree_cur_t	*bno_cur_gt;	/* cursor for bno btree, right side */ | 
|  | xfs_btree_cur_t	*bno_cur_lt;	/* cursor for bno btree, left side */ | 
|  | xfs_btree_cur_t	*cnt_cur;	/* cursor for count btree */ | 
|  | xfs_agblock_t	gtbno;		/* start bno of right side entry */ | 
|  | xfs_agblock_t	gtbnoa;		/* aligned ... */ | 
|  | xfs_extlen_t	gtdiff;		/* difference to right side entry */ | 
|  | xfs_extlen_t	gtlen;		/* length of right side entry */ | 
|  | xfs_extlen_t	gtlena;		/* aligned ... */ | 
|  | xfs_agblock_t	gtnew;		/* useful start bno of right side */ | 
|  | int		error;		/* error code */ | 
|  | int		i;		/* result code, temporary */ | 
|  | int		j;		/* result code, temporary */ | 
|  | xfs_agblock_t	ltbno;		/* start bno of left side entry */ | 
|  | xfs_agblock_t	ltbnoa;		/* aligned ... */ | 
|  | xfs_extlen_t	ltdiff;		/* difference to left side entry */ | 
|  | xfs_extlen_t	ltlen;		/* length of left side entry */ | 
|  | xfs_extlen_t	ltlena;		/* aligned ... */ | 
|  | xfs_agblock_t	ltnew;		/* useful start bno of left side */ | 
|  | xfs_extlen_t	rlen;		/* length of returned extent */ | 
|  | #if defined(DEBUG) && defined(__KERNEL__) | 
|  | /* | 
|  | * Randomly don't execute the first algorithm. | 
|  | */ | 
|  | int		dofirst;	/* set to do first algorithm */ | 
|  |  | 
|  | dofirst = random32() & 1; | 
|  | #endif | 
|  | /* | 
|  | * Get a cursor for the by-size btree. | 
|  | */ | 
|  | cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp, | 
|  | args->agno, XFS_BTNUM_CNT); | 
|  | ltlen = 0; | 
|  | bno_cur_lt = bno_cur_gt = NULL; | 
|  | /* | 
|  | * See if there are any free extents as big as maxlen. | 
|  | */ | 
|  | if ((error = xfs_alloc_lookup_ge(cnt_cur, 0, args->maxlen, &i))) | 
|  | goto error0; | 
|  | /* | 
|  | * If none, then pick up the last entry in the tree unless the | 
|  | * tree is empty. | 
|  | */ | 
|  | if (!i) { | 
|  | if ((error = xfs_alloc_ag_vextent_small(args, cnt_cur, <bno, | 
|  | <len, &i))) | 
|  | goto error0; | 
|  | if (i == 0 || ltlen == 0) { | 
|  | xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); | 
|  | return 0; | 
|  | } | 
|  | ASSERT(i == 1); | 
|  | } | 
|  | args->wasfromfl = 0; | 
|  | /* | 
|  | * First algorithm. | 
|  | * If the requested extent is large wrt the freespaces available | 
|  | * in this a.g., then the cursor will be pointing to a btree entry | 
|  | * near the right edge of the tree.  If it's in the last btree leaf | 
|  | * block, then we just examine all the entries in that block | 
|  | * that are big enough, and pick the best one. | 
|  | * This is written as a while loop so we can break out of it, | 
|  | * but we never loop back to the top. | 
|  | */ | 
|  | while (xfs_btree_islastblock(cnt_cur, 0)) { | 
|  | xfs_extlen_t	bdiff; | 
|  | int		besti=0; | 
|  | xfs_extlen_t	blen=0; | 
|  | xfs_agblock_t	bnew=0; | 
|  |  | 
|  | #if defined(DEBUG) && defined(__KERNEL__) | 
|  | if (!dofirst) | 
|  | break; | 
|  | #endif | 
|  | /* | 
|  | * Start from the entry that lookup found, sequence through | 
|  | * all larger free blocks.  If we're actually pointing at a | 
|  | * record smaller than maxlen, go to the start of this block, | 
|  | * and skip all those smaller than minlen. | 
|  | */ | 
|  | if (ltlen || args->alignment > 1) { | 
|  | cnt_cur->bc_ptrs[0] = 1; | 
|  | do { | 
|  | if ((error = xfs_alloc_get_rec(cnt_cur, <bno, | 
|  | <len, &i))) | 
|  | goto error0; | 
|  | XFS_WANT_CORRUPTED_GOTO(i == 1, error0); | 
|  | if (ltlen >= args->minlen) | 
|  | break; | 
|  | if ((error = xfs_btree_increment(cnt_cur, 0, &i))) | 
|  | goto error0; | 
|  | } while (i); | 
|  | ASSERT(ltlen >= args->minlen); | 
|  | if (!i) | 
|  | break; | 
|  | } | 
|  | i = cnt_cur->bc_ptrs[0]; | 
|  | for (j = 1, blen = 0, bdiff = 0; | 
|  | !error && j && (blen < args->maxlen || bdiff > 0); | 
|  | error = xfs_btree_increment(cnt_cur, 0, &j)) { | 
|  | /* | 
|  | * For each entry, decide if it's better than | 
|  | * the previous best entry. | 
|  | */ | 
|  | if ((error = xfs_alloc_get_rec(cnt_cur, <bno, <len, &i))) | 
|  | goto error0; | 
|  | XFS_WANT_CORRUPTED_GOTO(i == 1, error0); | 
|  | xfs_alloc_compute_aligned(ltbno, ltlen, args->alignment, | 
|  | args->minlen, <bnoa, <lena); | 
|  | if (ltlena < args->minlen) | 
|  | continue; | 
|  | args->len = XFS_EXTLEN_MIN(ltlena, args->maxlen); | 
|  | xfs_alloc_fix_len(args); | 
|  | ASSERT(args->len >= args->minlen); | 
|  | if (args->len < blen) | 
|  | continue; | 
|  | ltdiff = xfs_alloc_compute_diff(args->agbno, args->len, | 
|  | args->alignment, ltbno, ltlen, <new); | 
|  | if (ltnew != NULLAGBLOCK && | 
|  | (args->len > blen || ltdiff < bdiff)) { | 
|  | bdiff = ltdiff; | 
|  | bnew = ltnew; | 
|  | blen = args->len; | 
|  | besti = cnt_cur->bc_ptrs[0]; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * It didn't work.  We COULD be in a case where | 
|  | * there's a good record somewhere, so try again. | 
|  | */ | 
|  | if (blen == 0) | 
|  | break; | 
|  | /* | 
|  | * Point at the best entry, and retrieve it again. | 
|  | */ | 
|  | cnt_cur->bc_ptrs[0] = besti; | 
|  | if ((error = xfs_alloc_get_rec(cnt_cur, <bno, <len, &i))) | 
|  | goto error0; | 
|  | XFS_WANT_CORRUPTED_GOTO(i == 1, error0); | 
|  | ASSERT(ltbno + ltlen <= be32_to_cpu(XFS_BUF_TO_AGF(args->agbp)->agf_length)); | 
|  | args->len = blen; | 
|  | if (!xfs_alloc_fix_minleft(args)) { | 
|  | xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); | 
|  | trace_xfs_alloc_near_nominleft(args); | 
|  | return 0; | 
|  | } | 
|  | blen = args->len; | 
|  | /* | 
|  | * We are allocating starting at bnew for blen blocks. | 
|  | */ | 
|  | args->agbno = bnew; | 
|  | ASSERT(bnew >= ltbno); | 
|  | ASSERT(bnew + blen <= ltbno + ltlen); | 
|  | /* | 
|  | * Set up a cursor for the by-bno tree. | 
|  | */ | 
|  | bno_cur_lt = xfs_allocbt_init_cursor(args->mp, args->tp, | 
|  | args->agbp, args->agno, XFS_BTNUM_BNO); | 
|  | /* | 
|  | * Fix up the btree entries. | 
|  | */ | 
|  | if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur_lt, ltbno, | 
|  | ltlen, bnew, blen, XFSA_FIXUP_CNT_OK))) | 
|  | goto error0; | 
|  | xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); | 
|  | xfs_btree_del_cursor(bno_cur_lt, XFS_BTREE_NOERROR); | 
|  |  | 
|  | trace_xfs_alloc_near_first(args); | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | * Second algorithm. | 
|  | * Search in the by-bno tree to the left and to the right | 
|  | * simultaneously, until in each case we find a space big enough, | 
|  | * or run into the edge of the tree.  When we run into the edge, | 
|  | * we deallocate that cursor. | 
|  | * If both searches succeed, we compare the two spaces and pick | 
|  | * the better one. | 
|  | * With alignment, it's possible for both to fail; the upper | 
|  | * level algorithm that picks allocation groups for allocations | 
|  | * is not supposed to do this. | 
|  | */ | 
|  | /* | 
|  | * Allocate and initialize the cursor for the leftward search. | 
|  | */ | 
|  | bno_cur_lt = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp, | 
|  | args->agno, XFS_BTNUM_BNO); | 
|  | /* | 
|  | * Lookup <= bno to find the leftward search's starting point. | 
|  | */ | 
|  | if ((error = xfs_alloc_lookup_le(bno_cur_lt, args->agbno, args->maxlen, &i))) | 
|  | goto error0; | 
|  | if (!i) { | 
|  | /* | 
|  | * Didn't find anything; use this cursor for the rightward | 
|  | * search. | 
|  | */ | 
|  | bno_cur_gt = bno_cur_lt; | 
|  | bno_cur_lt = NULL; | 
|  | } | 
|  | /* | 
|  | * Found something.  Duplicate the cursor for the rightward search. | 
|  | */ | 
|  | else if ((error = xfs_btree_dup_cursor(bno_cur_lt, &bno_cur_gt))) | 
|  | goto error0; | 
|  | /* | 
|  | * Increment the cursor, so we will point at the entry just right | 
|  | * of the leftward entry if any, or to the leftmost entry. | 
|  | */ | 
|  | if ((error = xfs_btree_increment(bno_cur_gt, 0, &i))) | 
|  | goto error0; | 
|  | if (!i) { | 
|  | /* | 
|  | * It failed, there are no rightward entries. | 
|  | */ | 
|  | xfs_btree_del_cursor(bno_cur_gt, XFS_BTREE_NOERROR); | 
|  | bno_cur_gt = NULL; | 
|  | } | 
|  | /* | 
|  | * Loop going left with the leftward cursor, right with the | 
|  | * rightward cursor, until either both directions give up or | 
|  | * we find an entry at least as big as minlen. | 
|  | */ | 
|  | do { | 
|  | if (bno_cur_lt) { | 
|  | if ((error = xfs_alloc_get_rec(bno_cur_lt, <bno, <len, &i))) | 
|  | goto error0; | 
|  | XFS_WANT_CORRUPTED_GOTO(i == 1, error0); | 
|  | xfs_alloc_compute_aligned(ltbno, ltlen, args->alignment, | 
|  | args->minlen, <bnoa, <lena); | 
|  | if (ltlena >= args->minlen) | 
|  | break; | 
|  | if ((error = xfs_btree_decrement(bno_cur_lt, 0, &i))) | 
|  | goto error0; | 
|  | if (!i) { | 
|  | xfs_btree_del_cursor(bno_cur_lt, | 
|  | XFS_BTREE_NOERROR); | 
|  | bno_cur_lt = NULL; | 
|  | } | 
|  | } | 
|  | if (bno_cur_gt) { | 
|  | if ((error = xfs_alloc_get_rec(bno_cur_gt, >bno, >len, &i))) | 
|  | goto error0; | 
|  | XFS_WANT_CORRUPTED_GOTO(i == 1, error0); | 
