|  | /* | 
|  | * balloc.c | 
|  | * | 
|  | * PURPOSE | 
|  | *	Block allocation handling routines for the OSTA-UDF(tm) filesystem. | 
|  | * | 
|  | * COPYRIGHT | 
|  | *	This file is distributed under the terms of the GNU General Public | 
|  | *	License (GPL). Copies of the GPL can be obtained from: | 
|  | *		ftp://prep.ai.mit.edu/pub/gnu/GPL | 
|  | *	Each contributing author retains all rights to their own work. | 
|  | * | 
|  | *  (C) 1999-2001 Ben Fennema | 
|  | *  (C) 1999 Stelias Computing Inc | 
|  | * | 
|  | * HISTORY | 
|  | * | 
|  | *  02/24/99 blf  Created. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include "udfdecl.h" | 
|  |  | 
|  | #include <linux/quotaops.h> | 
|  | #include <linux/buffer_head.h> | 
|  | #include <linux/bitops.h> | 
|  |  | 
|  | #include "udf_i.h" | 
|  | #include "udf_sb.h" | 
|  |  | 
|  | #define udf_clear_bit(nr,addr) ext2_clear_bit(nr,addr) | 
|  | #define udf_set_bit(nr,addr) ext2_set_bit(nr,addr) | 
|  | #define udf_test_bit(nr, addr) ext2_test_bit(nr, addr) | 
|  | #define udf_find_first_one_bit(addr, size) find_first_one_bit(addr, size) | 
|  | #define udf_find_next_one_bit(addr, size, offset) find_next_one_bit(addr, size, offset) | 
|  |  | 
|  | #define leBPL_to_cpup(x) leNUM_to_cpup(BITS_PER_LONG, x) | 
|  | #define leNUM_to_cpup(x,y) xleNUM_to_cpup(x,y) | 
|  | #define xleNUM_to_cpup(x,y) (le ## x ## _to_cpup(y)) | 
|  | #define uintBPL_t uint(BITS_PER_LONG) | 
|  | #define uint(x) xuint(x) | 
|  | #define xuint(x) __le ## x | 
|  |  | 
|  | static inline int find_next_one_bit (void * addr, int size, int offset) | 
|  | { | 
|  | uintBPL_t * p = ((uintBPL_t *) addr) + (offset / BITS_PER_LONG); | 
|  | int result = offset & ~(BITS_PER_LONG-1); | 
|  | unsigned long tmp; | 
|  |  | 
|  | if (offset >= size) | 
|  | return size; | 
|  | size -= result; | 
|  | offset &= (BITS_PER_LONG-1); | 
|  | if (offset) | 
|  | { | 
|  | tmp = leBPL_to_cpup(p++); | 
|  | tmp &= ~0UL << offset; | 
|  | if (size < BITS_PER_LONG) | 
|  | goto found_first; | 
|  | if (tmp) | 
|  | goto found_middle; | 
|  | size -= BITS_PER_LONG; | 
|  | result += BITS_PER_LONG; | 
|  | } | 
|  | while (size & ~(BITS_PER_LONG-1)) | 
|  | { | 
|  | if ((tmp = leBPL_to_cpup(p++))) | 
|  | goto found_middle; | 
|  | result += BITS_PER_LONG; | 
|  | size -= BITS_PER_LONG; | 
|  | } | 
|  | if (!size) | 
|  | return result; | 
|  | tmp = leBPL_to_cpup(p); | 
|  | found_first: | 
|  | tmp &= ~0UL >> (BITS_PER_LONG-size); | 
|  | found_middle: | 
|  | return result + ffz(~tmp); | 
|  | } | 
|  |  | 
|  | #define find_first_one_bit(addr, size)\ | 
|  | find_next_one_bit((addr), (size), 0) | 
|  |  | 
|  | static int read_block_bitmap(struct super_block * sb, | 
|  | struct udf_bitmap *bitmap, unsigned int block, unsigned long bitmap_nr) | 
|  | { | 
|  | struct buffer_head *bh = NULL; | 
|  | int retval = 0; | 
|  | kernel_lb_addr loc; | 
|  |  | 
|  | loc.logicalBlockNum = bitmap->s_extPosition; | 
|  | loc.partitionReferenceNum = UDF_SB_PARTITION(sb); | 
|  |  | 
|  | bh = udf_tread(sb, udf_get_lb_pblock(sb, loc, block)); | 
|  | if (!bh) | 
|  | { | 
|  | retval = -EIO; | 
|  | } | 
|  | bitmap->s_block_bitmap[bitmap_nr] = bh; | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int __load_block_bitmap(struct super_block * sb, | 
|  | struct udf_bitmap *bitmap, unsigned int block_group) | 
|  | { | 
|  | int retval = 0; | 
|  | int nr_groups = bitmap->s_nr_groups; | 
|  |  | 
|  | if (block_group >= nr_groups) | 
|  | { | 
|  | udf_debug("block_group (%d) > nr_groups (%d)\n", block_group, nr_groups); | 
|  | } | 
|  |  | 
|  | if (bitmap->s_block_bitmap[block_group]) | 
|  | return block_group; | 
|  | else | 
|  | { | 
|  | retval = read_block_bitmap(sb, bitmap, block_group, block_group); | 
|  | if (retval < 0) | 
|  | return retval; | 
