| /* | 
 |  *  Copyright (C) 1991, 1992  Linus Torvalds | 
 |  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs | 
 |  * | 
 |  *  Pentium III FXSR, SSE support | 
 |  *	Gareth Hughes <gareth@valinux.com>, May 2000 | 
 |  */ | 
 |  | 
 | /* | 
 |  * Handle hardware traps and faults. | 
 |  */ | 
 | #include <linux/interrupt.h> | 
 | #include <linux/kallsyms.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/kprobes.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/kdebug.h> | 
 | #include <linux/kgdb.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/string.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/kexec.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/timer.h> | 
 | #include <linux/init.h> | 
 | #include <linux/bug.h> | 
 | #include <linux/nmi.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/io.h> | 
 |  | 
 | #ifdef CONFIG_EISA | 
 | #include <linux/ioport.h> | 
 | #include <linux/eisa.h> | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_MCA | 
 | #include <linux/mca.h> | 
 | #endif | 
 |  | 
 | #if defined(CONFIG_EDAC) | 
 | #include <linux/edac.h> | 
 | #endif | 
 |  | 
 | #include <asm/kmemcheck.h> | 
 | #include <asm/stacktrace.h> | 
 | #include <asm/processor.h> | 
 | #include <asm/debugreg.h> | 
 | #include <linux/atomic.h> | 
 | #include <asm/system.h> | 
 | #include <asm/traps.h> | 
 | #include <asm/desc.h> | 
 | #include <asm/i387.h> | 
 | #include <asm/mce.h> | 
 |  | 
 | #include <asm/mach_traps.h> | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | #include <asm/x86_init.h> | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/proto.h> | 
 | #else | 
 | #include <asm/processor-flags.h> | 
 | #include <asm/setup.h> | 
 |  | 
 | asmlinkage int system_call(void); | 
 |  | 
 | /* Do we ignore FPU interrupts ? */ | 
 | char ignore_fpu_irq; | 
 |  | 
 | /* | 
 |  * The IDT has to be page-aligned to simplify the Pentium | 
 |  * F0 0F bug workaround. | 
 |  */ | 
 | gate_desc idt_table[NR_VECTORS] __page_aligned_data = { { { { 0, 0 } } }, }; | 
 | #endif | 
 |  | 
 | DECLARE_BITMAP(used_vectors, NR_VECTORS); | 
 | EXPORT_SYMBOL_GPL(used_vectors); | 
 |  | 
 | static inline void conditional_sti(struct pt_regs *regs) | 
 | { | 
 | 	if (regs->flags & X86_EFLAGS_IF) | 
 | 		local_irq_enable(); | 
 | } | 
 |  | 
 | static inline void preempt_conditional_sti(struct pt_regs *regs) | 
 | { | 
 | 	inc_preempt_count(); | 
 | 	if (regs->flags & X86_EFLAGS_IF) | 
 | 		local_irq_enable(); | 
 | } | 
 |  | 
 | static inline void conditional_cli(struct pt_regs *regs) | 
 | { | 
 | 	if (regs->flags & X86_EFLAGS_IF) | 
 | 		local_irq_disable(); | 
 | } | 
 |  | 
 | static inline void preempt_conditional_cli(struct pt_regs *regs) | 
 | { | 
 | 	if (regs->flags & X86_EFLAGS_IF) | 
 | 		local_irq_disable(); | 
 | 	dec_preempt_count(); | 
 | } | 
 |  | 
 | static void __kprobes | 
 | do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, | 
 | 	long error_code, siginfo_t *info) | 
 | { | 
 | 	struct task_struct *tsk = current; | 
 |  | 
 | #ifdef CONFIG_X86_32 | 
 | 	if (regs->flags & X86_VM_MASK) { | 
 | 		/* | 
 | 		 * traps 0, 1, 3, 4, and 5 should be forwarded to vm86. | 
 | 		 * On nmi (interrupt 2), do_trap should not be called. | 
 | 		 */ | 
 | 		if (trapnr < 6) | 
 | 			goto vm86_trap; | 