|  | xfs_alloc_compute_aligned(gtbno, gtlen, args->alignment, | 
|  | args->minlen, >bnoa, >lena); | 
|  | if (gtlena >= args->minlen) | 
|  | break; | 
|  | if ((error = xfs_btree_increment(bno_cur_gt, 0, &i))) | 
|  | goto error0; | 
|  | if (!i) { | 
|  | xfs_btree_del_cursor(bno_cur_gt, | 
|  | XFS_BTREE_NOERROR); | 
|  | bno_cur_gt = NULL; | 
|  | } | 
|  | } | 
|  | } while (bno_cur_lt || bno_cur_gt); | 
|  | /* | 
|  | * Got both cursors still active, need to find better entry. | 
|  | */ | 
|  | if (bno_cur_lt && bno_cur_gt) { | 
|  | /* | 
|  | * Left side is long enough, look for a right side entry. | 
|  | */ | 
|  | if (ltlena >= args->minlen) { | 
|  | /* | 
|  | * Fix up the length. | 
|  | */ | 
|  | args->len = XFS_EXTLEN_MIN(ltlena, args->maxlen); | 
|  | xfs_alloc_fix_len(args); | 
|  | rlen = args->len; | 
|  | ltdiff = xfs_alloc_compute_diff(args->agbno, rlen, | 
|  | args->alignment, ltbno, ltlen, <new); | 
|  | /* | 
|  | * Not perfect. | 
|  | */ | 
|  | if (ltdiff) { | 
|  | /* | 
|  | * Look until we find a better one, run out of | 
|  | * space, or run off the end. | 
|  | */ | 
|  | while (bno_cur_lt && bno_cur_gt) { | 
|  | if ((error = xfs_alloc_get_rec( | 
|  | bno_cur_gt, >bno, | 
|  | >len, &i))) | 
|  | goto error0; | 
|  | XFS_WANT_CORRUPTED_GOTO(i == 1, error0); | 
|  | xfs_alloc_compute_aligned(gtbno, gtlen, | 
|  | args->alignment, args->minlen, | 
|  | >bnoa, >lena); | 
|  | /* | 
|  | * The left one is clearly better. | 
|  | */ | 
|  | if (gtbnoa >= args->agbno + ltdiff) { | 
|  | xfs_btree_del_cursor( | 
|  | bno_cur_gt, | 
|  | XFS_BTREE_NOERROR); | 
|  | bno_cur_gt = NULL; | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * If we reach a big enough entry, | 
|  | * compare the two and pick the best. | 
|  | */ | 
|  | if (gtlena >= args->minlen) { | 
|  | args->len = | 
|  | XFS_EXTLEN_MIN(gtlena, | 
|  | args->maxlen); | 
|  | xfs_alloc_fix_len(args); | 
|  | rlen = args->len; | 
|  | gtdiff = xfs_alloc_compute_diff( | 
|  | args->agbno, rlen, | 
|  | args->alignment, | 
|  | gtbno, gtlen, >new); | 
|  | /* | 
|  | * Right side is better. | 
|  | */ | 
|  | if (gtdiff < ltdiff) { | 
|  | xfs_btree_del_cursor( | 
|  | bno_cur_lt, | 
|  | XFS_BTREE_NOERROR); | 
|  | bno_cur_lt = NULL; | 
|  | } | 
|  | /* | 
|  | * Left side is better. | 
|  | */ | 
|  | else { | 
|  | xfs_btree_del_cursor( | 
|  | bno_cur_gt, | 
|  | XFS_BTREE_NOERROR); | 
|  | bno_cur_gt = NULL; | 
|  | } | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * Fell off the right end. | 
|  | */ | 
|  | if ((error = xfs_btree_increment( | 
|  | bno_cur_gt, 0, &i))) | 
|  | goto error0; | 
|  | if (!i) { | 
|  | xfs_btree_del_cursor( | 
|  | bno_cur_gt, | 
|  | XFS_BTREE_NOERROR); | 
|  | bno_cur_gt = NULL; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | /* | 
|  | * The left side is perfect, trash the right side. | 
|  | */ | 
|  | else { | 
|  | xfs_btree_del_cursor(bno_cur_gt, | 
|  | XFS_BTREE_NOERROR); | 
|  | bno_cur_gt = NULL; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * It's the right side that was found first, look left. | 
|  | */ | 
|  | else { | 
|  | /* | 
|  | * Fix up the length. | 
|  | */ | 
|  | args->len = XFS_EXTLEN_MIN(gtlena, args->maxlen); | 
|  | xfs_alloc_fix_len(args); | 
|  | rlen = args->len; | 
|  | gtdiff = xfs_alloc_compute_diff(args->agbno, rlen, | 
|  | args->alignment, gtbno, gtlen, >new); | 
|  | /* | 
|  | * Right side entry isn't perfect. | 
|  | */ | 
|  | if (gtdiff) { | 
|  | /* | 
|  | * Look until we find a better one, run out of | 
|  | * space, or run off the end. | 
|  | */ | 
|  | while (bno_cur_lt && bno_cur_gt) { | 
|  | if ((error = xfs_alloc_get_rec( | 
|  | bno_cur_lt, <bno, | 
|  | <len, &i))) | 
|  | goto error0; | 
|  | XFS_WANT_CORRUPTED_GOTO(i == 1, error0); | 
|  | xfs_alloc_compute_aligned(ltbno, ltlen, | 
|  | args->alignment, args->minlen, | 
|  | <bnoa, <lena); | 
|  | /* | 
|  | * The right one is clearly better. | 
|  | */ | 
|  | if (ltbnoa <= args->agbno - gtdiff) { | 
|  | xfs_btree_del_cursor( | 
|  | bno_cur_lt, | 
|  | XFS_BTREE_NOERROR); | 
|  | bno_cur_lt = NULL; | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * If we reach a big enough entry, | 
|  | * compare the two and pick the best. | 
|  | */ | 
|  | if (ltlena >= args->minlen) { | 
|  | args->len = XFS_EXTLEN_MIN( | 
|  | ltlena, args->maxlen); | 
|  | xfs_alloc_fix_len(args); | 
|  | rlen = args->len; | 
|  | ltdiff = xfs_alloc_compute_diff( | 
|  | args->agbno, rlen, | 
|  | args->alignment, | 
|  | ltbno, ltlen, <new); | 
|  | /* | 
|  | * Left side is better. | 
|  | */ | 
|  | if (ltdiff < gtdiff) { | 
|  | xfs_btree_del_cursor( | 
|  | bno_cur_gt, | 
|  | XFS_BTREE_NOERROR); | 
|  | bno_cur_gt = NULL; | 
|  | } | 
|  | /* | 
|  | * Right side is better. | 
|  | */ | 
|  | else { | 
|  | xfs_btree_del_cursor( | 
|  | bno_cur_lt, | 
|  | XFS_BTREE_NOERROR); | 
|  | bno_cur_lt = NULL; | 
|  | } | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * Fell off the left end. | 
|  | */ | 
|  | if ((error = xfs_btree_decrement( | 
|  | bno_cur_lt, 0, &i))) | 
|  | goto error0; | 
|  | if (!i) { | 
|  | xfs_btree_del_cursor(bno_cur_lt, | 
|  | XFS_BTREE_NOERROR); | 
|  | bno_cur_lt = NULL; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | /* | 
|  | * The right side is perfect, trash the left side. | 
|  | */ | 
|  | else { | 
|  | xfs_btree_del_cursor(bno_cur_lt, | 
|  | XFS_BTREE_NOERROR); | 
|  | bno_cur_lt = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  | /* | 
|  | * If we couldn't get anything, give up. | 
|  | */ | 
|  | if (bno_cur_lt == NULL && bno_cur_gt == NULL) { | 
|  | trace_xfs_alloc_size_neither(args); | 
|  | args->agbno = NULLAGBLOCK; | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | * At this point we have selected a freespace entry, either to the | 
|  | * left or to the right.  If it's on the right, copy all the | 
|  | * useful variables to the "left" set so we only have one | 
|  | * copy of this code. | 
|  | */ | 
|  | if (bno_cur_gt) { | 
|  | bno_cur_lt = bno_cur_gt; | 
|  | bno_cur_gt = NULL; | 
|  | ltbno = gtbno; | 
|  | ltbnoa = gtbnoa; | 
|  | ltlen = gtlen; | 
|  | ltlena = gtlena; | 
|  | j = 1; | 
|  | } else | 
|  | j = 0; | 
|  | /* | 
|  | * Fix up the length and compute the useful address. | 
|  | */ | 
|  | args->len = XFS_EXTLEN_MIN(ltlena, args->maxlen); | 
|  | xfs_alloc_fix_len(args); | 
|  | if (!xfs_alloc_fix_minleft(args)) { | 
|  | trace_xfs_alloc_near_nominleft(args); | 
|  | xfs_btree_del_cursor(bno_cur_lt, XFS_BTREE_NOERROR); | 
|  | xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); | 
|  | return 0; | 
|  | } | 
|  | rlen = args->len; | 
|  | (void)xfs_alloc_compute_diff(args->agbno, rlen, args->alignment, ltbno, | 
|  | ltlen, <new); | 
|  | ASSERT(ltnew >= ltbno); | 
|  | ASSERT(ltnew + rlen <= ltbno + ltlen); | 
|  | ASSERT(ltnew + rlen <= be32_to_cpu(XFS_BUF_TO_AGF(args->agbp)->agf_length)); | 
|  | args->agbno = ltnew; | 
|  | if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur_lt, ltbno, ltlen, | 
|  | ltnew, rlen, XFSA_FIXUP_BNO_OK))) | 
|  | goto error0; | 
|  |  | 
|  | if (j) | 
|  | trace_xfs_alloc_near_greater(args); | 
|  | else | 
|  | trace_xfs_alloc_near_lesser(args); | 
|  |  | 
|  | xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); | 
|  | xfs_btree_del_cursor(bno_cur_lt, XFS_BTREE_NOERROR); | 
|  | return 0; | 
|  |  | 
|  | error0: | 
|  | trace_xfs_alloc_near_error(args); | 
|  | if (cnt_cur != NULL) | 
|  | xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR); | 
|  | if (bno_cur_lt != NULL) | 
|  | xfs_btree_del_cursor(bno_cur_lt, XFS_BTREE_ERROR); | 
|  | if (bno_cur_gt != NULL) | 
|  | xfs_btree_del_cursor(bno_cur_gt, XFS_BTREE_ERROR); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a variable extent anywhere in the allocation group agno. | 
|  | * Extent's length (returned in len) will be between minlen and maxlen, | 
|  | * and of the form k * prod + mod unless there's nothing that large. | 
|  | * Return the starting a.g. block, or NULLAGBLOCK if we can't do it. | 
|  | */ | 
|  | STATIC int				/* error */ | 
|  | xfs_alloc_ag_vextent_size( | 
|  | xfs_alloc_arg_t	*args)		/* allocation argument structure */ | 
|  | { | 
|  | xfs_btree_cur_t	*bno_cur;	/* cursor for bno btree */ | 
|  | xfs_btree_cur_t	*cnt_cur;	/* cursor for cnt btree */ | 
|  | int		error;		/* error result */ | 
|  | xfs_agblock_t	fbno;		/* start of found freespace */ | 
|  | xfs_extlen_t	flen;		/* length of found freespace */ | 
|  | int		i;		/* temp status variable */ | 
|  | xfs_agblock_t	rbno;		/* returned block number */ | 
|  | xfs_extlen_t	rlen;		/* length of returned extent */ | 
|  |  | 
|  | /* | 
|  | * Allocate and initialize a cursor for the by-size btree. | 
|  | */ | 
|  | cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp, | 
|  | args->agno, XFS_BTNUM_CNT); | 
|  | bno_cur = NULL; | 
|  | /* | 
|  | * Look for an entry >= maxlen+alignment-1 blocks. | 
|  | */ | 
