| /* | 
 |  * PPC64 (POWER4) Huge TLB Page Support for Kernel. | 
 |  * | 
 |  * Copyright (C) 2003 David Gibson, IBM Corporation. | 
 |  * | 
 |  * Based on the IA-32 version: | 
 |  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> | 
 |  */ | 
 |  | 
 | #include <linux/init.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/err.h> | 
 | #include <linux/sysctl.h> | 
 | #include <asm/mman.h> | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/tlb.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/machdep.h> | 
 | #include <asm/cputable.h> | 
 | #include <asm/spu.h> | 
 |  | 
 | #define PAGE_SHIFT_64K	16 | 
 | #define PAGE_SHIFT_16M	24 | 
 | #define PAGE_SHIFT_16G	34 | 
 |  | 
 | #define NUM_LOW_AREAS	(0x100000000UL >> SID_SHIFT) | 
 | #define NUM_HIGH_AREAS	(PGTABLE_RANGE >> HTLB_AREA_SHIFT) | 
 | #define MAX_NUMBER_GPAGES	1024 | 
 |  | 
 | /* Tracks the 16G pages after the device tree is scanned and before the | 
 |  * huge_boot_pages list is ready.  */ | 
 | static unsigned long gpage_freearray[MAX_NUMBER_GPAGES]; | 
 | static unsigned nr_gpages; | 
 |  | 
 | /* Array of valid huge page sizes - non-zero value(hugepte_shift) is | 
 |  * stored for the huge page sizes that are valid. | 
 |  */ | 
 | unsigned int mmu_huge_psizes[MMU_PAGE_COUNT] = { }; /* initialize all to 0 */ | 
 |  | 
 | #define hugepte_shift			mmu_huge_psizes | 
 | #define PTRS_PER_HUGEPTE(psize)		(1 << hugepte_shift[psize]) | 
 | #define HUGEPTE_TABLE_SIZE(psize)	(sizeof(pte_t) << hugepte_shift[psize]) | 
 |  | 
 | #define HUGEPD_SHIFT(psize)		(mmu_psize_to_shift(psize) \ | 
 | 						+ hugepte_shift[psize]) | 
 | #define HUGEPD_SIZE(psize)		(1UL << HUGEPD_SHIFT(psize)) | 
 | #define HUGEPD_MASK(psize)		(~(HUGEPD_SIZE(psize)-1)) | 
 |  | 
 | /* Subtract one from array size because we don't need a cache for 4K since | 
 |  * is not a huge page size */ | 
 | #define HUGE_PGTABLE_INDEX(psize)	(HUGEPTE_CACHE_NUM + psize - 1) | 
 | #define HUGEPTE_CACHE_NAME(psize)	(huge_pgtable_cache_name[psize]) | 
 |  | 
 | static const char *huge_pgtable_cache_name[MMU_PAGE_COUNT] = { | 
 | 	"unused_4K", "hugepte_cache_64K", "unused_64K_AP", | 
 | 	"hugepte_cache_1M", "hugepte_cache_16M", "hugepte_cache_16G" | 
 | }; | 
 |  | 
 | /* Flag to mark huge PD pointers.  This means pmd_bad() and pud_bad() | 
 |  * will choke on pointers to hugepte tables, which is handy for | 
 |  * catching screwups early. */ | 
 | #define HUGEPD_OK	0x1 | 
 |  | 
 | typedef struct { unsigned long pd; } hugepd_t; | 
 |  | 
 | #define hugepd_none(hpd)	((hpd).pd == 0) | 
 |  | 
 | static inline int shift_to_mmu_psize(unsigned int shift) | 
 | { | 
 | 	switch (shift) { | 
 | #ifndef CONFIG_PPC_64K_PAGES | 
 | 	case PAGE_SHIFT_64K: | 
 | 	    return MMU_PAGE_64K; | 
 | #endif | 
 | 	case PAGE_SHIFT_16M: | 
 | 	    return MMU_PAGE_16M; | 
 | 	case PAGE_SHIFT_16G: | 
 | 	    return MMU_PAGE_16G; | 
 | 	} | 
 | 	return -1; | 
 | } | 
 |  | 
 | static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize) | 
 | { | 
 | 	if (mmu_psize_defs[mmu_psize].shift) | 
 | 		return mmu_psize_defs[mmu_psize].shift; | 
 | 	BUG(); | 
 | } | 
 |  | 