|  | return block_group; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int load_block_bitmap(struct super_block * sb, | 
|  | struct udf_bitmap *bitmap, unsigned int block_group) | 
|  | { | 
|  | int slot; | 
|  |  | 
|  | slot = __load_block_bitmap(sb, bitmap, block_group); | 
|  |  | 
|  | if (slot < 0) | 
|  | return slot; | 
|  |  | 
|  | if (!bitmap->s_block_bitmap[slot]) | 
|  | return -EIO; | 
|  |  | 
|  | return slot; | 
|  | } | 
|  |  | 
|  | static void udf_bitmap_free_blocks(struct super_block * sb, | 
|  | struct inode * inode, | 
|  | struct udf_bitmap *bitmap, | 
|  | kernel_lb_addr bloc, uint32_t offset, uint32_t count) | 
|  | { | 
|  | struct udf_sb_info *sbi = UDF_SB(sb); | 
|  | struct buffer_head * bh = NULL; | 
|  | unsigned long block; | 
|  | unsigned long block_group; | 
|  | unsigned long bit; | 
|  | unsigned long i; | 
|  | int bitmap_nr; | 
|  | unsigned long overflow; | 
|  |  | 
|  | mutex_lock(&sbi->s_alloc_mutex); | 
|  | if (bloc.logicalBlockNum < 0 || | 
|  | (bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)) | 
|  | { | 
|  | udf_debug("%d < %d || %d + %d > %d\n", | 
|  | bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count, | 
|  | UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)); | 
|  | goto error_return; | 
|  | } | 
|  |  | 
|  | block = bloc.logicalBlockNum + offset + (sizeof(struct spaceBitmapDesc) << 3); | 
|  |  | 
|  | do_more: | 
|  | overflow = 0; | 
|  | block_group = block >> (sb->s_blocksize_bits + 3); | 
|  | bit = block % (sb->s_blocksize << 3); | 
|  |  | 
|  | /* | 
|  | * Check to see if we are freeing blocks across a group boundary. | 
|  | */ | 
|  | if (bit + count > (sb->s_blocksize << 3)) | 
|  | { | 
|  | overflow = bit + count - (sb->s_blocksize << 3); | 
|  | count -= overflow; | 
|  | } | 
|  | bitmap_nr = load_block_bitmap(sb, bitmap, block_group); | 
|  | if (bitmap_nr < 0) | 
|  | goto error_return; | 
|  |  | 
|  | bh = bitmap->s_block_bitmap[bitmap_nr]; | 
|  | for (i=0; i < count; i++) | 
|  | { | 
|  | if (udf_set_bit(bit + i, bh->b_data)) | 
|  | { | 
|  | udf_debug("bit %ld already set\n", bit + i); | 
|  | udf_debug("byte=%2x\n", ((char *)bh->b_data)[(bit + i) >> 3]); | 
|  | } | 
|  | else | 
|  | { | 
|  | if (inode) | 
|  | DQUOT_FREE_BLOCK(inode, 1); | 
|  | if (UDF_SB_LVIDBH(sb)) | 
|  | { | 
|  | UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] = | 
|  | cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)])+1); | 
|  | } | 
|  | } | 
|  | } | 
|  | mark_buffer_dirty(bh); | 
|  | if (overflow) | 
|  | { | 
|  | block += count; | 
|  | count = overflow; | 
|  | goto do_more; | 
|  | } | 
|  | error_return: | 
|  | sb->s_dirt = 1; | 
|  | if (UDF_SB_LVIDBH(sb)) | 
|  | mark_buffer_dirty(UDF_SB_LVIDBH(sb)); | 
|  | mutex_unlock(&sbi->s_alloc_mutex); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static int udf_bitmap_prealloc_blocks(struct super_block * sb, | 
|  | struct inode * inode, | 
|  | struct udf_bitmap *bitmap, uint16_t partition, uint32_t first_block, | 
|  | uint32_t block_count) | 
|  | { | 
|  | struct udf_sb_info *sbi = UDF_SB(sb); | 
|  | int alloc_count = 0; | 
|  | int bit, block, block_group, group_start; | 
|  | int nr_groups, bitmap_nr; | 
|  | struct buffer_head *bh; | 
|  |  | 
|  | mutex_lock(&sbi->s_alloc_mutex); | 
|  | if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition)) | 
|  | goto out; | 
|  |  | 
|  | if (first_block + block_count > UDF_SB_PARTLEN(sb, partition)) | 
|  | block_count = UDF_SB_PARTLEN(sb, partition) - first_block; | 
|  |  | 
|  | repeat: | 
|  | nr_groups = (UDF_SB_PARTLEN(sb, partition) + | 
|  | (sizeof(struct spaceBitmapDesc) << 3) + (sb->s_blocksize * 8) - 1) / (sb->s_blocksize * 8); | 
|  | block = first_block + (sizeof(struct spaceBitmapDesc) << 3); | 
|  | block_group = block >> (sb->s_blocksize_bits + 3); | 
