| /* | 
 |  *  Copyright (C) 1991, 1992  Linus Torvalds | 
 |  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs | 
 |  *  Copyright (C) 2011	Don Zickus Red Hat, Inc. | 
 |  * | 
 |  *  Pentium III FXSR, SSE support | 
 |  *	Gareth Hughes <gareth@valinux.com>, May 2000 | 
 |  */ | 
 |  | 
 | /* | 
 |  * Handle hardware traps and faults. | 
 |  */ | 
 | #include <linux/spinlock.h> | 
 | #include <linux/kprobes.h> | 
 | #include <linux/kdebug.h> | 
 | #include <linux/nmi.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/hardirq.h> | 
 | #include <linux/slab.h> | 
 |  | 
 | #include <linux/mca.h> | 
 |  | 
 | #if defined(CONFIG_EDAC) | 
 | #include <linux/edac.h> | 
 | #endif | 
 |  | 
 | #include <linux/atomic.h> | 
 | #include <asm/traps.h> | 
 | #include <asm/mach_traps.h> | 
 | #include <asm/nmi.h> | 
 |  | 
 | #define NMI_MAX_NAMELEN	16 | 
 | struct nmiaction { | 
 | 	struct list_head list; | 
 | 	nmi_handler_t handler; | 
 | 	unsigned int flags; | 
 | 	char *name; | 
 | }; | 
 |  | 
 | struct nmi_desc { | 
 | 	spinlock_t lock; | 
 | 	struct list_head head; | 
 | }; | 
 |  | 
 | static struct nmi_desc nmi_desc[NMI_MAX] =  | 
 | { | 
 | 	{ | 
 | 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock), | 
 | 		.head = LIST_HEAD_INIT(nmi_desc[0].head), | 
 | 	}, | 
 | 	{ | 
 | 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock), | 
 | 		.head = LIST_HEAD_INIT(nmi_desc[1].head), | 
 | 	}, | 
 |  | 
 | }; | 
 |  | 
 | struct nmi_stats { | 
 | 	unsigned int normal; | 
 | 	unsigned int unknown; | 
 | 	unsigned int external; | 
 | 	unsigned int swallow; | 
 | }; | 
 |  | 
 | static DEFINE_PER_CPU(struct nmi_stats, nmi_stats); | 
 |  | 
 | static int ignore_nmis; | 
 |  | 
 | int unknown_nmi_panic; | 
 | /* | 
 |  * Prevent NMI reason port (0x61) being accessed simultaneously, can | 
 |  * only be used in NMI handler. | 
 |  */ | 
 | static DEFINE_RAW_SPINLOCK(nmi_reason_lock); | 
 |  | 
 | static int __init setup_unknown_nmi_panic(char *str) | 
 | { | 
 | 	unknown_nmi_panic = 1; | 
 | 	return 1; | 
 | } | 
 | __setup("unknown_nmi_panic", setup_unknown_nmi_panic); | 
 |  | 
 | #define nmi_to_desc(type) (&nmi_desc[type]) | 
 |  | 
 | static int notrace __kprobes nmi_handle(unsigned int type, struct pt_regs *regs, bool b2b) | 
 | { | 
 | 	struct nmi_desc *desc = nmi_to_desc(type); | 
 | 	struct nmiaction *a; | 
 | 	int handled=0; | 
 |  | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	/* | 
 | 	 * NMIs are edge-triggered, which means if you have enough | 
 | 	 * of them concurrently, you can lose some because only one | 
 | 	 * can be latched at any given time.  Walk the whole list | 
 | 	 * to handle those situations. | 
 | 	 */ | 
 | 	list_for_each_entry_rcu(a, &desc->head, list) | 
 | 		handled += a->handler(type, regs); | 
 |  | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	/* return total number of NMI events handled */ | 
 | 	return handled; | 
 | } | 
 |  | 
 | static int __setup_nmi(unsigned int type, struct nmiaction *action) | 
 | { | 
 | 	struct nmi_desc *desc = nmi_to_desc(type); | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&desc->lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * most handlers of type NMI_UNKNOWN never return because | 
 | 	 * they just assume the NMI is theirs.  Just a sanity check | 