 | static inline pte_t *hugepd_page(hugepd_t hpd) | 
 | { | 
 | 	BUG_ON(!(hpd.pd & HUGEPD_OK)); | 
 | 	return (pte_t *)(hpd.pd & ~HUGEPD_OK); | 
 | } | 
 |  | 
 | static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr, | 
 | 				    struct hstate *hstate) | 
 | { | 
 | 	unsigned int shift = huge_page_shift(hstate); | 
 | 	int psize = shift_to_mmu_psize(shift); | 
 | 	unsigned long idx = ((addr >> shift) & (PTRS_PER_HUGEPTE(psize)-1)); | 
 | 	pte_t *dir = hugepd_page(*hpdp); | 
 |  | 
 | 	return dir + idx; | 
 | } | 
 |  | 
 | static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, | 
 | 			   unsigned long address, unsigned int psize) | 
 | { | 
 | 	pte_t *new = kmem_cache_zalloc(pgtable_cache[HUGE_PGTABLE_INDEX(psize)], | 
 | 				      GFP_KERNEL|__GFP_REPEAT); | 
 |  | 
 | 	if (! new) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	spin_lock(&mm->page_table_lock); | 
 | 	if (!hugepd_none(*hpdp)) | 
 | 		kmem_cache_free(pgtable_cache[HUGE_PGTABLE_INDEX(psize)], new); | 
 | 	else | 
 | 		hpdp->pd = (unsigned long)new | HUGEPD_OK; | 
 | 	spin_unlock(&mm->page_table_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static pud_t *hpud_offset(pgd_t *pgd, unsigned long addr, struct hstate *hstate) | 
 | { | 
 | 	if (huge_page_shift(hstate) < PUD_SHIFT) | 
 | 		return pud_offset(pgd, addr); | 
 | 	else | 
 | 		return (pud_t *) pgd; | 
 | } | 
 | static pud_t *hpud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long addr, | 
 | 			 struct hstate *hstate) | 
 | { | 
 | 	if (huge_page_shift(hstate) < PUD_SHIFT) | 
 | 		return pud_alloc(mm, pgd, addr); | 
 | 	else | 
 | 		return (pud_t *) pgd; | 
 | } | 
 | static pmd_t *hpmd_offset(pud_t *pud, unsigned long addr, struct hstate *hstate) | 
 | { | 
 | 	if (huge_page_shift(hstate) < PMD_SHIFT) | 
 | 		return pmd_offset(pud, addr); | 
 | 	else | 
 | 		return (pmd_t *) pud; | 
 | } | 
 | static pmd_t *hpmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long addr, | 
 | 			 struct hstate *hstate) | 
 | { | 
 | 	if (huge_page_shift(hstate) < PMD_SHIFT) | 
 | 		return pmd_alloc(mm, pud, addr); | 
 | 	else | 
 | 		return (pmd_t *) pud; | 
 | } | 
 |  | 
 | /* Build list of addresses of gigantic pages.  This function is used in early | 
 |  * boot before the buddy or bootmem allocator is setup. | 
 |  */ | 
 | void add_gpage(unsigned long addr, unsigned long page_size, | 
 | 	unsigned long number_of_pages) | 
 | { | 
 | 	if (!addr) | 
 | 		return; | 
 | 	while (number_of_pages > 0) { | 
 | 		gpage_freearray[nr_gpages] = addr; | 
 | 		nr_gpages++; | 
 | 		number_of_pages--; | 
 | 		addr += page_size; | 
 | 	} | 
 | } | 
 |  | 
 | /* Moves the gigantic page addresses from the temporary list to the | 
 |  * huge_boot_pages list. | 
 |  */ | 
 | int alloc_bootmem_huge_page(struct hstate *hstate) | 
 | { | 
 | 	struct huge_bootmem_page *m; | 
 | 	if (nr_gpages == 0) | 
 | 		return 0; | 
 | 	m = phys_to_virt(gpage_freearray[--nr_gpages]); | 
 | 	gpage_freearray[nr_gpages] = 0; | 
 | 	list_add(&m->list, &huge_boot_pages); | 
 | 	m->hstate = hstate; | 
 | 	return 1; | 
 | } | 
 |  | 
 |  | 
 | /* Modelled after find_linux_pte() */ | 
 | pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) | 
 | { | 
 | 	pgd_t *pg; | 
 | 	pud_t *pu; | 
 | 	pmd_t *pm; | 
 |  | 
 | 	unsigned int psize; | 
 | 	unsigned int shift; | 
 | 	unsigned long sz; | 
 | 	struct hstate *hstate; | 
 | 	psize = get_slice_psize(mm, addr); | 
 | 	shift = mmu_psize_to_shift(psize); | 
 | 	sz = ((1UL) << shift); | 
 | 	hstate = size_to_hstate(sz); | 
 |  | 
 | 	addr &= hstate->mask; | 
 |  | 
 | 	pg = pgd_offset(mm, addr); | 
 | 	if (!pgd_none(*pg)) { | 
 | 		pu = hpud_offset(pg, addr, hstate); | 
 | 		if (!pud_none(*pu)) { | 
 | 			pm = hpmd_offset(pu, addr, hstate); | 
 | 			if (!pmd_none(*pm)) | 
 | 				return hugepte_offset((hugepd_t *)pm, addr, | 
 | 						      hstate); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | pte_t *huge_pte_alloc(struct mm_struct *mm, | 
 | 			unsigned long addr, unsigned long sz) | 
 | { | 
 | 	pgd_t *pg; | 
 | 	pud_t *pu; | 
 | 	pmd_t *pm; | 
 | 	hugepd_t *hpdp = NULL; | 
 | 	struct hstate *hstate; | 
 | 	unsigned int psize; | 
 | 	hstate = size_to_hstate(sz); | 
 |  | 
 | 	psize = get_slice_psize(mm, addr); | 
 | 	BUG_ON(!mmu_huge_psizes[psize]); | 
 |  | 
 | 	addr &= hstate->mask; | 
 |  | 
 | 	pg = pgd_offset(mm, addr); | 
 | 	pu = hpud_alloc(mm, pg, addr, hstate); | 
 |  | 
 | 	if (pu) { | 
 | 		pm = hpmd_alloc(mm, pu, addr, hstate); | 
 | 		if (pm) | 
 | 			hpdp = (hugepd_t *)pm; | 
 | 	} | 
 |  | 
 | 	if (! hpdp) | 
 | 		return NULL; | 
 |  | 
 | 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, psize)) | 
 | 		return NULL; | 
 |  | 
 | 	return hugepte_offset(hpdp, addr, hstate); | 
 | } | 
 |  | 
 | int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void free_hugepte_range(struct mmu_gather *tlb, hugepd_t *hpdp, | 
 | 			       unsigned int psize) | 
 | { | 
 | 	pte_t *hugepte = hugepd_page(*hpdp); | 
 |  | 
 | 	hpdp->pd = 0; | 
 | 	tlb->need_flush = 1; | 
 | 	pgtable_free_tlb(tlb, pgtable_free_cache(hugepte, | 
 | 						 HUGEPTE_CACHE_NUM+psize-1, | 
 | 						 PGF_CACHENUM_MASK)); | 
 | } | 
 |  | 
 | static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud, | 
 | 				   unsigned long addr, unsigned long end, | 
 | 				   unsigned long floor, unsigned long ceiling, | 
 | 				   unsigned int psize) | 
 | { | 
 | 	pmd_t *pmd; | 
 | 	unsigned long next; | 
 | 	unsigned long start; | 
 |  | 
 | 	start = addr; | 
 | 	pmd = pmd_offset(pud, addr); | 
 | 	do { | 
 | 		next = pmd_addr_end(addr, end); | 
 | 		if (pmd_none(*pmd)) | 
 | 			continue; | 
 | 		free_hugepte_range(tlb, (hugepd_t *)pmd, psize); | 
 | 	} while (pmd++, addr = next, addr != end); | 
 |  | 
 | 	start &= PUD_MASK; | 
 | 	if (start < floor) | 
 | 		return; | 
 | 	if (ceiling) { | 
 | 		ceiling &= PUD_MASK; | 
 | 		if (!ceiling) | 
 | 			return; | 
 | 	} | 
 | 	if (end - 1 > ceiling - 1) | 
 | 		return; | 
 |  | 
 | 	pmd = pmd_offset(pud, start); | 
 | 	pud_clear(pud); | 
 | 	pmd_free_tlb(tlb, pmd); | 
 | } | 
 |  | 
 | static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, | 
 | 				   unsigned long addr, unsigned long end, | 
 | 				   unsigned long floor, unsigned long ceiling) | 
 | { | 
 | 	pud_t *pud; | 
 | 	unsigned long next; | 