|  | group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); | 
|  |  | 
|  | bitmap_nr = load_block_bitmap(sb, bitmap, block_group); | 
|  | if (bitmap_nr < 0) | 
|  | goto out; | 
|  | bh = bitmap->s_block_bitmap[bitmap_nr]; | 
|  |  | 
|  | bit = block % (sb->s_blocksize << 3); | 
|  |  | 
|  | while (bit < (sb->s_blocksize << 3) && block_count > 0) | 
|  | { | 
|  | if (!udf_test_bit(bit, bh->b_data)) | 
|  | goto out; | 
|  | else if (DQUOT_PREALLOC_BLOCK(inode, 1)) | 
|  | goto out; | 
|  | else if (!udf_clear_bit(bit, bh->b_data)) | 
|  | { | 
|  | udf_debug("bit already cleared for block %d\n", bit); | 
|  | DQUOT_FREE_BLOCK(inode, 1); | 
|  | goto out; | 
|  | } | 
|  | block_count --; | 
|  | alloc_count ++; | 
|  | bit ++; | 
|  | block ++; | 
|  | } | 
|  | mark_buffer_dirty(bh); | 
|  | if (block_count > 0) | 
|  | goto repeat; | 
|  | out: | 
|  | if (UDF_SB_LVIDBH(sb)) | 
|  | { | 
|  | UDF_SB_LVID(sb)->freeSpaceTable[partition] = | 
|  | cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-alloc_count); | 
|  | mark_buffer_dirty(UDF_SB_LVIDBH(sb)); | 
|  | } | 
|  | sb->s_dirt = 1; | 
|  | mutex_unlock(&sbi->s_alloc_mutex); | 
|  | return alloc_count; | 
|  | } | 
|  |  | 
|  | static int udf_bitmap_new_block(struct super_block * sb, | 
|  | struct inode * inode, | 
|  | struct udf_bitmap *bitmap, uint16_t partition, uint32_t goal, int *err) | 
|  | { | 
|  | struct udf_sb_info *sbi = UDF_SB(sb); | 
|  | int newbit, bit=0, block, block_group, group_start; | 
|  | int end_goal, nr_groups, bitmap_nr, i; | 
|  | struct buffer_head *bh = NULL; | 
|  | char *ptr; | 
|  | int newblock = 0; | 
|  |  | 
|  | *err = -ENOSPC; | 
|  | mutex_lock(&sbi->s_alloc_mutex); | 
|  |  | 
|  | repeat: | 
|  | if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition)) | 
|  | goal = 0; | 
|  |  | 
|  | nr_groups = bitmap->s_nr_groups; | 
|  | block = goal + (sizeof(struct spaceBitmapDesc) << 3); | 
|  | block_group = block >> (sb->s_blocksize_bits + 3); | 
|  | group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); | 
|  |  | 
|  | bitmap_nr = load_block_bitmap(sb, bitmap, block_group); | 
|  | if (bitmap_nr < 0) | 
|  | goto error_return; | 
|  | bh = bitmap->s_block_bitmap[bitmap_nr]; | 
|  | ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start); | 
|  |  | 
|  | if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) | 
|  | { | 
|  | bit = block % (sb->s_blocksize << 3); | 
|  |  | 
|  | if (udf_test_bit(bit, bh->b_data)) | 
|  | { | 
|  | goto got_block; | 
|  | } | 
|  | end_goal = (bit + 63) & ~63; | 
|  | bit = udf_find_next_one_bit(bh->b_data, end_goal, bit); | 
|  | if (bit < end_goal) | 
|  | goto got_block; | 
|  | ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF, sb->s_blocksize - ((bit + 7) >> 3)); | 
|  | newbit = (ptr - ((char *)bh->b_data)) << 3; | 
|  | if (newbit < sb->s_blocksize << 3) | 
|  | { | 
|  | bit = newbit; | 
|  | goto search_back; | 
|  | } | 
|  | newbit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, bit); | 
|  | if (newbit < sb->s_blocksize << 3) | 
|  | { | 
|  | bit = newbit; | 
|  | goto got_block; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i=0; i<(nr_groups*2); i++) | 
|  | { | 
|  | block_group ++; | 
|  | if (block_group >= nr_groups) | 
|  | block_group = 0; | 
|  | group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); | 
|  |  | 
|  | bitmap_nr = load_block_bitmap(sb, bitmap, block_group); | 
|  | if (bitmap_nr < 0) | 
|  | goto error_return; | 
|  | bh = bitmap->s_block_bitmap[bitmap_nr]; | 
|  | if (i < nr_groups) | 
|  | { | 
|  | ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start); | 
|  | if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) | 
|  | { | 
|  | bit = (ptr - ((char *)bh->b_data)) << 3; | 