 | 	 * to manage expectations | 
 | 	 */ | 
 | 	WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head)); | 
 |  | 
 | 	/* | 
 | 	 * some handlers need to be executed first otherwise a fake | 
 | 	 * event confuses some handlers (kdump uses this flag) | 
 | 	 */ | 
 | 	if (action->flags & NMI_FLAG_FIRST) | 
 | 		list_add_rcu(&action->list, &desc->head); | 
 | 	else | 
 | 		list_add_tail_rcu(&action->list, &desc->head); | 
 | 	 | 
 | 	spin_unlock_irqrestore(&desc->lock, flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct nmiaction *__free_nmi(unsigned int type, const char *name) | 
 | { | 
 | 	struct nmi_desc *desc = nmi_to_desc(type); | 
 | 	struct nmiaction *n; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&desc->lock, flags); | 
 |  | 
 | 	list_for_each_entry_rcu(n, &desc->head, list) { | 
 | 		/* | 
 | 		 * the name passed in to describe the nmi handler | 
 | 		 * is used as the lookup key | 
 | 		 */ | 
 | 		if (!strcmp(n->name, name)) { | 
 | 			WARN(in_nmi(), | 
 | 				"Trying to free NMI (%s) from NMI context!\n", n->name); | 
 | 			list_del_rcu(&n->list); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&desc->lock, flags); | 
 | 	synchronize_rcu(); | 
 | 	return (n); | 
 | } | 
 |  | 
 | int register_nmi_handler(unsigned int type, nmi_handler_t handler, | 
 | 			unsigned long nmiflags, const char *devname) | 
 | { | 
 | 	struct nmiaction *action; | 
 | 	int retval = -ENOMEM; | 
 |  | 
 | 	if (!handler) | 
 | 		return -EINVAL; | 
 |  | 
 | 	action = kzalloc(sizeof(struct nmiaction), GFP_KERNEL); | 
 | 	if (!action) | 
 | 		goto fail_action; | 
 |  | 
 | 	action->handler = handler; | 
 | 	action->flags = nmiflags; | 
 | 	action->name = kstrndup(devname, NMI_MAX_NAMELEN, GFP_KERNEL); | 
 | 	if (!action->name) | 
 | 		goto fail_action_name; | 
 |  | 
 | 	retval = __setup_nmi(type, action); | 
 |  | 
 | 	if (retval) | 
 | 		goto fail_setup_nmi; | 
 |  | 
 | 	return retval; | 
 |  | 
 | fail_setup_nmi: | 
 | 	kfree(action->name); | 
 | fail_action_name: | 
 | 	kfree(action); | 
 | fail_action:	 | 
 |  | 
 | 	return retval; | 
 | } | 
 | EXPORT_SYMBOL_GPL(register_nmi_handler); | 
 |  | 
 | void unregister_nmi_handler(unsigned int type, const char *name) | 
 | { | 
 | 	struct nmiaction *a; | 
 |  | 
 | 	a = __free_nmi(type, name); | 
 | 	if (a) { | 
 | 		kfree(a->name); | 
 | 		kfree(a); | 
 | 	} | 
 | } | 
 |  | 
 | EXPORT_SYMBOL_GPL(unregister_nmi_handler); | 
 |  | 
 | static notrace __kprobes void | 
 | pci_serr_error(unsigned char reason, struct pt_regs *regs) | 
 | { | 
 | 	pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n", | 
 | 		 reason, smp_processor_id()); | 
 |  | 
 | 	/* | 
 | 	 * On some machines, PCI SERR line is used to report memory | 
 | 	 * errors. EDAC makes use of it. | 
 | 	 */ | 
 | #if defined(CONFIG_EDAC) | 
 | 	if (edac_handler_set()) { | 
 | 		edac_atomic_assert_error(); | 
 | 		return; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	if (panic_on_unrecovered_nmi) | 
 | 		panic("NMI: Not continuing"); | 
 |  | 
 | 	pr_emerg("Dazed and confused, but trying to continue\n"); | 
 |  | 
 | 	/* Clear and disable the PCI SERR error line. */ | 
 | 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR; | 
 | 	outb(reason, NMI_REASON_PORT); | 
 | } | 
 |  | 
