|  | /* | 
|  | * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) | 
|  | * Licensed under the GPL | 
|  | * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c: | 
|  | *	Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar | 
|  | */ | 
|  |  | 
|  | #include "linux/cpumask.h" | 
|  | #include "linux/hardirq.h" | 
|  | #include "linux/interrupt.h" | 
|  | #include "linux/kernel_stat.h" | 
|  | #include "linux/module.h" | 
|  | #include "linux/seq_file.h" | 
|  | #include "as-layout.h" | 
|  | #include "kern_util.h" | 
|  | #include "os.h" | 
|  |  | 
|  | /* | 
|  | * Generic, controller-independent functions: | 
|  | */ | 
|  |  | 
|  | int show_interrupts(struct seq_file *p, void *v) | 
|  | { | 
|  | int i = *(loff_t *) v, j; | 
|  | struct irqaction * action; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (i == 0) { | 
|  | seq_printf(p, "           "); | 
|  | for_each_online_cpu(j) | 
|  | seq_printf(p, "CPU%d       ",j); | 
|  | seq_putc(p, '\n'); | 
|  | } | 
|  |  | 
|  | if (i < NR_IRQS) { | 
|  | spin_lock_irqsave(&irq_desc[i].lock, flags); | 
|  | action = irq_desc[i].action; | 
|  | if (!action) | 
|  | goto skip; | 
|  | seq_printf(p, "%3d: ",i); | 
|  | #ifndef CONFIG_SMP | 
|  | seq_printf(p, "%10u ", kstat_irqs(i)); | 
|  | #else | 
|  | for_each_online_cpu(j) | 
|  | seq_printf(p, "%10u ", kstat_irqs_cpu(i, j)); | 
|  | #endif | 
|  | seq_printf(p, " %14s", irq_desc[i].chip->typename); | 
|  | seq_printf(p, "  %s", action->name); | 
|  |  | 
|  | for (action=action->next; action; action = action->next) | 
|  | seq_printf(p, ", %s", action->name); | 
|  |  | 
|  | seq_putc(p, '\n'); | 
|  | skip: | 
|  | spin_unlock_irqrestore(&irq_desc[i].lock, flags); | 
|  | } else if (i == NR_IRQS) | 
|  | seq_putc(p, '\n'); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This list is accessed under irq_lock, except in sigio_handler, | 
|  | * where it is safe from being modified.  IRQ handlers won't change it - | 
|  | * if an IRQ source has vanished, it will be freed by free_irqs just | 
|  | * before returning from sigio_handler.  That will process a separate | 
|  | * list of irqs to free, with its own locking, coming back here to | 
|  | * remove list elements, taking the irq_lock to do so. | 
|  | */ | 
|  | static struct irq_fd *active_fds = NULL; | 
|  | static struct irq_fd **last_irq_ptr = &active_fds; | 
|  |  | 
|  | extern void free_irqs(void); | 
|  |  | 
|  | void sigio_handler(int sig, struct uml_pt_regs *regs) | 
|  | { | 
|  | struct irq_fd *irq_fd; | 
|  | int n; | 
|  |  | 
|  | if (smp_sigio_handler()) | 
|  | return; | 
|  |  | 
|  | while (1) { | 
|  | n = os_waiting_for_events(active_fds); | 
|  | if (n <= 0) { | 
|  | if (n == -EINTR) | 
|  | continue; | 
|  | else break; | 
|  | } | 
|  |  | 
|  | for (irq_fd = active_fds; irq_fd != NULL; | 
|  | irq_fd = irq_fd->next) { | 
|  | if (irq_fd->current_events != 0) { | 
|  | irq_fd->current_events = 0; | 
|  | do_IRQ(irq_fd->irq, regs); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | free_irqs(); | 
|  | } | 
|  |  | 
|  | static DEFINE_SPINLOCK(irq_lock); | 
|  |  | 
|  | static int activate_fd(int irq, int fd, int type, void *dev_id) | 
|  | { | 
|  | struct pollfd *tmp_pfd; | 
|  | struct irq_fd *new_fd, *irq_fd; | 
|  | unsigned long flags; | 
|  | int events, err, n; | 
|  |  | 
|  | err = os_set_fd_async(fd); | 
|  | if (err < 0) | 
|  | goto out; | 
|  |  | 
|  | err = -ENOMEM; | 
|  | new_fd = kmalloc(sizeof(struct irq_fd), GFP_KERNEL); | 
|  | if (new_fd == NULL) | 
|  | goto out; | 
|  |  | 
|  | if (type == IRQ_READ) | 
|  | events = UM_POLLIN | UM_POLLPRI; | 
|  | else events = UM_POLLOUT; | 
|  | *new_fd = ((struct irq_fd) { .next  		= NULL, | 
|  | .id 		= dev_id, | 
|  | .fd 		= fd, | 
|  | .type 		= type, | 
|  | .irq 		= irq, | 
|  | .events 		= events, | 
|  | .current_events 	= 0 } ); | 
|  |  | 
|  | err = -EBUSY; | 
|  | spin_lock_irqsave(&irq_lock, flags); | 
