|  | /* | 
|  | * Kernel-based Virtual Machine driver for Linux | 
|  | * | 
|  | * derived from drivers/kvm/kvm_main.c | 
|  | * | 
|  | * Copyright (C) 2006 Qumranet, Inc. | 
|  | * Copyright (C) 2008 Qumranet, Inc. | 
|  | * Copyright IBM Corporation, 2008 | 
|  | * | 
|  | * Authors: | 
|  | *   Avi Kivity   <avi@qumranet.com> | 
|  | *   Yaniv Kamay  <yaniv@qumranet.com> | 
|  | *   Amit Shah    <amit.shah@qumranet.com> | 
|  | *   Ben-Ami Yassour <benami@il.ibm.com> | 
|  | * | 
|  | * This work is licensed under the terms of the GNU GPL, version 2.  See | 
|  | * the COPYING file in the top-level directory. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/kvm_host.h> | 
|  | #include "irq.h" | 
|  | #include "mmu.h" | 
|  | #include "i8254.h" | 
|  | #include "tss.h" | 
|  | #include "kvm_cache_regs.h" | 
|  | #include "x86.h" | 
|  |  | 
|  | #include <linux/clocksource.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/kvm.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/iommu.h> | 
|  | #include <linux/intel-iommu.h> | 
|  | #include <linux/cpufreq.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/msr.h> | 
|  | #include <asm/desc.h> | 
|  | #include <asm/mtrr.h> | 
|  |  | 
|  | #define MAX_IO_MSRS 256 | 
|  | #define CR0_RESERVED_BITS						\ | 
|  | (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ | 
|  | | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ | 
|  | | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) | 
|  | #define CR4_RESERVED_BITS						\ | 
|  | (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ | 
|  | | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE	\ | 
|  | | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR	\ | 
|  | | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE)) | 
|  |  | 
|  | #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) | 
|  | /* EFER defaults: | 
|  | * - enable syscall per default because its emulated by KVM | 
|  | * - enable LME and LMA per default on 64 bit KVM | 
|  | */ | 
|  | #ifdef CONFIG_X86_64 | 
|  | static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL; | 
|  | #else | 
|  | static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL; | 
|  | #endif | 
|  |  | 
|  | #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM | 
|  | #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU | 
|  |  | 
|  | static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid, | 
|  | struct kvm_cpuid_entry2 __user *entries); | 
|  | struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu, | 
|  | u32 function, u32 index); | 
|  |  | 
|  | struct kvm_x86_ops *kvm_x86_ops; | 
|  | EXPORT_SYMBOL_GPL(kvm_x86_ops); | 
|  |  | 
|  | struct kvm_stats_debugfs_item debugfs_entries[] = { | 
|  | { "pf_fixed", VCPU_STAT(pf_fixed) }, | 
|  | { "pf_guest", VCPU_STAT(pf_guest) }, | 
|  | { "tlb_flush", VCPU_STAT(tlb_flush) }, | 
|  | { "invlpg", VCPU_STAT(invlpg) }, | 
|  | { "exits", VCPU_STAT(exits) }, | 
|  | { "io_exits", VCPU_STAT(io_exits) }, | 
|  | { "mmio_exits", VCPU_STAT(mmio_exits) }, | 
|  | { "signal_exits", VCPU_STAT(signal_exits) }, | 
|  | { "irq_window", VCPU_STAT(irq_window_exits) }, | 
|  | { "nmi_window", VCPU_STAT(nmi_window_exits) }, | 
|  | { "halt_exits", VCPU_STAT(halt_exits) }, | 
|  | { "halt_wakeup", VCPU_STAT(halt_wakeup) }, | 
|  | { "hypercalls", VCPU_STAT(hypercalls) }, | 
|  | { "request_irq", VCPU_STAT(request_irq_exits) }, | 
|  | { "request_nmi", VCPU_STAT(request_nmi_exits) }, | 
|  | { "irq_exits", VCPU_STAT(irq_exits) }, | 
|  | { "host_state_reload", VCPU_STAT(host_state_reload) }, | 
|  | { "efer_reload", VCPU_STAT(efer_reload) }, | 
|  | { "fpu_reload", VCPU_STAT(fpu_reload) }, | 
|  | { "insn_emulation", VCPU_STAT(insn_emulation) }, | 
|  | { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, | 
|  | { "irq_injections", VCPU_STAT(irq_injections) }, | 
|  | { "nmi_injections", VCPU_STAT(nmi_injections) }, | 
|  | { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, | 
|  | { "mmu_pte_write", VM_STAT(mmu_pte_write) }, | 
