| /* | 
 |  * processor_idle - idle state submodule to the ACPI processor driver | 
 |  * | 
 |  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> | 
 |  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> | 
 |  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de> | 
 |  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> | 
 |  *  			- Added processor hotplug support | 
 |  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> | 
 |  *  			- Added support for C3 on SMP | 
 |  * | 
 |  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 
 |  * | 
 |  *  This program is free software; you can redistribute it and/or modify | 
 |  *  it under the terms of the GNU General Public License as published by | 
 |  *  the Free Software Foundation; either version 2 of the License, or (at | 
 |  *  your option) any later version. | 
 |  * | 
 |  *  This program is distributed in the hope that it will be useful, but | 
 |  *  WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |  *  General Public License for more details. | 
 |  * | 
 |  *  You should have received a copy of the GNU General Public License along | 
 |  *  with this program; if not, write to the Free Software Foundation, Inc., | 
 |  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. | 
 |  * | 
 |  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/init.h> | 
 | #include <linux/cpufreq.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/acpi.h> | 
 | #include <linux/dmi.h> | 
 | #include <linux/moduleparam.h> | 
 | #include <linux/sched.h>	/* need_resched() */ | 
 | #include <linux/pm_qos.h> | 
 | #include <linux/clockchips.h> | 
 | #include <linux/cpuidle.h> | 
 | #include <linux/irqflags.h> | 
 |  | 
 | /* | 
 |  * Include the apic definitions for x86 to have the APIC timer related defines | 
 |  * available also for UP (on SMP it gets magically included via linux/smp.h). | 
 |  * asm/acpi.h is not an option, as it would require more include magic. Also | 
 |  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera. | 
 |  */ | 
 | #ifdef CONFIG_X86 | 
 | #include <asm/apic.h> | 
 | #endif | 
 |  | 
 | #include <asm/io.h> | 
 | #include <asm/uaccess.h> | 
 |  | 
 | #include <acpi/acpi_bus.h> | 
 | #include <acpi/processor.h> | 
 | #include <asm/processor.h> | 
 |  | 
 | #define PREFIX "ACPI: " | 
 |  | 
 | #define ACPI_PROCESSOR_CLASS            "processor" | 
 | #define _COMPONENT              ACPI_PROCESSOR_COMPONENT | 
 | ACPI_MODULE_NAME("processor_idle"); | 
 | #define PM_TIMER_TICK_NS		(1000000000ULL/PM_TIMER_FREQUENCY) | 
 | #define C2_OVERHEAD			1	/* 1us */ | 
 | #define C3_OVERHEAD			1	/* 1us */ | 
 | #define PM_TIMER_TICKS_TO_US(p)		(((p) * 1000)/(PM_TIMER_FREQUENCY/1000)) | 
 |  | 
 | static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER; | 
 | module_param(max_cstate, uint, 0000); | 
 | static unsigned int nocst __read_mostly; | 
 | module_param(nocst, uint, 0000); | 
 | static int bm_check_disable __read_mostly; | 
 | module_param(bm_check_disable, uint, 0000); | 
 |  | 
 | static unsigned int latency_factor __read_mostly = 2; | 
 | module_param(latency_factor, uint, 0644); | 
 |  | 
 | static int disabled_by_idle_boot_param(void) | 
 | { | 
 | 	return boot_option_idle_override == IDLE_POLL || | 
 | 		boot_option_idle_override == IDLE_FORCE_MWAIT || | 
 | 		boot_option_idle_override == IDLE_HALT; | 
 | } | 
 |  | 
 | /* | 
 |  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3. | 
 |  * For now disable this. Probably a bug somewhere else. | 
 |  * | 
 |  * To skip this limit, boot/load with a large max_cstate limit. | 
 |  */ | 
 | static int set_max_cstate(const struct dmi_system_id *id) | 
 | { | 
 | 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER) | 
 | 		return 0; | 
 |  | 
 | 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate." | 
 | 	       " Override with \"processor.max_cstate=%d\"\n", id->ident, | 
 | 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1); | 
 |  | 
 | 	max_cstate = (long)id->driver_data; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Actually this shouldn't be __cpuinitdata, would be better to fix the | 
 |    callers to only run once -AK */ | 
 | static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = { | 
 | 	{ set_max_cstate, "Clevo 5600D", { | 
 | 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"), | 
 | 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")}, | 
 | 	 (void *)2}, | 
 | 	{ set_max_cstate, "Pavilion zv5000", { | 