 | 		goto trap_signal; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	if (!user_mode(regs)) | 
 | 		goto kernel_trap; | 
 |  | 
 | #ifdef CONFIG_X86_32 | 
 | trap_signal: | 
 | #endif | 
 | 	/* | 
 | 	 * We want error_code and trap_no set for userspace faults and | 
 | 	 * kernelspace faults which result in die(), but not | 
 | 	 * kernelspace faults which are fixed up.  die() gives the | 
 | 	 * process no chance to handle the signal and notice the | 
 | 	 * kernel fault information, so that won't result in polluting | 
 | 	 * the information about previously queued, but not yet | 
 | 	 * delivered, faults.  See also do_general_protection below. | 
 | 	 */ | 
 | 	tsk->thread.error_code = error_code; | 
 | 	tsk->thread.trap_no = trapnr; | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	if (show_unhandled_signals && unhandled_signal(tsk, signr) && | 
 | 	    printk_ratelimit()) { | 
 | 		printk(KERN_INFO | 
 | 		       "%s[%d] trap %s ip:%lx sp:%lx error:%lx", | 
 | 		       tsk->comm, tsk->pid, str, | 
 | 		       regs->ip, regs->sp, error_code); | 
 | 		print_vma_addr(" in ", regs->ip); | 
 | 		printk("\n"); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	if (info) | 
 | 		force_sig_info(signr, info, tsk); | 
 | 	else | 
 | 		force_sig(signr, tsk); | 
 | 	return; | 
 |  | 
 | kernel_trap: | 
 | 	if (!fixup_exception(regs)) { | 
 | 		tsk->thread.error_code = error_code; | 
 | 		tsk->thread.trap_no = trapnr; | 
 | 		die(str, regs, error_code); | 
 | 	} | 
 | 	return; | 
 |  | 
 | #ifdef CONFIG_X86_32 | 
 | vm86_trap: | 
 | 	if (handle_vm86_trap((struct kernel_vm86_regs *) regs, | 
 | 						error_code, trapnr)) | 
 | 		goto trap_signal; | 
 | 	return; | 
 | #endif | 
 | } | 
 |  | 
 | #define DO_ERROR(trapnr, signr, str, name)				\ | 
 | dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\ | 
 | {									\ | 
 | 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr)	\ | 
 | 							== NOTIFY_STOP)	\ | 
 | 		return;							\ | 
 | 	conditional_sti(regs);						\ | 
 | 	do_trap(trapnr, signr, str, regs, error_code, NULL);		\ | 
 | } | 
 |  | 
 | #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr)		\ | 
 | dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\ | 
 | {									\ | 
 | 	siginfo_t info;							\ | 
 | 	info.si_signo = signr;						\ | 
 | 	info.si_errno = 0;						\ | 
 | 	info.si_code = sicode;						\ | 
 | 	info.si_addr = (void __user *)siaddr;				\ | 
 | 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr)	\ | 
 | 							== NOTIFY_STOP)	\ | 
 | 		return;							\ | 
 | 	conditional_sti(regs);						\ | 
 | 	do_trap(trapnr, signr, str, regs, error_code, &info);		\ | 
 | } | 
 |  | 
 | DO_ERROR_INFO(0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip) | 
 | DO_ERROR(4, SIGSEGV, "overflow", overflow) | 
 | DO_ERROR(5, SIGSEGV, "bounds", bounds) | 
 | DO_ERROR_INFO(6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip) | 
 | DO_ERROR(9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun) | 
 | DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS) | 
 | DO_ERROR(11, SIGBUS, "segment not present", segment_not_present) | 
 | #ifdef CONFIG_X86_32 | 
 | DO_ERROR(12, SIGBUS, "stack segment", stack_segment) | 
 | #endif | 
 | DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0) | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | /* Runs on IST stack */ | 