|  | break; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | bit = udf_find_next_one_bit((char *)bh->b_data, sb->s_blocksize << 3, group_start << 3); | 
|  | if (bit < sb->s_blocksize << 3) | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (i >= (nr_groups*2)) | 
|  | { | 
|  | mutex_unlock(&sbi->s_alloc_mutex); | 
|  | return newblock; | 
|  | } | 
|  | if (bit < sb->s_blocksize << 3) | 
|  | goto search_back; | 
|  | else | 
|  | bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, group_start << 3); | 
|  | if (bit >= sb->s_blocksize << 3) | 
|  | { | 
|  | mutex_unlock(&sbi->s_alloc_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | search_back: | 
|  | for (i=0; i<7 && bit > (group_start << 3) && udf_test_bit(bit - 1, bh->b_data); i++, bit--); | 
|  |  | 
|  | got_block: | 
|  |  | 
|  | /* | 
|  | * Check quota for allocation of this block. | 
|  | */ | 
|  | if (inode && DQUOT_ALLOC_BLOCK(inode, 1)) | 
|  | { | 
|  | mutex_unlock(&sbi->s_alloc_mutex); | 
|  | *err = -EDQUOT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) - | 
|  | (sizeof(struct spaceBitmapDesc) << 3); | 
|  |  | 
|  | if (!udf_clear_bit(bit, bh->b_data)) | 
|  | { | 
|  | udf_debug("bit already cleared for block %d\n", bit); | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | mark_buffer_dirty(bh); | 
|  |  | 
|  | if (UDF_SB_LVIDBH(sb)) | 
|  | { | 
|  | UDF_SB_LVID(sb)->freeSpaceTable[partition] = | 
|  | cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-1); | 
|  | mark_buffer_dirty(UDF_SB_LVIDBH(sb)); | 
|  | } | 
|  | sb->s_dirt = 1; | 
|  | mutex_unlock(&sbi->s_alloc_mutex); | 
|  | *err = 0; | 
|  | return newblock; | 
|  |  | 
|  | error_return: | 
|  | *err = -EIO; | 
|  | mutex_unlock(&sbi->s_alloc_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void udf_table_free_blocks(struct super_block * sb, | 
|  | struct inode * inode, | 
|  | struct inode * table, | 
|  | kernel_lb_addr bloc, uint32_t offset, uint32_t count) | 
|  | { | 
|  | struct udf_sb_info *sbi = UDF_SB(sb); | 
|  | uint32_t start, end; | 
|  | uint32_t nextoffset, oextoffset, elen; | 
|  | kernel_lb_addr nbloc, obloc, eloc; | 
|  | struct buffer_head *obh, *nbh; | 
|  | int8_t etype; | 
|  | int i; | 
|  |  | 
|  | mutex_lock(&sbi->s_alloc_mutex); | 
|  | if (bloc.logicalBlockNum < 0 || | 
|  | (bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)) | 
|  | { | 
|  | udf_debug("%d < %d || %d + %d > %d\n", | 
|  | bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count, | 
|  | UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)); | 
|  | goto error_return; | 
|  | } | 
|  |  | 
|  | /* We do this up front - There are some error conditions that could occure, | 
|  | but.. oh well */ | 
|  | if (inode) | 
|  | DQUOT_FREE_BLOCK(inode, count); | 
|  | if (UDF_SB_LVIDBH(sb)) | 
|  | { | 
|  | UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] = | 
|  | cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)])+count); | 
|  | mark_buffer_dirty(UDF_SB_LVIDBH(sb)); | 
|  | } | 
|  |  | 
|  | start = bloc.logicalBlockNum + offset; | 
|  | end = bloc.logicalBlockNum + offset + count - 1; | 
|  |  | 
|  | oextoffset = nextoffset = sizeof(struct unallocSpaceEntry); | 
|  | elen = 0; | 
|  | obloc = nbloc = UDF_I_LOCATION(table); | 
|  |  | 
|  | obh = nbh = NULL; | 
|  |  | 
|  | while (count && (etype = | 
|  | udf_next_aext(table, &nbloc, &nextoffset, &eloc, &elen, &nbh, 1)) != -1) | 
|  | { | 
|  | if (((eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits)) == | 
|  | start)) | 
|  | { | 
|  | if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits)) | 
|  | { | 
|  | count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); | 
|  | start += ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); | 
|  | elen = (etype << 30) | (0x40000000 - sb->s_blocksize); | 
|  | } | 
|  | else | 
|  | { | 
|  | elen = (etype << 30) | | 