 | 	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), | 
 | 	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")}, | 
 | 	 (void *)1}, | 
 | 	{ set_max_cstate, "Asus L8400B", { | 
 | 	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."), | 
 | 	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")}, | 
 | 	 (void *)1}, | 
 | 	{}, | 
 | }; | 
 |  | 
 |  | 
 | /* | 
 |  * Callers should disable interrupts before the call and enable | 
 |  * interrupts after return. | 
 |  */ | 
 | static void acpi_safe_halt(void) | 
 | { | 
 | 	current_thread_info()->status &= ~TS_POLLING; | 
 | 	/* | 
 | 	 * TS_POLLING-cleared state must be visible before we | 
 | 	 * test NEED_RESCHED: | 
 | 	 */ | 
 | 	smp_mb(); | 
 | 	if (!need_resched()) { | 
 | 		safe_halt(); | 
 | 		local_irq_disable(); | 
 | 	} | 
 | 	current_thread_info()->status |= TS_POLLING; | 
 | } | 
 |  | 
 | #ifdef ARCH_APICTIMER_STOPS_ON_C3 | 
 |  | 
 | /* | 
 |  * Some BIOS implementations switch to C3 in the published C2 state. | 
 |  * This seems to be a common problem on AMD boxen, but other vendors | 
 |  * are affected too. We pick the most conservative approach: we assume | 
 |  * that the local APIC stops in both C2 and C3. | 
 |  */ | 
 | static void lapic_timer_check_state(int state, struct acpi_processor *pr, | 
 | 				   struct acpi_processor_cx *cx) | 
 | { | 
 | 	struct acpi_processor_power *pwr = &pr->power; | 
 | 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2; | 
 |  | 
 | 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT)) | 
 | 		return; | 
 |  | 
 | 	if (amd_e400_c1e_detected) | 
 | 		type = ACPI_STATE_C1; | 
 |  | 
 | 	/* | 
 | 	 * Check, if one of the previous states already marked the lapic | 
 | 	 * unstable | 
 | 	 */ | 
 | 	if (pwr->timer_broadcast_on_state < state) | 
 | 		return; | 
 |  | 
 | 	if (cx->type >= type) | 
 | 		pr->power.timer_broadcast_on_state = state; | 
 | } | 
 |  | 
 | static void __lapic_timer_propagate_broadcast(void *arg) | 
 | { | 
 | 	struct acpi_processor *pr = (struct acpi_processor *) arg; | 
 | 	unsigned long reason; | 
 |  | 
 | 	reason = pr->power.timer_broadcast_on_state < INT_MAX ? | 
 | 		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF; | 
 |  | 
 | 	clockevents_notify(reason, &pr->id); | 
 | } | 
 |  | 
 | static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) | 
 | { | 
 | 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast, | 
 | 				 (void *)pr, 1); | 
 | } | 
 |  | 
 | /* Power(C) State timer broadcast control */ | 
 | static void lapic_timer_state_broadcast(struct acpi_processor *pr, | 
 | 				       struct acpi_processor_cx *cx, | 
 | 				       int broadcast) | 
 | { | 
 | 	int state = cx - pr->power.states; | 
 |  | 
 | 	if (state >= pr->power.timer_broadcast_on_state) { | 
 | 		unsigned long reason; | 
 |  | 
 | 		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER : | 
 | 			CLOCK_EVT_NOTIFY_BROADCAST_EXIT; | 
 | 		clockevents_notify(reason, &pr->id); | 
 | 	} | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static void lapic_timer_check_state(int state, struct acpi_processor *pr, | 
 | 				   struct acpi_processor_cx *cstate) { } | 
 | static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { } | 
 | static void lapic_timer_state_broadcast(struct acpi_processor *pr, | 
 | 				       struct acpi_processor_cx *cx, | 
 | 				       int broadcast) | 
 | { | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /* | 
 |  * Suspend / resume control | 
 |  */ | 
 | static int acpi_idle_suspend; | 
 | static u32 saved_bm_rld; | 
 |  | 
 | static void acpi_idle_bm_rld_save(void) | 
 | { | 
 | 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld); | 
 | } | 
 | static void acpi_idle_bm_rld_restore(void) | 
 | { | 
 | 	u32 resumed_bm_rld; | 
 |  | 
 | 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld); | 
 |  | 
 | 	if (resumed_bm_rld != saved_bm_rld) | 
 | 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld); | 
 | } | 
 |  | 
 | int acpi_processor_suspend(struct acpi_device * device, pm_message_t state) | 
 | { | 
 | 	if (acpi_idle_suspend == 1) | 
 | 		return 0; | 
 |  | 
 | 	acpi_idle_bm_rld_save(); | 
 | 	acpi_idle_suspend = 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int acpi_processor_resume(struct acpi_device * device) | 
 | { | 
 | 	if (acpi_idle_suspend == 0) | 
 | 		return 0; | 
 |  | 
 | 	acpi_idle_bm_rld_restore(); | 
 | 	acpi_idle_suspend = 0; | 
 | 	return 0; | 
 | } | 
 |  | 
 | #if defined(CONFIG_X86) | 
 | static void tsc_check_state(int state) | 