|  | if ((error = xfs_alloc_lookup_ge(cnt_cur, 0, | 
|  | args->maxlen + args->alignment - 1, &i))) | 
|  | goto error0; | 
|  | /* | 
|  | * If none, then pick up the last entry in the tree unless the | 
|  | * tree is empty. | 
|  | */ | 
|  | if (!i) { | 
|  | if ((error = xfs_alloc_ag_vextent_small(args, cnt_cur, &fbno, | 
|  | &flen, &i))) | 
|  | goto error0; | 
|  | if (i == 0 || flen == 0) { | 
|  | xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); | 
|  | trace_xfs_alloc_size_noentry(args); | 
|  | return 0; | 
|  | } | 
|  | ASSERT(i == 1); | 
|  | } | 
|  | /* | 
|  | * There's a freespace as big as maxlen+alignment-1, get it. | 
|  | */ | 
|  | else { | 
|  | if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i))) | 
|  | goto error0; | 
|  | XFS_WANT_CORRUPTED_GOTO(i == 1, error0); | 
|  | } | 
|  | /* | 
|  | * In the first case above, we got the last entry in the | 
|  | * by-size btree.  Now we check to see if the space hits maxlen | 
|  | * once aligned; if not, we search left for something better. | 
|  | * This can't happen in the second case above. | 
|  | */ | 
|  | xfs_alloc_compute_aligned(fbno, flen, args->alignment, args->minlen, | 
|  | &rbno, &rlen); | 
|  | rlen = XFS_EXTLEN_MIN(args->maxlen, rlen); | 
|  | XFS_WANT_CORRUPTED_GOTO(rlen == 0 || | 
|  | (rlen <= flen && rbno + rlen <= fbno + flen), error0); | 
|  | if (rlen < args->maxlen) { | 
|  | xfs_agblock_t	bestfbno; | 
|  | xfs_extlen_t	bestflen; | 
|  | xfs_agblock_t	bestrbno; | 
|  | xfs_extlen_t	bestrlen; | 
|  |  | 
|  | bestrlen = rlen; | 
|  | bestrbno = rbno; | 
|  | bestflen = flen; | 
|  | bestfbno = fbno; | 
|  | for (;;) { | 
|  | if ((error = xfs_btree_decrement(cnt_cur, 0, &i))) | 
|  | goto error0; | 
|  | if (i == 0) | 
|  | break; | 
|  | if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, | 
|  | &i))) | 
|  | goto error0; | 
|  | XFS_WANT_CORRUPTED_GOTO(i == 1, error0); | 
|  | if (flen < bestrlen) | 
|  | break; | 
|  | xfs_alloc_compute_aligned(fbno, flen, args->alignment, | 
|  | args->minlen, &rbno, &rlen); | 
|  | rlen = XFS_EXTLEN_MIN(args->maxlen, rlen); | 
|  | XFS_WANT_CORRUPTED_GOTO(rlen == 0 || | 
|  | (rlen <= flen && rbno + rlen <= fbno + flen), | 
|  | error0); | 
|  | if (rlen > bestrlen) { | 
|  | bestrlen = rlen; | 
|  | bestrbno = rbno; | 
|  | bestflen = flen; | 
|  | bestfbno = fbno; | 
|  | if (rlen == args->maxlen) | 
|  | break; | 
|  | } | 
|  | } | 
|  | if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen, | 
|  | &i))) | 
|  | goto error0; | 
|  | XFS_WANT_CORRUPTED_GOTO(i == 1, error0); | 
|  | rlen = bestrlen; | 
|  | rbno = bestrbno; | 
|  | flen = bestflen; | 
|  | fbno = bestfbno; | 
|  | } | 
|  | args->wasfromfl = 0; | 
|  | /* | 
|  | * Fix up the length. | 
|  | */ | 
|  | args->len = rlen; | 
|  | xfs_alloc_fix_len(args); | 
|  | if (rlen < args->minlen || !xfs_alloc_fix_minleft(args)) { | 
|  | xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); | 
|  | trace_xfs_alloc_size_nominleft(args); | 
|  | args->agbno = NULLAGBLOCK; | 
|  | return 0; | 
|  | } | 
|  | rlen = args->len; | 
|  | XFS_WANT_CORRUPTED_GOTO(rlen <= flen, error0); | 
|  | /* | 
|  | * Allocate and initialize a cursor for the by-block tree. | 
|  | */ | 
|  | bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp, | 
|  | args->agno, XFS_BTNUM_BNO); | 
|  | if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, | 
|  | rbno, rlen, XFSA_FIXUP_CNT_OK))) | 
|  | goto error0; | 
|  | xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); | 
|  | xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); | 
|  | cnt_cur = bno_cur = NULL; | 
|  | args->len = rlen; | 
|  | args->agbno = rbno; | 
|  | XFS_WANT_CORRUPTED_GOTO( | 
|  | args->agbno + args->len <= | 
|  | be32_to_cpu(XFS_BUF_TO_AGF(args->agbp)->agf_length), | 
|  | error0); | 
|  | trace_xfs_alloc_size_done(args); | 
|  | return 0; | 
|  |  | 
|  | error0: | 
|  | trace_xfs_alloc_size_error(args); | 
|  | if (cnt_cur) | 
|  | xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR); | 
|  | if (bno_cur) | 
|  | xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Deal with the case where only small freespaces remain. | 
|  | * Either return the contents of the last freespace record, | 
|  | * or allocate space from the freelist if there is nothing in the tree. | 
|  | */ | 
|  | STATIC int			/* error */ | 
|  | xfs_alloc_ag_vextent_small( | 
|  | xfs_alloc_arg_t	*args,	/* allocation argument structure */ | 
|  | xfs_btree_cur_t	*ccur,	/* by-size cursor */ | 
|  | xfs_agblock_t	*fbnop,	/* result block number */ | 
|  | xfs_extlen_t	*flenp,	/* result length */ | 
|  | int		*stat)	/* status: 0-freelist, 1-normal/none */ | 
|  | { | 
|  | int		error; | 
|  | xfs_agblock_t	fbno; | 
|  | xfs_extlen_t	flen; | 
|  | int		i; | 
|  |  | 
|  | if ((error = xfs_btree_decrement(ccur, 0, &i))) | 
|  | goto error0; | 
|  | if (i) { | 
|  | if ((error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i))) | 
|  | goto error0; | 
|  | XFS_WANT_CORRUPTED_GOTO(i == 1, error0); | 
|  | } | 
|  | /* | 
|  | * Nothing in the btree, try the freelist.  Make sure | 
|  | * to respect minleft even when pulling from the | 
|  | * freelist. | 
|  | */ | 
|  | else if (args->minlen == 1 && args->alignment == 1 && !args->isfl && | 
|  | (be32_to_cpu(XFS_BUF_TO_AGF(args->agbp)->agf_flcount) | 
|  | > args->minleft)) { | 
|  | error = xfs_alloc_get_freelist(args->tp, args->agbp, &fbno, 0); | 
|  | if (error) | 
|  | goto error0; | 
|  | if (fbno != NULLAGBLOCK) { | 
|  | if (args->userdata) { | 
|  | xfs_buf_t	*bp; | 
|  |  | 
|  | bp = xfs_btree_get_bufs(args->mp, args->tp, | 
|  | args->agno, fbno, 0); | 
|  | xfs_trans_binval(args->tp, bp); | 
|  | } | 
|  | args->len = 1; | 
|  | args->agbno = fbno; | 
|  | XFS_WANT_CORRUPTED_GOTO( | 
|  | args->agbno + args->len <= | 
|  | be32_to_cpu(XFS_BUF_TO_AGF(args->agbp)->agf_length), | 
|  | error0); | 
|  | args->wasfromfl = 1; | 
|  | trace_xfs_alloc_small_freelist(args); | 
|  | *stat = 0; | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | * Nothing in the freelist. | 
|  | */ | 
|  | else | 
|  | flen = 0; | 
|  | } | 
|  | /* | 
|  | * Can't allocate from the freelist for some reason. | 
|  | */ | 
|  | else { | 
|  | fbno = NULLAGBLOCK; | 
|  | flen = 0; | 
|  | } | 
|  | /* | 
|  | * Can't do the allocation, give up. | 
|  | */ | 
|  | if (flen < args->minlen) { | 
|  | args->agbno = NULLAGBLOCK; | 
|  | trace_xfs_alloc_small_notenough(args); | 
|  | flen = 0; | 
|  | } | 
|  | *fbnop = fbno; | 
|  | *flenp = flen; | 
|  | *stat = 1; | 
|  | trace_xfs_alloc_small_done(args); | 
|  | return 0; | 
|  |  | 
|  | error0: | 
|  | trace_xfs_alloc_small_error(args); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free the extent starting at agno/bno for length. | 
|  | */ | 
|  | STATIC int			/* error */ | 
|  | xfs_free_ag_extent( | 
|  | xfs_trans_t	*tp,	/* transaction pointer */ | 
|  | xfs_buf_t	*agbp,	/* buffer for a.g. freelist header */ | 
|  | xfs_agnumber_t	agno,	/* allocation group number */ | 
|  | xfs_agblock_t	bno,	/* starting block number */ | 
|  | xfs_extlen_t	len,	/* length of extent */ | 
|  | int		isfl)	/* set if is freelist blocks - no sb acctg */ | 
|  | { | 
|  | xfs_btree_cur_t	*bno_cur;	/* cursor for by-block btree */ | 
|  | xfs_btree_cur_t	*cnt_cur;	/* cursor for by-size btree */ | 
|  | int		error;		/* error return value */ | 
|  | xfs_agblock_t	gtbno;		/* start of right neighbor block */ | 
|  | xfs_extlen_t	gtlen;		/* length of right neighbor block */ | 
|  | int		haveleft;	/* have a left neighbor block */ | 
|  | int		haveright;	/* have a right neighbor block */ | 
|  | int		i;		/* temp, result code */ | 
|  | xfs_agblock_t	ltbno;		/* start of left neighbor block */ | 
|  | xfs_extlen_t	ltlen;		/* length of left neighbor block */ | 
|  | xfs_mount_t	*mp;		/* mount point struct for filesystem */ | 
|  | xfs_agblock_t	nbno;		/* new starting block of freespace */ | 
|  | xfs_extlen_t	nlen;		/* new length of freespace */ | 
|  |  | 
|  | mp = tp->t_mountp; | 
|  | /* | 
|  | * Allocate and initialize a cursor for the by-block btree. | 
|  | */ | 
|  | bno_cur = xfs_allocbt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_BNO); | 
|  | cnt_cur = NULL; | 
|  | /* | 
|  | * Look for a neighboring block on the left (lower block numbers) | 
|  | * that is contiguous with this space. | 
|  | */ | 
|  | if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft))) | 
|  | goto error0; | 
|  | if (haveleft) { | 
|  | /* | 
|  | * There is a block to our left. | 
|  | */ | 
|  | if ((error = xfs_alloc_get_rec(bno_cur, <bno, <len, &i))) | 
|  | goto error0; | 
|  | XFS_WANT_CORRUPTED_GOTO(i == 1, error0); | 
|  | /* | 
|  | * It's not contiguous, though. | 
|  | */ | 
|  | if (ltbno + ltlen < bno) | 
|  | haveleft = 0; | 
|  | else { | 
|  | /* | 
|  | * If this failure happens the request to free this | 
|  | * space was invalid, it's (partly) already free. | 
|  | * Very bad. | 
|  | */ | 