 | static notrace __kprobes void | 
 | io_check_error(unsigned char reason, struct pt_regs *regs) | 
 | { | 
 | 	unsigned long i; | 
 |  | 
 | 	pr_emerg( | 
 | 	"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n", | 
 | 		 reason, smp_processor_id()); | 
 | 	show_registers(regs); | 
 |  | 
 | 	if (panic_on_io_nmi) | 
 | 		panic("NMI IOCK error: Not continuing"); | 
 |  | 
 | 	/* Re-enable the IOCK line, wait for a few seconds */ | 
 | 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK; | 
 | 	outb(reason, NMI_REASON_PORT); | 
 |  | 
 | 	i = 20000; | 
 | 	while (--i) { | 
 | 		touch_nmi_watchdog(); | 
 | 		udelay(100); | 
 | 	} | 
 |  | 
 | 	reason &= ~NMI_REASON_CLEAR_IOCHK; | 
 | 	outb(reason, NMI_REASON_PORT); | 
 | } | 
 |  | 
 | static notrace __kprobes void | 
 | unknown_nmi_error(unsigned char reason, struct pt_regs *regs) | 
 | { | 
 | 	int handled; | 
 |  | 
 | 	/* | 
 | 	 * Use 'false' as back-to-back NMIs are dealt with one level up. | 
 | 	 * Of course this makes having multiple 'unknown' handlers useless | 
 | 	 * as only the first one is ever run (unless it can actually determine | 
 | 	 * if it caused the NMI) | 
 | 	 */ | 
 | 	handled = nmi_handle(NMI_UNKNOWN, regs, false); | 
 | 	if (handled) { | 
 | 		__this_cpu_add(nmi_stats.unknown, handled); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	__this_cpu_add(nmi_stats.unknown, 1); | 
 |  | 
 | #ifdef CONFIG_MCA | 
 | 	/* | 
 | 	 * Might actually be able to figure out what the guilty party | 
 | 	 * is: | 
 | 	 */ | 
 | 	if (MCA_bus) { | 
 | 		mca_handle_nmi(); | 
 | 		return; | 
 | 	} | 
 | #endif | 
 | 	pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n", | 
 | 		 reason, smp_processor_id()); | 
 |  | 
 | 	pr_emerg("Do you have a strange power saving mode enabled?\n"); | 
 | 	if (unknown_nmi_panic || panic_on_unrecovered_nmi) | 
 | 		panic("NMI: Not continuing"); | 
 |  | 
 | 	pr_emerg("Dazed and confused, but trying to continue\n"); | 
 | } | 
 |  | 
 | static DEFINE_PER_CPU(bool, swallow_nmi); | 
 | static DEFINE_PER_CPU(unsigned long, last_nmi_rip); | 
 |  | 
 | static notrace __kprobes void default_do_nmi(struct pt_regs *regs) | 
 | { | 
 | 	unsigned char reason = 0; | 
 | 	int handled; | 
 | 	bool b2b = false; | 
 |  | 
 | 	/* | 
 | 	 * CPU-specific NMI must be processed before non-CPU-specific | 
 | 	 * NMI, otherwise we may lose it, because the CPU-specific | 
 | 	 * NMI can not be detected/processed on other CPUs. | 
 | 	 */ | 
 |  | 
 | 	/* | 
 | 	 * Back-to-back NMIs are interesting because they can either | 
 | 	 * be two NMI or more than two NMIs (any thing over two is dropped | 
 | 	 * due to NMI being edge-triggered).  If this is the second half | 
 | 	 * of the back-to-back NMI, assume we dropped things and process | 
 | 	 * more handlers.  Otherwise reset the 'swallow' NMI behaviour | 
 | 	 */ | 
 | 	if (regs->ip == __this_cpu_read(last_nmi_rip)) | 
 | 		b2b = true; | 
 | 	else | 
 | 		__this_cpu_write(swallow_nmi, false); | 
 |  | 
 | 	__this_cpu_write(last_nmi_rip, regs->ip); | 
 |  | 
 | 	handled = nmi_handle(NMI_LOCAL, regs, b2b); | 
 | 	__this_cpu_add(nmi_stats.normal, handled); | 
 | 	if (handled) { | 
 | 		/* | 
 | 		 * There are cases when a NMI handler handles multiple | 
 | 		 * events in the current NMI.  One of these events may | 
