|  | /* | 
|  | *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org) | 
|  | * | 
|  | *  This program is free software; you can redistribute it and/or | 
|  | *  modify it under the terms of the GNU General Public License | 
|  | *  as published by the Free Software Foundation; either version | 
|  | *  2 of the License, or (at your option) any later version. | 
|  | * | 
|  | *  Modified by Cort Dougan (cort@cs.nmt.edu) | 
|  | *  and Paul Mackerras (paulus@samba.org) | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This file handles the architecture-dependent parts of hardware exceptions | 
|  | */ | 
|  |  | 
|  | #include <linux/errno.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/stddef.h> | 
|  | #include <linux/unistd.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/user.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/prctl.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/kexec.h> | 
|  | #include <linux/backlight.h> | 
|  | #include <linux/bug.h> | 
|  | #include <linux/kdebug.h> | 
|  |  | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/machdep.h> | 
|  | #include <asm/rtas.h> | 
|  | #include <asm/pmc.h> | 
|  | #ifdef CONFIG_PPC32 | 
|  | #include <asm/reg.h> | 
|  | #endif | 
|  | #ifdef CONFIG_PMAC_BACKLIGHT | 
|  | #include <asm/backlight.h> | 
|  | #endif | 
|  | #ifdef CONFIG_PPC64 | 
|  | #include <asm/firmware.h> | 
|  | #include <asm/processor.h> | 
|  | #endif | 
|  | #include <asm/kexec.h> | 
|  | #include <asm/ppc-opcode.h> | 
|  | #ifdef CONFIG_FSL_BOOKE | 
|  | #include <asm/dbell.h> | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC) | 
|  | int (*__debugger)(struct pt_regs *regs); | 
|  | int (*__debugger_ipi)(struct pt_regs *regs); | 
|  | int (*__debugger_bpt)(struct pt_regs *regs); | 
|  | int (*__debugger_sstep)(struct pt_regs *regs); | 
|  | int (*__debugger_iabr_match)(struct pt_regs *regs); | 
|  | int (*__debugger_dabr_match)(struct pt_regs *regs); | 
|  | int (*__debugger_fault_handler)(struct pt_regs *regs); | 
|  |  | 
|  | EXPORT_SYMBOL(__debugger); | 
|  | EXPORT_SYMBOL(__debugger_ipi); | 
|  | EXPORT_SYMBOL(__debugger_bpt); | 
|  | EXPORT_SYMBOL(__debugger_sstep); | 
|  | EXPORT_SYMBOL(__debugger_iabr_match); | 
|  | EXPORT_SYMBOL(__debugger_dabr_match); | 
|  | EXPORT_SYMBOL(__debugger_fault_handler); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Trap & Exception support | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_PMAC_BACKLIGHT | 
|  | static void pmac_backlight_unblank(void) | 
|  | { | 
|  | mutex_lock(&pmac_backlight_mutex); | 
|  | if (pmac_backlight) { | 
|  | struct backlight_properties *props; | 
|  |  | 
|  | props = &pmac_backlight->props; | 
|  | props->brightness = props->max_brightness; | 
|  | props->power = FB_BLANK_UNBLANK; | 
|  | backlight_update_status(pmac_backlight); | 
|  | } | 
|  | mutex_unlock(&pmac_backlight_mutex); | 
|  | } | 
|  | #else | 
|  | static inline void pmac_backlight_unblank(void) { } | 
|  | #endif | 
|  |  | 
|  | int die(const char *str, struct pt_regs *regs, long err) | 
|  | { | 
|  | static struct { | 
|  | spinlock_t lock; | 
|  | u32 lock_owner; | 
|  | int lock_owner_depth; | 
|  | } die = { | 
|  | .lock =			__SPIN_LOCK_UNLOCKED(die.lock), | 
|  | .lock_owner =		-1, | 
|  | .lock_owner_depth =	0 | 
|  | }; | 
|  | static int die_counter; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (debugger(regs)) | 
|  | return 1; | 
|  |  | 
|  | oops_enter(); | 
|  |  | 
|  | if (die.lock_owner != raw_smp_processor_id()) { | 
|  | console_verbose(); | 
|  | spin_lock_irqsave(&die.lock, flags); | 
|  | die.lock_owner = smp_processor_id(); | 
|  | die.lock_owner_depth = 0; | 
|  | bust_spinlocks(1); | 
|  | if (machine_is(powermac)) | 
|  | pmac_backlight_unblank(); | 
|  | } else { | 
|  | local_save_flags(flags); | 
|  | } | 
|  |  | 
|  | if (++die.lock_owner_depth < 3) { | 
|  | printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter); | 
|  | #ifdef CONFIG_PREEMPT | 
|  | printk("PREEMPT "); | 
|  | #endif | 
|  | #ifdef CONFIG_SMP | 
|  | printk("SMP NR_CPUS=%d ", NR_CPUS); | 
|  | #endif | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | printk("DEBUG_PAGEALLOC "); | 
|  | #endif | 
|  | #ifdef CONFIG_NUMA | 
|  | printk("NUMA "); | 
|  | #endif | 
|  | printk("%s\n", ppc_md.name ? ppc_md.name : ""); | 
|  |  | 
|  | print_modules(); | 
|  | show_regs(regs); | 
|  | } else { | 
|  | printk("Recursive die() failure, output suppressed\n"); | 
|  | } | 
|  |  | 
|  | bust_spinlocks(0); | 
|  | die.lock_owner = -1; | 
|  | add_taint(TAINT_DIE); | 
|  | spin_unlock_irqrestore(&die.lock, flags); | 
|  |  | 
|  | if (kexec_should_crash(current) || | 
|  | kexec_sr_activated(smp_processor_id())) | 
|  | crash_kexec(regs); | 
|  | crash_kexec_secondary(regs); | 
|  |  | 
|  | if (in_interrupt()) | 
|  | panic("Fatal exception in interrupt"); | 
|  |  | 
|  | if (panic_on_oops) | 
|  | panic("Fatal exception"); | 
|  |  | 
|  | oops_exit(); | 
|  | do_exit(err); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr) | 
|  | { | 
|  | siginfo_t info; | 
|  | const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \ | 