|  | { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, | 
|  | { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, | 
|  | { "mmu_flooded", VM_STAT(mmu_flooded) }, | 
|  | { "mmu_recycled", VM_STAT(mmu_recycled) }, | 
|  | { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, | 
|  | { "mmu_unsync", VM_STAT(mmu_unsync) }, | 
|  | { "mmu_unsync_global", VM_STAT(mmu_unsync_global) }, | 
|  | { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, | 
|  | { "largepages", VM_STAT(lpages) }, | 
|  | { NULL } | 
|  | }; | 
|  |  | 
|  | unsigned long segment_base(u16 selector) | 
|  | { | 
|  | struct descriptor_table gdt; | 
|  | struct desc_struct *d; | 
|  | unsigned long table_base; | 
|  | unsigned long v; | 
|  |  | 
|  | if (selector == 0) | 
|  | return 0; | 
|  |  | 
|  | asm("sgdt %0" : "=m"(gdt)); | 
|  | table_base = gdt.base; | 
|  |  | 
|  | if (selector & 4) {           /* from ldt */ | 
|  | u16 ldt_selector; | 
|  |  | 
|  | asm("sldt %0" : "=g"(ldt_selector)); | 
|  | table_base = segment_base(ldt_selector); | 
|  | } | 
|  | d = (struct desc_struct *)(table_base + (selector & ~7)); | 
|  | v = d->base0 | ((unsigned long)d->base1 << 16) | | 
|  | ((unsigned long)d->base2 << 24); | 
|  | #ifdef CONFIG_X86_64 | 
|  | if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11)) | 
|  | v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32; | 
|  | #endif | 
|  | return v; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(segment_base); | 
|  |  | 
|  | u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (irqchip_in_kernel(vcpu->kvm)) | 
|  | return vcpu->arch.apic_base; | 
|  | else | 
|  | return vcpu->arch.apic_base; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_get_apic_base); | 
|  |  | 
|  | void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data) | 
|  | { | 
|  | /* TODO: reserve bits check */ | 
|  | if (irqchip_in_kernel(vcpu->kvm)) | 
|  | kvm_lapic_set_base(vcpu, data); | 
|  | else | 
|  | vcpu->arch.apic_base = data; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_set_apic_base); | 
|  |  | 
|  | void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) | 
|  | { | 
|  | WARN_ON(vcpu->arch.exception.pending); | 
|  | vcpu->arch.exception.pending = true; | 
|  | vcpu->arch.exception.has_error_code = false; | 
|  | vcpu->arch.exception.nr = nr; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_queue_exception); | 
|  |  | 
|  | void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr, | 
|  | u32 error_code) | 
|  | { | 
|  | ++vcpu->stat.pf_guest; | 
|  |  | 
|  | if (vcpu->arch.exception.pending) { | 
|  | if (vcpu->arch.exception.nr == PF_VECTOR) { | 
|  | printk(KERN_DEBUG "kvm: inject_page_fault:" | 
|  | " double fault 0x%lx\n", addr); | 
|  | vcpu->arch.exception.nr = DF_VECTOR; | 
|  | vcpu->arch.exception.error_code = 0; | 
|  | } else if (vcpu->arch.exception.nr == DF_VECTOR) { | 
|  | /* triple fault -> shutdown */ | 
|  | set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests); | 
|  | } | 
|  | return; | 
|  | } | 
|  | vcpu->arch.cr2 = addr; | 
|  | kvm_queue_exception_e(vcpu, PF_VECTOR, error_code); | 
|  | } | 
|  |  | 
|  | void kvm_inject_nmi(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | vcpu->arch.nmi_pending = 1; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_inject_nmi); | 
|  |  | 
|  | void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) | 
|  | { | 
|  | WARN_ON(vcpu->arch.exception.pending); | 
|  | vcpu->arch.exception.pending = true; | 
|  | vcpu->arch.exception.has_error_code = true; | 
|  | vcpu->arch.exception.nr = nr; | 
|  | vcpu->arch.exception.error_code = error_code; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_queue_exception_e); | 
|  |  | 
|  | static void __queue_exception(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, | 
|  | vcpu->arch.exception.has_error_code, | 
|  | vcpu->arch.exception.error_code); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Load the pae pdptrs.  Return true is they are all valid. | 
|  | */ | 
|  | int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) | 