|  | for (irq_fd = active_fds; irq_fd != NULL; irq_fd = irq_fd->next) { | 
|  | if ((irq_fd->fd == fd) && (irq_fd->type == type)) { | 
|  | printk(KERN_ERR "Registering fd %d twice\n", fd); | 
|  | printk(KERN_ERR "Irqs : %d, %d\n", irq_fd->irq, irq); | 
|  | printk(KERN_ERR "Ids : 0x%p, 0x%p\n", irq_fd->id, | 
|  | dev_id); | 
|  | goto out_unlock; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (type == IRQ_WRITE) | 
|  | fd = -1; | 
|  |  | 
|  | tmp_pfd = NULL; | 
|  | n = 0; | 
|  |  | 
|  | while (1) { | 
|  | n = os_create_pollfd(fd, events, tmp_pfd, n); | 
|  | if (n == 0) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * n > 0 | 
|  | * It means we couldn't put new pollfd to current pollfds | 
|  | * and tmp_fds is NULL or too small for new pollfds array. | 
|  | * Needed size is equal to n as minimum. | 
|  | * | 
|  | * Here we have to drop the lock in order to call | 
|  | * kmalloc, which might sleep. | 
|  | * If something else came in and changed the pollfds array | 
|  | * so we will not be able to put new pollfd struct to pollfds | 
|  | * then we free the buffer tmp_fds and try again. | 
|  | */ | 
|  | spin_unlock_irqrestore(&irq_lock, flags); | 
|  | kfree(tmp_pfd); | 
|  |  | 
|  | tmp_pfd = kmalloc(n, GFP_KERNEL); | 
|  | if (tmp_pfd == NULL) | 
|  | goto out_kfree; | 
|  |  | 
|  | spin_lock_irqsave(&irq_lock, flags); | 
|  | } | 
|  |  | 
|  | *last_irq_ptr = new_fd; | 
|  | last_irq_ptr = &new_fd->next; | 
|  |  | 
|  | spin_unlock_irqrestore(&irq_lock, flags); | 
|  |  | 
|  | /* | 
|  | * This calls activate_fd, so it has to be outside the critical | 
|  | * section. | 
|  | */ | 
|  | maybe_sigio_broken(fd, (type == IRQ_READ)); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock_irqrestore(&irq_lock, flags); | 
|  | out_kfree: | 
|  | kfree(new_fd); | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void free_irq_by_cb(int (*test)(struct irq_fd *, void *), void *arg) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&irq_lock, flags); | 
|  | os_free_irq_by_cb(test, arg, active_fds, &last_irq_ptr); | 
|  | spin_unlock_irqrestore(&irq_lock, flags); | 
|  | } | 
|  |  | 
|  | struct irq_and_dev { | 
|  | int irq; | 
|  | void *dev; | 
|  | }; | 
|  |  | 
|  | static int same_irq_and_dev(struct irq_fd *irq, void *d) | 
|  | { | 
|  | struct irq_and_dev *data = d; | 
|  |  | 
|  | return ((irq->irq == data->irq) && (irq->id == data->dev)); | 
|  | } | 
|  |  | 
|  | static void free_irq_by_irq_and_dev(unsigned int irq, void *dev) | 
|  | { | 
|  | struct irq_and_dev data = ((struct irq_and_dev) { .irq  = irq, | 
|  | .dev  = dev }); | 
|  |  | 
|  | free_irq_by_cb(same_irq_and_dev, &data); | 
|  | } | 
|  |  | 
|  | static int same_fd(struct irq_fd *irq, void *fd) | 
|  | { | 
|  | return (irq->fd == *((int *)fd)); | 
|  | } | 
|  |  | 
|  | void free_irq_by_fd(int fd) | 
|  | { | 
|  | free_irq_by_cb(same_fd, &fd); | 
|  | } | 
|  |  | 
|  | /* Must be called with irq_lock held */ | 
|  | static struct irq_fd *find_irq_by_fd(int fd, int irqnum, int *index_out) | 
|  | { | 
|  | struct irq_fd *irq; | 
|  | int i = 0; | 
|  | int fdi; | 
|  |  | 
|  | for (irq = active_fds; irq != NULL; irq = irq->next) { | 
|  | if ((irq->fd == fd) && (irq->irq == irqnum)) | 
|  | break; | 
|  | i++; | 
|  | } | 
|  | if (irq == NULL) { | 
|  | printk(KERN_ERR "find_irq_by_fd doesn't have descriptor %d\n", | 
|  | fd); | 
|  | goto out; | 
|  | } | 
|  | fdi = os_get_pollfd(i); | 
|  | if ((fdi != -1) && (fdi != fd)) { | 
|  | printk(KERN_ERR "find_irq_by_fd - mismatch between active_fds " | 
|  | "and pollfds, fd %d vs %d, need %d\n", irq->fd, | 
|  | fdi, fd); | 
|  | irq = NULL; | 
|  | goto out; | 
|  | } | 
|  | *index_out = i; | 
|  | out: | 
|  | return irq; | 
|  | } | 
|  |  | 
|  | void reactivate_fd(int fd, int irqnum) | 
|  | { | 
|  | struct irq_fd *irq; | 
|  | unsigned long flags; | 
|  | int i; | 
|  |  | 
|  | spin_lock_irqsave(&irq_lock, flags); | 
|  | irq = find_irq_by_fd(fd, irqnum, &i); | 