|  | "at %08lx nip %08lx lr %08lx code %x\n"; | 
|  | const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \ | 
|  | "at %016lx nip %016lx lr %016lx code %x\n"; | 
|  |  | 
|  | if (!user_mode(regs)) { | 
|  | if (die("Exception in kernel mode", regs, signr)) | 
|  | return; | 
|  | } else if (show_unhandled_signals && | 
|  | unhandled_signal(current, signr) && | 
|  | printk_ratelimit()) { | 
|  | printk(regs->msr & MSR_SF ? fmt64 : fmt32, | 
|  | current->comm, current->pid, signr, | 
|  | addr, regs->nip, regs->link, code); | 
|  | } | 
|  |  | 
|  | memset(&info, 0, sizeof(info)); | 
|  | info.si_signo = signr; | 
|  | info.si_code = code; | 
|  | info.si_addr = (void __user *) addr; | 
|  | force_sig_info(signr, &info, current); | 
|  |  | 
|  | /* | 
|  | * Init gets no signals that it doesn't have a handler for. | 
|  | * That's all very well, but if it has caused a synchronous | 
|  | * exception and we ignore the resulting signal, it will just | 
|  | * generate the same exception over and over again and we get | 
|  | * nowhere.  Better to kill it and let the kernel panic. | 
|  | */ | 
|  | if (is_global_init(current)) { | 
|  | __sighandler_t handler; | 
|  |  | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | handler = current->sighand->action[signr-1].sa.sa_handler; | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | if (handler == SIG_DFL) { | 
|  | /* init has generated a synchronous exception | 
|  | and it doesn't have a handler for the signal */ | 
|  | printk(KERN_CRIT "init has generated signal %d " | 
|  | "but has no handler for it\n", signr); | 
|  | do_exit(signr); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PPC64 | 
|  | void system_reset_exception(struct pt_regs *regs) | 
|  | { | 
|  | /* See if any machine dependent calls */ | 
|  | if (ppc_md.system_reset_exception) { | 
|  | if (ppc_md.system_reset_exception(regs)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KEXEC | 
|  | cpu_set(smp_processor_id(), cpus_in_sr); | 
|  | #endif | 
|  |  | 
|  | die("System Reset", regs, SIGABRT); | 
|  |  | 
|  | /* | 
|  | * Some CPUs when released from the debugger will execute this path. | 
|  | * These CPUs entered the debugger via a soft-reset. If the CPU was | 
|  | * hung before entering the debugger it will return to the hung | 
|  | * state when exiting this function.  This causes a problem in | 
|  | * kdump since the hung CPU(s) will not respond to the IPI sent | 
|  | * from kdump. To prevent the problem we call crash_kexec_secondary() | 
|  | * here. If a kdump had not been initiated or we exit the debugger | 
|  | * with the "exit and recover" command (x) crash_kexec_secondary() | 
|  | * will return after 5ms and the CPU returns to its previous state. | 
|  | */ | 
|  | crash_kexec_secondary(regs); | 
|  |  | 
|  | /* Must die if the interrupt is not recoverable */ | 
|  | if (!(regs->msr & MSR_RI)) | 
|  | panic("Unrecoverable System Reset"); | 
|  |  | 
|  | /* What should we do here? We could issue a shutdown or hard reset. */ | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * I/O accesses can cause machine checks on powermacs. | 
|  | * Check if the NIP corresponds to the address of a sync | 
|  | * instruction for which there is an entry in the exception | 
|  | * table. | 
|  | * Note that the 601 only takes a machine check on TEA | 
|  | * (transfer error ack) signal assertion, and does not | 
|  | * set any of the top 16 bits of SRR1. | 
|  | *  -- paulus. | 
|  | */ | 
|  | static inline int check_io_access(struct pt_regs *regs) | 
|  | { | 
|  | #ifdef CONFIG_PPC32 | 
|  | unsigned long msr = regs->msr; | 
|  | const struct exception_table_entry *entry; | 
|  | unsigned int *nip = (unsigned int *)regs->nip; | 
|  |  | 
|  | if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000))) | 
|  | && (entry = search_exception_tables(regs->nip)) != NULL) { | 
|  | /* | 
|  | * Check that it's a sync instruction, or somewhere | 
|  | * in the twi; isync; nop sequence that inb/inw/inl uses. | 
|  | * As the address is in the exception table | 
|  | * we should be able to read the instr there. | 
|  | * For the debug message, we look at the preceding | 
|  | * load or store. | 
|  | */ | 
|  | if (*nip == 0x60000000)		/* nop */ | 
|  | nip -= 2; | 
|  | else if (*nip == 0x4c00012c)	/* isync */ | 
|  | --nip; | 
|  | if (*nip == 0x7c0004ac || (*nip >> 26) == 3) { | 
|  | /* sync or twi */ | 
|  | unsigned int rb; | 
|  |  | 
|  | --nip; | 
|  | rb = (*nip >> 11) & 0x1f; | 
|  | printk(KERN_DEBUG "%s bad port %lx at %p\n", | 
|  | (*nip & 0x100)? "OUT to": "IN from", | 
|  | regs->gpr[rb] - _IO_BASE, nip); | 
|  | regs->msr |= MSR_RI; | 
|  | regs->nip = entry->fixup; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_PPC32 */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) | 
|  | /* On 4xx, the reason for the machine check or program exception | 
|  | is in the ESR. */ | 
|  | #define get_reason(regs)	((regs)->dsisr) | 
|  | #ifndef CONFIG_FSL_BOOKE | 
|  | #define get_mc_reason(regs)	((regs)->dsisr) | 
|  | #else | 
|  | #define get_mc_reason(regs)	(mfspr(SPRN_MCSR) & MCSR_MASK) | 
|  | #endif | 
|  | #define REASON_FP		ESR_FP | 
