|  | /* | 
|  | *  PowerPC version derived from arch/arm/mm/consistent.c | 
|  | *    Copyright (C) 2001 Dan Malek (dmalek@jlc.net) | 
|  | * | 
|  | *  Copyright (C) 2000 Russell King | 
|  | * | 
|  | * Consistent memory allocators.  Used for DMA devices that want to | 
|  | * share uncached memory with the processor core.  The function return | 
|  | * is the virtual address and 'dma_handle' is the physical address. | 
|  | * Mostly stolen from the ARM port, with some changes for PowerPC. | 
|  | *						-- Dan | 
|  | * | 
|  | * Reorganized to get rid of the arch-specific consistent_* functions | 
|  | * and provide non-coherent implementations for the DMA API. -Matt | 
|  | * | 
|  | * Added in_interrupt() safe dma_alloc_coherent()/dma_free_coherent() | 
|  | * implementation. This is pulled straight from ARM and barely | 
|  | * modified. -Matt | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  |  | 
|  | #include <linux/sched.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/vmalloc.h> | 
|  |  | 
|  | #include <asm/tlbflush.h> | 
|  |  | 
|  | /* | 
|  | * Allocate DMA-coherent memory space and return both the kernel remapped | 
|  | * virtual and bus address for that space. | 
|  | */ | 
|  | void * | 
|  | __dma_alloc_coherent(size_t size, dma_addr_t *handle, gfp_t gfp) | 
|  | { | 
|  | struct page *page; | 
|  | unsigned long order; | 
|  | int i; | 
|  | unsigned int nr_pages = PAGE_ALIGN(size)>>PAGE_SHIFT; | 
|  | unsigned int array_size = nr_pages * sizeof(struct page *); | 
|  | struct page **pages; | 
|  | struct page *end; | 
|  | u64 mask = 0x00ffffff, limit; /* ISA default */ | 
|  | struct vm_struct *area; | 
|  |  | 
|  | BUG_ON(!mem_init_done); | 
|  | size = PAGE_ALIGN(size); | 
|  | limit = (mask + 1) & ~mask; | 
|  | if (limit && size >= limit) { | 
|  | printk(KERN_WARNING "coherent allocation too big (requested " | 
|  | "%#x mask %#Lx)\n", size, mask); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | order = get_order(size); | 
|  |  | 
|  | if (mask != 0xffffffff) | 
|  | gfp |= GFP_DMA; | 
|  |  | 
|  | page = alloc_pages(gfp, order); | 
|  | if (!page) | 
|  | goto no_page; | 
|  |  | 
|  | end = page + (1 << order); | 
|  |  | 
|  | /* | 
|  | * Invalidate any data that might be lurking in the | 
|  | * kernel direct-mapped region for device DMA. | 
|  | */ | 
|  | { | 
|  | unsigned long kaddr = (unsigned long)page_address(page); | 
|  | memset(page_address(page), 0, size); | 
|  | flush_dcache_range(kaddr, kaddr + size); | 
|  | } | 
|  |  | 
|  | split_page(page, order); | 
|  |  | 
|  | /* | 
|  | * Set the "dma handle" | 
|  | */ | 
|  | *handle = page_to_phys(page); | 
|  |  | 
|  | area = get_vm_area_caller(size, VM_IOREMAP, | 
|  | __builtin_return_address(1)); | 
|  | if (!area) | 
|  | goto out_free_pages; | 
|  |  | 
|  | if (array_size > PAGE_SIZE) { | 
|  | pages = vmalloc(array_size); | 
|  | area->flags |= VM_VPAGES; | 
|  | } else { | 
|  | pages = kmalloc(array_size, GFP_KERNEL); | 
|  | } | 
|  | if (!pages) | 
|  | goto out_free_area; | 
|  |  | 
|  | area->pages = pages; | 
|  | area->nr_pages = nr_pages; | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++) | 
|  | pages[i] = page + i; | 
|  |  | 
|  | if (map_vm_area(area, pgprot_noncached(PAGE_KERNEL), &pages)) | 
|  | goto out_unmap; | 
|  |  | 
|  | /* | 
|  | * Free the otherwise unused pages. | 
|  | */ | 
|  | page += nr_pages; | 
|  | while (page < end) { | 
|  | __free_page(page); | 
|  | page++; | 
|  | } | 
|  |  | 
|  | return area->addr; | 
|  | out_unmap: | 
|  | vunmap(area->addr); | 
|  | if (array_size > PAGE_SIZE) | 
|  | vfree(pages); | 
|  | else | 