 | dotraplinkage void do_stack_segment(struct pt_regs *regs, long error_code) | 
 | { | 
 | 	if (notify_die(DIE_TRAP, "stack segment", regs, error_code, | 
 | 			12, SIGBUS) == NOTIFY_STOP) | 
 | 		return; | 
 | 	preempt_conditional_sti(regs); | 
 | 	do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL); | 
 | 	preempt_conditional_cli(regs); | 
 | } | 
 |  | 
 | dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code) | 
 | { | 
 | 	static const char str[] = "double fault"; | 
 | 	struct task_struct *tsk = current; | 
 |  | 
 | 	/* Return not checked because double check cannot be ignored */ | 
 | 	notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV); | 
 |  | 
 | 	tsk->thread.error_code = error_code; | 
 | 	tsk->thread.trap_no = 8; | 
 |  | 
 | 	/* | 
 | 	 * This is always a kernel trap and never fixable (and thus must | 
 | 	 * never return). | 
 | 	 */ | 
 | 	for (;;) | 
 | 		die(str, regs, error_code); | 
 | } | 
 | #endif | 
 |  | 
 | dotraplinkage void __kprobes | 
 | do_general_protection(struct pt_regs *regs, long error_code) | 
 | { | 
 | 	struct task_struct *tsk; | 
 |  | 
 | 	conditional_sti(regs); | 
 |  | 
 | #ifdef CONFIG_X86_32 | 
 | 	if (regs->flags & X86_VM_MASK) | 
 | 		goto gp_in_vm86; | 
 | #endif | 
 |  | 
 | 	tsk = current; | 
 | 	if (!user_mode(regs)) | 
 | 		goto gp_in_kernel; | 
 |  | 
 | 	tsk->thread.error_code = error_code; | 
 | 	tsk->thread.trap_no = 13; | 
 |  | 
 | 	if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && | 
 | 			printk_ratelimit()) { | 
 | 		printk(KERN_INFO | 
 | 			"%s[%d] general protection ip:%lx sp:%lx error:%lx", | 
 | 			tsk->comm, task_pid_nr(tsk), | 
 | 			regs->ip, regs->sp, error_code); | 
 | 		print_vma_addr(" in ", regs->ip); | 
 | 		printk("\n"); | 
 | 	} | 
 |  | 
 | 	force_sig(SIGSEGV, tsk); | 
 | 	return; | 
 |  | 
 | #ifdef CONFIG_X86_32 | 
 | gp_in_vm86: | 
 | 	local_irq_enable(); | 
 | 	handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); | 
 | 	return; | 
 | #endif | 
 |  | 
 | gp_in_kernel: | 
 | 	if (fixup_exception(regs)) | 
 | 		return; | 
 |  | 
 | 	tsk->thread.error_code = error_code; | 
 | 	tsk->thread.trap_no = 13; | 
 | 	if (notify_die(DIE_GPF, "general protection fault", regs, | 
 | 				error_code, 13, SIGSEGV) == NOTIFY_STOP) | 
 | 		return; | 
 | 	die("general protection fault", regs, error_code); | 
 | } | 
 |  | 
 | /* May run on IST stack. */ | 
 | dotraplinkage void __kprobes do_int3(struct pt_regs *regs, long error_code) | 
 | { | 
 | #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP | 
 | 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP) | 
 | 			== NOTIFY_STOP) | 
 | 		return; | 
 | #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ | 
 | #ifdef CONFIG_KPROBES | 
 | 	if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP) | 
 | 			== NOTIFY_STOP) | 
 | 		return; | 
 | #else | 
 | 	if (notify_die(DIE_TRAP, "int3", regs, error_code, 3, SIGTRAP) | 
 | 			== NOTIFY_STOP) | 
 | 		return; | 
 | #endif | 
 |  | 
 | 	preempt_conditional_sti(regs); | 
 | 	do_trap(3, SIGTRAP, "int3", regs, error_code, NULL); | 
 | 	preempt_conditional_cli(regs); | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | /* | 
 |  * Help handler running on IST stack to switch back to user stack | 
 |  * for scheduling or signal handling. The actual stack switch is done in | 
 |  * entry.S | 
 |  */ | 
 | asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs) | 
 | { | 
 | 	struct pt_regs *regs = eregs; | 
 | 	/* Did already sync */ | 
 | 	if (eregs == (struct pt_regs *)eregs->sp) | 
 | 		; | 
 | 	/* Exception from user space */ | 
 | 	else if (user_mode(eregs)) | 
 | 		regs = task_pt_regs(current); | 
 | 	/* | 
 | 	 * Exception from kernel and interrupts are enabled. Move to | 
 | 	 * kernel process stack. | 
 | 	 */ | 
 | 	else if (eregs->flags & X86_EFLAGS_IF) | 
 | 		regs = (struct pt_regs *)(eregs->sp -= sizeof(struct pt_regs)); | 
 | 	if (eregs != regs) | 
 | 		*regs = *eregs; | 
 | 	return regs; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Our handling of the processor debug registers is non-trivial. | 
 |  * We do not clear them on entry and exit from the kernel. Therefore | 
 |  * it is possible to get a watchpoint trap here from inside the kernel. | 
 |  * However, the code in ./ptrace.c has ensured that the user can | 
 |  * only set watchpoints on userspace addresses. Therefore the in-kernel | 
 |  * watchpoint trap can only occur in code which is reading/writing | 
 |  * from user space. Such code must not hold kernel locks (since it | 
 |  * can equally take a page fault), therefore it is safe to call | 
 |  * force_sig_info even though that claims and releases locks. | 
 |  * | 
 |  * Code in ./signal.c ensures that the debug control register | 
 |  * is restored before we deliver any signal, and therefore that | 
 |  * user code runs with the correct debug control register even though | 
 |  * we clear it here. | 
 |  * | 
 |  * Being careful here means that we don't have to be as careful in a | 
 |  * lot of more complicated places (task switching can be a bit lazy | 
 |  * about restoring all the debug state, and ptrace doesn't have to | 
 |  * find every occurrence of the TF bit that could be saved away even | 
 |  * by user code) | 
 |  * | 
 |  * May run on IST stack. | 
 |  */ | 
 | dotraplinkage void __kprobes do_debug(struct pt_regs *regs, long error_code) | 
 | { | 
 | 	struct task_struct *tsk = current; | 
 | 	int user_icebp = 0; | 
 | 	unsigned long dr6; | 
 | 	int si_code; | 
 |  | 
 | 	get_debugreg(dr6, 6); | 
 |  | 
 | 	/* Filter out all the reserved bits which are preset to 1 */ | 
 | 	dr6 &= ~DR6_RESERVED; | 
 |  | 
 | 	/* | 
 | 	 * If dr6 has no reason to give us about the origin of this trap, | 
 | 	 * then it's very likely the result of an icebp/int01 trap. | 
 | 	 * User wants a sigtrap for that. | 
 | 	 */ | 
 | 	if (!dr6 && user_mode(regs)) | 
 | 		user_icebp = 1; | 
 |  | 
 | 	/* Catch kmemcheck conditions first of all! */ | 
 | 	if ((dr6 & DR_STEP) && kmemcheck_trap(regs)) | 
 | 		return; | 
 |  | 
 | 	/* DR6 may or may not be cleared by the CPU */ | 
 | 	set_debugreg(0, 6); | 
 |  | 
 | 	/* | 
 | 	 * The processor cleared BTF, so don't mark that we need it set. | 
 | 	 */ | 
 | 	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP); | 
 |  | 
 | 	/* Store the virtualized DR6 value */ | 
 | 	tsk->thread.debugreg6 = dr6; | 
 |  | 
 | 	if (notify_die(DIE_DEBUG, "debug", regs, PTR_ERR(&dr6), error_code, | 
 | 							SIGTRAP) == NOTIFY_STOP) | 
 | 		return; | 
 |  | 
 | 	/* It's safe to allow irq's after DR6 has been saved */ | 
 | 	preempt_conditional_sti(regs); | 
 |  | 
 | 	if (regs->flags & X86_VM_MASK) { | 