 | 		 * be queued for in the next NMI.  Because the event is | 
 | 		 * already handled, the next NMI will result in an unknown | 
 | 		 * NMI.  Instead lets flag this for a potential NMI to | 
 | 		 * swallow. | 
 | 		 */ | 
 | 		if (handled > 1) | 
 | 			__this_cpu_write(swallow_nmi, true); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Non-CPU-specific NMI: NMI sources can be processed on any CPU */ | 
 | 	raw_spin_lock(&nmi_reason_lock); | 
 | 	reason = get_nmi_reason(); | 
 |  | 
 | 	if (reason & NMI_REASON_MASK) { | 
 | 		if (reason & NMI_REASON_SERR) | 
 | 			pci_serr_error(reason, regs); | 
 | 		else if (reason & NMI_REASON_IOCHK) | 
 | 			io_check_error(reason, regs); | 
 | #ifdef CONFIG_X86_32 | 
 | 		/* | 
 | 		 * Reassert NMI in case it became active | 
 | 		 * meanwhile as it's edge-triggered: | 
 | 		 */ | 
 | 		reassert_nmi(); | 
 | #endif | 
 | 		__this_cpu_add(nmi_stats.external, 1); | 
 | 		raw_spin_unlock(&nmi_reason_lock); | 
 | 		return; | 
 | 	} | 
 | 	raw_spin_unlock(&nmi_reason_lock); | 
 |  | 
 | 	/* | 
 | 	 * Only one NMI can be latched at a time.  To handle | 
 | 	 * this we may process multiple nmi handlers at once to | 
 | 	 * cover the case where an NMI is dropped.  The downside | 
 | 	 * to this approach is we may process an NMI prematurely, | 
 | 	 * while its real NMI is sitting latched.  This will cause | 
 | 	 * an unknown NMI on the next run of the NMI processing. | 
 | 	 * | 
 | 	 * We tried to flag that condition above, by setting the | 
 | 	 * swallow_nmi flag when we process more than one event. | 
 | 	 * This condition is also only present on the second half | 
 | 	 * of a back-to-back NMI, so we flag that condition too. | 
 | 	 * | 
 | 	 * If both are true, we assume we already processed this | 
 | 	 * NMI previously and we swallow it.  Otherwise we reset | 
 | 	 * the logic. | 
 | 	 * | 
 | 	 * There are scenarios where we may accidentally swallow | 
 | 	 * a 'real' unknown NMI.  For example, while processing | 
 | 	 * a perf NMI another perf NMI comes in along with a | 
 | 	 * 'real' unknown NMI.  These two NMIs get combined into | 
 | 	 * one (as descibed above).  When the next NMI gets | 
 | 	 * processed, it will be flagged by perf as handled, but | 
 | 	 * noone will know that there was a 'real' unknown NMI sent | 
 | 	 * also.  As a result it gets swallowed.  Or if the first | 
 | 	 * perf NMI returns two events handled then the second | 
 | 	 * NMI will get eaten by the logic below, again losing a | 
 | 	 * 'real' unknown NMI.  But this is the best we can do | 
 | 	 * for now. | 
 | 	 */ | 
 | 	if (b2b && __this_cpu_read(swallow_nmi)) | 
 | 		__this_cpu_add(nmi_stats.swallow, 1); | 
 | 	else | 
 | 		unknown_nmi_error(reason, regs); | 
 | } | 
 |  | 
 | dotraplinkage notrace __kprobes void | 
 | do_nmi(struct pt_regs *regs, long error_code) | 
 | { | 
 | 	nmi_enter(); | 
 |  | 
 | 	inc_irq_stat(__nmi_count); | 
 |  | 
 | 	if (!ignore_nmis) | 
 | 		default_do_nmi(regs); | 
 |  | 
 | 	nmi_exit(); | 
 | } | 
 |  | 
 | void stop_nmi(void) | 
 | { | 
 | 	ignore_nmis++; | 
 | } | 
 |  | 
 | void restart_nmi(void) | 
 | { | 
 | 	ignore_nmis--; | 
 | } | 
 |  | 
 | /* reset the back-to-back NMI logic */ | 
 | void local_touch_nmi(void) | 
 | { | 
 | 	__this_cpu_write(last_nmi_rip, 0); | 
 | } |