 | { | 
 | 	switch (boot_cpu_data.x86_vendor) { | 
 | 	case X86_VENDOR_AMD: | 
 | 	case X86_VENDOR_INTEL: | 
 | 		/* | 
 | 		 * AMD Fam10h TSC will tick in all | 
 | 		 * C/P/S0/S1 states when this bit is set. | 
 | 		 */ | 
 | 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) | 
 | 			return; | 
 |  | 
 | 		/*FALL THROUGH*/ | 
 | 	default: | 
 | 		/* TSC could halt in idle, so notify users */ | 
 | 		if (state > ACPI_STATE_C1) | 
 | 			mark_tsc_unstable("TSC halts in idle"); | 
 | 	} | 
 | } | 
 | #else | 
 | static void tsc_check_state(int state) { return; } | 
 | #endif | 
 |  | 
 | static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr) | 
 | { | 
 |  | 
 | 	if (!pr) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!pr->pblk) | 
 | 		return -ENODEV; | 
 |  | 
 | 	/* if info is obtained from pblk/fadt, type equals state */ | 
 | 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2; | 
 | 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3; | 
 |  | 
 | #ifndef CONFIG_HOTPLUG_CPU | 
 | 	/* | 
 | 	 * Check for P_LVL2_UP flag before entering C2 and above on | 
 | 	 * an SMP system. | 
 | 	 */ | 
 | 	if ((num_online_cpus() > 1) && | 
 | 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) | 
 | 		return -ENODEV; | 
 | #endif | 
 |  | 
 | 	/* determine C2 and C3 address from pblk */ | 
 | 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4; | 
 | 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5; | 
 |  | 
 | 	/* determine latencies from FADT */ | 
 | 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency; | 
 | 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency; | 
 |  | 
 | 	/* | 
 | 	 * FADT specified C2 latency must be less than or equal to | 
 | 	 * 100 microseconds. | 
 | 	 */ | 
 | 	if (acpi_gbl_FADT.C2latency > ACPI_PROCESSOR_MAX_C2_LATENCY) { | 
 | 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, | 
 | 			"C2 latency too large [%d]\n", acpi_gbl_FADT.C2latency)); | 
 | 		/* invalidate C2 */ | 
 | 		pr->power.states[ACPI_STATE_C2].address = 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * FADT supplied C3 latency must be less than or equal to | 
 | 	 * 1000 microseconds. | 
 | 	 */ | 
 | 	if (acpi_gbl_FADT.C3latency > ACPI_PROCESSOR_MAX_C3_LATENCY) { | 
 | 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, | 
 | 			"C3 latency too large [%d]\n", acpi_gbl_FADT.C3latency)); | 
 | 		/* invalidate C3 */ | 
 | 		pr->power.states[ACPI_STATE_C3].address = 0; | 
 | 	} | 
 |  | 
 | 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, | 
 | 			  "lvl2[0x%08x] lvl3[0x%08x]\n", | 
 | 			  pr->power.states[ACPI_STATE_C2].address, | 
 | 			  pr->power.states[ACPI_STATE_C3].address)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int acpi_processor_get_power_info_default(struct acpi_processor *pr) | 
 | { | 
 | 	if (!pr->power.states[ACPI_STATE_C1].valid) { | 
 | 		/* set the first C-State to C1 */ | 
 | 		/* all processors need to support C1 */ | 
 | 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1; | 
 | 		pr->power.states[ACPI_STATE_C1].valid = 1; | 
 | 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT; | 
 | 	} | 
 | 	/* the C0 state only exists as a filler in our array */ | 
 | 	pr->power.states[ACPI_STATE_C0].valid = 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int acpi_processor_get_power_info_cst(struct acpi_processor *pr) | 
 | { | 
 | 	acpi_status status = 0; | 
 | 	u64 count; | 
 | 	int current_count; | 
 | 	int i; | 
 | 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; | 
 | 	union acpi_object *cst; | 
 |  | 
 |  | 
 | 	if (nocst) | 
 | 		return -ENODEV; | 
 |  | 
 | 	current_count = 0; | 
 |  | 
 | 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer); | 
 | 	if (ACPI_FAILURE(status)) { | 
 | 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n")); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	cst = buffer.pointer; | 
 |  | 
 | 	/* There must be at least 2 elements */ | 
 | 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) { | 
 | 		printk(KERN_ERR PREFIX "not enough elements in _CST\n"); | 
 | 		status = -EFAULT; | 
 | 		goto end; | 
 | 	} | 
 |  | 
 | 	count = cst->package.elements[0].integer.value; | 
 |  | 
 | 	/* Validate number of power states. */ | 
 | 	if (count < 1 || count != cst->package.count - 1) { | 
 | 		printk(KERN_ERR PREFIX "count given by _CST is not valid\n"); | 
 | 		status = -EFAULT; | 
 | 		goto end; | 
 | 	} | 
 |  | 
 | 	/* Tell driver that at least _CST is supported. */ | 