 | 		handle_vm86_trap((struct kernel_vm86_regs *) regs, | 
 | 				error_code, 1); | 
 | 		preempt_conditional_cli(regs); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Single-stepping through system calls: ignore any exceptions in | 
 | 	 * kernel space, but re-enable TF when returning to user mode. | 
 | 	 * | 
 | 	 * We already checked v86 mode above, so we can check for kernel mode | 
 | 	 * by just checking the CPL of CS. | 
 | 	 */ | 
 | 	if ((dr6 & DR_STEP) && !user_mode(regs)) { | 
 | 		tsk->thread.debugreg6 &= ~DR_STEP; | 
 | 		set_tsk_thread_flag(tsk, TIF_SINGLESTEP); | 
 | 		regs->flags &= ~X86_EFLAGS_TF; | 
 | 	} | 
 | 	si_code = get_si_code(tsk->thread.debugreg6); | 
 | 	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp) | 
 | 		send_sigtrap(tsk, regs, error_code, si_code); | 
 | 	preempt_conditional_cli(regs); | 
 |  | 
 | 	return; | 
 | } | 
 |  | 
 | /* | 
 |  * Note that we play around with the 'TS' bit in an attempt to get | 
 |  * the correct behaviour even in the presence of the asynchronous | 
 |  * IRQ13 behaviour | 
 |  */ | 
 | void math_error(struct pt_regs *regs, int error_code, int trapnr) | 
 | { | 
 | 	struct task_struct *task = current; | 
 | 	siginfo_t info; | 
 | 	unsigned short err; | 
 | 	char *str = (trapnr == 16) ? "fpu exception" : "simd exception"; | 
 |  | 
 | 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP) | 
 | 		return; | 
 | 	conditional_sti(regs); | 
 |  | 
 | 	if (!user_mode_vm(regs)) | 
 | 	{ | 
 | 		if (!fixup_exception(regs)) { | 
 | 			task->thread.error_code = error_code; | 
 | 			task->thread.trap_no = trapnr; | 
 | 			die(str, regs, error_code); | 
 | 		} | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Save the info for the exception handler and clear the error. | 
 | 	 */ | 
 | 	save_init_fpu(task); | 
 | 	task->thread.trap_no = trapnr; | 
 | 	task->thread.error_code = error_code; | 
 | 	info.si_signo = SIGFPE; | 
 | 	info.si_errno = 0; | 
 | 	info.si_addr = (void __user *)regs->ip; | 
 | 	if (trapnr == 16) { | 
 | 		unsigned short cwd, swd; | 
 | 		/* | 
 | 		 * (~cwd & swd) will mask out exceptions that are not set to unmasked | 
 | 		 * status.  0x3f is the exception bits in these regs, 0x200 is the | 
 | 		 * C1 reg you need in case of a stack fault, 0x040 is the stack | 
 | 		 * fault bit.  We should only be taking one exception at a time, | 
 | 		 * so if this combination doesn't produce any single exception, | 
 | 		 * then we have a bad program that isn't synchronizing its FPU usage | 
 | 		 * and it will suffer the consequences since we won't be able to | 
 | 		 * fully reproduce the context of the exception | 
 | 		 */ | 
 | 		cwd = get_fpu_cwd(task); | 
 | 		swd = get_fpu_swd(task); | 
 |  | 
 | 		err = swd & ~cwd; | 
 | 	} else { | 
 | 		/* | 
 | 		 * The SIMD FPU exceptions are handled a little differently, as there | 
 | 		 * is only a single status/control register.  Thus, to determine which | 
 | 		 * unmasked exception was caught we must mask the exception mask bits | 
 | 		 * at 0x1f80, and then use these to mask the exception bits at 0x3f. | 
 | 		 */ | 
 | 		unsigned short mxcsr = get_fpu_mxcsr(task); | 
 | 		err = ~(mxcsr >> 7) & mxcsr; | 
 | 	} | 
 |  | 
 | 	if (err & 0x001) {	/* Invalid op */ | 
 | 		/* | 
 | 		 * swd & 0x240 == 0x040: Stack Underflow | 
 | 		 * swd & 0x240 == 0x240: Stack Overflow | 