|  | XFS_WANT_CORRUPTED_GOTO(ltbno + ltlen <= bno, error0); | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Look for a neighboring block on the right (higher block numbers) | 
|  | * that is contiguous with this space. | 
|  | */ | 
|  | if ((error = xfs_btree_increment(bno_cur, 0, &haveright))) | 
|  | goto error0; | 
|  | if (haveright) { | 
|  | /* | 
|  | * There is a block to our right. | 
|  | */ | 
|  | if ((error = xfs_alloc_get_rec(bno_cur, >bno, >len, &i))) | 
|  | goto error0; | 
|  | XFS_WANT_CORRUPTED_GOTO(i == 1, error0); | 
|  | /* | 
|  | * It's not contiguous, though. | 
|  | */ | 
|  | if (bno + len < gtbno) | 
|  | haveright = 0; | 
|  | else { | 
|  | /* | 
|  | * If this failure happens the request to free this | 
|  | * space was invalid, it's (partly) already free. | 
|  | * Very bad. | 
|  | */ | 
|  | XFS_WANT_CORRUPTED_GOTO(gtbno >= bno + len, error0); | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Now allocate and initialize a cursor for the by-size tree. | 
|  | */ | 
|  | cnt_cur = xfs_allocbt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_CNT); | 
|  | /* | 
|  | * Have both left and right contiguous neighbors. | 
|  | * Merge all three into a single free block. | 
|  | */ | 
|  | if (haveleft && haveright) { | 
|  | /* | 
|  | * Delete the old by-size entry on the left. | 
|  | */ | 
|  | if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i))) | 
|  | goto error0; | 
|  | XFS_WANT_CORRUPTED_GOTO(i == 1, error0); | 
|  | if ((error = xfs_btree_delete(cnt_cur, &i))) | 
|  | goto error0; | 
|  | XFS_WANT_CORRUPTED_GOTO(i == 1, error0); | 
|  | /* | 
|  | * Delete the old by-size entry on the right. | 
|  | */ | 
|  | if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i))) | 
|  | goto error0; | 
|  | XFS_WANT_CORRUPTED_GOTO(i == 1, error0); | 
|  | if ((error = xfs_btree_delete(cnt_cur, &i))) | 
|  | goto error0; | 
|  | XFS_WANT_CORRUPTED_GOTO(i == 1, error0); | 
|  | /* | 
|  | * Delete the old by-block entry for the right block. | 
|  | */ | 
|  | if ((error = xfs_btree_delete(bno_cur, &i))) | 
|  | goto error0; | 
|  | XFS_WANT_CORRUPTED_GOTO(i == 1, error0); | 
|  | /* | 
|  | * Move the by-block cursor back to the left neighbor. | 
|  | */ | 
|  | if ((error = xfs_btree_decrement(bno_cur, 0, &i))) | 
|  | goto error0; | 
|  | XFS_WANT_CORRUPTED_GOTO(i == 1, error0); | 
|  | #ifdef DEBUG | 
|  | /* | 
|  | * Check that this is the right record: delete didn't | 
|  | * mangle the cursor. | 
|  | */ | 
|  | { | 
|  | xfs_agblock_t	xxbno; | 
|  | xfs_extlen_t	xxlen; | 
|  |  | 
|  | if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen, | 
|  | &i))) | 
|  | goto error0; | 
|  | XFS_WANT_CORRUPTED_GOTO( | 
|  | i == 1 && xxbno == ltbno && xxlen == ltlen, | 
|  | error0); | 
|  | } | 
|  | #endif | 
|  | /* | 
|  | * Update remaining by-block entry to the new, joined block. | 
|  | */ | 
|  | nbno = ltbno; | 
|  | nlen = len + ltlen + gtlen; | 
|  | if ((error = xfs_alloc_update(bno_cur, nbno, nlen))) | 
|  | goto error0; | 
|  | } | 
|  | /* | 
|  | * Have only a left contiguous neighbor. | 
|  | * Merge it together with the new freespace. | 
|  | */ | 
|  | else if (haveleft) { | 
|  | /* | 
|  | * Delete the old by-size entry on the left. | 
|  | */ | 
|  | if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i))) | 
|  | goto error0; | 
|  | XFS_WANT_CORRUPTED_GOTO(i == 1, error0); | 
|  | if ((error = xfs_btree_delete(cnt_cur, &i))) | 
|  | goto error0; | 
|  | XFS_WANT_CORRUPTED_GOTO(i == 1, error0); | 
|  | /* | 
|  | * Back up the by-block cursor to the left neighbor, and | 
|  | * update its length. | 
|  | */ | 
|  | if ((error = xfs_btree_decrement(bno_cur, 0, &i))) | 
|  | goto error0; | 
|  | XFS_WANT_CORRUPTED_GOTO(i == 1, error0); | 
|  | nbno = ltbno; | 
|  | nlen = len + ltlen; | 
|  | if ((error = xfs_alloc_update(bno_cur, nbno, nlen))) | 
|  | goto error0; | 
|  | } | 
|  | /* | 
|  | * Have only a right contiguous neighbor. | 
|  | * Merge it together with the new freespace. | 
|  | */ | 
|  | else if (haveright) { | 
|  | /* | 
|  | * Delete the old by-size entry on the right. | 
|  | */ | 
|  | if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i))) | 
|  | goto error0; | 
|  | XFS_WANT_CORRUPTED_GOTO(i == 1, error0); | 
|  | if ((error = xfs_btree_delete(cnt_cur, &i))) | 
|  | goto error0; | 
|  | XFS_WANT_CORRUPTED_GOTO(i == 1, error0); | 
|  | /* | 
|  | * Update the starting block and length of the right | 
|  | * neighbor in the by-block tree. | 
|  | */ | 
|  | nbno = bno; | 
|  | nlen = len + gtlen; | 
|  | if ((error = xfs_alloc_update(bno_cur, nbno, nlen))) | 
|  | goto error0; | 
|  | } | 
|  | /* | 
|  | * No contiguous neighbors. | 
|  | * Insert the new freespace into the by-block tree. | 
|  | */ | 
|  | else { | 
|  | nbno = bno; | 
|  | nlen = len; | 
|  | if ((error = xfs_btree_insert(bno_cur, &i))) | 
|  | goto error0; | 
|  | XFS_WANT_CORRUPTED_GOTO(i == 1, error0); | 
|  | } | 
|  | xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); | 
|  | bno_cur = NULL; | 
|  | /* | 
|  | * In all cases we need to insert the new freespace in the by-size tree. | 
|  | */ | 
|  | if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i))) | 
|  | goto error0; | 
|  | XFS_WANT_CORRUPTED_GOTO(i == 0, error0); | 
|  | if ((error = xfs_btree_insert(cnt_cur, &i))) | 
|  | goto error0; | 
|  | XFS_WANT_CORRUPTED_GOTO(i == 1, error0); | 
|  | xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); | 
|  | cnt_cur = NULL; | 
|  | /* | 
|  | * Update the freespace totals in the ag and superblock. | 
|  | */ | 
|  | { | 
|  | xfs_agf_t	*agf; | 
|  | xfs_perag_t	*pag;		/* per allocation group data */ | 
|  |  | 
|  | pag = xfs_perag_get(mp, agno); | 
|  | pag->pagf_freeblks += len; | 
|  | xfs_perag_put(pag); | 
|  |  | 
|  | agf = XFS_BUF_TO_AGF(agbp); | 
|  | be32_add_cpu(&agf->agf_freeblks, len); | 
|  | xfs_trans_agblocks_delta(tp, len); | 
|  | XFS_WANT_CORRUPTED_GOTO( | 
|  | be32_to_cpu(agf->agf_freeblks) <= | 
|  | be32_to_cpu(agf->agf_length), | 
|  | error0); | 
|  | xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS); | 
|  | if (!isfl) | 
|  | xfs_trans_mod_sb(tp, XFS_TRANS_SB_FDBLOCKS, (long)len); | 
|  | XFS_STATS_INC(xs_freex); | 
|  | XFS_STATS_ADD(xs_freeb, len); | 
|  | } | 
|  |  | 
|  | trace_xfs_free_extent(mp, agno, bno, len, isfl, haveleft, haveright); | 
|  |  | 
|  | /* | 
|  | * Since blocks move to the free list without the coordination | 
|  | * used in xfs_bmap_finish, we can't allow block to be available | 
|  | * for reallocation and non-transaction writing (user data) | 
|  | * until we know that the transaction that moved it to the free | 
|  | * list is permanently on disk.  We track the blocks by declaring | 
|  | * these blocks as "busy"; the busy list is maintained on a per-ag | 
|  | * basis and each transaction records which entries should be removed | 
|  | * when the iclog commits to disk.  If a busy block is allocated, | 
|  | * the iclog is pushed up to the LSN that freed the block. | 
|  | */ | 
|  | xfs_alloc_busy_insert(tp, agno, bno, len); | 
|  | return 0; | 
|  |  | 
|  | error0: | 
|  | trace_xfs_free_extent(mp, agno, bno, len, isfl, -1, -1); | 
|  | if (bno_cur) | 
|  | xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR); | 
|  | if (cnt_cur) | 
|  | xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Visible (exported) allocation/free functions. | 
|  | * Some of these are used just by xfs_alloc_btree.c and this file. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Compute and fill in value of m_ag_maxlevels. | 
|  | */ | 
|  | void | 
|  | xfs_alloc_compute_maxlevels( | 
|  | xfs_mount_t	*mp)	/* file system mount structure */ | 
|  | { | 
|  | int		level; | 
|  | uint		maxblocks; | 
|  | uint		maxleafents; | 
|  | int		minleafrecs; | 
|  | int		minnoderecs; | 
|  |  | 
|  | maxleafents = (mp->m_sb.sb_agblocks + 1) / 2; | 
|  | minleafrecs = mp->m_alloc_mnr[0]; | 
|  | minnoderecs = mp->m_alloc_mnr[1]; | 
|  | maxblocks = (maxleafents + minleafrecs - 1) / minleafrecs; | 
|  | for (level = 1; maxblocks > 1; level++) | 
|  | maxblocks = (maxblocks + minnoderecs - 1) / minnoderecs; | 
|  | mp->m_ag_maxlevels = level; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the length of the longest extent in an AG. | 
|  | */ | 
|  | xfs_extlen_t | 
|  | xfs_alloc_longest_free_extent( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_perag	*pag) | 
|  | { | 
|  | xfs_extlen_t		need, delta = 0; | 
|  |  | 
|  | need = XFS_MIN_FREELIST_PAG(pag, mp); | 
|  | if (need > pag->pagf_flcount) | 
|  | delta = need - pag->pagf_flcount; | 
|  |  | 
|  | if (pag->pagf_longest > delta) | 
|  | return pag->pagf_longest - delta; | 
|  | return pag->pagf_flcount > 0 || pag->pagf_longest > 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Decide whether to use this allocation group for this allocation. | 
|  | * If so, fix up the btree freelist's size. | 
|  | */ | 
|  | STATIC int			/* error */ | 
|  | xfs_alloc_fix_freelist( | 
|  | xfs_alloc_arg_t	*args,	/* allocation argument structure */ | 