 | 	pr->flags.has_cst = 1; | 
 |  | 
 | 	for (i = 1; i <= count; i++) { | 
 | 		union acpi_object *element; | 
 | 		union acpi_object *obj; | 
 | 		struct acpi_power_register *reg; | 
 | 		struct acpi_processor_cx cx; | 
 |  | 
 | 		memset(&cx, 0, sizeof(cx)); | 
 |  | 
 | 		element = &(cst->package.elements[i]); | 
 | 		if (element->type != ACPI_TYPE_PACKAGE) | 
 | 			continue; | 
 |  | 
 | 		if (element->package.count != 4) | 
 | 			continue; | 
 |  | 
 | 		obj = &(element->package.elements[0]); | 
 |  | 
 | 		if (obj->type != ACPI_TYPE_BUFFER) | 
 | 			continue; | 
 |  | 
 | 		reg = (struct acpi_power_register *)obj->buffer.pointer; | 
 |  | 
 | 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO && | 
 | 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) | 
 | 			continue; | 
 |  | 
 | 		/* There should be an easy way to extract an integer... */ | 
 | 		obj = &(element->package.elements[1]); | 
 | 		if (obj->type != ACPI_TYPE_INTEGER) | 
 | 			continue; | 
 |  | 
 | 		cx.type = obj->integer.value; | 
 | 		/* | 
 | 		 * Some buggy BIOSes won't list C1 in _CST - | 
 | 		 * Let acpi_processor_get_power_info_default() handle them later | 
 | 		 */ | 
 | 		if (i == 1 && cx.type != ACPI_STATE_C1) | 
 | 			current_count++; | 
 |  | 
 | 		cx.address = reg->address; | 
 | 		cx.index = current_count + 1; | 
 |  | 
 | 		cx.entry_method = ACPI_CSTATE_SYSTEMIO; | 
 | 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) { | 
 | 			if (acpi_processor_ffh_cstate_probe | 
 | 					(pr->id, &cx, reg) == 0) { | 
 | 				cx.entry_method = ACPI_CSTATE_FFH; | 
 | 			} else if (cx.type == ACPI_STATE_C1) { | 
 | 				/* | 
 | 				 * C1 is a special case where FIXED_HARDWARE | 
 | 				 * can be handled in non-MWAIT way as well. | 
 | 				 * In that case, save this _CST entry info. | 
 | 				 * Otherwise, ignore this info and continue. | 
 | 				 */ | 
 | 				cx.entry_method = ACPI_CSTATE_HALT; | 
 | 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT"); | 
 | 			} else { | 
 | 				continue; | 
 | 			} | 
 | 			if (cx.type == ACPI_STATE_C1 && | 
 | 			    (boot_option_idle_override == IDLE_NOMWAIT)) { | 
 | 				/* | 
 | 				 * In most cases the C1 space_id obtained from | 
 | 				 * _CST object is FIXED_HARDWARE access mode. | 
 | 				 * But when the option of idle=halt is added, | 
 | 				 * the entry_method type should be changed from | 
 | 				 * CSTATE_FFH to CSTATE_HALT. | 
 | 				 * When the option of idle=nomwait is added, | 
 | 				 * the C1 entry_method type should be | 
 | 				 * CSTATE_HALT. | 
 | 				 */ | 
 | 				cx.entry_method = ACPI_CSTATE_HALT; | 
 | 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT"); | 
 | 			} | 
 | 		} else { | 
 | 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x", | 
 | 				 cx.address); | 
 | 		} | 
 |  | 
 | 		if (cx.type == ACPI_STATE_C1) { | 
 | 			cx.valid = 1; | 
 | 		} | 
 |  | 
 | 		obj = &(element->package.elements[2]); | 
 | 		if (obj->type != ACPI_TYPE_INTEGER) | 
 | 			continue; | 
 |  | 
 | 		cx.latency = obj->integer.value; | 
 |  | 
 | 		obj = &(element->package.elements[3]); | 
 | 		if (obj->type != ACPI_TYPE_INTEGER) | 
 | 			continue; | 
 |  | 
 | 		cx.power = obj->integer.value; | 
 |  | 
 | 		current_count++; | 
 | 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx)); | 
 |  | 
 | 		/* | 
 | 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1 | 
 | 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1) | 
 | 		 */ | 
 | 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) { | 
 | 			printk(KERN_WARNING | 
 | 			       "Limiting number of power states to max (%d)\n", | 
 | 			       ACPI_PROCESSOR_MAX_POWER); | 
 | 			printk(KERN_WARNING | 
 | 			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n"); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n", | 
 | 			  current_count)); | 
 |  | 
 | 	/* Validate number of power states discovered */ | 
 | 	if (current_count < 2) | 
 | 		status = -EFAULT; | 
 |  | 
 |       end: | 
 | 	kfree(buffer.pointer); | 
 |  | 
 | 	return status; | 
 | } | 
 |  | 
 | static void acpi_processor_power_verify_c3(struct acpi_processor *pr, | 
 | 					   struct acpi_processor_cx *cx) | 
 | { | 
 | 	static int bm_check_flag = -1; | 
 | 	static int bm_control_flag = -1; | 
 |  | 
 |  | 
 | 	if (!cx->address) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast) | 
 | 	 * DMA transfers are used by any ISA device to avoid livelock. | 
 | 	 * Note that we could disable Type-F DMA (as recommended by | 
 | 	 * the erratum), but this is known to disrupt certain ISA | 
