|  | /* | 
|  | * MTD device concatenation layer | 
|  | * | 
|  | * (C) 2002 Robert Kaiser <rkaiser@sysgo.de> | 
|  | * | 
|  | * NAND support by Christian Gan <cgan@iders.ca> | 
|  | * | 
|  | * This code is GPL | 
|  | * | 
|  | * $Id: mtdconcat.c,v 1.11 2005/11/07 11:14:20 gleixner Exp $ | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/types.h> | 
|  |  | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/mtd/concat.h> | 
|  |  | 
|  | #include <asm/div64.h> | 
|  |  | 
|  | /* | 
|  | * Our storage structure: | 
|  | * Subdev points to an array of pointers to struct mtd_info objects | 
|  | * which is allocated along with this structure | 
|  | * | 
|  | */ | 
|  | struct mtd_concat { | 
|  | struct mtd_info mtd; | 
|  | int num_subdev; | 
|  | struct mtd_info **subdev; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * how to calculate the size required for the above structure, | 
|  | * including the pointer array subdev points to: | 
|  | */ | 
|  | #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)	\ | 
|  | ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *))) | 
|  |  | 
|  | /* | 
|  | * Given a pointer to the MTD object in the mtd_concat structure, | 
|  | * we can retrieve the pointer to that structure with this macro. | 
|  | */ | 
|  | #define CONCAT(x)  ((struct mtd_concat *)(x)) | 
|  |  | 
|  | /* | 
|  | * MTD methods which look up the relevant subdevice, translate the | 
|  | * effective address and pass through to the subdevice. | 
|  | */ | 
|  |  | 
|  | static int | 
|  | concat_read(struct mtd_info *mtd, loff_t from, size_t len, | 
|  | size_t * retlen, u_char * buf) | 
|  | { | 
|  | struct mtd_concat *concat = CONCAT(mtd); | 
|  | int ret = 0, err; | 
|  | int i; | 
|  |  | 
|  | *retlen = 0; | 
|  |  | 
|  | for (i = 0; i < concat->num_subdev; i++) { | 
|  | struct mtd_info *subdev = concat->subdev[i]; | 
|  | size_t size, retsize; | 
|  |  | 
|  | if (from >= subdev->size) { | 
|  | /* Not destined for this subdev */ | 
|  | size = 0; | 
|  | from -= subdev->size; | 
|  | continue; | 
|  | } | 
|  | if (from + len > subdev->size) | 
|  | /* First part goes into this subdev */ | 
|  | size = subdev->size - from; | 
|  | else | 
|  | /* Entire transaction goes into this subdev */ | 
|  | size = len; | 
|  |  | 
|  | err = subdev->read(subdev, from, size, &retsize, buf); | 
|  |  | 
|  | /* Save information about bitflips! */ | 
|  | if (unlikely(err)) { | 
|  | if (err == -EBADMSG) { | 
|  | mtd->ecc_stats.failed++; | 
|  | ret = err; | 
|  | } else if (err == -EUCLEAN) { | 
|  | mtd->ecc_stats.corrected++; | 
|  | /* Do not overwrite -EBADMSG !! */ | 
|  | if (!ret) | 
|  | ret = err; | 
|  | } else | 
|  | return err; | 
|  | } | 
|  |  | 
|  | *retlen += retsize; | 
|  | len -= size; | 
|  | if (len == 0) | 
|  | return ret; | 
|  |  | 
|  | buf += size; | 
|  | from = 0; | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int | 
|  | concat_write(struct mtd_info *mtd, loff_t to, size_t len, | 
|  | size_t * retlen, const u_char * buf) | 
|  | { | 
|  | struct mtd_concat *concat = CONCAT(mtd); | 
|  | int err = -EINVAL; | 
|  | int i; | 
|  |  | 
|  | if (!(mtd->flags & MTD_WRITEABLE)) | 
|  | return -EROFS; | 
|  |  | 
|  | *retlen = 0; | 
|  |  | 
|  | for (i = 0; i < concat->num_subdev; i++) { | 
|  | struct mtd_info *subdev = concat->subdev[i]; | 
|  | size_t size, retsize; | 
|  |  | 
|  | if (to >= subdev->size) { | 
|  | size = 0; | 
|  | to -= subdev->size; | 
