| /* | 
 |  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net> | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software Foundation, | 
 |  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/device.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/crc-itu-t.h> | 
 | #include "fw-transaction.h" | 
 | #include "fw-topology.h" | 
 | #include "fw-device.h" | 
 |  | 
 | int fw_compute_block_crc(u32 *block) | 
 | { | 
 | 	__be32 be32_block[256]; | 
 | 	int i, length; | 
 |  | 
 | 	length = (*block >> 16) & 0xff; | 
 | 	for (i = 0; i < length; i++) | 
 | 		be32_block[i] = cpu_to_be32(block[i + 1]); | 
 | 	*block |= crc_itu_t(0, (u8 *) be32_block, length * 4); | 
 |  | 
 | 	return length; | 
 | } | 
 |  | 
 | static DEFINE_MUTEX(card_mutex); | 
 | static LIST_HEAD(card_list); | 
 |  | 
 | static LIST_HEAD(descriptor_list); | 
 | static int descriptor_count; | 
 |  | 
 | #define BIB_CRC(v)		((v) <<  0) | 
 | #define BIB_CRC_LENGTH(v)	((v) << 16) | 
 | #define BIB_INFO_LENGTH(v)	((v) << 24) | 
 |  | 
 | #define BIB_LINK_SPEED(v)	((v) <<  0) | 
 | #define BIB_GENERATION(v)	((v) <<  4) | 
 | #define BIB_MAX_ROM(v)		((v) <<  8) | 
 | #define BIB_MAX_RECEIVE(v)	((v) << 12) | 
 | #define BIB_CYC_CLK_ACC(v)	((v) << 16) | 
 | #define BIB_PMC			((1) << 27) | 
 | #define BIB_BMC			((1) << 28) | 
 | #define BIB_ISC			((1) << 29) | 
 | #define BIB_CMC			((1) << 30) | 
 | #define BIB_IMC			((1) << 31) | 
 |  | 
 | static u32 * | 
 | generate_config_rom(struct fw_card *card, size_t *config_rom_length) | 
 | { | 
 | 	struct fw_descriptor *desc; | 
 | 	static u32 config_rom[256]; | 
 | 	int i, j, length; | 
 |  | 
 | 	/* | 
 | 	 * Initialize contents of config rom buffer.  On the OHCI | 
 | 	 * controller, block reads to the config rom accesses the host | 
 | 	 * memory, but quadlet read access the hardware bus info block | 
 | 	 * registers.  That's just crack, but it means we should make | 
 | 	 * sure the contents of bus info block in host memory mathces | 
 | 	 * the version stored in the OHCI registers. | 
 | 	 */ | 
 |  | 
 | 	memset(config_rom, 0, sizeof(config_rom)); | 
 | 	config_rom[0] = BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0); | 
 | 	config_rom[1] = 0x31333934; | 
 |  | 
 | 	config_rom[2] = | 
 | 		BIB_LINK_SPEED(card->link_speed) | | 
 | 		BIB_GENERATION(card->config_rom_generation++ % 14 + 2) | | 
 | 		BIB_MAX_ROM(2) | | 
 | 		BIB_MAX_RECEIVE(card->max_receive) | | 
 | 		BIB_BMC | BIB_ISC | BIB_CMC | BIB_IMC; | 
 | 	config_rom[3] = card->guid >> 32; | 
 | 	config_rom[4] = card->guid; | 
 |  | 
 | 	/* Generate root directory. */ | 
 | 	i = 5; | 
 | 	config_rom[i++] = 0; | 
 | 	config_rom[i++] = 0x0c0083c0; /* node capabilities */ | 
 | 	j = i + descriptor_count; | 
 |  | 
 | 	/* Generate root directory entries for descriptors. */ | 
 | 	list_for_each_entry (desc, &descriptor_list, link) { | 
 | 		if (desc->immediate > 0) | 
 | 			config_rom[i++] = desc->immediate; | 
 | 		config_rom[i] = desc->key | (j - i); | 
 | 		i++; | 
 | 		j += desc->length; | 
 | 	} | 
 |  | 
 | 	/* Update root directory length. */ | 
 | 	config_rom[5] = (i - 5 - 1) << 16; | 
 |  | 
 | 	/* End of root directory, now copy in descriptors. */ | 
 | 	list_for_each_entry (desc, &descriptor_list, link) { | 
 | 		memcpy(&config_rom[i], desc->data, desc->length * 4); | 
 | 		i += desc->length; | 
 | 	} | 
 |  | 
 | 	/* Calculate CRCs for all blocks in the config rom.  This | 