 | 	 * devices thus we take the conservative approach. | 
 | 	 */ | 
 | 	else if (errata.piix4.fdma) { | 
 | 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, | 
 | 				  "C3 not supported on PIIX4 with Type-F DMA\n")); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* All the logic here assumes flags.bm_check is same across all CPUs */ | 
 | 	if (bm_check_flag == -1) { | 
 | 		/* Determine whether bm_check is needed based on CPU  */ | 
 | 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id); | 
 | 		bm_check_flag = pr->flags.bm_check; | 
 | 		bm_control_flag = pr->flags.bm_control; | 
 | 	} else { | 
 | 		pr->flags.bm_check = bm_check_flag; | 
 | 		pr->flags.bm_control = bm_control_flag; | 
 | 	} | 
 |  | 
 | 	if (pr->flags.bm_check) { | 
 | 		if (!pr->flags.bm_control) { | 
 | 			if (pr->flags.has_cst != 1) { | 
 | 				/* bus mastering control is necessary */ | 
 | 				ACPI_DEBUG_PRINT((ACPI_DB_INFO, | 
 | 					"C3 support requires BM control\n")); | 
 | 				return; | 
 | 			} else { | 
 | 				/* Here we enter C3 without bus mastering */ | 
 | 				ACPI_DEBUG_PRINT((ACPI_DB_INFO, | 
 | 					"C3 support without BM control\n")); | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		/* | 
 | 		 * WBINVD should be set in fadt, for C3 state to be | 
 | 		 * supported on when bm_check is not required. | 
 | 		 */ | 
 | 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) { | 
 | 			ACPI_DEBUG_PRINT((ACPI_DB_INFO, | 
 | 					  "Cache invalidation should work properly" | 
 | 					  " for C3 to be enabled on SMP systems\n")); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Otherwise we've met all of our C3 requirements. | 
 | 	 * Normalize the C3 latency to expidite policy.  Enable | 
 | 	 * checking of bus mastering status (bm_check) so we can | 
 | 	 * use this in our C3 policy | 
 | 	 */ | 
 | 	cx->valid = 1; | 
 |  | 
 | 	cx->latency_ticks = cx->latency; | 
 | 	/* | 
 | 	 * On older chipsets, BM_RLD needs to be set | 
 | 	 * in order for Bus Master activity to wake the | 
 | 	 * system from C3.  Newer chipsets handle DMA | 
 | 	 * during C3 automatically and BM_RLD is a NOP. | 
 | 	 * In either case, the proper way to | 
 | 	 * handle BM_RLD is to set it and leave it set. | 
 | 	 */ | 
 | 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1); | 
 |  | 
 | 	return; | 
 | } | 
 |  | 
 | static int acpi_processor_power_verify(struct acpi_processor *pr) | 
 | { | 
 | 	unsigned int i; | 
 | 	unsigned int working = 0; | 
 |  | 
 | 	pr->power.timer_broadcast_on_state = INT_MAX; | 
 |  | 
 | 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { | 
 | 		struct acpi_processor_cx *cx = &pr->power.states[i]; | 
 |  | 
 | 		switch (cx->type) { | 
 | 		case ACPI_STATE_C1: | 
 | 			cx->valid = 1; | 
 | 			break; | 
 |  | 
 | 		case ACPI_STATE_C2: | 
 | 			if (!cx->address) | 
 | 				break; | 
 | 			cx->valid = 1;  | 
 | 			cx->latency_ticks = cx->latency; /* Normalize latency */ | 
 | 			break; | 
 |  | 
 | 		case ACPI_STATE_C3: | 
 | 			acpi_processor_power_verify_c3(pr, cx); | 
 | 			break; | 
 | 		} | 
 | 		if (!cx->valid) | 
 | 			continue; | 
 |  | 
 | 		lapic_timer_check_state(i, pr, cx); | 
 | 		tsc_check_state(cx->type); | 
 | 		working++; | 
 | 	} | 
 |  | 
 | 	lapic_timer_propagate_broadcast(pr); | 
 |  | 
 | 	return (working); | 
 | } | 
 |  | 
 | static int acpi_processor_get_power_info(struct acpi_processor *pr) | 
 | { | 
 | 	unsigned int i; | 
 | 	int result; | 
 |  | 
 |  | 
 | 	/* NOTE: the idle thread may not be running while calling | 
 | 	 * this function */ | 
 |  | 
 | 	/* Zero initialize all the C-states info. */ | 
 | 	memset(pr->power.states, 0, sizeof(pr->power.states)); | 
 |  | 
 | 	result = acpi_processor_get_power_info_cst(pr); | 
 | 	if (result == -ENODEV) | 
 | 		result = acpi_processor_get_power_info_fadt(pr); | 
 |  | 
 | 	if (result) | 
 | 		return result; | 
 |  | 
 | 	acpi_processor_get_power_info_default(pr); | 
 |  | 
 | 	pr->power.count = acpi_processor_power_verify(pr); | 
 |  | 
 | 	/* | 
 | 	 * if one state of type C2 or C3 is available, mark this | 
 | 	 * CPU as being "idle manageable" | 
 | 	 */ | 
 | 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { | 
 | 		if (pr->power.states[i].valid) { | 
 | 			pr->power.count = i; | 
 | 			if (pr->power.states[i].type >= ACPI_STATE_C2) | 
 | 				pr->flags.power = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * acpi_idle_bm_check - checks if bus master activity was detected | 
 |  */ | 