|  | #define REASON_ILLEGAL		(ESR_PIL | ESR_PUO) | 
|  | #define REASON_PRIVILEGED	ESR_PPR | 
|  | #define REASON_TRAP		ESR_PTR | 
|  |  | 
|  | /* single-step stuff */ | 
|  | #define single_stepping(regs)	(current->thread.dbcr0 & DBCR0_IC) | 
|  | #define clear_single_step(regs)	(current->thread.dbcr0 &= ~DBCR0_IC) | 
|  |  | 
|  | #else | 
|  | /* On non-4xx, the reason for the machine check or program | 
|  | exception is in the MSR. */ | 
|  | #define get_reason(regs)	((regs)->msr) | 
|  | #define get_mc_reason(regs)	((regs)->msr) | 
|  | #define REASON_FP		0x100000 | 
|  | #define REASON_ILLEGAL		0x80000 | 
|  | #define REASON_PRIVILEGED	0x40000 | 
|  | #define REASON_TRAP		0x20000 | 
|  |  | 
|  | #define single_stepping(regs)	((regs)->msr & MSR_SE) | 
|  | #define clear_single_step(regs)	((regs)->msr &= ~MSR_SE) | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_4xx) | 
|  | int machine_check_4xx(struct pt_regs *regs) | 
|  | { | 
|  | unsigned long reason = get_mc_reason(regs); | 
|  |  | 
|  | if (reason & ESR_IMCP) { | 
|  | printk("Instruction"); | 
|  | mtspr(SPRN_ESR, reason & ~ESR_IMCP); | 
|  | } else | 
|  | printk("Data"); | 
|  | printk(" machine check in kernel mode.\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int machine_check_440A(struct pt_regs *regs) | 
|  | { | 
|  | unsigned long reason = get_mc_reason(regs); | 
|  |  | 
|  | printk("Machine check in kernel mode.\n"); | 
|  | if (reason & ESR_IMCP){ | 
|  | printk("Instruction Synchronous Machine Check exception\n"); | 
|  | mtspr(SPRN_ESR, reason & ~ESR_IMCP); | 
|  | } | 
|  | else { | 
|  | u32 mcsr = mfspr(SPRN_MCSR); | 
|  | if (mcsr & MCSR_IB) | 
|  | printk("Instruction Read PLB Error\n"); | 
|  | if (mcsr & MCSR_DRB) | 
|  | printk("Data Read PLB Error\n"); | 
|  | if (mcsr & MCSR_DWB) | 
|  | printk("Data Write PLB Error\n"); | 
|  | if (mcsr & MCSR_TLBP) | 
|  | printk("TLB Parity Error\n"); | 
|  | if (mcsr & MCSR_ICP){ | 
|  | flush_instruction_cache(); | 
|  | printk("I-Cache Parity Error\n"); | 
|  | } | 
|  | if (mcsr & MCSR_DCSP) | 
|  | printk("D-Cache Search Parity Error\n"); | 
|  | if (mcsr & MCSR_DCFP) | 
|  | printk("D-Cache Flush Parity Error\n"); | 
|  | if (mcsr & MCSR_IMPE) | 
|  | printk("Machine Check exception is imprecise\n"); | 
|  |  | 
|  | /* Clear MCSR */ | 
|  | mtspr(SPRN_MCSR, mcsr); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | #elif defined(CONFIG_E500) | 
|  | int machine_check_e500(struct pt_regs *regs) | 
|  | { | 
|  | unsigned long reason = get_mc_reason(regs); | 
|  |  | 
|  | printk("Machine check in kernel mode.\n"); | 
|  | printk("Caused by (from MCSR=%lx): ", reason); | 
|  |  | 
|  | if (reason & MCSR_MCP) | 
|  | printk("Machine Check Signal\n"); | 
|  | if (reason & MCSR_ICPERR) | 
|  | printk("Instruction Cache Parity Error\n"); | 
|  | if (reason & MCSR_DCP_PERR) | 
|  | printk("Data Cache Push Parity Error\n"); | 
|  | if (reason & MCSR_DCPERR) | 
|  | printk("Data Cache Parity Error\n"); | 
|  | if (reason & MCSR_BUS_IAERR) | 
|  | printk("Bus - Instruction Address Error\n"); | 
|  | if (reason & MCSR_BUS_RAERR) | 
|  | printk("Bus - Read Address Error\n"); | 
|  | if (reason & MCSR_BUS_WAERR) | 
|  | printk("Bus - Write Address Error\n"); | 
|  | if (reason & MCSR_BUS_IBERR) | 
|  | printk("Bus - Instruction Data Error\n"); | 
|  | if (reason & MCSR_BUS_RBERR) | 
|  | printk("Bus - Read Data Bus Error\n"); | 
|  | if (reason & MCSR_BUS_WBERR) | 
|  | printk("Bus - Read Data Bus Error\n"); | 
|  | if (reason & MCSR_BUS_IPERR) | 
|  | printk("Bus - Instruction Parity Error\n"); | 
|  | if (reason & MCSR_BUS_RPERR) | 
|  | printk("Bus - Read Parity Error\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #elif defined(CONFIG_E200) | 
|  | int machine_check_e200(struct pt_regs *regs) | 
|  | { | 
|  | unsigned long reason = get_mc_reason(regs); | 
|  |  | 
|  | printk("Machine check in kernel mode.\n"); | 
|  | printk("Caused by (from MCSR=%lx): ", reason); | 
|  |  | 
|  | if (reason & MCSR_MCP) | 
|  | printk("Machine Check Signal\n"); | 
|  | if (reason & MCSR_CP_PERR) | 
|  | printk("Cache Push Parity Error\n"); | 
|  | if (reason & MCSR_CPERR) | 
|  | printk("Cache Parity Error\n"); | 
|  | if (reason & MCSR_EXCP_ERR) | 
|  | printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n"); | 
|  | if (reason & MCSR_BUS_IRERR) | 
|  | printk("Bus - Read Bus Error on instruction fetch\n"); | 
|  | if (reason & MCSR_BUS_DRERR) | 
|  | printk("Bus - Read Bus Error on data load\n"); | 
|  | if (reason & MCSR_BUS_WRERR) | 
|  | printk("Bus - Write Bus Error on buffered store or cache line push\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | int machine_check_generic(struct pt_regs *regs) | 
|  | { | 
|  | unsigned long reason = get_mc_reason(regs); | 
|  |  | 
|  | printk("Machine check in kernel mode.\n"); | 
|  | printk("Caused by (from SRR1=%lx): ", reason); | 
|  | switch (reason & 0x601F0000) { | 
|  | case 0x80000: | 
|  | printk("Machine check signal\n"); | 
|  | break; | 
|  | case 0:		/* for 601 */ | 
|  | case 0x40000: | 
|  | case 0x140000:	/* 7450 MSS error and TEA */ | 
|  | printk("Transfer error ack signal\n"); | 
|  | break; | 