|  | continue; | 
|  | } | 
|  | if (to + len > subdev->size) | 
|  | size = subdev->size - to; | 
|  | else | 
|  | size = len; | 
|  |  | 
|  | if (!(subdev->flags & MTD_WRITEABLE)) | 
|  | err = -EROFS; | 
|  | else | 
|  | err = subdev->write(subdev, to, size, &retsize, buf); | 
|  |  | 
|  | if (err) | 
|  | break; | 
|  |  | 
|  | *retlen += retsize; | 
|  | len -= size; | 
|  | if (len == 0) | 
|  | break; | 
|  |  | 
|  | err = -EINVAL; | 
|  | buf += size; | 
|  | to = 0; | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int | 
|  | concat_writev(struct mtd_info *mtd, const struct kvec *vecs, | 
|  | unsigned long count, loff_t to, size_t * retlen) | 
|  | { | 
|  | struct mtd_concat *concat = CONCAT(mtd); | 
|  | struct kvec *vecs_copy; | 
|  | unsigned long entry_low, entry_high; | 
|  | size_t total_len = 0; | 
|  | int i; | 
|  | int err = -EINVAL; | 
|  |  | 
|  | if (!(mtd->flags & MTD_WRITEABLE)) | 
|  | return -EROFS; | 
|  |  | 
|  | *retlen = 0; | 
|  |  | 
|  | /* Calculate total length of data */ | 
|  | for (i = 0; i < count; i++) | 
|  | total_len += vecs[i].iov_len; | 
|  |  | 
|  | /* Do not allow write past end of device */ | 
|  | if ((to + total_len) > mtd->size) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Check alignment */ | 
|  | if (mtd->writesize > 1) { | 
|  | uint64_t __to = to; | 
|  | if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize)) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* make a copy of vecs */ | 
|  | vecs_copy = kmalloc(sizeof(struct kvec) * count, GFP_KERNEL); | 
|  | if (!vecs_copy) | 
|  | return -ENOMEM; | 
|  | memcpy(vecs_copy, vecs, sizeof(struct kvec) * count); | 
|  |  | 
|  | entry_low = 0; | 
|  | for (i = 0; i < concat->num_subdev; i++) { | 
|  | struct mtd_info *subdev = concat->subdev[i]; | 
|  | size_t size, wsize, retsize, old_iov_len; | 
|  |  | 
|  | if (to >= subdev->size) { | 
|  | to -= subdev->size; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | size = min(total_len, (size_t)(subdev->size - to)); | 
|  | wsize = size; /* store for future use */ | 
|  |  | 
|  | entry_high = entry_low; | 
|  | while (entry_high < count) { | 
|  | if (size <= vecs_copy[entry_high].iov_len) | 
|  | break; | 
|  | size -= vecs_copy[entry_high++].iov_len; | 
|  | } | 
|  |  | 
|  | old_iov_len = vecs_copy[entry_high].iov_len; | 
|  | vecs_copy[entry_high].iov_len = size; | 
|  |  | 
|  | if (!(subdev->flags & MTD_WRITEABLE)) | 
|  | err = -EROFS; | 
|  | else | 
|  | err = subdev->writev(subdev, &vecs_copy[entry_low], | 
|  | entry_high - entry_low + 1, to, &retsize); | 
|  |  | 
|  | vecs_copy[entry_high].iov_len = old_iov_len - size; | 
|  | vecs_copy[entry_high].iov_base += size; | 
|  |  | 
|  | entry_low = entry_high; | 
|  |  | 
|  | if (err) | 
|  | break; | 
|  |  | 
|  | *retlen += retsize; | 
|  | total_len -= wsize; | 
|  |  | 
|  | if (total_len == 0) | 
|  | break; | 
|  |  | 
|  | err = -EINVAL; | 
|  | to = 0; | 
|  | } | 
|  |  | 
|  | kfree(vecs_copy); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int | 
|  | concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) | 
|  | { | 
|  | struct mtd_concat *concat = CONCAT(mtd); | 
|  | struct mtd_oob_ops devops = *ops; | 
|  | int i, err, ret = 0; | 
|  |  | 
|  | ops->retlen = ops->oobretlen = 0; | 
|  |  | 
|  | for (i = 0; i < concat->num_subdev; i++) { | 
|  | struct mtd_info *subdev = concat->subdev[i]; | 
|  |  | 
|  | if (from >= subdev->size) { | 