|  | (elen + (count << sb->s_blocksize_bits)); | 
|  | start += count; | 
|  | count = 0; | 
|  | } | 
|  | udf_write_aext(table, obloc, &oextoffset, eloc, elen, obh, 1); | 
|  | } | 
|  | else if (eloc.logicalBlockNum == (end + 1)) | 
|  | { | 
|  | if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits)) | 
|  | { | 
|  | count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); | 
|  | end -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); | 
|  | eloc.logicalBlockNum -= | 
|  | ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); | 
|  | elen = (etype << 30) | (0x40000000 - sb->s_blocksize); | 
|  | } | 
|  | else | 
|  | { | 
|  | eloc.logicalBlockNum = start; | 
|  | elen = (etype << 30) | | 
|  | (elen + (count << sb->s_blocksize_bits)); | 
|  | end -= count; | 
|  | count = 0; | 
|  | } | 
|  | udf_write_aext(table, obloc, &oextoffset, eloc, elen, obh, 1); | 
|  | } | 
|  |  | 
|  | if (nbh != obh) | 
|  | { | 
|  | i = -1; | 
|  | obloc = nbloc; | 
|  | udf_release_data(obh); | 
|  | atomic_inc(&nbh->b_count); | 
|  | obh = nbh; | 
|  | oextoffset = 0; | 
|  | } | 
|  | else | 
|  | oextoffset = nextoffset; | 
|  | } | 
|  |  | 
|  | if (count) | 
|  | { | 
|  | /* NOTE: we CANNOT use udf_add_aext here, as it can try to allocate | 
|  | a new block, and since we hold the super block lock already | 
|  | very bad things would happen :) | 
|  |  | 
|  | We copy the behavior of udf_add_aext, but instead of | 
|  | trying to allocate a new block close to the existing one, | 
|  | we just steal a block from the extent we are trying to add. | 
|  |  | 
|  | It would be nice if the blocks were close together, but it | 
|  | isn't required. | 
|  | */ | 
|  |  | 
|  | int adsize; | 
|  | short_ad *sad = NULL; | 
|  | long_ad *lad = NULL; | 
|  | struct allocExtDesc *aed; | 
|  |  | 
|  | eloc.logicalBlockNum = start; | 
|  | elen = EXT_RECORDED_ALLOCATED | | 
|  | (count << sb->s_blocksize_bits); | 
|  |  | 
|  | if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT) | 
|  | adsize = sizeof(short_ad); | 
|  | else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG) | 
|  | adsize = sizeof(long_ad); | 
|  | else | 
|  | { | 
|  | udf_release_data(obh); | 
|  | udf_release_data(nbh); | 
|  | goto error_return; | 
|  | } | 
|  |  | 
|  | if (nextoffset + (2 * adsize) > sb->s_blocksize) | 
|  | { | 
|  | char *sptr, *dptr; | 
|  | int loffset; | 
|  |  | 
|  | udf_release_data(obh); | 
|  | obh = nbh; | 
|  | obloc = nbloc; | 
|  | oextoffset = nextoffset; | 
|  |  | 
|  | /* Steal a block from the extent being free'd */ | 
|  | nbloc.logicalBlockNum = eloc.logicalBlockNum; | 
|  | eloc.logicalBlockNum ++; | 
|  | elen -= sb->s_blocksize; | 
|  |  | 
|  | if (!(nbh = udf_tread(sb, | 
|  | udf_get_lb_pblock(sb, nbloc, 0)))) | 
|  | { | 
|  | udf_release_data(obh); | 
|  | goto error_return; | 
|  | } | 
|  | aed = (struct allocExtDesc *)(nbh->b_data); | 
|  | aed->previousAllocExtLocation = cpu_to_le32(obloc.logicalBlockNum); | 
|  | if (nextoffset + adsize > sb->s_blocksize) | 
|  | { | 
|  | loffset = nextoffset; | 
|  | aed->lengthAllocDescs = cpu_to_le32(adsize); | 
|  | sptr = UDF_I_DATA(inode) + nextoffset - | 
|  | udf_file_entry_alloc_offset(inode) + | 
|  | UDF_I_LENEATTR(inode) - adsize; | 
|  | dptr = nbh->b_data + sizeof(struct allocExtDesc); | 
|  | memcpy(dptr, sptr, adsize); | 
|  | nextoffset = sizeof(struct allocExtDesc) + adsize; | 
|  | } | 
|  | else | 
|  | { | 
|  | loffset = nextoffset + adsize; | 
|  | aed->lengthAllocDescs = cpu_to_le32(0); | 
|  | sptr = (obh)->b_data + nextoffset; | 
|  | nextoffset = sizeof(struct allocExtDesc); | 
|  |  | 
|  | if (obh) | 
|  | { | 
|  | aed = (struct allocExtDesc *)(obh)->b_data; | 
|  | aed->lengthAllocDescs = | 
|  | cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize); | 
|  | } | 
|  | else | 