|  | case 0x20000: | 
|  | printk("Data parity error signal\n"); | 
|  | break; | 
|  | case 0x10000: | 
|  | printk("Address parity error signal\n"); | 
|  | break; | 
|  | case 0x20000000: | 
|  | printk("L1 Data Cache error\n"); | 
|  | break; | 
|  | case 0x40000000: | 
|  | printk("L1 Instruction Cache error\n"); | 
|  | break; | 
|  | case 0x00100000: | 
|  | printk("L2 data cache parity error\n"); | 
|  | break; | 
|  | default: | 
|  | printk("Unknown values in msr\n"); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | #endif /* everything else */ | 
|  |  | 
|  | void machine_check_exception(struct pt_regs *regs) | 
|  | { | 
|  | int recover = 0; | 
|  |  | 
|  | /* See if any machine dependent calls. In theory, we would want | 
|  | * to call the CPU first, and call the ppc_md. one if the CPU | 
|  | * one returns a positive number. However there is existing code | 
|  | * that assumes the board gets a first chance, so let's keep it | 
|  | * that way for now and fix things later. --BenH. | 
|  | */ | 
|  | if (ppc_md.machine_check_exception) | 
|  | recover = ppc_md.machine_check_exception(regs); | 
|  | else if (cur_cpu_spec->machine_check) | 
|  | recover = cur_cpu_spec->machine_check(regs); | 
|  |  | 
|  | if (recover > 0) | 
|  | return; | 
|  |  | 
|  | if (user_mode(regs)) { | 
|  | regs->msr |= MSR_RI; | 
|  | _exception(SIGBUS, regs, BUS_ADRERR, regs->nip); | 
|  | return; | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_8xx) && defined(CONFIG_PCI) | 
|  | /* the qspan pci read routines can cause machine checks -- Cort | 
|  | * | 
|  | * yuck !!! that totally needs to go away ! There are better ways | 
|  | * to deal with that than having a wart in the mcheck handler. | 
|  | * -- BenH | 
|  | */ | 
|  | bad_page_fault(regs, regs->dar, SIGBUS); | 
|  | return; | 
|  | #endif | 
|  |  | 
|  | if (debugger_fault_handler(regs)) { | 
|  | regs->msr |= MSR_RI; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (check_io_access(regs)) | 
|  | return; | 
|  |  | 
|  | if (debugger_fault_handler(regs)) | 
|  | return; | 
|  | die("Machine check", regs, SIGBUS); | 
|  |  | 
|  | /* Must die if the interrupt is not recoverable */ | 
|  | if (!(regs->msr & MSR_RI)) | 
|  | panic("Unrecoverable Machine check"); | 
|  | } | 
|  |  | 
|  | void SMIException(struct pt_regs *regs) | 
|  | { | 
|  | die("System Management Interrupt", regs, SIGABRT); | 
|  | } | 
|  |  | 
|  | void unknown_exception(struct pt_regs *regs) | 
|  | { | 
|  | printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n", | 
|  | regs->nip, regs->msr, regs->trap); | 
|  |  | 
|  | _exception(SIGTRAP, regs, 0, 0); | 
|  | } | 
|  |  | 
|  | void instruction_breakpoint_exception(struct pt_regs *regs) | 
|  | { | 
|  | if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5, | 
|  | 5, SIGTRAP) == NOTIFY_STOP) | 
|  | return; | 
|  | if (debugger_iabr_match(regs)) | 
|  | return; | 
|  | _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip); | 
|  | } | 
|  |  | 
|  | void RunModeException(struct pt_regs *regs) | 
|  | { | 
|  | _exception(SIGTRAP, regs, 0, 0); | 
|  | } | 
|  |  | 
|  | void __kprobes single_step_exception(struct pt_regs *regs) | 
|  | { | 
|  | regs->msr &= ~(MSR_SE | MSR_BE);  /* Turn off 'trace' bits */ | 
|  |  | 
|  | if (notify_die(DIE_SSTEP, "single_step", regs, 5, | 
|  | 5, SIGTRAP) == NOTIFY_STOP) | 
|  | return; | 
|  | if (debugger_sstep(regs)) | 
|  | return; | 
|  |  | 
|  | _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * After we have successfully emulated an instruction, we have to | 
|  | * check if the instruction was being single-stepped, and if so, | 
|  | * pretend we got a single-step exception.  This was pointed out | 
|  | * by Kumar Gala.  -- paulus | 
|  | */ | 
|  | static void emulate_single_step(struct pt_regs *regs) | 
|  | { | 
|  | if (single_stepping(regs)) { | 
|  | clear_single_step(regs); | 
|  | _exception(SIGTRAP, regs, TRAP_TRACE, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int __parse_fpscr(unsigned long fpscr) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | /* Invalid operation */ | 
|  | if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX)) | 
|  | ret = FPE_FLTINV; | 
|  |  | 
|  | /* Overflow */ | 
|  | else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX)) | 
|  | ret = FPE_FLTOVF; | 
|  |  | 
|  | /* Underflow */ | 
|  | else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX)) | 
|  | ret = FPE_FLTUND; | 
|  |  | 
|  | /* Divide by zero */ | 
|  | else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX)) | 
|  | ret = FPE_FLTDIV; | 
|  |  | 
|  | /* Inexact result */ | 
|  | else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX)) | 
|  | ret = FPE_FLTRES; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void parse_fpe(struct pt_regs *regs) | 
|  | { | 
|  | int code = 0; | 
|  |  | 
|  | flush_fp_to_thread(current); | 
|  |  | 
|  | code = __parse_fpscr(current->thread.fpscr.val); | 
|  |  | 
|  | _exception(SIGFPE, regs, code, regs->nip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Illegal instruction emulation support.  Originally written to | 
|  | * provide the PVR to user applications using the mfspr rd, PVR. | 