|  | from -= subdev->size; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* partial read ? */ | 
|  | if (from + devops.len > subdev->size) | 
|  | devops.len = subdev->size - from; | 
|  |  | 
|  | err = subdev->read_oob(subdev, from, &devops); | 
|  | ops->retlen += devops.retlen; | 
|  | ops->oobretlen += devops.oobretlen; | 
|  |  | 
|  | /* Save information about bitflips! */ | 
|  | if (unlikely(err)) { | 
|  | if (err == -EBADMSG) { | 
|  | mtd->ecc_stats.failed++; | 
|  | ret = err; | 
|  | } else if (err == -EUCLEAN) { | 
|  | mtd->ecc_stats.corrected++; | 
|  | /* Do not overwrite -EBADMSG !! */ | 
|  | if (!ret) | 
|  | ret = err; | 
|  | } else | 
|  | return err; | 
|  | } | 
|  |  | 
|  | if (devops.datbuf) { | 
|  | devops.len = ops->len - ops->retlen; | 
|  | if (!devops.len) | 
|  | return ret; | 
|  | devops.datbuf += devops.retlen; | 
|  | } | 
|  | if (devops.oobbuf) { | 
|  | devops.ooblen = ops->ooblen - ops->oobretlen; | 
|  | if (!devops.ooblen) | 
|  | return ret; | 
|  | devops.oobbuf += ops->oobretlen; | 
|  | } | 
|  |  | 
|  | from = 0; | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int | 
|  | concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) | 
|  | { | 
|  | struct mtd_concat *concat = CONCAT(mtd); | 
|  | struct mtd_oob_ops devops = *ops; | 
|  | int i, err; | 
|  |  | 
|  | if (!(mtd->flags & MTD_WRITEABLE)) | 
|  | return -EROFS; | 
|  |  | 
|  | ops->retlen = 0; | 
|  |  | 
|  | for (i = 0; i < concat->num_subdev; i++) { | 
|  | struct mtd_info *subdev = concat->subdev[i]; | 
|  |  | 
|  | if (to >= subdev->size) { | 
|  | to -= subdev->size; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* partial write ? */ | 
|  | if (to + devops.len > subdev->size) | 
|  | devops.len = subdev->size - to; | 
|  |  | 
|  | err = subdev->write_oob(subdev, to, &devops); | 
|  | ops->retlen += devops.retlen; | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (devops.datbuf) { | 
|  | devops.len = ops->len - ops->retlen; | 
|  | if (!devops.len) | 
|  | return 0; | 
|  | devops.datbuf += devops.retlen; | 
|  | } | 
|  | if (devops.oobbuf) { | 
|  | devops.ooblen = ops->ooblen - ops->oobretlen; | 
|  | if (!devops.ooblen) | 
|  | return 0; | 
|  | devops.oobbuf += devops.oobretlen; | 
|  | } | 
|  | to = 0; | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static void concat_erase_callback(struct erase_info *instr) | 
|  | { | 
|  | wake_up((wait_queue_head_t *) instr->priv); | 
|  | } | 
|  |  | 
|  | static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase) | 
|  | { | 
|  | int err; | 
|  | wait_queue_head_t waitq; | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  |  | 
|  | /* | 
|  | * This code was stol^H^H^H^Hinspired by mtdchar.c | 
|  | */ | 
|  | init_waitqueue_head(&waitq); | 
|  |  | 
|  | erase->mtd = mtd; | 
|  | erase->callback = concat_erase_callback; | 
|  | erase->priv = (unsigned long) &waitq; | 
|  |  | 
|  | /* | 
|  | * FIXME: Allow INTERRUPTIBLE. Which means | 
|  | * not having the wait_queue head on the stack. | 
|  | */ | 
|  | err = mtd->erase(mtd, erase); | 
|  | if (!err) { | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | add_wait_queue(&waitq, &wait); | 
|  | if (erase->state != MTD_ERASE_DONE | 
|  | && erase->state != MTD_ERASE_FAILED) | 
|  | schedule(); | 
|  | remove_wait_queue(&waitq, &wait); | 
|  | set_current_state(TASK_RUNNING); | 
|  |  | 