 | 	 * assumes that CRC length and info length are identical for | 
 | 	 * the bus info block, which is always the case for this | 
 | 	 * implementation. */ | 
 | 	for (i = 0; i < j; i += length + 1) | 
 | 		length = fw_compute_block_crc(config_rom + i); | 
 |  | 
 | 	*config_rom_length = j; | 
 |  | 
 | 	return config_rom; | 
 | } | 
 |  | 
 | static void | 
 | update_config_roms(void) | 
 | { | 
 | 	struct fw_card *card; | 
 | 	u32 *config_rom; | 
 | 	size_t length; | 
 |  | 
 | 	list_for_each_entry (card, &card_list, link) { | 
 | 		config_rom = generate_config_rom(card, &length); | 
 | 		card->driver->set_config_rom(card, config_rom, length); | 
 | 	} | 
 | } | 
 |  | 
 | int | 
 | fw_core_add_descriptor(struct fw_descriptor *desc) | 
 | { | 
 | 	size_t i; | 
 |  | 
 | 	/* | 
 | 	 * Check descriptor is valid; the length of all blocks in the | 
 | 	 * descriptor has to add up to exactly the length of the | 
 | 	 * block. | 
 | 	 */ | 
 | 	i = 0; | 
 | 	while (i < desc->length) | 
 | 		i += (desc->data[i] >> 16) + 1; | 
 |  | 
 | 	if (i != desc->length) | 
 | 		return -EINVAL; | 
 |  | 
 | 	mutex_lock(&card_mutex); | 
 |  | 
 | 	list_add_tail(&desc->link, &descriptor_list); | 
 | 	descriptor_count++; | 
 | 	if (desc->immediate > 0) | 
 | 		descriptor_count++; | 
 | 	update_config_roms(); | 
 |  | 
 | 	mutex_unlock(&card_mutex); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(fw_core_add_descriptor); | 
 |  | 
 | void | 
 | fw_core_remove_descriptor(struct fw_descriptor *desc) | 
 | { | 
 | 	mutex_lock(&card_mutex); | 
 |  | 
 | 	list_del(&desc->link); | 
 | 	descriptor_count--; | 
 | 	if (desc->immediate > 0) | 
 | 		descriptor_count--; | 
 | 	update_config_roms(); | 
 |  | 
 | 	mutex_unlock(&card_mutex); | 
 | } | 
 | EXPORT_SYMBOL(fw_core_remove_descriptor); | 
 |  | 
 | static const char gap_count_table[] = { | 
 | 	63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40 | 
 | }; | 
 |  | 
 | struct bm_data { | 
 | 	struct fw_transaction t; | 
 | 	struct { | 
 | 		__be32 arg; | 
 | 		__be32 data; | 
 | 	} lock; | 
 | 	u32 old; | 
 | 	int rcode; | 
 | 	struct completion done; | 
 | }; | 
 |  | 
 | static void | 
 | complete_bm_lock(struct fw_card *card, int rcode, | 
 | 		 void *payload, size_t length, void *data) | 
 | { | 
 | 	struct bm_data *bmd = data; | 
 |  | 
 | 	if (rcode == RCODE_COMPLETE) | 
 | 		bmd->old = be32_to_cpu(*(__be32 *) payload); | 
 | 	bmd->rcode = rcode; | 
 | 	complete(&bmd->done); | 
 | } | 
 |  | 
 | static void | 
 | fw_card_bm_work(struct work_struct *work) | 
 | { | 
 | 	struct fw_card *card = container_of(work, struct fw_card, work.work); | 
 | 	struct fw_device *root; | 
 | 	struct bm_data bmd; | 
 | 	unsigned long flags; | 
 | 	int root_id, new_root_id, irm_id, gap_count, generation, grace; | 
 | 	int do_reset = 0; | 
 |  | 
 | 	spin_lock_irqsave(&card->lock, flags); | 
 |  | 
 | 	generation = card->generation; | 
 | 	root = card->root_node->data; | 
 | 	root_id = card->root_node->node_id; | 
 | 	grace = time_after(jiffies, card->reset_jiffies + DIV_ROUND_UP(HZ, 10)); | 
 |  | 
 | 	if (card->bm_generation + 1 == generation || | 
 | 	    (card->bm_generation != generation && grace)) { | 
 | 		/* | 
 | 		 * This first step is to figure out who is IRM and | 
 | 		 * then try to become bus manager.  If the IRM is not | 
 | 		 * well defined (e.g. does not have an active link | 