|  | * Return non-zero if we can't emulate, or -EFAULT if the associated | 
|  | * memory access caused an access fault.  Return zero on success. | 
|  | * | 
|  | * There are a couple of ways to do this, either "decode" the instruction | 
|  | * or directly match lots of bits.  In this case, matching lots of | 
|  | * bits is faster and easier. | 
|  | * | 
|  | */ | 
|  | static int emulate_string_inst(struct pt_regs *regs, u32 instword) | 
|  | { | 
|  | u8 rT = (instword >> 21) & 0x1f; | 
|  | u8 rA = (instword >> 16) & 0x1f; | 
|  | u8 NB_RB = (instword >> 11) & 0x1f; | 
|  | u32 num_bytes; | 
|  | unsigned long EA; | 
|  | int pos = 0; | 
|  |  | 
|  | /* Early out if we are an invalid form of lswx */ | 
|  | if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX) | 
|  | if ((rT == rA) || (rT == NB_RB)) | 
|  | return -EINVAL; | 
|  |  | 
|  | EA = (rA == 0) ? 0 : regs->gpr[rA]; | 
|  |  | 
|  | switch (instword & PPC_INST_STRING_MASK) { | 
|  | case PPC_INST_LSWX: | 
|  | case PPC_INST_STSWX: | 
|  | EA += NB_RB; | 
|  | num_bytes = regs->xer & 0x7f; | 
|  | break; | 
|  | case PPC_INST_LSWI: | 
|  | case PPC_INST_STSWI: | 
|  | num_bytes = (NB_RB == 0) ? 32 : NB_RB; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | while (num_bytes != 0) | 
|  | { | 
|  | u8 val; | 
|  | u32 shift = 8 * (3 - (pos & 0x3)); | 
|  |  | 
|  | switch ((instword & PPC_INST_STRING_MASK)) { | 
|  | case PPC_INST_LSWX: | 
|  | case PPC_INST_LSWI: | 
|  | if (get_user(val, (u8 __user *)EA)) | 
|  | return -EFAULT; | 
|  | /* first time updating this reg, | 
|  | * zero it out */ | 
|  | if (pos == 0) | 
|  | regs->gpr[rT] = 0; | 
|  | regs->gpr[rT] |= val << shift; | 
|  | break; | 
|  | case PPC_INST_STSWI: | 
|  | case PPC_INST_STSWX: | 
|  | val = regs->gpr[rT] >> shift; | 
|  | if (put_user(val, (u8 __user *)EA)) | 
|  | return -EFAULT; | 
|  | break; | 
|  | } | 
|  | /* move EA to next address */ | 
|  | EA += 1; | 
|  | num_bytes--; | 
|  |  | 
|  | /* manage our position within the register */ | 
|  | if (++pos == 4) { | 
|  | pos = 0; | 
|  | if (++rT == 32) | 
|  | rT = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword) | 
|  | { | 
|  | u32 ra,rs; | 
|  | unsigned long tmp; | 
|  |  | 
|  | ra = (instword >> 16) & 0x1f; | 
|  | rs = (instword >> 21) & 0x1f; | 
|  |  | 
|  | tmp = regs->gpr[rs]; | 
|  | tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL); | 
|  | tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL); | 
|  | tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL; | 
|  | regs->gpr[ra] = tmp; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int emulate_isel(struct pt_regs *regs, u32 instword) | 
|  | { | 
|  | u8 rT = (instword >> 21) & 0x1f; | 
|  | u8 rA = (instword >> 16) & 0x1f; | 
|  | u8 rB = (instword >> 11) & 0x1f; | 
|  | u8 BC = (instword >> 6) & 0x1f; | 
|  | u8 bit; | 
|  | unsigned long tmp; | 
|  |  | 
|  | tmp = (rA == 0) ? 0 : regs->gpr[rA]; | 
|  | bit = (regs->ccr >> (31 - BC)) & 0x1; | 
|  |  | 
|  | regs->gpr[rT] = bit ? tmp : regs->gpr[rB]; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int emulate_instruction(struct pt_regs *regs) | 
|  | { | 
|  | u32 instword; | 
|  | u32 rd; | 
|  |  | 
|  | if (!user_mode(regs) || (regs->msr & MSR_LE)) | 
|  | return -EINVAL; | 
|  | CHECK_FULL_REGS(regs); | 
|  |  | 
|  | if (get_user(instword, (u32 __user *)(regs->nip))) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* Emulate the mfspr rD, PVR. */ | 
|  | if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) { | 
|  | rd = (instword >> 21) & 0x1f; | 
|  | regs->gpr[rd] = mfspr(SPRN_PVR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Emulating the dcba insn is just a no-op.  */ | 
|  | if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) | 
|  | return 0; | 
|  |  | 
|  | /* Emulate the mcrxr insn.  */ | 
|  | if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) { | 
|  | int shift = (instword >> 21) & 0x1c; | 
|  | unsigned long msk = 0xf0000000UL >> shift; | 
|  |  | 
|  | regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk); | 
|  | regs->xer &= ~0xf0000000UL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Emulate load/store string insn. */ | 
|  | if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) | 
|  | return emulate_string_inst(regs, instword); | 
|  |  | 
|  | /* Emulate the popcntb (Population Count Bytes) instruction. */ | 
|  | if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) { | 
|  | return emulate_popcntb_inst(regs, instword); | 
|  | } | 
|  |  | 
|  | /* Emulate isel (Integer Select) instruction */ | 
|  | if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) { | 
|  | return emulate_isel(regs, instword); | 
|  | } | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | int is_valid_bugaddr(unsigned long addr) | 
|  | { | 
|  | return is_kernel_addr(addr); | 
|  | } | 
|  |  | 
|  | void __kprobes program_check_exception(struct pt_regs *regs) | 
|  | { | 
|  | unsigned int reason = get_reason(regs); | 
|  | extern int do_mathemu(struct pt_regs *regs); | 
|  |  | 
|  | /* We can now get here via a FP Unavailable exception if the core | 