 | 	unsigned long start; | 
 | 	unsigned int shift; | 
 | 	unsigned int psize = get_slice_psize(tlb->mm, addr); | 
 | 	shift = mmu_psize_to_shift(psize); | 
 |  | 
 | 	start = addr; | 
 | 	pud = pud_offset(pgd, addr); | 
 | 	do { | 
 | 		next = pud_addr_end(addr, end); | 
 | 		if (shift < PMD_SHIFT) { | 
 | 			if (pud_none_or_clear_bad(pud)) | 
 | 				continue; | 
 | 			hugetlb_free_pmd_range(tlb, pud, addr, next, floor, | 
 | 					       ceiling, psize); | 
 | 		} else { | 
 | 			if (pud_none(*pud)) | 
 | 				continue; | 
 | 			free_hugepte_range(tlb, (hugepd_t *)pud, psize); | 
 | 		} | 
 | 	} while (pud++, addr = next, addr != end); | 
 |  | 
 | 	start &= PGDIR_MASK; | 
 | 	if (start < floor) | 
 | 		return; | 
 | 	if (ceiling) { | 
 | 		ceiling &= PGDIR_MASK; | 
 | 		if (!ceiling) | 
 | 			return; | 
 | 	} | 
 | 	if (end - 1 > ceiling - 1) | 
 | 		return; | 
 |  | 
 | 	pud = pud_offset(pgd, start); | 
 | 	pgd_clear(pgd); | 
 | 	pud_free_tlb(tlb, pud); | 
 | } | 
 |  | 
 | /* | 
 |  * This function frees user-level page tables of a process. | 
 |  * | 
 |  * Must be called with pagetable lock held. | 
 |  */ | 
 | void hugetlb_free_pgd_range(struct mmu_gather *tlb, | 
 | 			    unsigned long addr, unsigned long end, | 
 | 			    unsigned long floor, unsigned long ceiling) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	unsigned long next; | 
 | 	unsigned long start; | 
 |  | 
 | 	/* | 
 | 	 * Comments below take from the normal free_pgd_range().  They | 
 | 	 * apply here too.  The tests against HUGEPD_MASK below are | 
 | 	 * essential, because we *don't* test for this at the bottom | 
 | 	 * level.  Without them we'll attempt to free a hugepte table | 
 | 	 * when we unmap just part of it, even if there are other | 
 | 	 * active mappings using it. | 
 | 	 * | 
 | 	 * The next few lines have given us lots of grief... | 
 | 	 * | 
 | 	 * Why are we testing HUGEPD* at this top level?  Because | 
 | 	 * often there will be no work to do at all, and we'd prefer | 
 | 	 * not to go all the way down to the bottom just to discover | 
 | 	 * that. | 
 | 	 * | 
 | 	 * Why all these "- 1"s?  Because 0 represents both the bottom | 
 | 	 * of the address space and the top of it (using -1 for the | 
 | 	 * top wouldn't help much: the masks would do the wrong thing). | 
 | 	 * The rule is that addr 0 and floor 0 refer to the bottom of | 
 | 	 * the address space, but end 0 and ceiling 0 refer to the top | 
 | 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though | 
 | 	 * that end 0 case should be mythical). | 
 | 	 * | 
 | 	 * Wherever addr is brought up or ceiling brought down, we | 
 | 	 * must be careful to reject "the opposite 0" before it | 
 | 	 * confuses the subsequent tests.  But what about where end is | 
 | 	 * brought down by HUGEPD_SIZE below? no, end can't go down to | 
 | 	 * 0 there. | 
 | 	 * | 
 | 	 * Whereas we round start (addr) and ceiling down, by different | 
 | 	 * masks at different levels, in order to test whether a table | 
 | 	 * now has no other vmas using it, so can be freed, we don't | 
 | 	 * bother to round floor or end up - the tests don't need that. | 
 | 	 */ | 