 | 		 * User must clear the SF bit (0x40) if set | 
 | 		 */ | 
 | 		info.si_code = FPE_FLTINV; | 
 | 	} else if (err & 0x004) { /* Divide by Zero */ | 
 | 		info.si_code = FPE_FLTDIV; | 
 | 	} else if (err & 0x008) { /* Overflow */ | 
 | 		info.si_code = FPE_FLTOVF; | 
 | 	} else if (err & 0x012) { /* Denormal, Underflow */ | 
 | 		info.si_code = FPE_FLTUND; | 
 | 	} else if (err & 0x020) { /* Precision */ | 
 | 		info.si_code = FPE_FLTRES; | 
 | 	} else { | 
 | 		/* | 
 | 		 * If we're using IRQ 13, or supposedly even some trap 16 | 
 | 		 * implementations, it's possible we get a spurious trap... | 
 | 		 */ | 
 | 		return;		/* Spurious trap, no error */ | 
 | 	} | 
 | 	force_sig_info(SIGFPE, &info, task); | 
 | } | 
 |  | 
 | dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code) | 
 | { | 
 | #ifdef CONFIG_X86_32 | 
 | 	ignore_fpu_irq = 1; | 
 | #endif | 
 |  | 
 | 	math_error(regs, error_code, 16); | 
 | } | 
 |  | 
 | dotraplinkage void | 
 | do_simd_coprocessor_error(struct pt_regs *regs, long error_code) | 
 | { | 
 | 	math_error(regs, error_code, 19); | 
 | } | 
 |  | 
 | dotraplinkage void | 
 | do_spurious_interrupt_bug(struct pt_regs *regs, long error_code) | 
 | { | 
 | 	conditional_sti(regs); | 
 | #if 0 | 
 | 	/* No need to warn about this any longer. */ | 
 | 	printk(KERN_INFO "Ignoring P6 Local APIC Spurious Interrupt Bug...\n"); | 
 | #endif | 
 | } | 
 |  | 
 | asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void) | 
 | { | 
 | } | 
 |  | 
 | asmlinkage void __attribute__((weak)) smp_threshold_interrupt(void) | 
 | { | 
 | } | 
 |  | 
 | /* | 
 |  * __math_state_restore assumes that cr0.TS is already clear and the | 
 |  * fpu state is all ready for use.  Used during context switch. | 
 |  */ | 
 | void __math_state_restore(void) | 
 | { | 
 | 	struct thread_info *thread = current_thread_info(); | 
 | 	struct task_struct *tsk = thread->task; | 
 |  | 
 | 	/* | 
 | 	 * Paranoid restore. send a SIGSEGV if we fail to restore the state. | 
 | 	 */ | 
 | 	if (unlikely(restore_fpu_checking(tsk))) { | 
 | 		stts(); | 
 | 		force_sig(SIGSEGV, tsk); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	thread->status |= TS_USEDFPU;	/* So we fnsave on switch_to() */ | 
 | 	tsk->fpu_counter++; | 
 | } | 
 |  | 
 | /* | 
 |  * 'math_state_restore()' saves the current math information in the | 
 |  * old math state array, and gets the new ones from the current task | 
 |  * | 
 |  * Careful.. There are problems with IBM-designed IRQ13 behaviour. | 
 |  * Don't touch unless you *really* know how it works. | 
 |  * | 
 |  * Must be called with kernel preemption disabled (in this case, | 
 |  * local interrupts are disabled at the call-site in entry.S). | 
 |  */ | 
 | asmlinkage void math_state_restore(void) | 
 | { | 
 | 	struct thread_info *thread = current_thread_info(); | 
 | 	struct task_struct *tsk = thread->task; | 
 |  | 
 | 	if (!tsk_used_math(tsk)) { | 
 | 		local_irq_enable(); | 
 | 		/* | 
 | 		 * does a slab alloc which can sleep | 
 | 		 */ | 
 | 		if (init_fpu(tsk)) { | 
 | 			/* | 
 | 			 * ran out of memory! | 
 | 			 */ | 
 | 			do_group_exit(SIGKILL); | 
 | 			return; | 
 | 		} | 
 | 		local_irq_disable(); | 
 | 	} | 
 |  | 
 | 	clts();				/* Allow maths ops (or we recurse) */ | 
 |  | 
 | 	__math_state_restore(); | 
 | } | 
 | EXPORT_SYMBOL_GPL(math_state_restore); | 