|  | * has no FPU, in that case the reason flags will be 0 */ | 
|  |  | 
|  | if (reason & REASON_FP) { | 
|  | /* IEEE FP exception */ | 
|  | parse_fpe(regs); | 
|  | return; | 
|  | } | 
|  | if (reason & REASON_TRAP) { | 
|  | /* trap exception */ | 
|  | if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP) | 
|  | == NOTIFY_STOP) | 
|  | return; | 
|  | if (debugger_bpt(regs)) | 
|  | return; | 
|  |  | 
|  | if (!(regs->msr & MSR_PR) &&  /* not user-mode */ | 
|  | report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) { | 
|  | regs->nip += 4; | 
|  | return; | 
|  | } | 
|  | _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip); | 
|  | return; | 
|  | } | 
|  |  | 
|  | local_irq_enable(); | 
|  |  | 
|  | #ifdef CONFIG_MATH_EMULATION | 
|  | /* (reason & REASON_ILLEGAL) would be the obvious thing here, | 
|  | * but there seems to be a hardware bug on the 405GP (RevD) | 
|  | * that means ESR is sometimes set incorrectly - either to | 
|  | * ESR_DST (!?) or 0.  In the process of chasing this with the | 
|  | * hardware people - not sure if it can happen on any illegal | 
|  | * instruction or only on FP instructions, whether there is a | 
|  | * pattern to occurences etc. -dgibson 31/Mar/2003 */ | 
|  | switch (do_mathemu(regs)) { | 
|  | case 0: | 
|  | emulate_single_step(regs); | 
|  | return; | 
|  | case 1: { | 
|  | int code = 0; | 
|  | code = __parse_fpscr(current->thread.fpscr.val); | 
|  | _exception(SIGFPE, regs, code, regs->nip); | 
|  | return; | 
|  | } | 
|  | case -EFAULT: | 
|  | _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip); | 
|  | return; | 
|  | } | 
|  | /* fall through on any other errors */ | 
|  | #endif /* CONFIG_MATH_EMULATION */ | 
|  |  | 
|  | /* Try to emulate it if we should. */ | 
|  | if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) { | 
|  | switch (emulate_instruction(regs)) { | 
|  | case 0: | 
|  | regs->nip += 4; | 
|  | emulate_single_step(regs); | 
|  | return; | 
|  | case -EFAULT: | 
|  | _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (reason & REASON_PRIVILEGED) | 
|  | _exception(SIGILL, regs, ILL_PRVOPC, regs->nip); | 
|  | else | 
|  | _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); | 
|  | } | 
|  |  | 
|  | void alignment_exception(struct pt_regs *regs) | 
|  | { | 
|  | int sig, code, fixed = 0; | 
|  |  | 
|  | /* we don't implement logging of alignment exceptions */ | 
|  | if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS)) | 
|  | fixed = fix_alignment(regs); | 
|  |  | 
|  | if (fixed == 1) { | 
|  | regs->nip += 4;	/* skip over emulated instruction */ | 
|  | emulate_single_step(regs); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Operand address was bad */ | 
|  | if (fixed == -EFAULT) { | 
|  | sig = SIGSEGV; | 
|  | code = SEGV_ACCERR; | 
|  | } else { | 
|  | sig = SIGBUS; | 
|  | code = BUS_ADRALN; | 
|  | } | 
|  | if (user_mode(regs)) | 
|  | _exception(sig, regs, code, regs->dar); | 
|  | else | 
|  | bad_page_fault(regs, regs->dar, sig); | 
|  | } | 
|  |  | 
|  | void StackOverflow(struct pt_regs *regs) | 
|  | { | 
|  | printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n", | 
|  | current, regs->gpr[1]); | 
|  | debugger(regs); | 
|  | show_regs(regs); | 
|  | panic("kernel stack overflow"); | 
|  | } | 
|  |  | 
|  | void nonrecoverable_exception(struct pt_regs *regs) | 
|  | { | 
|  | printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n", | 
|  | regs->nip, regs->msr); | 
|  | debugger(regs); | 
|  | die("nonrecoverable exception", regs, SIGKILL); | 
|  | } | 
|  |  | 
|  | void trace_syscall(struct pt_regs *regs) | 
|  | { | 
|  | printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld    %s\n", | 
|  | current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0], | 
|  | regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted()); | 
|  | } | 
|  |  | 
|  | void kernel_fp_unavailable_exception(struct pt_regs *regs) | 
|  | { | 
|  | printk(KERN_EMERG "Unrecoverable FP Unavailable Exception " | 
|  | "%lx at %lx\n", regs->trap, regs->nip); | 
|  | die("Unrecoverable FP Unavailable Exception", regs, SIGABRT); | 
|  | } | 
|  |  | 
|  | void altivec_unavailable_exception(struct pt_regs *regs) | 
|  | { | 
|  | if (user_mode(regs)) { | 
|  | /* A user program has executed an altivec instruction, | 
|  | but this kernel doesn't support altivec. */ | 
|  | _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); | 
|  | return; | 
|  | } | 
|  |  | 
|  | printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception " | 
|  | "%lx at %lx\n", regs->trap, regs->nip); | 
|  | die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT); | 
|  | } | 
|  |  | 
|  | void vsx_unavailable_exception(struct pt_regs *regs) | 
|  | { | 
|  | if (user_mode(regs)) { | 
|  | /* A user program has executed an vsx instruction, | 
|  | but this kernel doesn't support vsx. */ | 
|  | _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); | 
|  | return; | 
|  | } | 
|  |  | 
|  | printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception " | 
|  | "%lx at %lx\n", regs->trap, regs->nip); | 
|  | die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT); | 