|  | err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0; | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int concat_erase(struct mtd_info *mtd, struct erase_info *instr) | 
|  | { | 
|  | struct mtd_concat *concat = CONCAT(mtd); | 
|  | struct mtd_info *subdev; | 
|  | int i, err; | 
|  | u_int32_t length, offset = 0; | 
|  | struct erase_info *erase; | 
|  |  | 
|  | if (!(mtd->flags & MTD_WRITEABLE)) | 
|  | return -EROFS; | 
|  |  | 
|  | if (instr->addr > concat->mtd.size) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (instr->len + instr->addr > concat->mtd.size) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Check for proper erase block alignment of the to-be-erased area. | 
|  | * It is easier to do this based on the super device's erase | 
|  | * region info rather than looking at each particular sub-device | 
|  | * in turn. | 
|  | */ | 
|  | if (!concat->mtd.numeraseregions) { | 
|  | /* the easy case: device has uniform erase block size */ | 
|  | if (instr->addr & (concat->mtd.erasesize - 1)) | 
|  | return -EINVAL; | 
|  | if (instr->len & (concat->mtd.erasesize - 1)) | 
|  | return -EINVAL; | 
|  | } else { | 
|  | /* device has variable erase size */ | 
|  | struct mtd_erase_region_info *erase_regions = | 
|  | concat->mtd.eraseregions; | 
|  |  | 
|  | /* | 
|  | * Find the erase region where the to-be-erased area begins: | 
|  | */ | 
|  | for (i = 0; i < concat->mtd.numeraseregions && | 
|  | instr->addr >= erase_regions[i].offset; i++) ; | 
|  | --i; | 
|  |  | 
|  | /* | 
|  | * Now erase_regions[i] is the region in which the | 
|  | * to-be-erased area begins. Verify that the starting | 
|  | * offset is aligned to this region's erase size: | 
|  | */ | 
|  | if (instr->addr & (erase_regions[i].erasesize - 1)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * now find the erase region where the to-be-erased area ends: | 
|  | */ | 
|  | for (; i < concat->mtd.numeraseregions && | 
|  | (instr->addr + instr->len) >= erase_regions[i].offset; | 
|  | ++i) ; | 
|  | --i; | 
|  | /* | 
|  | * check if the ending offset is aligned to this region's erase size | 
|  | */ | 
|  | if ((instr->addr + instr->len) & (erase_regions[i].erasesize - | 
|  | 1)) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | instr->fail_addr = 0xffffffff; | 
|  |  | 
|  | /* make a local copy of instr to avoid modifying the caller's struct */ | 
|  | erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL); | 
|  |  | 
|  | if (!erase) | 
|  | return -ENOMEM; | 
|  |  | 
|  | *erase = *instr; | 
|  | length = instr->len; | 
|  |  | 
|  | /* | 
|  | * find the subdevice where the to-be-erased area begins, adjust | 
|  | * starting offset to be relative to the subdevice start | 
|  | */ | 
|  | for (i = 0; i < concat->num_subdev; i++) { | 
|  | subdev = concat->subdev[i]; | 
|  | if (subdev->size <= erase->addr) { | 
|  | erase->addr -= subdev->size; | 
|  | offset += subdev->size; | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* must never happen since size limit has been verified above */ | 
|  | BUG_ON(i >= concat->num_subdev); | 
|  |  | 
|  | /* now do the erase: */ | 
|  | err = 0; | 
|  | for (; length > 0; i++) { | 
|  | /* loop for all subdevices affected by this request */ | 
|  | subdev = concat->subdev[i];	/* get current subdevice */ | 
|  |  | 
|  | /* limit length to subdevice's size: */ | 
|  | if (erase->addr + length > subdev->size) | 
|  | erase->len = subdev->size - erase->addr; | 
|  | else | 
|  | erase->len = length; | 
|  |  | 