|  | { | 
|  | UDF_I_LENALLOC(table) += adsize; | 
|  | mark_inode_dirty(table); | 
|  | } | 
|  | } | 
|  | if (UDF_SB_UDFREV(sb) >= 0x0200) | 
|  | udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1, | 
|  | nbloc.logicalBlockNum, sizeof(tag)); | 
|  | else | 
|  | udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1, | 
|  | nbloc.logicalBlockNum, sizeof(tag)); | 
|  | switch (UDF_I_ALLOCTYPE(table)) | 
|  | { | 
|  | case ICBTAG_FLAG_AD_SHORT: | 
|  | { | 
|  | sad = (short_ad *)sptr; | 
|  | sad->extLength = cpu_to_le32( | 
|  | EXT_NEXT_EXTENT_ALLOCDECS | | 
|  | sb->s_blocksize); | 
|  | sad->extPosition = cpu_to_le32(nbloc.logicalBlockNum); | 
|  | break; | 
|  | } | 
|  | case ICBTAG_FLAG_AD_LONG: | 
|  | { | 
|  | lad = (long_ad *)sptr; | 
|  | lad->extLength = cpu_to_le32( | 
|  | EXT_NEXT_EXTENT_ALLOCDECS | | 
|  | sb->s_blocksize); | 
|  | lad->extLocation = cpu_to_lelb(nbloc); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (obh) | 
|  | { | 
|  | udf_update_tag(obh->b_data, loffset); | 
|  | mark_buffer_dirty(obh); | 
|  | } | 
|  | else | 
|  | mark_inode_dirty(table); | 
|  | } | 
|  |  | 
|  | if (elen) /* It's possible that stealing the block emptied the extent */ | 
|  | { | 
|  | udf_write_aext(table, nbloc, &nextoffset, eloc, elen, nbh, 1); | 
|  |  | 
|  | if (!nbh) | 
|  | { | 
|  | UDF_I_LENALLOC(table) += adsize; | 
|  | mark_inode_dirty(table); | 
|  | } | 
|  | else | 
|  | { | 
|  | aed = (struct allocExtDesc *)nbh->b_data; | 
|  | aed->lengthAllocDescs = | 
|  | cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize); | 
|  | udf_update_tag(nbh->b_data, nextoffset); | 
|  | mark_buffer_dirty(nbh); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | udf_release_data(nbh); | 
|  | udf_release_data(obh); | 
|  |  | 
|  | error_return: | 
|  | sb->s_dirt = 1; | 
|  | mutex_unlock(&sbi->s_alloc_mutex); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static int udf_table_prealloc_blocks(struct super_block * sb, | 
|  | struct inode * inode, | 
|  | struct inode *table, uint16_t partition, uint32_t first_block, | 
|  | uint32_t block_count) | 
|  | { | 
|  | struct udf_sb_info *sbi = UDF_SB(sb); | 
|  | int alloc_count = 0; | 
|  | uint32_t extoffset, elen, adsize; | 
|  | kernel_lb_addr bloc, eloc; | 
|  | struct buffer_head *bh; | 
|  | int8_t etype = -1; | 
|  |  | 
|  | if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition)) | 
|  | return 0; | 
|  |  | 
|  | if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT) | 
|  | adsize = sizeof(short_ad); | 
|  | else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG) | 
|  | adsize = sizeof(long_ad); | 
|  | else | 
|  | return 0; | 
|  |  | 
|  | mutex_lock(&sbi->s_alloc_mutex); | 
|  | extoffset = sizeof(struct unallocSpaceEntry); | 
|  | bloc = UDF_I_LOCATION(table); | 
|  |  | 
|  | bh = NULL; | 
|  | eloc.logicalBlockNum = 0xFFFFFFFF; | 
|  |  | 
|  | while (first_block != eloc.logicalBlockNum && (etype = | 
|  | udf_next_aext(table, &bloc, &extoffset, &eloc, &elen, &bh, 1)) != -1) | 
|  | { | 
|  | udf_debug("eloc=%d, elen=%d, first_block=%d\n", | 
|  | eloc.logicalBlockNum, elen, first_block); | 
|  | ; /* empty loop body */ | 
|  | } | 
|  |  | 
|  | if (first_block == eloc.logicalBlockNum) | 
|  | { | 
|  | extoffset -= adsize; | 
|  |  | 
|  | alloc_count = (elen >> sb->s_blocksize_bits); | 
|  | if (inode && DQUOT_PREALLOC_BLOCK(inode, alloc_count > block_count ? block_count : alloc_count)) | 
|  | alloc_count = 0; | 
|  | else if (alloc_count > block_count) | 
|  | { | 
|  | alloc_count = block_count; | 
|  | eloc.logicalBlockNum += alloc_count; | 
|  | elen -= (alloc_count << sb->s_blocksize_bits); | 
|  | udf_write_aext(table, bloc, &extoffset, eloc, (etype << 30) | elen, bh, 1); | 
|  | } | 
|  | else | 
|  | udf_delete_aext(table, bloc, extoffset, eloc, (etype << 30) | elen, bh); | 