|  | int		flags)	/* XFS_ALLOC_FLAG_... */ | 
|  | { | 
|  | xfs_buf_t	*agbp;	/* agf buffer pointer */ | 
|  | xfs_agf_t	*agf;	/* a.g. freespace structure pointer */ | 
|  | xfs_buf_t	*agflbp;/* agfl buffer pointer */ | 
|  | xfs_agblock_t	bno;	/* freelist block */ | 
|  | xfs_extlen_t	delta;	/* new blocks needed in freelist */ | 
|  | int		error;	/* error result code */ | 
|  | xfs_extlen_t	longest;/* longest extent in allocation group */ | 
|  | xfs_mount_t	*mp;	/* file system mount point structure */ | 
|  | xfs_extlen_t	need;	/* total blocks needed in freelist */ | 
|  | xfs_perag_t	*pag;	/* per-ag information structure */ | 
|  | xfs_alloc_arg_t	targs;	/* local allocation arguments */ | 
|  | xfs_trans_t	*tp;	/* transaction pointer */ | 
|  |  | 
|  | mp = args->mp; | 
|  |  | 
|  | pag = args->pag; | 
|  | tp = args->tp; | 
|  | if (!pag->pagf_init) { | 
|  | if ((error = xfs_alloc_read_agf(mp, tp, args->agno, flags, | 
|  | &agbp))) | 
|  | return error; | 
|  | if (!pag->pagf_init) { | 
|  | ASSERT(flags & XFS_ALLOC_FLAG_TRYLOCK); | 
|  | ASSERT(!(flags & XFS_ALLOC_FLAG_FREEING)); | 
|  | args->agbp = NULL; | 
|  | return 0; | 
|  | } | 
|  | } else | 
|  | agbp = NULL; | 
|  |  | 
|  | /* | 
|  | * If this is a metadata preferred pag and we are user data | 
|  | * then try somewhere else if we are not being asked to | 
|  | * try harder at this point | 
|  | */ | 
|  | if (pag->pagf_metadata && args->userdata && | 
|  | (flags & XFS_ALLOC_FLAG_TRYLOCK)) { | 
|  | ASSERT(!(flags & XFS_ALLOC_FLAG_FREEING)); | 
|  | args->agbp = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!(flags & XFS_ALLOC_FLAG_FREEING)) { | 
|  | /* | 
|  | * If it looks like there isn't a long enough extent, or enough | 
|  | * total blocks, reject it. | 
|  | */ | 
|  | need = XFS_MIN_FREELIST_PAG(pag, mp); | 
|  | longest = xfs_alloc_longest_free_extent(mp, pag); | 
|  | if ((args->minlen + args->alignment + args->minalignslop - 1) > | 
|  | longest || | 
|  | ((int)(pag->pagf_freeblks + pag->pagf_flcount - | 
|  | need - args->total) < (int)args->minleft)) { | 
|  | if (agbp) | 
|  | xfs_trans_brelse(tp, agbp); | 
|  | args->agbp = NULL; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the a.g. freespace buffer. | 
|  | * Can fail if we're not blocking on locks, and it's held. | 
|  | */ | 
|  | if (agbp == NULL) { | 
|  | if ((error = xfs_alloc_read_agf(mp, tp, args->agno, flags, | 
|  | &agbp))) | 
|  | return error; | 
|  | if (agbp == NULL) { | 
|  | ASSERT(flags & XFS_ALLOC_FLAG_TRYLOCK); | 
|  | ASSERT(!(flags & XFS_ALLOC_FLAG_FREEING)); | 
|  | args->agbp = NULL; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Figure out how many blocks we should have in the freelist. | 
|  | */ | 
|  | agf = XFS_BUF_TO_AGF(agbp); | 
|  | need = XFS_MIN_FREELIST(agf, mp); | 
|  | /* | 
|  | * If there isn't enough total or single-extent, reject it. | 
|  | */ | 
|  | if (!(flags & XFS_ALLOC_FLAG_FREEING)) { | 
|  | delta = need > be32_to_cpu(agf->agf_flcount) ? | 
|  | (need - be32_to_cpu(agf->agf_flcount)) : 0; | 
|  | longest = be32_to_cpu(agf->agf_longest); | 
|  | longest = (longest > delta) ? (longest - delta) : | 
|  | (be32_to_cpu(agf->agf_flcount) > 0 || longest > 0); | 
|  | if ((args->minlen + args->alignment + args->minalignslop - 1) > | 
|  | longest || | 
|  | ((int)(be32_to_cpu(agf->agf_freeblks) + | 
|  | be32_to_cpu(agf->agf_flcount) - need - args->total) < | 
|  | (int)args->minleft)) { | 
|  | xfs_trans_brelse(tp, agbp); | 
|  | args->agbp = NULL; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Make the freelist shorter if it's too long. | 
|  | */ | 
|  | while (be32_to_cpu(agf->agf_flcount) > need) { | 
|  | xfs_buf_t	*bp; | 
|  |  | 
|  | error = xfs_alloc_get_freelist(tp, agbp, &bno, 0); | 
|  | if (error) | 
|  | return error; | 
|  | if ((error = xfs_free_ag_extent(tp, agbp, args->agno, bno, 1, 1))) | 
|  | return error; | 
|  | bp = xfs_btree_get_bufs(mp, tp, args->agno, bno, 0); | 
|  | xfs_trans_binval(tp, bp); | 
|  | } | 
|  | /* | 
|  | * Initialize the args structure. | 
|  | */ | 
|  | targs.tp = tp; | 
|  | targs.mp = mp; | 
|  | targs.agbp = agbp; | 
|  | targs.agno = args->agno; | 
|  | targs.mod = targs.minleft = targs.wasdel = targs.userdata = | 
|  | targs.minalignslop = 0; | 
|  | targs.alignment = targs.minlen = targs.prod = targs.isfl = 1; | 
|  | targs.type = XFS_ALLOCTYPE_THIS_AG; | 
|  | targs.pag = pag; | 
|  | if ((error = xfs_alloc_read_agfl(mp, tp, targs.agno, &agflbp))) | 
|  | return error; | 
|  | /* | 
|  | * Make the freelist longer if it's too short. | 
|  | */ | 
|  | while (be32_to_cpu(agf->agf_flcount) < need) { | 
|  | targs.agbno = 0; | 
|  | targs.maxlen = need - be32_to_cpu(agf->agf_flcount); | 
|  | /* | 
|  | * Allocate as many blocks as possible at once. | 
|  | */ | 
|  | if ((error = xfs_alloc_ag_vextent(&targs))) { | 
|  | xfs_trans_brelse(tp, agflbp); | 
|  | return error; | 
|  | } | 
|  | /* | 
|  | * Stop if we run out.  Won't happen if callers are obeying | 
|  | * the restrictions correctly.  Can happen for free calls | 
|  | * on a completely full ag. | 
|  | */ | 
|  | if (targs.agbno == NULLAGBLOCK) { | 
|  | if (flags & XFS_ALLOC_FLAG_FREEING) | 
|  | break; | 
|  | xfs_trans_brelse(tp, agflbp); | 
|  | args->agbp = NULL; | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | * Put each allocated block on the list. | 
|  | */ | 
|  | for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) { | 
|  | error = xfs_alloc_put_freelist(tp, agbp, | 
|  | agflbp, bno, 0); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  | } | 
|  | xfs_trans_brelse(tp, agflbp); | 
|  | args->agbp = agbp; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get a block from the freelist. | 
|  | * Returns with the buffer for the block gotten. | 
|  | */ | 
|  | int				/* error */ | 
|  | xfs_alloc_get_freelist( | 
|  | xfs_trans_t	*tp,	/* transaction pointer */ | 
|  | xfs_buf_t	*agbp,	/* buffer containing the agf structure */ | 
|  | xfs_agblock_t	*bnop,	/* block address retrieved from freelist */ | 
|  | int		btreeblk) /* destination is a AGF btree */ | 
|  | { | 
|  | xfs_agf_t	*agf;	/* a.g. freespace structure */ | 
|  | xfs_agfl_t	*agfl;	/* a.g. freelist structure */ | 
|  | xfs_buf_t	*agflbp;/* buffer for a.g. freelist structure */ | 
|  | xfs_agblock_t	bno;	/* block number returned */ | 
|  | int		error; | 
|  | int		logflags; | 
|  | xfs_mount_t	*mp;	/* mount structure */ | 
|  | xfs_perag_t	*pag;	/* per allocation group data */ | 
|  |  | 
|  | agf = XFS_BUF_TO_AGF(agbp); | 
|  | /* | 
|  | * Freelist is empty, give up. | 
|  | */ | 
|  | if (!agf->agf_flcount) { | 
|  | *bnop = NULLAGBLOCK; | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | * Read the array of free blocks. | 
|  | */ | 
|  | mp = tp->t_mountp; | 
|  | if ((error = xfs_alloc_read_agfl(mp, tp, | 
|  | be32_to_cpu(agf->agf_seqno), &agflbp))) | 
|  | return error; | 
|  | agfl = XFS_BUF_TO_AGFL(agflbp); | 
|  | /* | 
|  | * Get the block number and update the data structures. | 
|  | */ | 
|  | bno = be32_to_cpu(agfl->agfl_bno[be32_to_cpu(agf->agf_flfirst)]); | 
|  | be32_add_cpu(&agf->agf_flfirst, 1); | 
|  | xfs_trans_brelse(tp, agflbp); | 
|  | if (be32_to_cpu(agf->agf_flfirst) == XFS_AGFL_SIZE(mp)) | 
|  | agf->agf_flfirst = 0; | 
|  |  | 
|  | pag = xfs_perag_get(mp, be32_to_cpu(agf->agf_seqno)); | 
|  | be32_add_cpu(&agf->agf_flcount, -1); | 
|  | xfs_trans_agflist_delta(tp, -1); | 
|  | pag->pagf_flcount--; | 
|  | xfs_perag_put(pag); | 
|  |  | 
|  | logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT; | 
|  | if (btreeblk) { | 
|  | be32_add_cpu(&agf->agf_btreeblks, 1); | 
|  | pag->pagf_btreeblks++; | 
|  | logflags |= XFS_AGF_BTREEBLKS; | 
|  | } | 
|  |  | 
|  | xfs_alloc_log_agf(tp, agbp, logflags); | 
|  | *bnop = bno; | 
|  |  | 
|  | /* | 
|  | * As blocks are freed, they are added to the per-ag busy list and | 
|  | * remain there until the freeing transaction is committed to disk. | 
|  | * Now that we have allocated blocks, this list must be searched to see | 
|  | * if a block is being reused.  If one is, then the freeing transaction | 
|  | * must be pushed to disk before this transaction. | 
|  | * | 
|  | * We do this by setting the current transaction to a sync transaction | 
|  | * which guarantees that the freeing transaction is on disk before this | 
|  | * transaction. This is done instead of a synchronous log force here so | 
|  | * that we don't sit and wait with the AGF locked in the transaction | 
|  | * during the log force. | 
|  | */ | 
|  | if (xfs_alloc_busy_search(mp, be32_to_cpu(agf->agf_seqno), bno, 1)) | 
|  | xfs_trans_set_sync(tp); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Log the given fields from the agf structure. | 
|  | */ | 
|  | void | 
|  | xfs_alloc_log_agf( | 
|  | xfs_trans_t	*tp,	/* transaction pointer */ | 
|  | xfs_buf_t	*bp,	/* buffer for a.g. freelist header */ | 
|  | int		fields)	/* mask of fields to be logged (XFS_AGF_...) */ | 
|  | { | 
|  | int	first;		/* first byte offset */ | 