|  | { | 
|  | gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; | 
|  | unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; | 
|  | int i; | 
|  | int ret; | 
|  | u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)]; | 
|  |  | 
|  | ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte, | 
|  | offset * sizeof(u64), sizeof(pdpte)); | 
|  | if (ret < 0) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { | 
|  | if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | ret = 1; | 
|  |  | 
|  | memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs)); | 
|  | out: | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(load_pdptrs); | 
|  |  | 
|  | static bool pdptrs_changed(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)]; | 
|  | bool changed = true; | 
|  | int r; | 
|  |  | 
|  | if (is_long_mode(vcpu) || !is_pae(vcpu)) | 
|  | return false; | 
|  |  | 
|  | r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte)); | 
|  | if (r < 0) | 
|  | goto out; | 
|  | changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0; | 
|  | out: | 
|  |  | 
|  | return changed; | 
|  | } | 
|  |  | 
|  | void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) | 
|  | { | 
|  | if (cr0 & CR0_RESERVED_BITS) { | 
|  | printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n", | 
|  | cr0, vcpu->arch.cr0); | 
|  | kvm_inject_gp(vcpu, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) { | 
|  | printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n"); | 
|  | kvm_inject_gp(vcpu, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) { | 
|  | printk(KERN_DEBUG "set_cr0: #GP, set PG flag " | 
|  | "and a clear PE flag\n"); | 
|  | kvm_inject_gp(vcpu, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { | 
|  | #ifdef CONFIG_X86_64 | 
|  | if ((vcpu->arch.shadow_efer & EFER_LME)) { | 
|  | int cs_db, cs_l; | 
|  |  | 
|  | if (!is_pae(vcpu)) { | 
|  | printk(KERN_DEBUG "set_cr0: #GP, start paging " | 
|  | "in long mode while PAE is disabled\n"); | 
|  | kvm_inject_gp(vcpu, 0); | 
|  | return; | 
|  | } | 
|  | kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); | 
|  | if (cs_l) { | 
|  | printk(KERN_DEBUG "set_cr0: #GP, start paging " | 
|  | "in long mode while CS.L == 1\n"); | 
|  | kvm_inject_gp(vcpu, 0); | 
|  | return; | 
|  |  | 
|  | } | 
|  | } else | 
|  | #endif | 
|  | if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) { | 
|  | printk(KERN_DEBUG "set_cr0: #GP, pdptrs " | 
|  | "reserved bits\n"); | 
|  | kvm_inject_gp(vcpu, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | kvm_x86_ops->set_cr0(vcpu, cr0); | 
|  | vcpu->arch.cr0 = cr0; | 
|  |  | 
|  | kvm_mmu_sync_global(vcpu); | 
|  | kvm_mmu_reset_context(vcpu); | 
|  | return; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_set_cr0); | 
|  |  | 
|  | void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) | 
|  | { | 
|  | kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)); | 
|  | KVMTRACE_1D(LMSW, vcpu, | 
|  | (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)), | 
|  | handler); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_lmsw); | 
|  |  | 
|  | void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) | 
|  | { | 
|  | if (cr4 & CR4_RESERVED_BITS) { | 
|  | printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n"); | 
|  | kvm_inject_gp(vcpu, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (is_long_mode(vcpu)) { | 
|  | if (!(cr4 & X86_CR4_PAE)) { | 
|  | printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while " | 
|  | "in long mode\n"); | 
|  | kvm_inject_gp(vcpu, 0); | 
|  | return; | 
|  | } | 
|  | } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE) | 
|  | && !load_pdptrs(vcpu, vcpu->arch.cr3)) { | 
|  | printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n"); | 
|  | kvm_inject_gp(vcpu, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (cr4 & X86_CR4_VMXE) { | 
|  | printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n"); | 
|  | kvm_inject_gp(vcpu, 0); | 
|  | return; | 