 | static int acpi_idle_bm_check(void) | 
 | { | 
 | 	u32 bm_status = 0; | 
 |  | 
 | 	if (bm_check_disable) | 
 | 		return 0; | 
 |  | 
 | 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status); | 
 | 	if (bm_status) | 
 | 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1); | 
 | 	/* | 
 | 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect | 
 | 	 * the true state of bus mastering activity; forcing us to | 
 | 	 * manually check the BMIDEA bit of each IDE channel. | 
 | 	 */ | 
 | 	else if (errata.piix4.bmisx) { | 
 | 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01) | 
 | 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01)) | 
 | 			bm_status = 1; | 
 | 	} | 
 | 	return bm_status; | 
 | } | 
 |  | 
 | /** | 
 |  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry | 
 |  * @cx: cstate data | 
 |  * | 
 |  * Caller disables interrupt before call and enables interrupt after return. | 
 |  */ | 
 | static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx) | 
 | { | 
 | 	/* Don't trace irqs off for idle */ | 
 | 	stop_critical_timings(); | 
 | 	if (cx->entry_method == ACPI_CSTATE_FFH) { | 
 | 		/* Call into architectural FFH based C-state */ | 
 | 		acpi_processor_ffh_cstate_enter(cx); | 
 | 	} else if (cx->entry_method == ACPI_CSTATE_HALT) { | 
 | 		acpi_safe_halt(); | 
 | 	} else { | 
 | 		/* IO port based C-state */ | 
 | 		inb(cx->address); | 
 | 		/* Dummy wait op - must do something useless after P_LVL2 read | 
 | 		   because chipsets cannot guarantee that STPCLK# signal | 
 | 		   gets asserted in time to freeze execution properly. */ | 
 | 		inl(acpi_gbl_FADT.xpm_timer_block.address); | 
 | 	} | 
 | 	start_critical_timings(); | 
 | } | 
 |  | 
 | /** | 
 |  * acpi_idle_enter_c1 - enters an ACPI C1 state-type | 
 |  * @dev: the target CPU | 
 |  * @state: the state data | 
 |  * | 
 |  * This is equivalent to the HALT instruction. | 
 |  */ | 
 | static int acpi_idle_enter_c1(struct cpuidle_device *dev, | 
 | 			      struct cpuidle_state *state) | 
 | { | 
 | 	ktime_t  kt1, kt2; | 
 | 	s64 idle_time; | 
 | 	struct acpi_processor *pr; | 
 | 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state); | 
 |  | 
 | 	pr = __this_cpu_read(processors); | 
 |  | 
 | 	if (unlikely(!pr)) | 
 | 		return 0; | 
 |  | 
 | 	local_irq_disable(); | 
 |  | 
 | 	/* Do not access any ACPI IO ports in suspend path */ | 
 | 	if (acpi_idle_suspend) { | 
 | 		local_irq_enable(); | 
 | 		cpu_relax(); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	lapic_timer_state_broadcast(pr, cx, 1); | 
 | 	kt1 = ktime_get_real(); | 
 | 	acpi_idle_do_entry(cx); | 
 | 	kt2 = ktime_get_real(); | 
 | 	idle_time =  ktime_to_us(ktime_sub(kt2, kt1)); | 
 |  | 
 | 	local_irq_enable(); | 
 | 	cx->usage++; | 
 | 	lapic_timer_state_broadcast(pr, cx, 0); | 
 |  | 
 | 	return idle_time; | 
 | } | 
 |  | 
 | /** | 
 |  * acpi_idle_enter_simple - enters an ACPI state without BM handling | 
 |  * @dev: the target CPU | 
 |  * @state: the state data | 
 |  */ | 
 | static int acpi_idle_enter_simple(struct cpuidle_device *dev, | 
 | 				  struct cpuidle_state *state) | 
 | { | 
 | 	struct acpi_processor *pr; | 
 | 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state); | 
 | 	ktime_t  kt1, kt2; | 
 | 	s64 idle_time_ns; | 
 | 	s64 idle_time; | 
 |  | 
 | 	pr = __this_cpu_read(processors); | 
 |  | 
 | 	if (unlikely(!pr)) | 
 | 		return 0; | 
 |  | 
 | 	if (acpi_idle_suspend) | 
 | 		return(acpi_idle_enter_c1(dev, state)); | 
 |  | 
 | 	local_irq_disable(); | 
 |  | 
 | 	if (cx->entry_method != ACPI_CSTATE_FFH) { | 
 | 		current_thread_info()->status &= ~TS_POLLING; | 
 | 		/* | 
 | 		 * TS_POLLING-cleared state must be visible before we test | 
 | 		 * NEED_RESCHED: | 
 | 		 */ | 
 | 		smp_mb(); | 
 |  | 
 | 		if (unlikely(need_resched())) { | 
 | 			current_thread_info()->status |= TS_POLLING; | 
 | 			local_irq_enable(); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Must be done before busmaster disable as we might need to | 
 | 	 * access HPET ! | 
 | 	 */ | 
 | 	lapic_timer_state_broadcast(pr, cx, 1); | 
 |  | 
 | 	if (cx->type == ACPI_STATE_C3) | 
 | 		ACPI_FLUSH_CPU_CACHE(); | 
 |  | 
 | 	kt1 = ktime_get_real(); | 
 | 	/* Tell the scheduler that we are going deep-idle: */ | 
 | 	sched_clock_idle_sleep_event(); | 
 | 	acpi_idle_do_entry(cx); | 
 | 	kt2 = ktime_get_real(); | 
 | 	idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1)); | 
 | 	idle_time = idle_time_ns; | 
 | 	do_div(idle_time, NSEC_PER_USEC); | 