|  | int	last;		/* last byte offset */ | 
|  | static const short	offsets[] = { | 
|  | offsetof(xfs_agf_t, agf_magicnum), | 
|  | offsetof(xfs_agf_t, agf_versionnum), | 
|  | offsetof(xfs_agf_t, agf_seqno), | 
|  | offsetof(xfs_agf_t, agf_length), | 
|  | offsetof(xfs_agf_t, agf_roots[0]), | 
|  | offsetof(xfs_agf_t, agf_levels[0]), | 
|  | offsetof(xfs_agf_t, agf_flfirst), | 
|  | offsetof(xfs_agf_t, agf_fllast), | 
|  | offsetof(xfs_agf_t, agf_flcount), | 
|  | offsetof(xfs_agf_t, agf_freeblks), | 
|  | offsetof(xfs_agf_t, agf_longest), | 
|  | offsetof(xfs_agf_t, agf_btreeblks), | 
|  | sizeof(xfs_agf_t) | 
|  | }; | 
|  |  | 
|  | trace_xfs_agf(tp->t_mountp, XFS_BUF_TO_AGF(bp), fields, _RET_IP_); | 
|  |  | 
|  | xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last); | 
|  | xfs_trans_log_buf(tp, bp, (uint)first, (uint)last); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Interface for inode allocation to force the pag data to be initialized. | 
|  | */ | 
|  | int					/* error */ | 
|  | xfs_alloc_pagf_init( | 
|  | xfs_mount_t		*mp,	/* file system mount structure */ | 
|  | xfs_trans_t		*tp,	/* transaction pointer */ | 
|  | xfs_agnumber_t		agno,	/* allocation group number */ | 
|  | int			flags)	/* XFS_ALLOC_FLAGS_... */ | 
|  | { | 
|  | xfs_buf_t		*bp; | 
|  | int			error; | 
|  |  | 
|  | if ((error = xfs_alloc_read_agf(mp, tp, agno, flags, &bp))) | 
|  | return error; | 
|  | if (bp) | 
|  | xfs_trans_brelse(tp, bp); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Put the block on the freelist for the allocation group. | 
|  | */ | 
|  | int					/* error */ | 
|  | xfs_alloc_put_freelist( | 
|  | xfs_trans_t		*tp,	/* transaction pointer */ | 
|  | xfs_buf_t		*agbp,	/* buffer for a.g. freelist header */ | 
|  | xfs_buf_t		*agflbp,/* buffer for a.g. free block array */ | 
|  | xfs_agblock_t		bno,	/* block being freed */ | 
|  | int			btreeblk) /* block came from a AGF btree */ | 
|  | { | 
|  | xfs_agf_t		*agf;	/* a.g. freespace structure */ | 
|  | xfs_agfl_t		*agfl;	/* a.g. free block array */ | 
|  | __be32			*blockp;/* pointer to array entry */ | 
|  | int			error; | 
|  | int			logflags; | 
|  | xfs_mount_t		*mp;	/* mount structure */ | 
|  | xfs_perag_t		*pag;	/* per allocation group data */ | 
|  |  | 
|  | agf = XFS_BUF_TO_AGF(agbp); | 
|  | mp = tp->t_mountp; | 
|  |  | 
|  | if (!agflbp && (error = xfs_alloc_read_agfl(mp, tp, | 
|  | be32_to_cpu(agf->agf_seqno), &agflbp))) | 
|  | return error; | 
|  | agfl = XFS_BUF_TO_AGFL(agflbp); | 
|  | be32_add_cpu(&agf->agf_fllast, 1); | 
|  | if (be32_to_cpu(agf->agf_fllast) == XFS_AGFL_SIZE(mp)) | 
|  | agf->agf_fllast = 0; | 
|  |  | 
|  | pag = xfs_perag_get(mp, be32_to_cpu(agf->agf_seqno)); | 
|  | be32_add_cpu(&agf->agf_flcount, 1); | 
|  | xfs_trans_agflist_delta(tp, 1); | 
|  | pag->pagf_flcount++; | 
|  |  | 
|  | logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT; | 
|  | if (btreeblk) { | 
|  | be32_add_cpu(&agf->agf_btreeblks, -1); | 
|  | pag->pagf_btreeblks--; | 
|  | logflags |= XFS_AGF_BTREEBLKS; | 
|  | } | 
|  | xfs_perag_put(pag); | 
|  |  | 
|  | xfs_alloc_log_agf(tp, agbp, logflags); | 
|  |  | 
|  | ASSERT(be32_to_cpu(agf->agf_flcount) <= XFS_AGFL_SIZE(mp)); | 
|  | blockp = &agfl->agfl_bno[be32_to_cpu(agf->agf_fllast)]; | 
|  | *blockp = cpu_to_be32(bno); | 
|  | xfs_alloc_log_agf(tp, agbp, logflags); | 
|  | xfs_trans_log_buf(tp, agflbp, | 
|  | (int)((xfs_caddr_t)blockp - (xfs_caddr_t)agfl), | 
|  | (int)((xfs_caddr_t)blockp - (xfs_caddr_t)agfl + | 
|  | sizeof(xfs_agblock_t) - 1)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read in the allocation group header (free/alloc section). | 
|  | */ | 
|  | int					/* error */ | 
|  | xfs_read_agf( | 
|  | struct xfs_mount	*mp,	/* mount point structure */ | 
|  | struct xfs_trans	*tp,	/* transaction pointer */ | 
|  | xfs_agnumber_t		agno,	/* allocation group number */ | 
|  | int			flags,	/* XFS_BUF_ */ | 
|  | struct xfs_buf		**bpp)	/* buffer for the ag freelist header */ | 
|  | { | 
|  | struct xfs_agf	*agf;		/* ag freelist header */ | 
|  | int		agf_ok;		/* set if agf is consistent */ | 
|  | int		error; | 
|  |  | 
|  | ASSERT(agno != NULLAGNUMBER); | 
|  | error = xfs_trans_read_buf( | 
|  | mp, tp, mp->m_ddev_targp, | 
|  | XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp)), | 
|  | XFS_FSS_TO_BB(mp, 1), flags, bpp); | 
|  | if (error) | 
|  | return error; | 
|  | if (!*bpp) | 
|  | return 0; | 
|  |  | 
|  | ASSERT(!XFS_BUF_GETERROR(*bpp)); | 
|  | agf = XFS_BUF_TO_AGF(*bpp); | 
|  |  | 
|  | /* | 
|  | * Validate the magic number of the agf block. | 
|  | */ | 
|  | agf_ok = | 
|  | be32_to_cpu(agf->agf_magicnum) == XFS_AGF_MAGIC && | 
|  | XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum)) && | 
|  | be32_to_cpu(agf->agf_freeblks) <= be32_to_cpu(agf->agf_length) && | 
|  | be32_to_cpu(agf->agf_flfirst) < XFS_AGFL_SIZE(mp) && | 
|  | be32_to_cpu(agf->agf_fllast) < XFS_AGFL_SIZE(mp) && | 
|  | be32_to_cpu(agf->agf_flcount) <= XFS_AGFL_SIZE(mp) && | 
|  | be32_to_cpu(agf->agf_seqno) == agno; | 
|  | if (xfs_sb_version_haslazysbcount(&mp->m_sb)) | 
|  | agf_ok = agf_ok && be32_to_cpu(agf->agf_btreeblks) <= | 
|  | be32_to_cpu(agf->agf_length); | 
|  | if (unlikely(XFS_TEST_ERROR(!agf_ok, mp, XFS_ERRTAG_ALLOC_READ_AGF, | 
|  | XFS_RANDOM_ALLOC_READ_AGF))) { | 
|  | XFS_CORRUPTION_ERROR("xfs_alloc_read_agf", | 
|  | XFS_ERRLEVEL_LOW, mp, agf); | 
|  | xfs_trans_brelse(tp, *bpp); | 
|  | return XFS_ERROR(EFSCORRUPTED); | 
|  | } | 
|  | XFS_BUF_SET_VTYPE_REF(*bpp, B_FS_AGF, XFS_AGF_REF); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read in the allocation group header (free/alloc section). | 
|  | */ | 
|  | int					/* error */ | 
|  | xfs_alloc_read_agf( | 
|  | struct xfs_mount	*mp,	/* mount point structure */ | 
|  | struct xfs_trans	*tp,	/* transaction pointer */ | 
|  | xfs_agnumber_t		agno,	/* allocation group number */ | 
|  | int			flags,	/* XFS_ALLOC_FLAG_... */ | 
|  | struct xfs_buf		**bpp)	/* buffer for the ag freelist header */ | 
|  | { | 
|  | struct xfs_agf		*agf;		/* ag freelist header */ | 
|  | struct xfs_perag	*pag;		/* per allocation group data */ | 
|  | int			error; | 
|  |  | 
|  | ASSERT(agno != NULLAGNUMBER); | 
|  |  | 
|  | error = xfs_read_agf(mp, tp, agno, | 
|  | (flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0, | 
|  | bpp); | 
|  | if (error) | 
|  | return error; | 
|  | if (!*bpp) | 
|  | return 0; | 
|  | ASSERT(!XFS_BUF_GETERROR(*bpp)); | 
|  |  | 
|  | agf = XFS_BUF_TO_AGF(*bpp); | 
|  | pag = xfs_perag_get(mp, agno); | 
|  | if (!pag->pagf_init) { | 
|  | pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks); | 
|  | pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks); | 
|  | pag->pagf_flcount = be32_to_cpu(agf->agf_flcount); | 
|  | pag->pagf_longest = be32_to_cpu(agf->agf_longest); | 
|  | pag->pagf_levels[XFS_BTNUM_BNOi] = | 
|  | be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]); | 
|  | pag->pagf_levels[XFS_BTNUM_CNTi] = | 
|  | be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]); | 
|  | spin_lock_init(&pag->pagb_lock); | 
|  | pag->pagb_count = 0; | 
|  | pag->pagb_tree = RB_ROOT; | 
|  | pag->pagf_init = 1; | 
|  | } | 
|  | #ifdef DEBUG | 
|  | else if (!XFS_FORCED_SHUTDOWN(mp)) { | 
|  | ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks)); | 
|  | ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks)); | 
|  | ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount)); | 
|  | ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest)); | 
|  | ASSERT(pag->pagf_levels[XFS_BTNUM_BNOi] == | 
|  | be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi])); | 
|  | ASSERT(pag->pagf_levels[XFS_BTNUM_CNTi] == | 
|  | be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi])); | 
|  | } | 
|  | #endif | 
|  | xfs_perag_put(pag); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate an extent (variable-size). | 
|  | * Depending on the allocation type, we either look in a single allocation | 
|  | * group or loop over the allocation groups to find the result. | 
|  | */ | 
|  | int				/* error */ | 
|  | xfs_alloc_vextent( | 
|  | xfs_alloc_arg_t	*args)	/* allocation argument structure */ | 
|  | { | 
|  | xfs_agblock_t	agsize;	/* allocation group size */ | 
|  | int		error; | 
|  | int		flags;	/* XFS_ALLOC_FLAG_... locking flags */ | 
|  | xfs_extlen_t	minleft;/* minimum left value, temp copy */ | 
|  | xfs_mount_t	*mp;	/* mount structure pointer */ | 
|  | xfs_agnumber_t	sagno;	/* starting allocation group number */ | 
|  | xfs_alloctype_t	type;	/* input allocation type */ | 
|  | int		bump_rotor = 0; | 
|  | int		no_min = 0; | 
|  | xfs_agnumber_t	rotorstep = xfs_rotorstep; /* inode32 agf stepper */ | 
|  |  | 
|  | mp = args->mp; | 
|  | type = args->otype = args->type; | 
|  | args->agbno = NULLAGBLOCK; | 
|  | /* | 
|  | * Just fix this up, for the case where the last a.g. is shorter | 
|  | * (or there's only one a.g.) and the caller couldn't easily figure | 
|  | * that out (xfs_bmap_alloc). | 