|  | } | 
|  | kvm_x86_ops->set_cr4(vcpu, cr4); | 
|  | vcpu->arch.cr4 = cr4; | 
|  | vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled; | 
|  | kvm_mmu_sync_global(vcpu); | 
|  | kvm_mmu_reset_context(vcpu); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_set_cr4); | 
|  |  | 
|  | void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) | 
|  | { | 
|  | if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) { | 
|  | kvm_mmu_sync_roots(vcpu); | 
|  | kvm_mmu_flush_tlb(vcpu); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (is_long_mode(vcpu)) { | 
|  | if (cr3 & CR3_L_MODE_RESERVED_BITS) { | 
|  | printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n"); | 
|  | kvm_inject_gp(vcpu, 0); | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | if (is_pae(vcpu)) { | 
|  | if (cr3 & CR3_PAE_RESERVED_BITS) { | 
|  | printk(KERN_DEBUG | 
|  | "set_cr3: #GP, reserved bits\n"); | 
|  | kvm_inject_gp(vcpu, 0); | 
|  | return; | 
|  | } | 
|  | if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) { | 
|  | printk(KERN_DEBUG "set_cr3: #GP, pdptrs " | 
|  | "reserved bits\n"); | 
|  | kvm_inject_gp(vcpu, 0); | 
|  | return; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * We don't check reserved bits in nonpae mode, because | 
|  | * this isn't enforced, and VMware depends on this. | 
|  | */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Does the new cr3 value map to physical memory? (Note, we | 
|  | * catch an invalid cr3 even in real-mode, because it would | 
|  | * cause trouble later on when we turn on paging anyway.) | 
|  | * | 
|  | * A real CPU would silently accept an invalid cr3 and would | 
|  | * attempt to use it - with largely undefined (and often hard | 
|  | * to debug) behavior on the guest side. | 
|  | */ | 
|  | if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT))) | 
|  | kvm_inject_gp(vcpu, 0); | 
|  | else { | 
|  | vcpu->arch.cr3 = cr3; | 
|  | vcpu->arch.mmu.new_cr3(vcpu); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_set_cr3); | 
|  |  | 
|  | void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) | 
|  | { | 
|  | if (cr8 & CR8_RESERVED_BITS) { | 
|  | printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8); | 
|  | kvm_inject_gp(vcpu, 0); | 
|  | return; | 
|  | } | 
|  | if (irqchip_in_kernel(vcpu->kvm)) | 
|  | kvm_lapic_set_tpr(vcpu, cr8); | 
|  | else | 
|  | vcpu->arch.cr8 = cr8; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_set_cr8); | 
|  |  | 
|  | unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (irqchip_in_kernel(vcpu->kvm)) | 
|  | return kvm_lapic_get_cr8(vcpu); | 
|  | else | 
|  | return vcpu->arch.cr8; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_get_cr8); | 
|  |  | 
|  | static inline u32 bit(int bitno) | 
|  | { | 
|  | return 1 << (bitno & 31); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * List of msr numbers which we expose to userspace through KVM_GET_MSRS | 
|  | * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. | 
|  | * | 
|  | * This list is modified at module load time to reflect the | 
|  | * capabilities of the host cpu. | 
|  | */ | 
|  | static u32 msrs_to_save[] = { | 
|  | MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, | 
|  | MSR_K6_STAR, | 
|  | #ifdef CONFIG_X86_64 | 
|  | MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, | 
|  | #endif | 
|  | MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, | 
|  | MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA | 
|  | }; | 
|  |  | 
|  | static unsigned num_msrs_to_save; | 
|  |  | 
|  | static u32 emulated_msrs[] = { | 
|  | MSR_IA32_MISC_ENABLE, | 
|  | }; | 
|  |  | 
|  | static void set_efer(struct kvm_vcpu *vcpu, u64 efer) | 
|  | { | 
|  | if (efer & efer_reserved_bits) { | 
|  | printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n", | 
|  | efer); | 
|  | kvm_inject_gp(vcpu, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (is_paging(vcpu) | 
|  | && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) { | 
|  | printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n"); | 