|  | } | 
|  | else | 
|  | alloc_count = 0; | 
|  |  | 
|  | udf_release_data(bh); | 
|  |  | 
|  | if (alloc_count && UDF_SB_LVIDBH(sb)) | 
|  | { | 
|  | UDF_SB_LVID(sb)->freeSpaceTable[partition] = | 
|  | cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-alloc_count); | 
|  | mark_buffer_dirty(UDF_SB_LVIDBH(sb)); | 
|  | sb->s_dirt = 1; | 
|  | } | 
|  | mutex_unlock(&sbi->s_alloc_mutex); | 
|  | return alloc_count; | 
|  | } | 
|  |  | 
|  | static int udf_table_new_block(struct super_block * sb, | 
|  | struct inode * inode, | 
|  | struct inode *table, uint16_t partition, uint32_t goal, int *err) | 
|  | { | 
|  | struct udf_sb_info *sbi = UDF_SB(sb); | 
|  | uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF; | 
|  | uint32_t newblock = 0, adsize; | 
|  | uint32_t extoffset, goal_extoffset, elen, goal_elen = 0; | 
|  | kernel_lb_addr bloc, goal_bloc, eloc, goal_eloc; | 
|  | struct buffer_head *bh, *goal_bh; | 
|  | int8_t etype; | 
|  |  | 
|  | *err = -ENOSPC; | 
|  |  | 
|  | if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT) | 
|  | adsize = sizeof(short_ad); | 
|  | else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG) | 
|  | adsize = sizeof(long_ad); | 
|  | else | 
|  | return newblock; | 
|  |  | 
|  | mutex_lock(&sbi->s_alloc_mutex); | 
|  | if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition)) | 
|  | goal = 0; | 
|  |  | 
|  | /* We search for the closest matching block to goal. If we find a exact hit, | 
|  | we stop. Otherwise we keep going till we run out of extents. | 
|  | We store the buffer_head, bloc, and extoffset of the current closest | 
|  | match and use that when we are done. | 
|  | */ | 
|  |  | 
|  | extoffset = sizeof(struct unallocSpaceEntry); | 
|  | bloc = UDF_I_LOCATION(table); | 
|  |  | 
|  | goal_bh = bh = NULL; | 
|  |  | 
|  | while (spread && (etype = | 
|  | udf_next_aext(table, &bloc, &extoffset, &eloc, &elen, &bh, 1)) != -1) | 
|  | { | 
|  | if (goal >= eloc.logicalBlockNum) | 
|  | { | 
|  | if (goal < eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits)) | 
|  | nspread = 0; | 
|  | else | 
|  | nspread = goal - eloc.logicalBlockNum - | 
|  | (elen >> sb->s_blocksize_bits); | 
|  | } | 
|  | else | 
|  | nspread = eloc.logicalBlockNum - goal; | 
|  |  | 
|  | if (nspread < spread) | 
|  | { | 
|  | spread = nspread; | 
|  | if (goal_bh != bh) | 
|  | { | 
|  | udf_release_data(goal_bh); | 
|  | goal_bh = bh; | 
|  | atomic_inc(&goal_bh->b_count); | 
|  | } | 
|  | goal_bloc = bloc; | 
|  | goal_extoffset = extoffset - adsize; | 
|  | goal_eloc = eloc; | 
|  | goal_elen = (etype << 30) | elen; | 
|  | } | 
|  | } | 
|  |  | 
|  | udf_release_data(bh); | 
|  |  | 
|  | if (spread == 0xFFFFFFFF) | 
|  | { | 
|  | udf_release_data(goal_bh); | 
|  | mutex_unlock(&sbi->s_alloc_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Only allocate blocks from the beginning of the extent. | 
|  | That way, we only delete (empty) extents, never have to insert an | 
|  | extent because of splitting */ | 
|  | /* This works, but very poorly.... */ | 
|  |  | 
|  | newblock = goal_eloc.logicalBlockNum; | 
|  | goal_eloc.logicalBlockNum ++; | 
|  | goal_elen -= sb->s_blocksize; | 
|  |  | 
|  | if (inode && DQUOT_ALLOC_BLOCK(inode, 1)) | 
|  | { | 
|  | udf_release_data(goal_bh); | 
|  | mutex_unlock(&sbi->s_alloc_mutex); | 
|  | *err = -EDQUOT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (goal_elen) | 
|  | udf_write_aext(table, goal_bloc, &goal_extoffset, goal_eloc, goal_elen, goal_bh, 1); | 
|  | else | 
|  | udf_delete_aext(table, goal_bloc, goal_extoffset, goal_eloc, goal_elen, goal_bh); | 
|  | udf_release_data(goal_bh); | 
|  |  | 
|  | if (UDF_SB_LVIDBH(sb)) | 
|  | { | 
|  | UDF_SB_LVID(sb)->freeSpaceTable[partition] = | 