|  | if (!(subdev->flags & MTD_WRITEABLE)) { | 
|  | err = -EROFS; | 
|  | break; | 
|  | } | 
|  | length -= erase->len; | 
|  | if ((err = concat_dev_erase(subdev, erase))) { | 
|  | /* sanity check: should never happen since | 
|  | * block alignment has been checked above */ | 
|  | BUG_ON(err == -EINVAL); | 
|  | if (erase->fail_addr != 0xffffffff) | 
|  | instr->fail_addr = erase->fail_addr + offset; | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * erase->addr specifies the offset of the area to be | 
|  | * erased *within the current subdevice*. It can be | 
|  | * non-zero only the first time through this loop, i.e. | 
|  | * for the first subdevice where blocks need to be erased. | 
|  | * All the following erases must begin at the start of the | 
|  | * current subdevice, i.e. at offset zero. | 
|  | */ | 
|  | erase->addr = 0; | 
|  | offset += subdev->size; | 
|  | } | 
|  | instr->state = erase->state; | 
|  | kfree(erase); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (instr->callback) | 
|  | instr->callback(instr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int concat_lock(struct mtd_info *mtd, loff_t ofs, size_t len) | 
|  | { | 
|  | struct mtd_concat *concat = CONCAT(mtd); | 
|  | int i, err = -EINVAL; | 
|  |  | 
|  | if ((len + ofs) > mtd->size) | 
|  | return -EINVAL; | 
|  |  | 
|  | for (i = 0; i < concat->num_subdev; i++) { | 
|  | struct mtd_info *subdev = concat->subdev[i]; | 
|  | size_t size; | 
|  |  | 
|  | if (ofs >= subdev->size) { | 
|  | size = 0; | 
|  | ofs -= subdev->size; | 
|  | continue; | 
|  | } | 
|  | if (ofs + len > subdev->size) | 
|  | size = subdev->size - ofs; | 
|  | else | 
|  | size = len; | 
|  |  | 
|  | err = subdev->lock(subdev, ofs, size); | 
|  |  | 
|  | if (err) | 
|  | break; | 
|  |  | 
|  | len -= size; | 
|  | if (len == 0) | 
|  | break; | 
|  |  | 
|  | err = -EINVAL; | 
|  | ofs = 0; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int concat_unlock(struct mtd_info *mtd, loff_t ofs, size_t len) | 
|  | { | 
|  | struct mtd_concat *concat = CONCAT(mtd); | 
|  | int i, err = 0; | 
|  |  | 
|  | if ((len + ofs) > mtd->size) | 
|  | return -EINVAL; | 
|  |  | 
|  | for (i = 0; i < concat->num_subdev; i++) { | 
|  | struct mtd_info *subdev = concat->subdev[i]; | 
|  | size_t size; | 
|  |  | 
|  | if (ofs >= subdev->size) { | 
|  | size = 0; | 
|  | ofs -= subdev->size; | 
|  | continue; | 
|  | } | 
|  | if (ofs + len > subdev->size) | 
|  | size = subdev->size - ofs; | 
|  | else | 
|  | size = len; | 
|  |  | 
|  | err = subdev->unlock(subdev, ofs, size); | 
|  |  | 
|  | if (err) | 
|  | break; | 
|  |  | 
|  | len -= size; | 
|  | if (len == 0) | 
|  | break; | 
|  |  | 
|  | err = -EINVAL; | 
|  | ofs = 0; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void concat_sync(struct mtd_info *mtd) | 
|  | { | 
|  | struct mtd_concat *concat = CONCAT(mtd); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < concat->num_subdev; i++) { | 
|  | struct mtd_info *subdev = concat->subdev[i]; | 
|  | subdev->sync(subdev); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int concat_suspend(struct mtd_info *mtd) | 
|  | { | 
|  | struct mtd_concat *concat = CONCAT(mtd); | 
|  | int i, rc = 0; | 
|  |  | 
|  | for (i = 0; i < concat->num_subdev; i++) { | 
|  | struct mtd_info *subdev = concat->subdev[i]; | 
|  | if ((rc = subdev->suspend(subdev)) < 0) | 
|  | return rc; | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void concat_resume(struct mtd_info *mtd) | 