|  | */ | 
|  | agsize = mp->m_sb.sb_agblocks; | 
|  | if (args->maxlen > agsize) | 
|  | args->maxlen = agsize; | 
|  | if (args->alignment == 0) | 
|  | args->alignment = 1; | 
|  | ASSERT(XFS_FSB_TO_AGNO(mp, args->fsbno) < mp->m_sb.sb_agcount); | 
|  | ASSERT(XFS_FSB_TO_AGBNO(mp, args->fsbno) < agsize); | 
|  | ASSERT(args->minlen <= args->maxlen); | 
|  | ASSERT(args->minlen <= agsize); | 
|  | ASSERT(args->mod < args->prod); | 
|  | if (XFS_FSB_TO_AGNO(mp, args->fsbno) >= mp->m_sb.sb_agcount || | 
|  | XFS_FSB_TO_AGBNO(mp, args->fsbno) >= agsize || | 
|  | args->minlen > args->maxlen || args->minlen > agsize || | 
|  | args->mod >= args->prod) { | 
|  | args->fsbno = NULLFSBLOCK; | 
|  | trace_xfs_alloc_vextent_badargs(args); | 
|  | return 0; | 
|  | } | 
|  | minleft = args->minleft; | 
|  |  | 
|  | switch (type) { | 
|  | case XFS_ALLOCTYPE_THIS_AG: | 
|  | case XFS_ALLOCTYPE_NEAR_BNO: | 
|  | case XFS_ALLOCTYPE_THIS_BNO: | 
|  | /* | 
|  | * These three force us into a single a.g. | 
|  | */ | 
|  | args->agno = XFS_FSB_TO_AGNO(mp, args->fsbno); | 
|  | args->pag = xfs_perag_get(mp, args->agno); | 
|  | args->minleft = 0; | 
|  | error = xfs_alloc_fix_freelist(args, 0); | 
|  | args->minleft = minleft; | 
|  | if (error) { | 
|  | trace_xfs_alloc_vextent_nofix(args); | 
|  | goto error0; | 
|  | } | 
|  | if (!args->agbp) { | 
|  | trace_xfs_alloc_vextent_noagbp(args); | 
|  | break; | 
|  | } | 
|  | args->agbno = XFS_FSB_TO_AGBNO(mp, args->fsbno); | 
|  | if ((error = xfs_alloc_ag_vextent(args))) | 
|  | goto error0; | 
|  | break; | 
|  | case XFS_ALLOCTYPE_START_BNO: | 
|  | /* | 
|  | * Try near allocation first, then anywhere-in-ag after | 
|  | * the first a.g. fails. | 
|  | */ | 
|  | if ((args->userdata  == XFS_ALLOC_INITIAL_USER_DATA) && | 
|  | (mp->m_flags & XFS_MOUNT_32BITINODES)) { | 
|  | args->fsbno = XFS_AGB_TO_FSB(mp, | 
|  | ((mp->m_agfrotor / rotorstep) % | 
|  | mp->m_sb.sb_agcount), 0); | 
|  | bump_rotor = 1; | 
|  | } | 
|  | args->agbno = XFS_FSB_TO_AGBNO(mp, args->fsbno); | 
|  | args->type = XFS_ALLOCTYPE_NEAR_BNO; | 
|  | /* FALLTHROUGH */ | 
|  | case XFS_ALLOCTYPE_ANY_AG: | 
|  | case XFS_ALLOCTYPE_START_AG: | 
|  | case XFS_ALLOCTYPE_FIRST_AG: | 
|  | /* | 
|  | * Rotate through the allocation groups looking for a winner. | 
|  | */ | 
|  | if (type == XFS_ALLOCTYPE_ANY_AG) { | 
|  | /* | 
|  | * Start with the last place we left off. | 
|  | */ | 
|  | args->agno = sagno = (mp->m_agfrotor / rotorstep) % | 
|  | mp->m_sb.sb_agcount; | 
|  | args->type = XFS_ALLOCTYPE_THIS_AG; | 
|  | flags = XFS_ALLOC_FLAG_TRYLOCK; | 
|  | } else if (type == XFS_ALLOCTYPE_FIRST_AG) { | 
|  | /* | 
|  | * Start with allocation group given by bno. | 
|  | */ | 
|  | args->agno = XFS_FSB_TO_AGNO(mp, args->fsbno); | 
|  | args->type = XFS_ALLOCTYPE_THIS_AG; | 
|  | sagno = 0; | 
|  | flags = 0; | 
|  | } else { | 
|  | if (type == XFS_ALLOCTYPE_START_AG) | 
|  | args->type = XFS_ALLOCTYPE_THIS_AG; | 
|  | /* | 
|  | * Start with the given allocation group. | 
|  | */ | 
|  | args->agno = sagno = XFS_FSB_TO_AGNO(mp, args->fsbno); | 
|  | flags = XFS_ALLOC_FLAG_TRYLOCK; | 
|  | } | 
|  | /* | 
|  | * Loop over allocation groups twice; first time with | 
|  | * trylock set, second time without. | 
|  | */ | 
|  | for (;;) { | 
|  | args->pag = xfs_perag_get(mp, args->agno); | 
|  | if (no_min) args->minleft = 0; | 
|  | error = xfs_alloc_fix_freelist(args, flags); | 
|  | args->minleft = minleft; | 
|  | if (error) { | 
|  | trace_xfs_alloc_vextent_nofix(args); | 
|  | goto error0; | 
|  | } | 
|  | /* | 
|  | * If we get a buffer back then the allocation will fly. | 
|  | */ | 
|  | if (args->agbp) { | 
|  | if ((error = xfs_alloc_ag_vextent(args))) | 
|  | goto error0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | trace_xfs_alloc_vextent_loopfailed(args); | 
|  |  | 
|  | /* | 
|  | * Didn't work, figure out the next iteration. | 
|  | */ | 
|  | if (args->agno == sagno && | 
|  | type == XFS_ALLOCTYPE_START_BNO) | 
|  | args->type = XFS_ALLOCTYPE_THIS_AG; | 
|  | /* | 
|  | * For the first allocation, we can try any AG to get | 
|  | * space.  However, if we already have allocated a | 
|  | * block, we don't want to try AGs whose number is below | 
|  | * sagno. Otherwise, we may end up with out-of-order | 
|  | * locking of AGF, which might cause deadlock. | 
|  | */ | 
|  | if (++(args->agno) == mp->m_sb.sb_agcount) { | 
|  | if (args->firstblock != NULLFSBLOCK) | 
|  | args->agno = sagno; | 
|  | else | 
|  | args->agno = 0; | 
|  | } | 
|  | /* | 
|  | * Reached the starting a.g., must either be done | 
|  | * or switch to non-trylock mode. | 
|  | */ | 
|  | if (args->agno == sagno) { | 
|  | if (no_min == 1) { | 
|  | args->agbno = NULLAGBLOCK; | 
|  | trace_xfs_alloc_vextent_allfailed(args); | 
|  | break; | 
|  | } | 
|  | if (flags == 0) { | 
|  | no_min = 1; | 
|  | } else { | 
|  | flags = 0; | 
|  | if (type == XFS_ALLOCTYPE_START_BNO) { | 
|  | args->agbno = XFS_FSB_TO_AGBNO(mp, | 
|  | args->fsbno); | 
|  | args->type = XFS_ALLOCTYPE_NEAR_BNO; | 
|  | } | 
|  | } | 
|  | } | 
|  | xfs_perag_put(args->pag); | 
|  | } | 
|  | if (bump_rotor || (type == XFS_ALLOCTYPE_ANY_AG)) { | 
|  | if (args->agno == sagno) | 
|  | mp->m_agfrotor = (mp->m_agfrotor + 1) % | 
|  | (mp->m_sb.sb_agcount * rotorstep); | 
|  | else | 
|  | mp->m_agfrotor = (args->agno * rotorstep + 1) % | 
|  | (mp->m_sb.sb_agcount * rotorstep); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | ASSERT(0); | 
|  | /* NOTREACHED */ | 
|  | } | 
|  | if (args->agbno == NULLAGBLOCK) | 
|  | args->fsbno = NULLFSBLOCK; | 
|  | else { | 
|  | args->fsbno = XFS_AGB_TO_FSB(mp, args->agno, args->agbno); | 
|  | #ifdef DEBUG | 
|  | ASSERT(args->len >= args->minlen); | 
|  | ASSERT(args->len <= args->maxlen); | 
|  | ASSERT(args->agbno % args->alignment == 0); | 
|  | XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno), | 
|  | args->len); | 
|  | #endif | 
|  | } | 
|  | xfs_perag_put(args->pag); | 
|  | return 0; | 
|  | error0: | 
|  | xfs_perag_put(args->pag); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free an extent. | 
|  | * Just break up the extent address and hand off to xfs_free_ag_extent | 
|  | * after fixing up the freelist. | 
|  | */ | 
|  | int				/* error */ | 
|  | xfs_free_extent( | 
|  | xfs_trans_t	*tp,	/* transaction pointer */ | 
|  | xfs_fsblock_t	bno,	/* starting block number of extent */ | 
|  | xfs_extlen_t	len)	/* length of extent */ | 
|  | { | 
|  | xfs_alloc_arg_t	args; | 
|  | int		error; | 
|  |  | 
|  | ASSERT(len != 0); | 
|  | memset(&args, 0, sizeof(xfs_alloc_arg_t)); | 
|  | args.tp = tp; | 
|  | args.mp = tp->t_mountp; | 
|  | args.agno = XFS_FSB_TO_AGNO(args.mp, bno); | 
|  | ASSERT(args.agno < args.mp->m_sb.sb_agcount); | 
|  | args.agbno = XFS_FSB_TO_AGBNO(args.mp, bno); | 
|  | args.pag = xfs_perag_get(args.mp, args.agno); | 
|  | if ((error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING))) | 
|  | goto error0; | 
|  | #ifdef DEBUG | 
|  | ASSERT(args.agbp != NULL); | 
|  | ASSERT((args.agbno + len) <= | 
|  | be32_to_cpu(XFS_BUF_TO_AGF(args.agbp)->agf_length)); | 
|  | #endif | 
|  | error = xfs_free_ag_extent(tp, args.agbp, args.agno, args.agbno, len, 0); | 
|  | error0: | 
|  | xfs_perag_put(args.pag); | 
|  | return error; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * AG Busy list management | 
|  | * The busy list contains block ranges that have been freed but whose | 
|  | * transactions have not yet hit disk.  If any block listed in a busy | 
|  | * list is reused, the transaction that freed it must be forced to disk | 
|  | * before continuing to use the block. | 
|  | * | 
|  | * xfs_alloc_busy_insert - add to the per-ag busy list | 
|  | * xfs_alloc_busy_clear - remove an item from the per-ag busy list | 
|  | * xfs_alloc_busy_search - search for a busy extent | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Insert a new extent into the busy tree. | 
|  | * | 
|  | * The busy extent tree is indexed by the start block of the busy extent. | 
|  | * there can be multiple overlapping ranges in the busy extent tree but only | 
|  | * ever one entry at a given start block. The reason for this is that | 
|  | * multi-block extents can be freed, then smaller chunks of that extent | 
|  | * allocated and freed again before the first transaction commit is on disk. | 
|  | * If the exact same start block is freed a second time, we have to wait for | 
|  | * that busy extent to pass out of the tree before the new extent is inserted. | 
|  | * There are two main cases we have to handle here. | 
|  | * | 
|  | * The first case is a transaction that triggers a "free - allocate - free" | 
|  | * cycle. This can occur during btree manipulations as a btree block is freed | 
|  | * to the freelist, then allocated from the free list, then freed again. In | 
|  | * this case, the second extxpnet free is what triggers the duplicate and as | 
|  | * such the transaction IDs should match. Because the extent was allocated in | 