|  | } | 
|  |  | 
|  | void performance_monitor_exception(struct pt_regs *regs) | 
|  | { | 
|  | perf_irq(regs); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_8xx | 
|  | void SoftwareEmulation(struct pt_regs *regs) | 
|  | { | 
|  | extern int do_mathemu(struct pt_regs *); | 
|  | extern int Soft_emulate_8xx(struct pt_regs *); | 
|  | #if defined(CONFIG_MATH_EMULATION) || defined(CONFIG_8XX_MINIMAL_FPEMU) | 
|  | int errcode; | 
|  | #endif | 
|  |  | 
|  | CHECK_FULL_REGS(regs); | 
|  |  | 
|  | if (!user_mode(regs)) { | 
|  | debugger(regs); | 
|  | die("Kernel Mode Software FPU Emulation", regs, SIGFPE); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MATH_EMULATION | 
|  | errcode = do_mathemu(regs); | 
|  |  | 
|  | switch (errcode) { | 
|  | case 0: | 
|  | emulate_single_step(regs); | 
|  | return; | 
|  | case 1: { | 
|  | int code = 0; | 
|  | code = __parse_fpscr(current->thread.fpscr.val); | 
|  | _exception(SIGFPE, regs, code, regs->nip); | 
|  | return; | 
|  | } | 
|  | case -EFAULT: | 
|  | _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip); | 
|  | return; | 
|  | default: | 
|  | _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); | 
|  | return; | 
|  | } | 
|  |  | 
|  | #elif defined(CONFIG_8XX_MINIMAL_FPEMU) | 
|  | errcode = Soft_emulate_8xx(regs); | 
|  | switch (errcode) { | 
|  | case 0: | 
|  | emulate_single_step(regs); | 
|  | return; | 
|  | case 1: | 
|  | _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); | 
|  | return; | 
|  | case -EFAULT: | 
|  | _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip); | 
|  | return; | 
|  | } | 
|  | #else | 
|  | _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); | 
|  | #endif | 
|  | } | 
|  | #endif /* CONFIG_8xx */ | 
|  |  | 
|  | #if defined(CONFIG_40x) || defined(CONFIG_BOOKE) | 
|  |  | 
|  | void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status) | 
|  | { | 
|  | if (debug_status & DBSR_IC) {	/* instruction completion */ | 
|  | regs->msr &= ~MSR_DE; | 
|  |  | 
|  | /* Disable instruction completion */ | 
|  | mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC); | 
|  | /* Clear the instruction completion event */ | 
|  | mtspr(SPRN_DBSR, DBSR_IC); | 
|  |  | 
|  | if (notify_die(DIE_SSTEP, "single_step", regs, 5, | 
|  | 5, SIGTRAP) == NOTIFY_STOP) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (debugger_sstep(regs)) | 
|  | return; | 
|  |  | 
|  | if (user_mode(regs)) { | 
|  | current->thread.dbcr0 &= ~DBCR0_IC; | 
|  | } | 
|  |  | 
|  | _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip); | 
|  | } else if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) { | 
|  | regs->msr &= ~MSR_DE; | 
|  |  | 
|  | if (user_mode(regs)) { | 
|  | current->thread.dbcr0 &= ~(DBSR_DAC1R | DBSR_DAC1W | | 
|  | DBCR0_IDM); | 
|  | } else { | 
|  | /* Disable DAC interupts */ | 
|  | mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~(DBSR_DAC1R | | 
|  | DBSR_DAC1W | DBCR0_IDM)); | 
|  |  | 
|  | /* Clear the DAC event */ | 
|  | mtspr(SPRN_DBSR, (DBSR_DAC1R | DBSR_DAC1W)); | 
|  | } | 
|  | /* Setup and send the trap to the handler */ | 
|  | do_dabr(regs, mfspr(SPRN_DAC1), debug_status); | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_4xx || CONFIG_BOOKE */ | 
|  |  | 
|  | #if !defined(CONFIG_TAU_INT) | 
|  | void TAUException(struct pt_regs *regs) | 
|  | { | 
|  | printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n", | 
|  | regs->nip, regs->msr, regs->trap, print_tainted()); | 
|  | } | 
|  | #endif /* CONFIG_INT_TAU */ | 
|  |  | 
|  | #ifdef CONFIG_ALTIVEC | 
|  | void altivec_assist_exception(struct pt_regs *regs) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (!user_mode(regs)) { | 
|  | printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode" | 
|  | " at %lx\n", regs->nip); | 
|  | die("Kernel VMX/Altivec assist exception", regs, SIGILL); | 
|  | } | 
|  |  | 
|  | flush_altivec_to_thread(current); | 
|  |  | 
|  | err = emulate_altivec(regs); | 
|  | if (err == 0) { | 
|  | regs->nip += 4;		/* skip emulated instruction */ | 
|  | emulate_single_step(regs); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (err == -EFAULT) { | 
|  | /* got an error reading the instruction */ | 
|  | _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip); | 
|  | } else { | 
|  | /* didn't recognize the instruction */ | 
|  | /* XXX quick hack for now: set the non-Java bit in the VSCR */ | 
|  | if (printk_ratelimit()) | 
|  | printk(KERN_ERR "Unrecognized altivec instruction " | 
|  | "in %s at %lx\n", current->comm, regs->nip); | 
|  | current->thread.vscr.u[3] |= 0x10000; | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_ALTIVEC */ | 
|  |  | 
|  | #ifdef CONFIG_VSX | 
|  | void vsx_assist_exception(struct pt_regs *regs) | 
|  | { | 
|  | if (!user_mode(regs)) { | 
|  | printk(KERN_EMERG "VSX assist exception in kernel mode" | 
|  | " at %lx\n", regs->nip); | 
|  | die("Kernel VSX assist exception", regs, SIGILL); | 
|  | } | 
|  |  | 
|  | flush_vsx_to_thread(current); | 
|  | printk(KERN_INFO "VSX assist not supported at %lx\n", regs->nip); | 
|  | _exception(SIGILL, regs, ILL_ILLOPC, regs->nip); | 
|  | } | 