 |  | 
 | 	/* Tell the scheduler how much we idled: */ | 
 | 	sched_clock_idle_wakeup_event(idle_time_ns); | 
 |  | 
 | 	local_irq_enable(); | 
 | 	if (cx->entry_method != ACPI_CSTATE_FFH) | 
 | 		current_thread_info()->status |= TS_POLLING; | 
 |  | 
 | 	cx->usage++; | 
 |  | 
 | 	lapic_timer_state_broadcast(pr, cx, 0); | 
 | 	cx->time += idle_time; | 
 | 	return idle_time; | 
 | } | 
 |  | 
 | static int c3_cpu_count; | 
 | static DEFINE_RAW_SPINLOCK(c3_lock); | 
 |  | 
 | /** | 
 |  * acpi_idle_enter_bm - enters C3 with proper BM handling | 
 |  * @dev: the target CPU | 
 |  * @state: the state data | 
 |  * | 
 |  * If BM is detected, the deepest non-C3 idle state is entered instead. | 
 |  */ | 
 | static int acpi_idle_enter_bm(struct cpuidle_device *dev, | 
 | 			      struct cpuidle_state *state) | 
 | { | 
 | 	struct acpi_processor *pr; | 
 | 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state); | 
 | 	ktime_t  kt1, kt2; | 
 | 	s64 idle_time_ns; | 
 | 	s64 idle_time; | 
 |  | 
 |  | 
 | 	pr = __this_cpu_read(processors); | 
 |  | 
 | 	if (unlikely(!pr)) | 
 | 		return 0; | 
 |  | 
 | 	if (acpi_idle_suspend) | 
 | 		return(acpi_idle_enter_c1(dev, state)); | 
 |  | 
 | 	if (!cx->bm_sts_skip && acpi_idle_bm_check()) { | 
 | 		if (dev->safe_state) { | 
 | 			dev->last_state = dev->safe_state; | 
 | 			return dev->safe_state->enter(dev, dev->safe_state); | 
 | 		} else { | 
 | 			local_irq_disable(); | 
 | 			acpi_safe_halt(); | 
 | 			local_irq_enable(); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	local_irq_disable(); | 
 |  | 
 | 	if (cx->entry_method != ACPI_CSTATE_FFH) { | 
 | 		current_thread_info()->status &= ~TS_POLLING; | 
 | 		/* | 
 | 		 * TS_POLLING-cleared state must be visible before we test | 
 | 		 * NEED_RESCHED: | 
 | 		 */ | 
 | 		smp_mb(); | 
 |  | 
 | 		if (unlikely(need_resched())) { | 
 | 			current_thread_info()->status |= TS_POLLING; | 
 | 			local_irq_enable(); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	acpi_unlazy_tlb(smp_processor_id()); | 
 |  | 
 | 	/* Tell the scheduler that we are going deep-idle: */ | 
 | 	sched_clock_idle_sleep_event(); | 
 | 	/* | 
 | 	 * Must be done before busmaster disable as we might need to | 
 | 	 * access HPET ! | 
 | 	 */ | 
 | 	lapic_timer_state_broadcast(pr, cx, 1); | 
 |  | 
 | 	kt1 = ktime_get_real(); | 
 | 	/* | 
 | 	 * disable bus master | 
 | 	 * bm_check implies we need ARB_DIS | 
 | 	 * !bm_check implies we need cache flush | 
 | 	 * bm_control implies whether we can do ARB_DIS | 
 | 	 * | 
 | 	 * That leaves a case where bm_check is set and bm_control is | 
 | 	 * not set. In that case we cannot do much, we enter C3 | 
 | 	 * without doing anything. | 
 | 	 */ | 
 | 	if (pr->flags.bm_check && pr->flags.bm_control) { | 
 | 		raw_spin_lock(&c3_lock); | 
 | 		c3_cpu_count++; | 
 | 		/* Disable bus master arbitration when all CPUs are in C3 */ | 
 | 		if (c3_cpu_count == num_online_cpus()) | 
 | 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1); | 
 | 		raw_spin_unlock(&c3_lock); | 
 | 	} else if (!pr->flags.bm_check) { | 
 | 		ACPI_FLUSH_CPU_CACHE(); | 
 | 	} | 
 |  | 
 | 	acpi_idle_do_entry(cx); | 
 |  | 
 | 	/* Re-enable bus master arbitration */ | 
 | 	if (pr->flags.bm_check && pr->flags.bm_control) { | 
 | 		raw_spin_lock(&c3_lock); | 
 | 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0); | 
 | 		c3_cpu_count--; | 
 | 		raw_spin_unlock(&c3_lock); | 
 | 	} | 
 | 	kt2 = ktime_get_real(); | 
 | 	idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1)); | 
 | 	idle_time = idle_time_ns; | 
 | 	do_div(idle_time, NSEC_PER_USEC); | 
 |  | 
 | 	/* Tell the scheduler how much we idled: */ | 
 | 	sched_clock_idle_wakeup_event(idle_time_ns); | 
 |  | 
 | 	local_irq_enable(); | 
 | 	if (cx->entry_method != ACPI_CSTATE_FFH) | 
 | 		current_thread_info()->status |= TS_POLLING; | 
 |  | 
 | 	cx->usage++; | 
 |  | 
 | 	lapic_timer_state_broadcast(pr, cx, 0); | 
 | 	cx->time += idle_time; | 
 | 	return idle_time; | 
 | } | 
 |  | 
 | struct cpuidle_driver acpi_idle_driver = { | 
 | 	.name =		"acpi_idle", | 
 | 	.owner =	THIS_MODULE, | 
 | }; | 
 |  | 
 | /** | 
 |  * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE | 
 |  * @pr: the ACPI processor | 
 |  */ | 
 | static int acpi_processor_setup_cpuidle(struct acpi_processor *pr) | 
 | { | 
 | 	int i, count = CPUIDLE_DRIVER_STATE_START; | 
 | 	struct acpi_processor_cx *cx; | 
 | 	struct cpuidle_state *state; | 
 | 	struct cpuidle_device *dev = &pr->power.dev; | 
 |  | 