|  | kvm_inject_gp(vcpu, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (efer & EFER_FFXSR) { | 
|  | struct kvm_cpuid_entry2 *feat; | 
|  |  | 
|  | feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); | 
|  | if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) { | 
|  | printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n"); | 
|  | kvm_inject_gp(vcpu, 0); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (efer & EFER_SVME) { | 
|  | struct kvm_cpuid_entry2 *feat; | 
|  |  | 
|  | feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); | 
|  | if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) { | 
|  | printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n"); | 
|  | kvm_inject_gp(vcpu, 0); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | kvm_x86_ops->set_efer(vcpu, efer); | 
|  |  | 
|  | efer &= ~EFER_LMA; | 
|  | efer |= vcpu->arch.shadow_efer & EFER_LMA; | 
|  |  | 
|  | vcpu->arch.shadow_efer = efer; | 
|  | } | 
|  |  | 
|  | void kvm_enable_efer_bits(u64 mask) | 
|  | { | 
|  | efer_reserved_bits &= ~mask; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Writes msr value into into the appropriate "register". | 
|  | * Returns 0 on success, non-0 otherwise. | 
|  | * Assumes vcpu_load() was already called. | 
|  | */ | 
|  | int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) | 
|  | { | 
|  | return kvm_x86_ops->set_msr(vcpu, msr_index, data); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Adapt set_msr() to msr_io()'s calling convention | 
|  | */ | 
|  | static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) | 
|  | { | 
|  | return kvm_set_msr(vcpu, index, *data); | 
|  | } | 
|  |  | 
|  | static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) | 
|  | { | 
|  | static int version; | 
|  | struct pvclock_wall_clock wc; | 
|  | struct timespec now, sys, boot; | 
|  |  | 
|  | if (!wall_clock) | 
|  | return; | 
|  |  | 
|  | version++; | 
|  |  | 
|  | kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); | 
|  |  | 
|  | /* | 
|  | * The guest calculates current wall clock time by adding | 
|  | * system time (updated by kvm_write_guest_time below) to the | 
|  | * wall clock specified here.  guest system time equals host | 
|  | * system time for us, thus we must fill in host boot time here. | 
|  | */ | 
|  | now = current_kernel_time(); | 
|  | ktime_get_ts(&sys); | 
|  | boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys)); | 
|  |  | 
|  | wc.sec = boot.tv_sec; | 
|  | wc.nsec = boot.tv_nsec; | 
|  | wc.version = version; | 
|  |  | 
|  | kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); | 
|  |  | 
|  | version++; | 
|  | kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); | 
|  | } | 
|  |  | 
|  | static uint32_t div_frac(uint32_t dividend, uint32_t divisor) | 
|  | { | 
|  | uint32_t quotient, remainder; | 
|  |  | 
|  | /* Don't try to replace with do_div(), this one calculates | 
|  | * "(dividend << 32) / divisor" */ | 
|  | __asm__ ( "divl %4" | 
|  | : "=a" (quotient), "=d" (remainder) | 
|  | : "0" (0), "1" (dividend), "r" (divisor) ); | 
|  | return quotient; | 
|  | } | 
|  |  | 
|  | static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock) | 
|  | { | 
|  | uint64_t nsecs = 1000000000LL; | 
|  | int32_t  shift = 0; | 
|  | uint64_t tps64; | 
|  | uint32_t tps32; | 
|  |  | 
|  | tps64 = tsc_khz * 1000LL; | 
|  | while (tps64 > nsecs*2) { | 
|  | tps64 >>= 1; | 
|  | shift--; | 
|  | } | 
|  |  | 
|  | tps32 = (uint32_t)tps64; | 
|  | while (tps32 <= (uint32_t)nsecs) { | 
|  | tps32 <<= 1; | 
|  | shift++; | 
|  | } | 
|  |  | 
|  | hv_clock->tsc_shift = shift; | 
|  | hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32); | 
|  |  | 
|  | pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n", | 
|  | __func__, tsc_khz, hv_clock->tsc_shift, | 
|  | hv_clock->tsc_to_system_mul); | 
|  | } | 
|  |  | 
|  | static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); | 
|  |  | 
|  | static void kvm_write_guest_time(struct kvm_vcpu *v) | 