 | 	unsigned int psize = get_slice_psize(tlb->mm, addr); | 
 |  | 
 | 	addr &= HUGEPD_MASK(psize); | 
 | 	if (addr < floor) { | 
 | 		addr += HUGEPD_SIZE(psize); | 
 | 		if (!addr) | 
 | 			return; | 
 | 	} | 
 | 	if (ceiling) { | 
 | 		ceiling &= HUGEPD_MASK(psize); | 
 | 		if (!ceiling) | 
 | 			return; | 
 | 	} | 
 | 	if (end - 1 > ceiling - 1) | 
 | 		end -= HUGEPD_SIZE(psize); | 
 | 	if (addr > end - 1) | 
 | 		return; | 
 |  | 
 | 	start = addr; | 
 | 	pgd = pgd_offset(tlb->mm, addr); | 
 | 	do { | 
 | 		psize = get_slice_psize(tlb->mm, addr); | 
 | 		BUG_ON(!mmu_huge_psizes[psize]); | 
 | 		next = pgd_addr_end(addr, end); | 
 | 		if (mmu_psize_to_shift(psize) < PUD_SHIFT) { | 
 | 			if (pgd_none_or_clear_bad(pgd)) | 
 | 				continue; | 
 | 			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling); | 
 | 		} else { | 
 | 			if (pgd_none(*pgd)) | 
 | 				continue; | 
 | 			free_hugepte_range(tlb, (hugepd_t *)pgd, psize); | 
 | 		} | 
 | 	} while (pgd++, addr = next, addr != end); | 
 | } | 
 |  | 
 | void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, | 
 | 		     pte_t *ptep, pte_t pte) | 
 | { | 
 | 	if (pte_present(*ptep)) { | 
 | 		/* We open-code pte_clear because we need to pass the right | 
 | 		 * argument to hpte_need_flush (huge / !huge). Might not be | 
 | 		 * necessary anymore if we make hpte_need_flush() get the | 
 | 		 * page size from the slices | 
 | 		 */ | 
 | 		unsigned int psize = get_slice_psize(mm, addr); | 
 | 		unsigned int shift = mmu_psize_to_shift(psize); | 
 | 		unsigned long sz = ((1UL) << shift); | 
 | 		struct hstate *hstate = size_to_hstate(sz); | 
 | 		pte_update(mm, addr & hstate->mask, ptep, ~0UL, 1); | 
 | 	} | 
 | 	*ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS); | 
 | } | 
 |  | 
 | pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, | 
 | 			      pte_t *ptep) | 
 | { | 
 | 	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 1); | 
 | 	return __pte(old); | 
 | } | 
 |  | 
 | struct page * | 
 | follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) | 
 | { | 
 | 	pte_t *ptep; | 
 | 	struct page *page; | 
 | 	unsigned int mmu_psize = get_slice_psize(mm, address); | 
 |  | 
 | 	/* Verify it is a huge page else bail. */ | 
 | 	if (!mmu_huge_psizes[mmu_psize]) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	ptep = huge_pte_offset(mm, address); | 
 | 	page = pte_page(*ptep); | 
 | 	if (page) { | 
 | 		unsigned int shift = mmu_psize_to_shift(mmu_psize); | 
 | 		unsigned long sz = ((1UL) << shift); | 
 | 		page += (address % sz) / PAGE_SIZE; | 
 | 	} | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | int pmd_huge(pmd_t pmd) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pud_huge(pud_t pud) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct page * | 
 | follow_huge_pmd(struct mm_struct *mm, unsigned long address, | 
 | 		pmd_t *pmd, int write) | 
 | { | 
 | 	BUG(); | 
 | 	return NULL; | 
 | } | 
 |  | 
 |  | 
 | unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, | 
 | 					unsigned long len, unsigned long pgoff, | 
 | 					unsigned long flags) | 
 | { | 
 | 	struct hstate *hstate = hstate_file(file); | 