 | 		 * layer or does not responds to our lock request, we | 
 | 		 * will have to do a little vigilante bus management. | 
 | 		 * In that case, we do a goto into the gap count logic | 
 | 		 * so that when we do the reset, we still optimize the | 
 | 		 * gap count.  That could well save a reset in the | 
 | 		 * next generation. | 
 | 		 */ | 
 |  | 
 | 		irm_id = card->irm_node->node_id; | 
 | 		if (!card->irm_node->link_on) { | 
 | 			new_root_id = card->local_node->node_id; | 
 | 			fw_notify("IRM has link off, making local node (%02x) root.\n", | 
 | 				  new_root_id); | 
 | 			goto pick_me; | 
 | 		} | 
 |  | 
 | 		bmd.lock.arg = cpu_to_be32(0x3f); | 
 | 		bmd.lock.data = cpu_to_be32(card->local_node->node_id); | 
 |  | 
 | 		spin_unlock_irqrestore(&card->lock, flags); | 
 |  | 
 | 		init_completion(&bmd.done); | 
 | 		fw_send_request(card, &bmd.t, TCODE_LOCK_COMPARE_SWAP, | 
 | 				irm_id, generation, | 
 | 				SCODE_100, CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID, | 
 | 				&bmd.lock, sizeof(bmd.lock), | 
 | 				complete_bm_lock, &bmd); | 
 | 		wait_for_completion(&bmd.done); | 
 |  | 
 | 		if (bmd.rcode == RCODE_GENERATION) { | 
 | 			/* | 
 | 			 * Another bus reset happened. Just return, | 
 | 			 * the BM work has been rescheduled. | 
 | 			 */ | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		if (bmd.rcode == RCODE_COMPLETE && bmd.old != 0x3f) | 
 | 			/* Somebody else is BM, let them do the work. */ | 
 | 			return; | 
 |  | 
 | 		spin_lock_irqsave(&card->lock, flags); | 
 | 		if (bmd.rcode != RCODE_COMPLETE) { | 
 | 			/* | 
 | 			 * The lock request failed, maybe the IRM | 
 | 			 * isn't really IRM capable after all. Let's | 
 | 			 * do a bus reset and pick the local node as | 
 | 			 * root, and thus, IRM. | 
 | 			 */ | 
 | 			new_root_id = card->local_node->node_id; | 
 | 			fw_notify("BM lock failed, making local node (%02x) root.\n", | 
 | 				  new_root_id); | 
 | 			goto pick_me; | 
 | 		} | 
 | 	} else if (card->bm_generation != generation) { | 
 | 		/* | 
 | 		 * OK, we weren't BM in the last generation, and it's | 
 | 		 * less than 100ms since last bus reset. Reschedule | 
 | 		 * this task 100ms from now. | 
 | 		 */ | 
 | 		spin_unlock_irqrestore(&card->lock, flags); | 
 | 		schedule_delayed_work(&card->work, DIV_ROUND_UP(HZ, 10)); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We're bus manager for this generation, so next step is to | 
 | 	 * make sure we have an active cycle master and do gap count | 
 | 	 * optimization. | 
 | 	 */ | 
 | 	card->bm_generation = generation; | 
 |  | 
 | 	if (root == NULL) { | 
 | 		/* | 
 | 		 * Either link_on is false, or we failed to read the | 
 | 		 * config rom.  In either case, pick another root. | 
 | 		 */ | 
 | 		new_root_id = card->local_node->node_id; | 
 | 	} else if (atomic_read(&root->state) != FW_DEVICE_RUNNING) { | 
 | 		/* | 
 | 		 * If we haven't probed this device yet, bail out now | 
 | 		 * and let's try again once that's done. | 
 | 		 */ | 
 | 		spin_unlock_irqrestore(&card->lock, flags); | 
 | 		return; | 
 | 	} else if (root->config_rom[2] & BIB_CMC) { | 
 | 		/* | 
 | 		 * FIXME: I suppose we should set the cmstr bit in the | 
 | 		 * STATE_CLEAR register of this node, as described in | 
 | 		 * 1394-1995, 8.4.2.6.  Also, send out a force root | 
 | 		 * packet for this node. | 
 | 		 */ | 