|  | if (irq == NULL) { | 
|  | spin_unlock_irqrestore(&irq_lock, flags); | 
|  | return; | 
|  | } | 
|  | os_set_pollfd(i, irq->fd); | 
|  | spin_unlock_irqrestore(&irq_lock, flags); | 
|  |  | 
|  | add_sigio_fd(fd); | 
|  | } | 
|  |  | 
|  | void deactivate_fd(int fd, int irqnum) | 
|  | { | 
|  | struct irq_fd *irq; | 
|  | unsigned long flags; | 
|  | int i; | 
|  |  | 
|  | spin_lock_irqsave(&irq_lock, flags); | 
|  | irq = find_irq_by_fd(fd, irqnum, &i); | 
|  | if (irq == NULL) { | 
|  | spin_unlock_irqrestore(&irq_lock, flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | os_set_pollfd(i, -1); | 
|  | spin_unlock_irqrestore(&irq_lock, flags); | 
|  |  | 
|  | ignore_sigio_fd(fd); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called just before shutdown in order to provide a clean exec | 
|  | * environment in case the system is rebooting.  No locking because | 
|  | * that would cause a pointless shutdown hang if something hadn't | 
|  | * released the lock. | 
|  | */ | 
|  | int deactivate_all_fds(void) | 
|  | { | 
|  | struct irq_fd *irq; | 
|  | int err; | 
|  |  | 
|  | for (irq = active_fds; irq != NULL; irq = irq->next) { | 
|  | err = os_clear_fd_async(irq->fd); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | /* If there is a signal already queued, after unblocking ignore it */ | 
|  | os_set_ioignore(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * do_IRQ handles all normal device IRQs (the special | 
|  | * SMP cross-CPU interrupts have their own specific | 
|  | * handlers). | 
|  | */ | 
|  | unsigned int do_IRQ(int irq, struct uml_pt_regs *regs) | 
|  | { | 
|  | struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs); | 
|  | irq_enter(); | 
|  | __do_IRQ(irq); | 
|  | irq_exit(); | 
|  | set_irq_regs(old_regs); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int um_request_irq(unsigned int irq, int fd, int type, | 
|  | irq_handler_t handler, | 
|  | unsigned long irqflags, const char * devname, | 
|  | void *dev_id) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (fd != -1) { | 
|  | err = activate_fd(irq, fd, type, dev_id); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return request_irq(irq, handler, irqflags, devname, dev_id); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(um_request_irq); | 
|  | EXPORT_SYMBOL(reactivate_fd); | 
|  |  | 
|  | /* | 
|  | * hw_interrupt_type must define (startup || enable) && | 
|  | * (shutdown || disable) && end | 
|  | */ | 
|  | static void dummy(unsigned int irq) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* This is used for everything else than the timer. */ | 
|  | static struct hw_interrupt_type normal_irq_type = { | 
|  | .typename = "SIGIO", | 
|  | .release = free_irq_by_irq_and_dev, | 
|  | .disable = dummy, | 
|  | .enable = dummy, | 
|  | .ack = dummy, | 
|  | .end = dummy | 
|  | }; | 
|  |  | 
|  | static struct hw_interrupt_type SIGVTALRM_irq_type = { | 
|  | .typename = "SIGVTALRM", | 
|  | .release = free_irq_by_irq_and_dev, | 
|  | .shutdown = dummy, /* never called */ | 
|  | .disable = dummy, | 
|  | .enable = dummy, | 
|  | .ack = dummy, | 
|  | .end = dummy | 
|  | }; | 
|  |  | 
|  | void __init init_IRQ(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | irq_desc[TIMER_IRQ].status = IRQ_DISABLED; | 
|  | irq_desc[TIMER_IRQ].action = NULL; | 
|  | irq_desc[TIMER_IRQ].depth = 1; | 
|  | irq_desc[TIMER_IRQ].chip = &SIGVTALRM_irq_type; | 
|  | enable_irq(TIMER_IRQ); | 
|  | for (i = 1; i < NR_IRQS; i++) { | 
|  | irq_desc[i].status = IRQ_DISABLED; | 
|  | irq_desc[i].action = NULL; | 
|  | irq_desc[i].depth = 1; | 
|  | irq_desc[i].chip = &normal_irq_type; | 
|  | enable_irq(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * IRQ stack entry and exit: | 
|  | * | 
|  | * Unlike i386, UML doesn't receive IRQs on the normal kernel stack | 
|  | * and switch over to the IRQ stack after some preparation.  We use | 
|  | * sigaltstack to receive signals on a separate stack from the start. | 