|  | kfree(pages); | 
|  | goto out_free_pages; | 
|  | out_free_area: | 
|  | free_vm_area(area); | 
|  | out_free_pages: | 
|  | if (page) | 
|  | __free_pages(page, order); | 
|  | no_page: | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(__dma_alloc_coherent); | 
|  |  | 
|  | /* | 
|  | * free a page as defined by the above mapping. | 
|  | */ | 
|  | void __dma_free_coherent(size_t size, void *vaddr) | 
|  | { | 
|  | vfree(vaddr); | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL(__dma_free_coherent); | 
|  |  | 
|  | /* | 
|  | * make an area consistent. | 
|  | */ | 
|  | void __dma_sync(void *vaddr, size_t size, int direction) | 
|  | { | 
|  | unsigned long start = (unsigned long)vaddr; | 
|  | unsigned long end   = start + size; | 
|  |  | 
|  | switch (direction) { | 
|  | case DMA_NONE: | 
|  | BUG(); | 
|  | case DMA_FROM_DEVICE: | 
|  | /* | 
|  | * invalidate only when cache-line aligned otherwise there is | 
|  | * the potential for discarding uncommitted data from the cache | 
|  | */ | 
|  | if ((start & (L1_CACHE_BYTES - 1)) || (size & (L1_CACHE_BYTES - 1))) | 
|  | flush_dcache_range(start, end); | 
|  | else | 
|  | invalidate_dcache_range(start, end); | 
|  | break; | 
|  | case DMA_TO_DEVICE:		/* writeback only */ | 
|  | clean_dcache_range(start, end); | 
|  | break; | 
|  | case DMA_BIDIRECTIONAL:	/* writeback and invalidate */ | 
|  | flush_dcache_range(start, end); | 
|  | break; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(__dma_sync); | 
|  |  | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | /* | 
|  | * __dma_sync_page() implementation for systems using highmem. | 
|  | * In this case, each page of a buffer must be kmapped/kunmapped | 
|  | * in order to have a virtual address for __dma_sync(). This must | 
|  | * not sleep so kmap_atomic()/kunmap_atomic() are used. | 
|  | * | 
|  | * Note: yes, it is possible and correct to have a buffer extend | 
|  | * beyond the first page. | 
|  | */ | 
|  | static inline void __dma_sync_page_highmem(struct page *page, | 
|  | unsigned long offset, size_t size, int direction) | 
|  | { | 
|  | size_t seg_size = min((size_t)(PAGE_SIZE - offset), size); | 
|  | size_t cur_size = seg_size; | 
|  | unsigned long flags, start, seg_offset = offset; | 
|  | int nr_segs = 1 + ((size - seg_size) + PAGE_SIZE - 1)/PAGE_SIZE; | 
|  | int seg_nr = 0; | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | do { | 
|  | start = (unsigned long)kmap_atomic(page + seg_nr, | 
|  | KM_PPC_SYNC_PAGE) + seg_offset; | 
|  |  | 
|  | /* Sync this buffer segment */ | 
|  | __dma_sync((void *)start, seg_size, direction); | 
|  | kunmap_atomic((void *)start, KM_PPC_SYNC_PAGE); | 
|  | seg_nr++; | 
|  |  | 
|  | /* Calculate next buffer segment size */ | 
|  | seg_size = min((size_t)PAGE_SIZE, size - cur_size); | 
|  |  | 
|  | /* Add the segment size to our running total */ | 
|  | cur_size += seg_size; | 
|  | seg_offset = 0; | 
|  | } while (seg_nr < nr_segs); | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | #endif /* CONFIG_HIGHMEM */ | 
|  |  | 
|  | /* | 
|  | * __dma_sync_page makes memory consistent. identical to __dma_sync, but | 
|  | * takes a struct page instead of a virtual address | 
|  | */ | 
|  | void __dma_sync_page(struct page *page, unsigned long offset, | 
|  | size_t size, int direction) | 
|  | { | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | __dma_sync_page_highmem(page, offset, size, direction); | 
|  | #else | 
|  | unsigned long start = (unsigned long)page_address(page) + offset; | 
|  | __dma_sync((void *)start, size, direction); | 
|  | #endif | 
|  | } | 
|  | EXPORT_SYMBOL(__dma_sync_page); |