 | 		new_root_id = root_id; | 
 | 	} else { | 
 | 		/* | 
 | 		 * Current root has an active link layer and we | 
 | 		 * successfully read the config rom, but it's not | 
 | 		 * cycle master capable. | 
 | 		 */ | 
 | 		new_root_id = card->local_node->node_id; | 
 | 	} | 
 |  | 
 |  pick_me: | 
 | 	/* | 
 | 	 * Pick a gap count from 1394a table E-1.  The table doesn't cover | 
 | 	 * the typically much larger 1394b beta repeater delays though. | 
 | 	 */ | 
 | 	if (!card->beta_repeaters_present && | 
 | 	    card->root_node->max_hops < ARRAY_SIZE(gap_count_table)) | 
 | 		gap_count = gap_count_table[card->root_node->max_hops]; | 
 | 	else | 
 | 		gap_count = 63; | 
 |  | 
 | 	/* | 
 | 	 * Finally, figure out if we should do a reset or not.  If we've | 
 | 	 * done less that 5 resets with the same physical topology and we | 
 | 	 * have either a new root or a new gap count setting, let's do it. | 
 | 	 */ | 
 |  | 
 | 	if (card->bm_retries++ < 5 && | 
 | 	    (card->gap_count != gap_count || new_root_id != root_id)) | 
 | 		do_reset = 1; | 
 |  | 
 | 	spin_unlock_irqrestore(&card->lock, flags); | 
 |  | 
 | 	if (do_reset) { | 
 | 		fw_notify("phy config: card %d, new root=%x, gap_count=%d\n", | 
 | 			  card->index, new_root_id, gap_count); | 
 | 		fw_send_phy_config(card, new_root_id, generation, gap_count); | 
 | 		fw_core_initiate_bus_reset(card, 1); | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | flush_timer_callback(unsigned long data) | 
 | { | 
 | 	struct fw_card *card = (struct fw_card *)data; | 
 |  | 
 | 	fw_flush_transactions(card); | 
 | } | 
 |  | 
 | void | 
 | fw_card_initialize(struct fw_card *card, const struct fw_card_driver *driver, | 
 | 		   struct device *device) | 
 | { | 
 | 	static atomic_t index = ATOMIC_INIT(-1); | 
 |  | 
 | 	kref_init(&card->kref); | 
 | 	card->index = atomic_inc_return(&index); | 
 | 	card->driver = driver; | 
 | 	card->device = device; | 
 | 	card->current_tlabel = 0; | 
 | 	card->tlabel_mask = 0; | 
 | 	card->color = 0; | 
 |  | 
 | 	INIT_LIST_HEAD(&card->transaction_list); | 
 | 	spin_lock_init(&card->lock); | 
 | 	setup_timer(&card->flush_timer, | 
 | 		    flush_timer_callback, (unsigned long)card); | 
 |  | 
 | 	card->local_node = NULL; | 
 |  | 
 | 	INIT_DELAYED_WORK(&card->work, fw_card_bm_work); | 
 | } | 
 | EXPORT_SYMBOL(fw_card_initialize); | 
 |  | 
 | int | 
 | fw_card_add(struct fw_card *card, | 
 | 	    u32 max_receive, u32 link_speed, u64 guid) | 
 | { | 
 | 	u32 *config_rom; | 
 | 	size_t length; | 
 |  | 
 | 	card->max_receive = max_receive; | 
 | 	card->link_speed = link_speed; | 
 | 	card->guid = guid; | 
 |  | 
 | 	/* | 
 | 	 * The subsystem grabs a reference when the card is added and | 
 | 	 * drops it when the driver calls fw_core_remove_card. | 
 | 	 */ | 
 | 	fw_card_get(card); | 
 |  | 
 | 	mutex_lock(&card_mutex); | 
 | 	config_rom = generate_config_rom(card, &length); | 
 | 	list_add_tail(&card->link, &card_list); | 
 | 	mutex_unlock(&card_mutex); | 
 |  | 
 | 	return card->driver->enable(card, config_rom, length); | 
 | } | 
 | EXPORT_SYMBOL(fw_card_add); | 
 |  | 
 |  | 
 | /* | 
 |  * The next few functions implements a dummy driver that use once a | 
 |  * card driver shuts down an fw_card.  This allows the driver to | 
 |  * cleanly unload, as all IO to the card will be handled by the dummy | 
 |  * driver instead of calling into the (possibly) unloaded module.  The | 