|  | { | 
|  | struct timespec ts; | 
|  | unsigned long flags; | 
|  | struct kvm_vcpu_arch *vcpu = &v->arch; | 
|  | void *shared_kaddr; | 
|  |  | 
|  | if ((!vcpu->time_page)) | 
|  | return; | 
|  |  | 
|  | if (unlikely(vcpu->hv_clock_tsc_khz != __get_cpu_var(cpu_tsc_khz))) { | 
|  | kvm_set_time_scale(__get_cpu_var(cpu_tsc_khz), &vcpu->hv_clock); | 
|  | vcpu->hv_clock_tsc_khz = __get_cpu_var(cpu_tsc_khz); | 
|  | } | 
|  |  | 
|  | /* Keep irq disabled to prevent changes to the clock */ | 
|  | local_irq_save(flags); | 
|  | kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER, | 
|  | &vcpu->hv_clock.tsc_timestamp); | 
|  | ktime_get_ts(&ts); | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | /* With all the info we got, fill in the values */ | 
|  |  | 
|  | vcpu->hv_clock.system_time = ts.tv_nsec + | 
|  | (NSEC_PER_SEC * (u64)ts.tv_sec); | 
|  | /* | 
|  | * The interface expects us to write an even number signaling that the | 
|  | * update is finished. Since the guest won't see the intermediate | 
|  | * state, we just increase by 2 at the end. | 
|  | */ | 
|  | vcpu->hv_clock.version += 2; | 
|  |  | 
|  | shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0); | 
|  |  | 
|  | memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock, | 
|  | sizeof(vcpu->hv_clock)); | 
|  |  | 
|  | kunmap_atomic(shared_kaddr, KM_USER0); | 
|  |  | 
|  | mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | static int kvm_request_guest_time_update(struct kvm_vcpu *v) | 
|  | { | 
|  | struct kvm_vcpu_arch *vcpu = &v->arch; | 
|  |  | 
|  | if (!vcpu->time_page) | 
|  | return 0; | 
|  | set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static bool msr_mtrr_valid(unsigned msr) | 
|  | { | 
|  | switch (msr) { | 
|  | case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1: | 
|  | case MSR_MTRRfix64K_00000: | 
|  | case MSR_MTRRfix16K_80000: | 
|  | case MSR_MTRRfix16K_A0000: | 
|  | case MSR_MTRRfix4K_C0000: | 
|  | case MSR_MTRRfix4K_C8000: | 
|  | case MSR_MTRRfix4K_D0000: | 
|  | case MSR_MTRRfix4K_D8000: | 
|  | case MSR_MTRRfix4K_E0000: | 
|  | case MSR_MTRRfix4K_E8000: | 
|  | case MSR_MTRRfix4K_F0000: | 
|  | case MSR_MTRRfix4K_F8000: | 
|  | case MSR_MTRRdefType: | 
|  | case MSR_IA32_CR_PAT: | 
|  | return true; | 
|  | case 0x2f8: | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data) | 
|  | { | 
|  | u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; | 
|  |  | 
|  | if (!msr_mtrr_valid(msr)) | 
|  | return 1; | 
|  |  | 
|  | if (msr == MSR_MTRRdefType) { | 
|  | vcpu->arch.mtrr_state.def_type = data; | 
|  | vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10; | 
|  | } else if (msr == MSR_MTRRfix64K_00000) | 
|  | p[0] = data; | 
|  | else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) | 
|  | p[1 + msr - MSR_MTRRfix16K_80000] = data; | 
|  | else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) | 
|  | p[3 + msr - MSR_MTRRfix4K_C0000] = data; | 
|  | else if (msr == MSR_IA32_CR_PAT) | 
|  | vcpu->arch.pat = data; | 
|  | else {	/* Variable MTRRs */ | 
|  | int idx, is_mtrr_mask; | 
|  | u64 *pt; | 
|  |  | 
|  | idx = (msr - 0x200) / 2; | 
|  | is_mtrr_mask = msr - 0x200 - 2 * idx; | 
|  | if (!is_mtrr_mask) | 
|  | pt = | 
|  | (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; | 
|  | else | 
|  | pt = | 
|  | (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; | 
|  | *pt = data; | 
|  | } | 
|  |  | 
|  | kvm_mmu_reset_context(vcpu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data) | 
|  | { | 
|  | switch (msr) { | 
|  | case MSR_EFER: | 
|  | set_efer(vcpu, data); | 
|  | break; | 
|  | case MSR_IA32_MC0_STATUS: | 
|  | pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n", | 
|  | __func__, data); | 
|  | break; | 
|  | case MSR_IA32_MCG_STATUS: | 
|  | pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n", | 
|  | __func__, data); | 
|  | break; | 
|  | case MSR_IA32_MCG_CTL: | 
|  | pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n", | 
|  | __func__, data); | 
|  | break; | 