|  | * These two functions make sure the rest of the kernel won't be too | 
|  | * upset by being on a different stack.  The IRQ stack has a | 
|  | * thread_info structure at the bottom so that current et al continue | 
|  | * to work. | 
|  | * | 
|  | * to_irq_stack copies the current task's thread_info to the IRQ stack | 
|  | * thread_info and sets the tasks's stack to point to the IRQ stack. | 
|  | * | 
|  | * from_irq_stack copies the thread_info struct back (flags may have | 
|  | * been modified) and resets the task's stack pointer. | 
|  | * | 
|  | * Tricky bits - | 
|  | * | 
|  | * What happens when two signals race each other?  UML doesn't block | 
|  | * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal | 
|  | * could arrive while a previous one is still setting up the | 
|  | * thread_info. | 
|  | * | 
|  | * There are three cases - | 
|  | *     The first interrupt on the stack - sets up the thread_info and | 
|  | * handles the interrupt | 
|  | *     A nested interrupt interrupting the copying of the thread_info - | 
|  | * can't handle the interrupt, as the stack is in an unknown state | 
|  | *     A nested interrupt not interrupting the copying of the | 
|  | * thread_info - doesn't do any setup, just handles the interrupt | 
|  | * | 
|  | * The first job is to figure out whether we interrupted stack setup. | 
|  | * This is done by xchging the signal mask with thread_info->pending. | 
|  | * If the value that comes back is zero, then there is no setup in | 
|  | * progress, and the interrupt can be handled.  If the value is | 
|  | * non-zero, then there is stack setup in progress.  In order to have | 
|  | * the interrupt handled, we leave our signal in the mask, and it will | 
|  | * be handled by the upper handler after it has set up the stack. | 
|  | * | 
|  | * Next is to figure out whether we are the outer handler or a nested | 
|  | * one.  As part of setting up the stack, thread_info->real_thread is | 
|  | * set to non-NULL (and is reset to NULL on exit).  This is the | 
|  | * nesting indicator.  If it is non-NULL, then the stack is already | 
|  | * set up and the handler can run. | 
|  | */ | 
|  |  | 
|  | static unsigned long pending_mask; | 
|  |  | 
|  | unsigned long to_irq_stack(unsigned long *mask_out) | 
|  | { | 
|  | struct thread_info *ti; | 
|  | unsigned long mask, old; | 
|  | int nested; | 
|  |  | 
|  | mask = xchg(&pending_mask, *mask_out); | 
|  | if (mask != 0) { | 
|  | /* | 
|  | * If any interrupts come in at this point, we want to | 
|  | * make sure that their bits aren't lost by our | 
|  | * putting our bit in.  So, this loop accumulates bits | 
|  | * until xchg returns the same value that we put in. | 
|  | * When that happens, there were no new interrupts, | 
|  | * and pending_mask contains a bit for each interrupt | 
|  | * that came in. | 
|  | */ | 
|  | old = *mask_out; | 
|  | do { | 
|  | old |= mask; | 
|  | mask = xchg(&pending_mask, old); | 
|  | } while (mask != old); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | ti = current_thread_info(); | 
|  | nested = (ti->real_thread != NULL); | 
|  | if (!nested) { | 
|  | struct task_struct *task; | 
|  | struct thread_info *tti; | 
|  |  | 
|  | task = cpu_tasks[ti->cpu].task; | 
|  | tti = task_thread_info(task); | 
|  |  | 
|  | *ti = *tti; | 
|  | ti->real_thread = tti; | 
|  | task->stack = ti; | 
|  | } | 
|  |  | 
|  | mask = xchg(&pending_mask, 0); | 
|  | *mask_out |= mask | nested; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned long from_irq_stack(int nested) | 
|  | { | 
|  | struct thread_info *ti, *to; | 
|  | unsigned long mask; | 
|  |  | 
|  | ti = current_thread_info(); | 
|  |  | 
|  | pending_mask = 1; | 
|  |  | 
|  | to = ti->real_thread; | 
|  | current->stack = to; | 
|  | ti->real_thread = NULL; | 
|  | *to = *ti; | 
|  |  | 
|  | mask = xchg(&pending_mask, 0); | 
|  | return mask & ~1; | 
|  | } | 
|  |  |