|  | { | 
|  | struct mtd_concat *concat = CONCAT(mtd); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < concat->num_subdev; i++) { | 
|  | struct mtd_info *subdev = concat->subdev[i]; | 
|  | subdev->resume(subdev); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs) | 
|  | { | 
|  | struct mtd_concat *concat = CONCAT(mtd); | 
|  | int i, res = 0; | 
|  |  | 
|  | if (!concat->subdev[0]->block_isbad) | 
|  | return res; | 
|  |  | 
|  | if (ofs > mtd->size) | 
|  | return -EINVAL; | 
|  |  | 
|  | for (i = 0; i < concat->num_subdev; i++) { | 
|  | struct mtd_info *subdev = concat->subdev[i]; | 
|  |  | 
|  | if (ofs >= subdev->size) { | 
|  | ofs -= subdev->size; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | res = subdev->block_isbad(subdev, ofs); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs) | 
|  | { | 
|  | struct mtd_concat *concat = CONCAT(mtd); | 
|  | int i, err = -EINVAL; | 
|  |  | 
|  | if (!concat->subdev[0]->block_markbad) | 
|  | return 0; | 
|  |  | 
|  | if (ofs > mtd->size) | 
|  | return -EINVAL; | 
|  |  | 
|  | for (i = 0; i < concat->num_subdev; i++) { | 
|  | struct mtd_info *subdev = concat->subdev[i]; | 
|  |  | 
|  | if (ofs >= subdev->size) { | 
|  | ofs -= subdev->size; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | err = subdev->block_markbad(subdev, ofs); | 
|  | if (!err) | 
|  | mtd->ecc_stats.badblocks++; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function constructs a virtual MTD device by concatenating | 
|  | * num_devs MTD devices. A pointer to the new device object is | 
|  | * stored to *new_dev upon success. This function does _not_ | 
|  | * register any devices: this is the caller's responsibility. | 
|  | */ | 
|  | struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],	/* subdevices to concatenate */ | 
|  | int num_devs,	/* number of subdevices      */ | 
|  | char *name) | 
|  | {				/* name for the new device   */ | 
|  | int i; | 
|  | size_t size; | 
|  | struct mtd_concat *concat; | 
|  | u_int32_t max_erasesize, curr_erasesize; | 
|  | int num_erase_region; | 
|  |  | 
|  | printk(KERN_NOTICE "Concatenating MTD devices:\n"); | 
|  | for (i = 0; i < num_devs; i++) | 
|  | printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name); | 
|  | printk(KERN_NOTICE "into device \"%s\"\n", name); | 
|  |  | 
|  | /* allocate the device structure */ | 
|  | size = SIZEOF_STRUCT_MTD_CONCAT(num_devs); | 
|  | concat = kzalloc(size, GFP_KERNEL); | 
|  | if (!concat) { | 
|  | printk | 
|  | ("memory allocation error while creating concatenated device \"%s\"\n", | 
|  | name); | 
|  | return NULL; | 
|  | } | 
|  | concat->subdev = (struct mtd_info **) (concat + 1); | 
|  |  | 
|  | /* | 
|  | * Set up the new "super" device's MTD object structure, check for | 
|  | * incompatibilites between the subdevices. | 
|  | */ | 
|  | concat->mtd.type = subdev[0]->type; | 
|  | concat->mtd.flags = subdev[0]->flags; | 
|  | concat->mtd.size = subdev[0]->size; | 
|  | concat->mtd.erasesize = subdev[0]->erasesize; | 
|  | concat->mtd.writesize = subdev[0]->writesize; | 
|  | concat->mtd.subpage_sft = subdev[0]->subpage_sft; | 
|  | concat->mtd.oobsize = subdev[0]->oobsize; | 
|  | concat->mtd.oobavail = subdev[0]->oobavail; | 
|  | if (subdev[0]->writev) | 
|  | concat->mtd.writev = concat_writev; | 
|  | if (subdev[0]->read_oob) | 
|  | concat->mtd.read_oob = concat_read_oob; | 
|  | if (subdev[0]->write_oob) | 