 |  * dummy driver just fails all IO. | 
 |  */ | 
 |  | 
 | static int | 
 | dummy_enable(struct fw_card *card, u32 *config_rom, size_t length) | 
 | { | 
 | 	BUG(); | 
 | 	return -1; | 
 | } | 
 |  | 
 | static int | 
 | dummy_update_phy_reg(struct fw_card *card, int address, | 
 | 		     int clear_bits, int set_bits) | 
 | { | 
 | 	return -ENODEV; | 
 | } | 
 |  | 
 | static int | 
 | dummy_set_config_rom(struct fw_card *card, | 
 | 		     u32 *config_rom, size_t length) | 
 | { | 
 | 	/* | 
 | 	 * We take the card out of card_list before setting the dummy | 
 | 	 * driver, so this should never get called. | 
 | 	 */ | 
 | 	BUG(); | 
 | 	return -1; | 
 | } | 
 |  | 
 | static void | 
 | dummy_send_request(struct fw_card *card, struct fw_packet *packet) | 
 | { | 
 | 	packet->callback(packet, card, -ENODEV); | 
 | } | 
 |  | 
 | static void | 
 | dummy_send_response(struct fw_card *card, struct fw_packet *packet) | 
 | { | 
 | 	packet->callback(packet, card, -ENODEV); | 
 | } | 
 |  | 
 | static int | 
 | dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet) | 
 | { | 
 | 	return -ENOENT; | 
 | } | 
 |  | 
 | static int | 
 | dummy_enable_phys_dma(struct fw_card *card, | 
 | 		      int node_id, int generation) | 
 | { | 
 | 	return -ENODEV; | 
 | } | 
 |  | 
 | static struct fw_card_driver dummy_driver = { | 
 | 	.name            = "dummy", | 
 | 	.enable          = dummy_enable, | 
 | 	.update_phy_reg  = dummy_update_phy_reg, | 
 | 	.set_config_rom  = dummy_set_config_rom, | 
 | 	.send_request    = dummy_send_request, | 
 | 	.cancel_packet   = dummy_cancel_packet, | 
 | 	.send_response   = dummy_send_response, | 
 | 	.enable_phys_dma = dummy_enable_phys_dma, | 
 | }; | 
 |  | 
 | void | 
 | fw_core_remove_card(struct fw_card *card) | 
 | { | 
 | 	card->driver->update_phy_reg(card, 4, | 
 | 				     PHY_LINK_ACTIVE | PHY_CONTENDER, 0); | 
 | 	fw_core_initiate_bus_reset(card, 1); | 
 |  | 
 | 	mutex_lock(&card_mutex); | 
 | 	list_del(&card->link); | 
 | 	mutex_unlock(&card_mutex); | 
 |  | 
 | 	/* Set up the dummy driver. */ | 
 | 	card->driver = &dummy_driver; | 
 |  | 
 | 	fw_destroy_nodes(card); | 
 | 	flush_scheduled_work(); | 
 |  | 
 | 	fw_flush_transactions(card); | 
 | 	del_timer_sync(&card->flush_timer); | 
 |  | 
 | 	fw_card_put(card); | 
 | } | 
 | EXPORT_SYMBOL(fw_core_remove_card); | 
 |  | 
 | struct fw_card * | 
 | fw_card_get(struct fw_card *card) | 
 | { | 
 | 	kref_get(&card->kref); | 
 |  | 
 | 	return card; | 
 | } | 
 | EXPORT_SYMBOL(fw_card_get); | 
 |  | 
 | static void | 
 | release_card(struct kref *kref) | 
 | { | 
 | 	struct fw_card *card = container_of(kref, struct fw_card, kref); | 
 |  | 
 | 	kfree(card); | 
 | } | 
 |  | 
 | /* | 
 |  * An assumption for fw_card_put() is that the card driver allocates | 
 |  * the fw_card struct with kalloc and that it has been shut down | 
 |  * before the last ref is dropped. | 
 |  */ | 
 | void | 
 | fw_card_put(struct fw_card *card) | 
 | { | 
 | 	kref_put(&card->kref, release_card); | 
 | } | 
 | EXPORT_SYMBOL(fw_card_put); | 
 |  | 
 | int | 
 | fw_core_initiate_bus_reset(struct fw_card *card, int short_reset) | 
 | { | 
 | 	int reg = short_reset ? 5 : 1; | 
 | 	int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET; | 
 |  | 
 | 	return card->driver->update_phy_reg(card, reg, 0, bit); | 
 | } | 
 | EXPORT_SYMBOL(fw_core_initiate_bus_reset); |