 | 	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate)); | 
 |  | 
 | 	if (!mmu_huge_psizes[mmu_psize]) | 
 | 		return -EINVAL; | 
 | 	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0); | 
 | } | 
 |  | 
 | unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) | 
 | { | 
 | 	unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start); | 
 |  | 
 | 	return 1UL << mmu_psize_to_shift(psize); | 
 | } | 
 |  | 
 | /* | 
 |  * Called by asm hashtable.S for doing lazy icache flush | 
 |  */ | 
 | static unsigned int hash_huge_page_do_lazy_icache(unsigned long rflags, | 
 | 					pte_t pte, int trap, unsigned long sz) | 
 | { | 
 | 	struct page *page; | 
 | 	int i; | 
 |  | 
 | 	if (!pfn_valid(pte_pfn(pte))) | 
 | 		return rflags; | 
 |  | 
 | 	page = pte_page(pte); | 
 |  | 
 | 	/* page is dirty */ | 
 | 	if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) { | 
 | 		if (trap == 0x400) { | 
 | 			for (i = 0; i < (sz / PAGE_SIZE); i++) | 
 | 				__flush_dcache_icache(page_address(page+i)); | 
 | 			set_bit(PG_arch_1, &page->flags); | 
 | 		} else { | 
 | 			rflags |= HPTE_R_N; | 
 | 		} | 
 | 	} | 
 | 	return rflags; | 
 | } | 
 |  | 
 | int hash_huge_page(struct mm_struct *mm, unsigned long access, | 
 | 		   unsigned long ea, unsigned long vsid, int local, | 
 | 		   unsigned long trap) | 
 | { | 
 | 	pte_t *ptep; | 
 | 	unsigned long old_pte, new_pte; | 
 | 	unsigned long va, rflags, pa, sz; | 
 | 	long slot; | 
 | 	int err = 1; | 
 | 	int ssize = user_segment_size(ea); | 
 | 	unsigned int mmu_psize; | 
 | 	int shift; | 
 | 	mmu_psize = get_slice_psize(mm, ea); | 
 |  | 
 | 	if (!mmu_huge_psizes[mmu_psize]) | 
 | 		goto out; | 
 | 	ptep = huge_pte_offset(mm, ea); | 
 |  | 
 | 	/* Search the Linux page table for a match with va */ | 
 | 	va = hpt_va(ea, vsid, ssize); | 
 |  | 
 | 	/* | 
 | 	 * If no pte found or not present, send the problem up to | 
 | 	 * do_page_fault | 
 | 	 */ | 
 | 	if (unlikely(!ptep || pte_none(*ptep))) | 
 | 		goto out; | 
 |  | 
 | 	/*  | 
 | 	 * Check the user's access rights to the page.  If access should be | 
 | 	 * prevented then send the problem up to do_page_fault. | 
 | 	 */ | 
 | 	if (unlikely(access & ~pte_val(*ptep))) | 
 | 		goto out; | 
 | 	/* | 
 | 	 * At this point, we have a pte (old_pte) which can be used to build | 
 | 	 * or update an HPTE. There are 2 cases: | 
 | 	 * | 
 | 	 * 1. There is a valid (present) pte with no associated HPTE (this is  | 
 | 	 *	the most common case) | 
 | 	 * 2. There is a valid (present) pte with an associated HPTE. The | 
 | 	 *	current values of the pp bits in the HPTE prevent access | 
 | 	 *	because we are doing software DIRTY bit management and the | 
 | 	 *	page is currently not DIRTY.  | 
 | 	 */ | 
 |  | 
 |  | 
 | 	do { | 
 | 		old_pte = pte_val(*ptep); | 
 | 		if (old_pte & _PAGE_BUSY) | 
 | 			goto out; | 
 | 		new_pte = old_pte | _PAGE_BUSY | _PAGE_ACCESSED; | 
 | 	} while(old_pte != __cmpxchg_u64((unsigned long *)ptep, | 
 | 					 old_pte, new_pte)); | 
 |  | 
 | 	rflags = 0x2 | (!(new_pte & _PAGE_RW)); | 
 |  	/* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */ | 