|  | cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-1); | 
|  | mark_buffer_dirty(UDF_SB_LVIDBH(sb)); | 
|  | } | 
|  |  | 
|  | sb->s_dirt = 1; | 
|  | mutex_unlock(&sbi->s_alloc_mutex); | 
|  | *err = 0; | 
|  | return newblock; | 
|  | } | 
|  |  | 
|  | inline void udf_free_blocks(struct super_block * sb, | 
|  | struct inode * inode, | 
|  | kernel_lb_addr bloc, uint32_t offset, uint32_t count) | 
|  | { | 
|  | uint16_t partition = bloc.partitionReferenceNum; | 
|  |  | 
|  | if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP) | 
|  | { | 
|  | return udf_bitmap_free_blocks(sb, inode, | 
|  | UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap, | 
|  | bloc, offset, count); | 
|  | } | 
|  | else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE) | 
|  | { | 
|  | return udf_table_free_blocks(sb, inode, | 
|  | UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table, | 
|  | bloc, offset, count); | 
|  | } | 
|  | else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP) | 
|  | { | 
|  | return udf_bitmap_free_blocks(sb, inode, | 
|  | UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap, | 
|  | bloc, offset, count); | 
|  | } | 
|  | else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE) | 
|  | { | 
|  | return udf_table_free_blocks(sb, inode, | 
|  | UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table, | 
|  | bloc, offset, count); | 
|  | } | 
|  | else | 
|  | return; | 
|  | } | 
|  |  | 
|  | inline int udf_prealloc_blocks(struct super_block * sb, | 
|  | struct inode * inode, | 
|  | uint16_t partition, uint32_t first_block, uint32_t block_count) | 
|  | { | 
|  | if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP) | 
|  | { | 
|  | return udf_bitmap_prealloc_blocks(sb, inode, | 
|  | UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap, | 
|  | partition, first_block, block_count); | 
|  | } | 
|  | else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE) | 
|  | { | 
|  | return udf_table_prealloc_blocks(sb, inode, | 
|  | UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table, | 
|  | partition, first_block, block_count); | 
|  | } | 
|  | else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP) | 
|  | { | 
|  | return udf_bitmap_prealloc_blocks(sb, inode, | 
|  | UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap, | 
|  | partition, first_block, block_count); | 
|  | } | 
|  | else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE) | 
|  | { | 
|  | return udf_table_prealloc_blocks(sb, inode, | 
|  | UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table, | 
|  | partition, first_block, block_count); | 
|  | } | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | inline int udf_new_block(struct super_block * sb, | 
|  | struct inode * inode, | 
|  | uint16_t partition, uint32_t goal, int *err) | 
|  | { | 
|  | if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP) | 
|  | { | 
|  | return udf_bitmap_new_block(sb, inode, | 
|  | UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap, | 
|  | partition, goal, err); | 
|  | } | 
|  | else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE) | 
|  | { | 
|  | return udf_table_new_block(sb, inode, | 
|  | UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table, | 
|  | partition, goal, err); | 
|  | } | 
|  | else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP) | 
|  | { | 
|  | return udf_bitmap_new_block(sb, inode, | 
|  | UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap, | 
|  | partition, goal, err); | 
|  | } | 
|  | else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE) | 
|  | { | 
|  | return udf_table_new_block(sb, inode, | 
|  | UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table, | 
|  | partition, goal, err); | 
|  | } | 
|  | else | 
|  | { | 
|  | *err = -EIO; | 
|  | return 0; | 
|  | } | 
|  | } |