|  | case MSR_IA32_DEBUGCTLMSR: | 
|  | if (!data) { | 
|  | /* We support the non-activated case already */ | 
|  | break; | 
|  | } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { | 
|  | /* Values other than LBR and BTF are vendor-specific, | 
|  | thus reserved and should throw a #GP */ | 
|  | return 1; | 
|  | } | 
|  | pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", | 
|  | __func__, data); | 
|  | break; | 
|  | case MSR_IA32_UCODE_REV: | 
|  | case MSR_IA32_UCODE_WRITE: | 
|  | case MSR_VM_HSAVE_PA: | 
|  | break; | 
|  | case 0x200 ... 0x2ff: | 
|  | return set_msr_mtrr(vcpu, msr, data); | 
|  | case MSR_IA32_APICBASE: | 
|  | kvm_set_apic_base(vcpu, data); | 
|  | break; | 
|  | case MSR_IA32_MISC_ENABLE: | 
|  | vcpu->arch.ia32_misc_enable_msr = data; | 
|  | break; | 
|  | case MSR_KVM_WALL_CLOCK: | 
|  | vcpu->kvm->arch.wall_clock = data; | 
|  | kvm_write_wall_clock(vcpu->kvm, data); | 
|  | break; | 
|  | case MSR_KVM_SYSTEM_TIME: { | 
|  | if (vcpu->arch.time_page) { | 
|  | kvm_release_page_dirty(vcpu->arch.time_page); | 
|  | vcpu->arch.time_page = NULL; | 
|  | } | 
|  |  | 
|  | vcpu->arch.time = data; | 
|  |  | 
|  | /* we verify if the enable bit is set... */ | 
|  | if (!(data & 1)) | 
|  | break; | 
|  |  | 
|  | /* ...but clean it before doing the actual write */ | 
|  | vcpu->arch.time_offset = data & ~(PAGE_MASK | 1); | 
|  |  | 
|  | vcpu->arch.time_page = | 
|  | gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT); | 
|  |  | 
|  | if (is_error_page(vcpu->arch.time_page)) { | 
|  | kvm_release_page_clean(vcpu->arch.time_page); | 
|  | vcpu->arch.time_page = NULL; | 
|  | } | 
|  |  | 
|  | kvm_request_guest_time_update(vcpu); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_set_msr_common); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Reads an msr value (of 'msr_index') into 'pdata'. | 
|  | * Returns 0 on success, non-0 otherwise. | 
|  | * Assumes vcpu_load() was already called. | 
|  | */ | 
|  | int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) | 
|  | { | 
|  | return kvm_x86_ops->get_msr(vcpu, msr_index, pdata); | 
|  | } | 
|  |  | 
|  | static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) | 
|  | { | 
|  | u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; | 
|  |  | 
|  | if (!msr_mtrr_valid(msr)) | 
|  | return 1; | 
|  |  | 
|  | if (msr == MSR_MTRRdefType) | 
|  | *pdata = vcpu->arch.mtrr_state.def_type + | 
|  | (vcpu->arch.mtrr_state.enabled << 10); | 
|  | else if (msr == MSR_MTRRfix64K_00000) | 
|  | *pdata = p[0]; | 
|  | else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) | 
|  | *pdata = p[1 + msr - MSR_MTRRfix16K_80000]; | 
|  | else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) | 
|  | *pdata = p[3 + msr - MSR_MTRRfix4K_C0000]; | 
|  | else if (msr == MSR_IA32_CR_PAT) | 
|  | *pdata = vcpu->arch.pat; | 
|  | else {	/* Variable MTRRs */ | 
|  | int idx, is_mtrr_mask; | 
|  | u64 *pt; | 
|  |  | 
|  | idx = (msr - 0x200) / 2; | 
|  | is_mtrr_mask = msr - 0x200 - 2 * idx; | 
|  | if (!is_mtrr_mask) | 
|  | pt = | 
|  | (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; | 
|  | else | 
|  | pt = | 
|  | (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; | 
|  | *pdata = *pt; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) | 
|  | { | 
|  | u64 data; | 
|  |  | 
|  | switch (msr) { | 
|  | case 0xc0010010: /* SYSCFG */ | 
|  | case 0xc0010015: /* HWCR */ | 
|  | case MSR_IA32_PLATFORM_ID: | 
|  | case MSR_IA32_P5_MC_ADDR: | 
|  | case MSR_IA32_P5_MC_TYPE: | 
|  | case MSR_IA32_MC0_CTL: | 
|  | case MSR_IA32_MCG_STATUS: | 
|  | case MSR_IA32_MCG_CAP: | 
|  | case MSR_IA32_MCG_CTL: | 
|  | case MSR_IA32_MC0_MISC: | 
|  | case MSR_IA32_MC0_MISC+4: | 
|  | case MSR_IA32_MC0_MISC+8: | 
|  | case MSR_IA32_MC0_MISC+12: | 
|  | case MSR_IA32_MC0_MISC+16: | 
|  | case MSR_IA32_MC0_MISC+20: | 
|  | case MSR_IA32_UCODE_REV: | 
|  | case MSR_IA32_EBL_CR_POWERON: | 
|  | case MSR_IA32_DEBUGCTLMSR: | 
|  | case MSR_IA32_LASTBRANCHFROMIP: | 
|  | case MSR_IA32_LASTBRANCHTOIP: | 