 | 	rflags |= ((new_pte & _PAGE_EXEC) ? 0 : HPTE_R_N); | 
 | 	shift = mmu_psize_to_shift(mmu_psize); | 
 | 	sz = ((1UL) << shift); | 
 | 	if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) | 
 | 		/* No CPU has hugepages but lacks no execute, so we | 
 | 		 * don't need to worry about that case */ | 
 | 		rflags = hash_huge_page_do_lazy_icache(rflags, __pte(old_pte), | 
 | 						       trap, sz); | 
 |  | 
 | 	/* Check if pte already has an hpte (case 2) */ | 
 | 	if (unlikely(old_pte & _PAGE_HASHPTE)) { | 
 | 		/* There MIGHT be an HPTE for this pte */ | 
 | 		unsigned long hash, slot; | 
 |  | 
 | 		hash = hpt_hash(va, shift, ssize); | 
 | 		if (old_pte & _PAGE_F_SECOND) | 
 | 			hash = ~hash; | 
 | 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; | 
 | 		slot += (old_pte & _PAGE_F_GIX) >> 12; | 
 |  | 
 | 		if (ppc_md.hpte_updatepp(slot, rflags, va, mmu_psize, | 
 | 					 ssize, local) == -1) | 
 | 			old_pte &= ~_PAGE_HPTEFLAGS; | 
 | 	} | 
 |  | 
 | 	if (likely(!(old_pte & _PAGE_HASHPTE))) { | 
 | 		unsigned long hash = hpt_hash(va, shift, ssize); | 
 | 		unsigned long hpte_group; | 
 |  | 
 | 		pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT; | 
 |  | 
 | repeat: | 
 | 		hpte_group = ((hash & htab_hash_mask) * | 
 | 			      HPTES_PER_GROUP) & ~0x7UL; | 
 |  | 
 | 		/* clear HPTE slot informations in new PTE */ | 
 | #ifdef CONFIG_PPC_64K_PAGES | 
 | 		new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HPTE_SUB0; | 
 | #else | 
 | 		new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HASHPTE; | 
 | #endif | 
 | 		/* Add in WIMG bits */ | 
 | 		rflags |= (new_pte & (_PAGE_WRITETHRU | _PAGE_NO_CACHE | | 
 | 				      _PAGE_COHERENT | _PAGE_GUARDED)); | 
 |  | 
 | 		/* Insert into the hash table, primary slot */ | 
 | 		slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, 0, | 
 | 					  mmu_psize, ssize); | 
 |  | 
 | 		/* Primary is full, try the secondary */ | 
 | 		if (unlikely(slot == -1)) { | 
 | 			hpte_group = ((~hash & htab_hash_mask) * | 
 | 				      HPTES_PER_GROUP) & ~0x7UL;  | 
 | 			slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, | 
 | 						  HPTE_V_SECONDARY, | 
 | 						  mmu_psize, ssize); | 
 | 			if (slot == -1) { | 
 | 				if (mftb() & 0x1) | 
 | 					hpte_group = ((hash & htab_hash_mask) * | 
 | 						      HPTES_PER_GROUP)&~0x7UL; | 
 |  | 
 | 				ppc_md.hpte_remove(hpte_group); | 
 | 				goto repeat; | 
 |                         } | 
 | 		} | 
 |  | 
 | 		if (unlikely(slot == -2)) | 
 | 			panic("hash_huge_page: pte_insert failed\n"); | 
 |  | 
 | 		new_pte |= (slot << 12) & (_PAGE_F_SECOND | _PAGE_F_GIX); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * No need to use ldarx/stdcx here | 
 | 	 */ | 
 | 	*ptep = __pte(new_pte & ~_PAGE_BUSY); | 
 |  | 
 | 	err = 0; | 
 |  | 
 |  out: | 
 | 	return err; | 
 | } | 
 |  | 
 | static void __init set_huge_psize(int psize) | 
 | { | 
 | 	/* Check that it is a page size supported by the hardware and | 
 | 	 * that it fits within pagetable limits. */ | 
 | 	if (mmu_psize_defs[psize].shift && | 
 | 		mmu_psize_defs[psize].shift < SID_SHIFT_1T && | 
 | 		(mmu_psize_defs[psize].shift > MIN_HUGEPTE_SHIFT || | 