|  | * this transaction, the transaction must be marked as synchronous. This is | 
|  | * true for all cases where the free/alloc/free occurs in the one transaction, | 
|  | * hence the addition of the ASSERT(tp->t_flags & XFS_TRANS_SYNC) to this case. | 
|  | * This serves to catch violations of the second case quite effectively. | 
|  | * | 
|  | * The second case is where the free/alloc/free occur in different | 
|  | * transactions. In this case, the thread freeing the extent the second time | 
|  | * can't mark the extent busy immediately because it is already tracked in a | 
|  | * transaction that may be committing.  When the log commit for the existing | 
|  | * busy extent completes, the busy extent will be removed from the tree. If we | 
|  | * allow the second busy insert to continue using that busy extent structure, | 
|  | * it can be freed before this transaction is safely in the log.  Hence our | 
|  | * only option in this case is to force the log to remove the existing busy | 
|  | * extent from the list before we insert the new one with the current | 
|  | * transaction ID. | 
|  | * | 
|  | * The problem we are trying to avoid in the free-alloc-free in separate | 
|  | * transactions is most easily described with a timeline: | 
|  | * | 
|  | *      Thread 1	Thread 2	Thread 3	xfslogd | 
|  | *	xact alloc | 
|  | *	free X | 
|  | *	mark busy | 
|  | *	commit xact | 
|  | *	free xact | 
|  | *			xact alloc | 
|  | *			alloc X | 
|  | *			busy search | 
|  | *			mark xact sync | 
|  | *			commit xact | 
|  | *			free xact | 
|  | *			force log | 
|  | *			checkpoint starts | 
|  | *			.... | 
|  | *					xact alloc | 
|  | *					free X | 
|  | *					mark busy | 
|  | *					finds match | 
|  | *					*** KABOOM! *** | 
|  | *					.... | 
|  | *							log IO completes | 
|  | *							unbusy X | 
|  | *			checkpoint completes | 
|  | * | 
|  | * By issuing a log force in thread 3 @ "KABOOM", the thread will block until | 
|  | * the checkpoint completes, and the busy extent it matched will have been | 
|  | * removed from the tree when it is woken. Hence it can then continue safely. | 
|  | * | 
|  | * However, to ensure this matching process is robust, we need to use the | 
|  | * transaction ID for identifying transaction, as delayed logging results in | 
|  | * the busy extent and transaction lifecycles being different. i.e. the busy | 
|  | * extent is active for a lot longer than the transaction.  Hence the | 
|  | * transaction structure can be freed and reallocated, then mark the same | 
|  | * extent busy again in the new transaction. In this case the new transaction | 
|  | * will have a different tid but can have the same address, and hence we need | 
|  | * to check against the tid. | 
|  | * | 
|  | * Future: for delayed logging, we could avoid the log force if the extent was | 
|  | * first freed in the current checkpoint sequence. This, however, requires the | 
|  | * ability to pin the current checkpoint in memory until this transaction | 
|  | * commits to ensure that both the original free and the current one combine | 
|  | * logically into the one checkpoint. If the checkpoint sequences are | 
|  | * different, however, we still need to wait on a log force. | 
|  | */ | 
|  | void | 
|  | xfs_alloc_busy_insert( | 
|  | struct xfs_trans	*tp, | 
|  | xfs_agnumber_t		agno, | 
|  | xfs_agblock_t		bno, | 
|  | xfs_extlen_t		len) | 
|  | { | 
|  | struct xfs_busy_extent	*new; | 
|  | struct xfs_busy_extent	*busyp; | 
|  | struct xfs_perag	*pag; | 
|  | struct rb_node		**rbp; | 
|  | struct rb_node		*parent; | 
|  | int			match; | 
|  |  | 
|  |  | 
|  | new = kmem_zalloc(sizeof(struct xfs_busy_extent), KM_MAYFAIL); | 
|  | if (!new) { | 
|  | /* | 
|  | * No Memory!  Since it is now not possible to track the free | 
|  | * block, make this a synchronous transaction to insure that | 
|  | * the block is not reused before this transaction commits. | 
|  | */ | 
|  | trace_xfs_alloc_busy(tp, agno, bno, len, 1); | 
|  | xfs_trans_set_sync(tp); | 
|  | return; | 
|  | } | 
|  |  | 
|  | new->agno = agno; | 
|  | new->bno = bno; | 
|  | new->length = len; | 
|  | new->tid = xfs_log_get_trans_ident(tp); | 
|  |  | 
|  | INIT_LIST_HEAD(&new->list); | 
|  |  | 
|  | /* trace before insert to be able to see failed inserts */ | 
|  | trace_xfs_alloc_busy(tp, agno, bno, len, 0); | 
|  |  | 
|  | pag = xfs_perag_get(tp->t_mountp, new->agno); | 
|  | restart: | 
|  | spin_lock(&pag->pagb_lock); | 
|  | rbp = &pag->pagb_tree.rb_node; | 
|  | parent = NULL; | 
|  | busyp = NULL; | 
|  | match = 0; | 
|  | while (*rbp && match >= 0) { | 
|  | parent = *rbp; | 
|  | busyp = rb_entry(parent, struct xfs_busy_extent, rb_node); | 
|  |  | 
|  | if (new->bno < busyp->bno) { | 
|  | /* may overlap, but exact start block is lower */ | 
|  | rbp = &(*rbp)->rb_left; | 
|  | if (new->bno + new->length > busyp->bno) | 
|  | match = busyp->tid == new->tid ? 1 : -1; | 
|  | } else if (new->bno > busyp->bno) { | 
|  | /* may overlap, but exact start block is higher */ | 
|  | rbp = &(*rbp)->rb_right; | 
|  | if (bno < busyp->bno + busyp->length) | 
|  | match = busyp->tid == new->tid ? 1 : -1; | 
|  | } else { | 
|  | match = busyp->tid == new->tid ? 1 : -1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (match < 0) { | 
|  | /* overlap marked busy in different transaction */ | 
|  | spin_unlock(&pag->pagb_lock); | 
|  | xfs_log_force(tp->t_mountp, XFS_LOG_SYNC); | 
|  | goto restart; | 
|  | } | 
|  | if (match > 0) { | 
|  | /* | 
|  | * overlap marked busy in same transaction. Update if exact | 
|  | * start block match, otherwise combine the busy extents into | 
|  | * a single range. | 
|  | */ | 
|  | if (busyp->bno == new->bno) { | 
|  | busyp->length = max(busyp->length, new->length); | 
|  | spin_unlock(&pag->pagb_lock); | 
|  | ASSERT(tp->t_flags & XFS_TRANS_SYNC); | 
|  | xfs_perag_put(pag); | 
|  | kmem_free(new); | 
|  | return; | 
|  | } | 
|  | rb_erase(&busyp->rb_node, &pag->pagb_tree); | 
|  | new->length = max(busyp->bno + busyp->length, | 
|  | new->bno + new->length) - | 
|  | min(busyp->bno, new->bno); | 
|  | new->bno = min(busyp->bno, new->bno); | 
|  | } else | 
|  | busyp = NULL; | 
|  |  | 
|  | rb_link_node(&new->rb_node, parent, rbp); | 
|  | rb_insert_color(&new->rb_node, &pag->pagb_tree); | 
|  |  | 
|  | list_add(&new->list, &tp->t_busy); | 
|  | spin_unlock(&pag->pagb_lock); | 
|  | xfs_perag_put(pag); | 
|  | kmem_free(busyp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Search for a busy extent within the range of the extent we are about to | 
|  | * allocate.  You need to be holding the busy extent tree lock when calling | 
|  | * xfs_alloc_busy_search(). This function returns 0 for no overlapping busy | 
|  | * extent, -1 for an overlapping but not exact busy extent, and 1 for an exact | 
|  | * match. This is done so that a non-zero return indicates an overlap that | 
|  | * will require a synchronous transaction, but it can still be | 
|  | * used to distinguish between a partial or exact match. | 
|  | */ | 
|  | static int | 
|  | xfs_alloc_busy_search( | 
|  | struct xfs_mount	*mp, | 
|  | xfs_agnumber_t		agno, | 
|  | xfs_agblock_t		bno, | 
|  | xfs_extlen_t		len) | 
|  | { | 
|  | struct xfs_perag	*pag; | 
|  | struct rb_node		*rbp; | 
|  | struct xfs_busy_extent	*busyp; | 
|  | int			match = 0; | 
|  |  | 
|  | pag = xfs_perag_get(mp, agno); | 
|  | spin_lock(&pag->pagb_lock); | 
|  |  | 
|  | rbp = pag->pagb_tree.rb_node; | 
|  |  | 
|  | /* find closest start bno overlap */ | 
|  | while (rbp) { | 
|  | busyp = rb_entry(rbp, struct xfs_busy_extent, rb_node); | 
|  | if (bno < busyp->bno) { | 
|  | /* may overlap, but exact start block is lower */ | 
|  | if (bno + len > busyp->bno) | 
|  | match = -1; | 
|  | rbp = rbp->rb_left; | 
|  | } else if (bno > busyp->bno) { | 
|  | /* may overlap, but exact start block is higher */ | 
|  | if (bno < busyp->bno + busyp->length) | 
|  | match = -1; | 
|  | rbp = rbp->rb_right; | 
|  | } else { | 
|  | /* bno matches busyp, length determines exact match */ | 
|  | match = (busyp->length == len) ? 1 : -1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | spin_unlock(&pag->pagb_lock); | 
|  | trace_xfs_alloc_busysearch(mp, agno, bno, len, !!match); | 
|  | xfs_perag_put(pag); | 
|  | return match; | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_alloc_busy_clear( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_busy_extent	*busyp) | 
|  | { | 
|  | struct xfs_perag	*pag; | 
|  |  | 
|  | trace_xfs_alloc_unbusy(mp, busyp->agno, busyp->bno, | 
|  | busyp->length); | 
|  |  | 
|  | ASSERT(xfs_alloc_busy_search(mp, busyp->agno, busyp->bno, | 
|  | busyp->length) == 1); | 
|  |  | 
|  | list_del_init(&busyp->list); | 
|  |  | 
|  | pag = xfs_perag_get(mp, busyp->agno); | 
|  | spin_lock(&pag->pagb_lock); | 
|  | rb_erase(&busyp->rb_node, &pag->pagb_tree); | 
|  | spin_unlock(&pag->pagb_lock); | 
|  | xfs_perag_put(pag); | 
|  |  | 
|  | kmem_free(busyp); | 
|  | } |