|  | concat->mtd.write_oob = concat_write_oob; | 
|  | if (subdev[0]->block_isbad) | 
|  | concat->mtd.block_isbad = concat_block_isbad; | 
|  | if (subdev[0]->block_markbad) | 
|  | concat->mtd.block_markbad = concat_block_markbad; | 
|  |  | 
|  | concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks; | 
|  |  | 
|  | concat->subdev[0] = subdev[0]; | 
|  |  | 
|  | for (i = 1; i < num_devs; i++) { | 
|  | if (concat->mtd.type != subdev[i]->type) { | 
|  | kfree(concat); | 
|  | printk("Incompatible device type on \"%s\"\n", | 
|  | subdev[i]->name); | 
|  | return NULL; | 
|  | } | 
|  | if (concat->mtd.flags != subdev[i]->flags) { | 
|  | /* | 
|  | * Expect all flags except MTD_WRITEABLE to be | 
|  | * equal on all subdevices. | 
|  | */ | 
|  | if ((concat->mtd.flags ^ subdev[i]-> | 
|  | flags) & ~MTD_WRITEABLE) { | 
|  | kfree(concat); | 
|  | printk("Incompatible device flags on \"%s\"\n", | 
|  | subdev[i]->name); | 
|  | return NULL; | 
|  | } else | 
|  | /* if writeable attribute differs, | 
|  | make super device writeable */ | 
|  | concat->mtd.flags |= | 
|  | subdev[i]->flags & MTD_WRITEABLE; | 
|  | } | 
|  | concat->mtd.size += subdev[i]->size; | 
|  | concat->mtd.ecc_stats.badblocks += | 
|  | subdev[i]->ecc_stats.badblocks; | 
|  | if (concat->mtd.writesize   !=  subdev[i]->writesize || | 
|  | concat->mtd.subpage_sft != subdev[i]->subpage_sft || | 
|  | concat->mtd.oobsize    !=  subdev[i]->oobsize || | 
|  | !concat->mtd.read_oob  != !subdev[i]->read_oob || | 
|  | !concat->mtd.write_oob != !subdev[i]->write_oob) { | 
|  | kfree(concat); | 
|  | printk("Incompatible OOB or ECC data on \"%s\"\n", | 
|  | subdev[i]->name); | 
|  | return NULL; | 
|  | } | 
|  | concat->subdev[i] = subdev[i]; | 
|  |  | 
|  | } | 
|  |  | 
|  | concat->mtd.ecclayout = subdev[0]->ecclayout; | 
|  |  | 
|  | concat->num_subdev = num_devs; | 
|  | concat->mtd.name = name; | 
|  |  | 
|  | concat->mtd.erase = concat_erase; | 
|  | concat->mtd.read = concat_read; | 
|  | concat->mtd.write = concat_write; | 
|  | concat->mtd.sync = concat_sync; | 
|  | concat->mtd.lock = concat_lock; | 
|  | concat->mtd.unlock = concat_unlock; | 
|  | concat->mtd.suspend = concat_suspend; | 
|  | concat->mtd.resume = concat_resume; | 
|  |  | 
|  | /* | 
|  | * Combine the erase block size info of the subdevices: | 
|  | * | 
|  | * first, walk the map of the new device and see how | 
|  | * many changes in erase size we have | 
|  | */ | 
|  | max_erasesize = curr_erasesize = subdev[0]->erasesize; | 
|  | num_erase_region = 1; | 
|  | for (i = 0; i < num_devs; i++) { | 
|  | if (subdev[i]->numeraseregions == 0) { | 
|  | /* current subdevice has uniform erase size */ | 
|  | if (subdev[i]->erasesize != curr_erasesize) { | 
|  | /* if it differs from the last subdevice's erase size, count it */ | 
|  | ++num_erase_region; | 
|  | curr_erasesize = subdev[i]->erasesize; | 
|  | if (curr_erasesize > max_erasesize) | 
|  | max_erasesize = curr_erasesize; | 
|  | } | 
|  | } else { | 
|  | /* current subdevice has variable erase size */ | 
|  | int j; | 
|  | for (j = 0; j < subdev[i]->numeraseregions; j++) { | 
|  |  | 
|  | /* walk the list of erase regions, count any changes */ | 
|  | if (subdev[i]->eraseregions[j].erasesize != | 
|  | curr_erasesize) { | 
|  | ++num_erase_region; | 
|  | curr_erasesize = | 
|  | subdev[i]->eraseregions[j]. | 
|  | erasesize; | 
|  | if (curr_erasesize > max_erasesize) | 