 | 		 mmu_psize_defs[psize].shift == PAGE_SHIFT_64K || | 
 | 		 mmu_psize_defs[psize].shift == PAGE_SHIFT_16G)) { | 
 | 		/* Return if huge page size has already been setup or is the | 
 | 		 * same as the base page size. */ | 
 | 		if (mmu_huge_psizes[psize] || | 
 | 		   mmu_psize_defs[psize].shift == PAGE_SHIFT) | 
 | 			return; | 
 | 		hugetlb_add_hstate(mmu_psize_defs[psize].shift - PAGE_SHIFT); | 
 |  | 
 | 		switch (mmu_psize_defs[psize].shift) { | 
 | 		case PAGE_SHIFT_64K: | 
 | 		    /* We only allow 64k hpages with 4k base page, | 
 | 		     * which was checked above, and always put them | 
 | 		     * at the PMD */ | 
 | 		    hugepte_shift[psize] = PMD_SHIFT; | 
 | 		    break; | 
 | 		case PAGE_SHIFT_16M: | 
 | 		    /* 16M pages can be at two different levels | 
 | 		     * of pagestables based on base page size */ | 
 | 		    if (PAGE_SHIFT == PAGE_SHIFT_64K) | 
 | 			    hugepte_shift[psize] = PMD_SHIFT; | 
 | 		    else /* 4k base page */ | 
 | 			    hugepte_shift[psize] = PUD_SHIFT; | 
 | 		    break; | 
 | 		case PAGE_SHIFT_16G: | 
 | 		    /* 16G pages are always at PGD level */ | 
 | 		    hugepte_shift[psize] = PGDIR_SHIFT; | 
 | 		    break; | 
 | 		} | 
 | 		hugepte_shift[psize] -= mmu_psize_defs[psize].shift; | 
 | 	} else | 
 | 		hugepte_shift[psize] = 0; | 
 | } | 
 |  | 
 | static int __init hugepage_setup_sz(char *str) | 
 | { | 
 | 	unsigned long long size; | 
 | 	int mmu_psize; | 
 | 	int shift; | 
 |  | 
 | 	size = memparse(str, &str); | 
 |  | 
 | 	shift = __ffs(size); | 
 | 	mmu_psize = shift_to_mmu_psize(shift); | 
 | 	if (mmu_psize >= 0 && mmu_psize_defs[mmu_psize].shift) | 
 | 		set_huge_psize(mmu_psize); | 
 | 	else | 
 | 		printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size); | 
 |  | 
 | 	return 1; | 
 | } | 
 | __setup("hugepagesz=", hugepage_setup_sz); | 
 |  | 
 | static int __init hugetlbpage_init(void) | 
 | { | 
 | 	unsigned int psize; | 
 |  | 
 | 	if (!cpu_has_feature(CPU_FTR_16M_PAGE)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	/* Add supported huge page sizes.  Need to change HUGE_MAX_HSTATE | 
 | 	 * and adjust PTE_NONCACHE_NUM if the number of supported huge page | 
 | 	 * sizes changes. | 
 | 	 */ | 
 | 	set_huge_psize(MMU_PAGE_16M); | 
 | 	set_huge_psize(MMU_PAGE_16G); | 
 |  | 
 | 	/* Temporarily disable support for 64K huge pages when 64K SPU local | 
 | 	 * store support is enabled as the current implementation conflicts. | 
 | 	 */ | 
 | #ifndef CONFIG_SPU_FS_64K_LS | 
 | 	set_huge_psize(MMU_PAGE_64K); | 
 | #endif | 
 |  | 
 | 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { | 
 | 		if (mmu_huge_psizes[psize]) { | 
 | 			pgtable_cache[HUGE_PGTABLE_INDEX(psize)] = | 
 | 				kmem_cache_create( | 
 | 					HUGEPTE_CACHE_NAME(psize), | 
 | 					HUGEPTE_TABLE_SIZE(psize), | 
 | 					HUGEPTE_TABLE_SIZE(psize), | 
 | 					0, | 
 | 					NULL); | 
 | 			if (!pgtable_cache[HUGE_PGTABLE_INDEX(psize)]) | 
 | 				panic("hugetlbpage_init(): could not create %s"\ | 
 | 				      "\n", HUGEPTE_CACHE_NAME(psize)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | module_init(hugetlbpage_init); |