|  | #endif /* CONFIG_VSX */ | 
|  |  | 
|  | #ifdef CONFIG_FSL_BOOKE | 
|  |  | 
|  | void doorbell_exception(struct pt_regs *regs) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | int cpu = smp_processor_id(); | 
|  | int msg; | 
|  |  | 
|  | if (num_online_cpus() < 2) | 
|  | return; | 
|  |  | 
|  | for (msg = 0; msg < 4; msg++) | 
|  | if (test_and_clear_bit(msg, &dbell_smp_message[cpu])) | 
|  | smp_message_recv(msg); | 
|  | #else | 
|  | printk(KERN_WARNING "Received doorbell on non-smp system\n"); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void CacheLockingException(struct pt_regs *regs, unsigned long address, | 
|  | unsigned long error_code) | 
|  | { | 
|  | /* We treat cache locking instructions from the user | 
|  | * as priv ops, in the future we could try to do | 
|  | * something smarter | 
|  | */ | 
|  | if (error_code & (ESR_DLK|ESR_ILK)) | 
|  | _exception(SIGILL, regs, ILL_PRVOPC, regs->nip); | 
|  | return; | 
|  | } | 
|  | #endif /* CONFIG_FSL_BOOKE */ | 
|  |  | 
|  | #ifdef CONFIG_SPE | 
|  | void SPEFloatingPointException(struct pt_regs *regs) | 
|  | { | 
|  | extern int do_spe_mathemu(struct pt_regs *regs); | 
|  | unsigned long spefscr; | 
|  | int fpexc_mode; | 
|  | int code = 0; | 
|  | int err; | 
|  |  | 
|  | preempt_disable(); | 
|  | if (regs->msr & MSR_SPE) | 
|  | giveup_spe(current); | 
|  | preempt_enable(); | 
|  |  | 
|  | spefscr = current->thread.spefscr; | 
|  | fpexc_mode = current->thread.fpexc_mode; | 
|  |  | 
|  | if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) { | 
|  | code = FPE_FLTOVF; | 
|  | } | 
|  | else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) { | 
|  | code = FPE_FLTUND; | 
|  | } | 
|  | else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV)) | 
|  | code = FPE_FLTDIV; | 
|  | else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) { | 
|  | code = FPE_FLTINV; | 
|  | } | 
|  | else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES)) | 
|  | code = FPE_FLTRES; | 
|  |  | 
|  | err = do_spe_mathemu(regs); | 
|  | if (err == 0) { | 
|  | regs->nip += 4;		/* skip emulated instruction */ | 
|  | emulate_single_step(regs); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (err == -EFAULT) { | 
|  | /* got an error reading the instruction */ | 
|  | _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip); | 
|  | } else if (err == -EINVAL) { | 
|  | /* didn't recognize the instruction */ | 
|  | printk(KERN_ERR "unrecognized spe instruction " | 
|  | "in %s at %lx\n", current->comm, regs->nip); | 
|  | } else { | 
|  | _exception(SIGFPE, regs, code, regs->nip); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | void SPEFloatingPointRoundException(struct pt_regs *regs) | 
|  | { | 
|  | extern int speround_handler(struct pt_regs *regs); | 
|  | int err; | 
|  |  | 
|  | preempt_disable(); | 
|  | if (regs->msr & MSR_SPE) | 
|  | giveup_spe(current); | 
|  | preempt_enable(); | 
|  |  | 
|  | regs->nip -= 4; | 
|  | err = speround_handler(regs); | 
|  | if (err == 0) { | 
|  | regs->nip += 4;		/* skip emulated instruction */ | 
|  | emulate_single_step(regs); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (err == -EFAULT) { | 
|  | /* got an error reading the instruction */ | 
|  | _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip); | 
|  | } else if (err == -EINVAL) { | 
|  | /* didn't recognize the instruction */ | 
|  | printk(KERN_ERR "unrecognized spe instruction " | 
|  | "in %s at %lx\n", current->comm, regs->nip); | 
|  | } else { | 
|  | _exception(SIGFPE, regs, 0, regs->nip); | 
|  | return; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * We enter here if we get an unrecoverable exception, that is, one | 
|  | * that happened at a point where the RI (recoverable interrupt) bit | 
|  | * in the MSR is 0.  This indicates that SRR0/1 are live, and that | 
|  | * we therefore lost state by taking this exception. | 
|  | */ | 
|  | void unrecoverable_exception(struct pt_regs *regs) | 
|  | { | 
|  | printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n", | 
|  | regs->trap, regs->nip); | 
|  | die("Unrecoverable exception", regs, SIGABRT); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_BOOKE_WDT | 
|  | /* | 
|  | * Default handler for a Watchdog exception, | 
|  | * spins until a reboot occurs | 
|  | */ | 
|  | void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs) | 
|  | { | 
|  | /* Generic WatchdogHandler, implement your own */ | 
|  | mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | void WatchdogException(struct pt_regs *regs) | 
|  | { | 
|  | printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n"); | 
|  | WatchdogHandler(regs); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * We enter here if we discover during exception entry that we are | 
|  | * running in supervisor mode with a userspace value in the stack pointer. | 
|  | */ | 
|  | void kernel_bad_stack(struct pt_regs *regs) | 
|  | { | 
|  | printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n", | 
|  | regs->gpr[1], regs->nip); | 
|  | die("Bad kernel stack pointer", regs, SIGABRT); | 
|  | } | 
|  |  | 
|  | void __init trap_init(void) | 
|  | { | 
|  | } |