 |  | 
 | dotraplinkage void __kprobes | 
 | do_device_not_available(struct pt_regs *regs, long error_code) | 
 | { | 
 | #ifdef CONFIG_MATH_EMULATION | 
 | 	if (read_cr0() & X86_CR0_EM) { | 
 | 		struct math_emu_info info = { }; | 
 |  | 
 | 		conditional_sti(regs); | 
 |  | 
 | 		info.regs = regs; | 
 | 		math_emulate(&info); | 
 | 		return; | 
 | 	} | 
 | #endif | 
 | 	math_state_restore(); /* interrupts still off */ | 
 | #ifdef CONFIG_X86_32 | 
 | 	conditional_sti(regs); | 
 | #endif | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_32 | 
 | dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code) | 
 | { | 
 | 	siginfo_t info; | 
 | 	local_irq_enable(); | 
 |  | 
 | 	info.si_signo = SIGILL; | 
 | 	info.si_errno = 0; | 
 | 	info.si_code = ILL_BADSTK; | 
 | 	info.si_addr = NULL; | 
 | 	if (notify_die(DIE_TRAP, "iret exception", | 
 | 			regs, error_code, 32, SIGILL) == NOTIFY_STOP) | 
 | 		return; | 
 | 	do_trap(32, SIGILL, "iret exception", regs, error_code, &info); | 
 | } | 
 | #endif | 
 |  | 
 | /* Set of traps needed for early debugging. */ | 
 | void __init early_trap_init(void) | 
 | { | 
 | 	set_intr_gate_ist(1, &debug, DEBUG_STACK); | 
 | 	/* int3 can be called from all */ | 
 | 	set_system_intr_gate_ist(3, &int3, DEBUG_STACK); | 
 | 	set_intr_gate(14, &page_fault); | 
 | 	load_idt(&idt_descr); | 
 | } | 
 |  | 
 | void __init trap_init(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | #ifdef CONFIG_EISA | 
 | 	void __iomem *p = early_ioremap(0x0FFFD9, 4); | 
 |  | 
 | 	if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24)) | 
 | 		EISA_bus = 1; | 
 | 	early_iounmap(p, 4); | 
 | #endif | 
 |  | 
 | 	set_intr_gate(0, ÷_error); | 
 | 	set_intr_gate_ist(2, &nmi, NMI_STACK); | 
 | 	/* int4 can be called from all */ | 
 | 	set_system_intr_gate(4, &overflow); | 
 | 	set_intr_gate(5, &bounds); | 
 | 	set_intr_gate(6, &invalid_op); | 
 | 	set_intr_gate(7, &device_not_available); | 
 | #ifdef CONFIG_X86_32 | 
 | 	set_task_gate(8, GDT_ENTRY_DOUBLEFAULT_TSS); | 
 | #else | 
 | 	set_intr_gate_ist(8, &double_fault, DOUBLEFAULT_STACK); | 
 | #endif | 
 | 	set_intr_gate(9, &coprocessor_segment_overrun); | 
 | 	set_intr_gate(10, &invalid_TSS); | 
 | 	set_intr_gate(11, &segment_not_present); | 
 | 	set_intr_gate_ist(12, &stack_segment, STACKFAULT_STACK); | 
 | 	set_intr_gate(13, &general_protection); | 
 | 	set_intr_gate(15, &spurious_interrupt_bug); | 
 | 	set_intr_gate(16, &coprocessor_error); | 
 | 	set_intr_gate(17, &alignment_check); | 
 | #ifdef CONFIG_X86_MCE | 
 | 	set_intr_gate_ist(18, &machine_check, MCE_STACK); | 
 | #endif | 
 | 	set_intr_gate(19, &simd_coprocessor_error); | 
 |  | 
 | 	/* Reserve all the builtin and the syscall vector: */ | 
 | 	for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++) | 
 | 		set_bit(i, used_vectors); | 
 |  | 
 | #ifdef CONFIG_IA32_EMULATION | 
 | 	set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall); | 
 | 	set_bit(IA32_SYSCALL_VECTOR, used_vectors); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_X86_32 | 
 | 	set_system_trap_gate(SYSCALL_VECTOR, &system_call); | 
 | 	set_bit(SYSCALL_VECTOR, used_vectors); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Should be a barrier for any external CPU state: | 
 | 	 */ | 
 | 	cpu_init(); | 
 |  | 
 | 	x86_init.irqs.trap_init(); | 
 | } |