|  | max_erasesize = curr_erasesize; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (num_erase_region == 1) { | 
|  | /* | 
|  | * All subdevices have the same uniform erase size. | 
|  | * This is easy: | 
|  | */ | 
|  | concat->mtd.erasesize = curr_erasesize; | 
|  | concat->mtd.numeraseregions = 0; | 
|  | } else { | 
|  | /* | 
|  | * erase block size varies across the subdevices: allocate | 
|  | * space to store the data describing the variable erase regions | 
|  | */ | 
|  | struct mtd_erase_region_info *erase_region_p; | 
|  | u_int32_t begin, position; | 
|  |  | 
|  | concat->mtd.erasesize = max_erasesize; | 
|  | concat->mtd.numeraseregions = num_erase_region; | 
|  | concat->mtd.eraseregions = erase_region_p = | 
|  | kmalloc(num_erase_region * | 
|  | sizeof (struct mtd_erase_region_info), GFP_KERNEL); | 
|  | if (!erase_region_p) { | 
|  | kfree(concat); | 
|  | printk | 
|  | ("memory allocation error while creating erase region list" | 
|  | " for device \"%s\"\n", name); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * walk the map of the new device once more and fill in | 
|  | * in erase region info: | 
|  | */ | 
|  | curr_erasesize = subdev[0]->erasesize; | 
|  | begin = position = 0; | 
|  | for (i = 0; i < num_devs; i++) { | 
|  | if (subdev[i]->numeraseregions == 0) { | 
|  | /* current subdevice has uniform erase size */ | 
|  | if (subdev[i]->erasesize != curr_erasesize) { | 
|  | /* | 
|  | *  fill in an mtd_erase_region_info structure for the area | 
|  | *  we have walked so far: | 
|  | */ | 
|  | erase_region_p->offset = begin; | 
|  | erase_region_p->erasesize = | 
|  | curr_erasesize; | 
|  | erase_region_p->numblocks = | 
|  | (position - begin) / curr_erasesize; | 
|  | begin = position; | 
|  |  | 
|  | curr_erasesize = subdev[i]->erasesize; | 
|  | ++erase_region_p; | 
|  | } | 
|  | position += subdev[i]->size; | 
|  | } else { | 
|  | /* current subdevice has variable erase size */ | 
|  | int j; | 
|  | for (j = 0; j < subdev[i]->numeraseregions; j++) { | 
|  | /* walk the list of erase regions, count any changes */ | 
|  | if (subdev[i]->eraseregions[j]. | 
|  | erasesize != curr_erasesize) { | 
|  | erase_region_p->offset = begin; | 
|  | erase_region_p->erasesize = | 
|  | curr_erasesize; | 
|  | erase_region_p->numblocks = | 
|  | (position - | 
|  | begin) / curr_erasesize; | 
|  | begin = position; | 
|  |  | 
|  | curr_erasesize = | 
|  | subdev[i]->eraseregions[j]. | 
|  | erasesize; | 
|  | ++erase_region_p; | 
|  | } | 
|  | position += | 
|  | subdev[i]->eraseregions[j]. | 
|  | numblocks * curr_erasesize; | 
|  | } | 
|  | } | 
|  | } | 
|  | /* Now write the final entry */ | 
|  | erase_region_p->offset = begin; | 
|  | erase_region_p->erasesize = curr_erasesize; | 
|  | erase_region_p->numblocks = (position - begin) / curr_erasesize; | 
|  | } | 
|  |  | 
|  | return &concat->mtd; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function destroys an MTD object obtained from concat_mtd_devs() | 
|  | */ | 
|  |  | 
|  | void mtd_concat_destroy(struct mtd_info *mtd) | 
|  | { | 
|  | struct mtd_concat *concat = CONCAT(mtd); | 
|  | if (concat->mtd.numeraseregions) | 
|  | kfree(concat->mtd.eraseregions); | 
|  | kfree(concat); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(mtd_concat_create); | 
|  | EXPORT_SYMBOL(mtd_concat_destroy); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>"); | 
|  | MODULE_DESCRIPTION("Generic support for concatenating of MTD devices"); |