 | 	if (!pr->flags.power_setup_done) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (pr->flags.power == 0) { | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	dev->cpu = pr->id; | 
 | 	for (i = 0; i < CPUIDLE_STATE_MAX; i++) { | 
 | 		dev->states[i].name[0] = '\0'; | 
 | 		dev->states[i].desc[0] = '\0'; | 
 | 	} | 
 |  | 
 | 	if (max_cstate == 0) | 
 | 		max_cstate = 1; | 
 |  | 
 | 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { | 
 | 		cx = &pr->power.states[i]; | 
 | 		state = &dev->states[count]; | 
 |  | 
 | 		if (!cx->valid) | 
 | 			continue; | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | 		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) && | 
 | 		    !pr->flags.has_cst && | 
 | 		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) | 
 | 			continue; | 
 | #endif | 
 | 		cpuidle_set_statedata(state, cx); | 
 |  | 
 | 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i); | 
 | 		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN); | 
 | 		state->exit_latency = cx->latency; | 
 | 		state->target_residency = cx->latency * latency_factor; | 
 |  | 
 | 		state->flags = 0; | 
 | 		switch (cx->type) { | 
 | 			case ACPI_STATE_C1: | 
 | 			if (cx->entry_method == ACPI_CSTATE_FFH) | 
 | 				state->flags |= CPUIDLE_FLAG_TIME_VALID; | 
 |  | 
 | 			state->enter = acpi_idle_enter_c1; | 
 | 			dev->safe_state = state; | 
 | 			break; | 
 |  | 
 | 			case ACPI_STATE_C2: | 
 | 			state->flags |= CPUIDLE_FLAG_TIME_VALID; | 
 | 			state->enter = acpi_idle_enter_simple; | 
 | 			dev->safe_state = state; | 
 | 			break; | 
 |  | 
 | 			case ACPI_STATE_C3: | 
 | 			state->flags |= CPUIDLE_FLAG_TIME_VALID; | 
 | 			state->enter = pr->flags.bm_check ? | 
 | 					acpi_idle_enter_bm : | 
 | 					acpi_idle_enter_simple; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		count++; | 
 | 		if (count == CPUIDLE_STATE_MAX) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	dev->state_count = count; | 
 |  | 
 | 	if (!count) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int acpi_processor_cst_has_changed(struct acpi_processor *pr) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	if (disabled_by_idle_boot_param()) | 
 | 		return 0; | 
 |  | 
 | 	if (!pr) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (nocst) { | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	if (!pr->flags.power_setup_done) | 
 | 		return -ENODEV; | 
 |  | 
 | 	cpuidle_pause_and_lock(); | 
 | 	cpuidle_disable_device(&pr->power.dev); | 
 | 	acpi_processor_get_power_info(pr); | 
 | 	if (pr->flags.power) { | 
 | 		acpi_processor_setup_cpuidle(pr); | 
 | 		ret = cpuidle_enable_device(&pr->power.dev); | 
 | 	} | 
 | 	cpuidle_resume_and_unlock(); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int __cpuinit acpi_processor_power_init(struct acpi_processor *pr, | 
 | 			      struct acpi_device *device) | 
 | { | 
 | 	acpi_status status = 0; | 
 | 	static int first_run; | 
 |  | 
 | 	if (disabled_by_idle_boot_param()) | 
 | 		return 0; | 
 |  | 
 | 	if (!first_run) { | 
 | 		dmi_check_system(processor_power_dmi_table); | 
 | 		max_cstate = acpi_processor_cstate_check(max_cstate); | 
 | 		if (max_cstate < ACPI_C_STATES_MAX) | 
 | 			printk(KERN_NOTICE | 
 | 			       "ACPI: processor limited to max C-state %d\n", | 
 | 			       max_cstate); | 
 | 		first_run++; | 
 | 	} | 
 |  | 
 | 	if (!pr) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (acpi_gbl_FADT.cst_control && !nocst) { | 
 | 		status = | 
 | 		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8); | 
 | 		if (ACPI_FAILURE(status)) { | 
 | 			ACPI_EXCEPTION((AE_INFO, status, | 
 | 					"Notifying BIOS of _CST ability failed")); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	acpi_processor_get_power_info(pr); | 
 | 	pr->flags.power_setup_done = 1; | 
 |  | 
 | 	/* | 
 | 	 * Install the idle handler if processor power management is supported. | 
 | 	 * Note that we use previously set idle handler will be used on | 
 | 	 * platforms that only support C1. | 
 | 	 */ | 
 | 	if (pr->flags.power) { | 
 | 		acpi_processor_setup_cpuidle(pr); | 
 | 		if (cpuidle_register_device(&pr->power.dev)) | 
 | 			return -EIO; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int acpi_processor_power_exit(struct acpi_processor *pr, | 
 | 			      struct acpi_device *device) | 
 | { | 
 | 	if (disabled_by_idle_boot_param()) | 
 | 		return 0; | 
 |  | 
 | 	cpuidle_unregister_device(&pr->power.dev); | 
 | 	pr->flags.power_setup_done = 0; | 
 |  | 
 | 	return 0; | 
 | } |