|  | case MSR_IA32_LASTINTFROMIP: | 
|  | case MSR_IA32_LASTINTTOIP: | 
|  | case MSR_VM_HSAVE_PA: | 
|  | data = 0; | 
|  | break; | 
|  | case MSR_MTRRcap: | 
|  | data = 0x500 | KVM_NR_VAR_MTRR; | 
|  | break; | 
|  | case 0x200 ... 0x2ff: | 
|  | return get_msr_mtrr(vcpu, msr, pdata); | 
|  | case 0xcd: /* fsb frequency */ | 
|  | data = 3; | 
|  | break; | 
|  | case MSR_IA32_APICBASE: | 
|  | data = kvm_get_apic_base(vcpu); | 
|  | break; | 
|  | case MSR_IA32_MISC_ENABLE: | 
|  | data = vcpu->arch.ia32_misc_enable_msr; | 
|  | break; | 
|  | case MSR_IA32_PERF_STATUS: | 
|  | /* TSC increment by tick */ | 
|  | data = 1000ULL; | 
|  | /* CPU multiplier */ | 
|  | data |= (((uint64_t)4ULL) << 40); | 
|  | break; | 
|  | case MSR_EFER: | 
|  | data = vcpu->arch.shadow_efer; | 
|  | break; | 
|  | case MSR_KVM_WALL_CLOCK: | 
|  | data = vcpu->kvm->arch.wall_clock; | 
|  | break; | 
|  | case MSR_KVM_SYSTEM_TIME: | 
|  | data = vcpu->arch.time; | 
|  | break; | 
|  | default: | 
|  | pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); | 
|  | return 1; | 
|  | } | 
|  | *pdata = data; | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_get_msr_common); | 
|  |  | 
|  | /* | 
|  | * Read or write a bunch of msrs. All parameters are kernel addresses. | 
|  | * | 
|  | * @return number of msrs set successfully. | 
|  | */ | 
|  | static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, | 
|  | struct kvm_msr_entry *entries, | 
|  | int (*do_msr)(struct kvm_vcpu *vcpu, | 
|  | unsigned index, u64 *data)) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | vcpu_load(vcpu); | 
|  |  | 
|  | down_read(&vcpu->kvm->slots_lock); | 
|  | for (i = 0; i < msrs->nmsrs; ++i) | 
|  | if (do_msr(vcpu, entries[i].index, &entries[i].data)) | 
|  | break; | 
|  | up_read(&vcpu->kvm->slots_lock); | 
|  |  | 
|  | vcpu_put(vcpu); | 
|  |  | 
|  | return i; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read or write a bunch of msrs. Parameters are user addresses. | 
|  | * | 
|  | * @return number of msrs set successfully. | 
|  | */ | 
|  | static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, | 
|  | int (*do_msr)(struct kvm_vcpu *vcpu, | 
|  | unsigned index, u64 *data), | 
|  | int writeback) | 
|  | { | 
|  | struct kvm_msrs msrs; | 
|  | struct kvm_msr_entry *entries; | 
|  | int r, n; | 
|  | unsigned size; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&msrs, user_msrs, sizeof msrs)) | 
|  | goto out; | 
|  |  | 
|  | r = -E2BIG; | 
|  | if (msrs.nmsrs >= MAX_IO_MSRS) | 
|  | goto out; | 
|  |  | 
|  | r = -ENOMEM; | 
|  | size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; | 
|  | entries = vmalloc(size); | 
|  | if (!entries) | 
|  | goto out; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(entries, user_msrs->entries, size)) | 
|  | goto out_free; | 
|  |  | 
|  | r = n = __msr_io(vcpu, &msrs, entries, do_msr); | 
|  | if (r < 0) | 
|  | goto out_free; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (writeback && copy_to_user(user_msrs->entries, entries, size)) | 
|  | goto out_free; | 
|  |  | 
|  | r = n; | 
|  |  | 
|  | out_free: | 
|  | vfree(entries); | 
|  | out: | 
|  | return r; | 
|  | } | 
|  |  | 
|  | int kvm_dev_ioctl_check_extension(long ext) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | switch (ext) { | 
|  | case KVM_CAP_IRQCHIP: | 
|  | case KVM_CAP_HLT: | 
|  | case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: | 
|  | case KVM_CAP_SET_TSS_ADDR: | 
|  | case KVM_CAP_EXT_CPUID: | 
|  | case KVM_CAP_CLOCKSOURCE: | 
|  | case KVM_CAP_PIT: | 
|  | case KVM_CAP_NOP_IO_DELAY: | 
|  | case KVM_CAP_MP_STATE: | 
|  | case KVM_CAP_SYNC_MMU: | 
|  | case KVM_CAP_REINJECT_CONTROL: | 
|  | case KVM_CAP_IRQ_INJECT_STATUS: | 
|  | r = 1; | 
|  | break; | 
|  | case KVM_CAP_COALESCED_MMIO: | 
|  | r = KVM_COALESCED_MMIO_PAGE_OFFSET; | 
|  | break; | 
|  | case KVM_CAP_VAPIC: | 
|  | r = !kvm_x86_ops->cpu_has_accelerated_tpr(); | 
|  | break; | 
|  | case KVM_CAP_NR_VCPUS: | 
|  | r = KVM_MAX_VCPUS; | 
|  | break; | 
|  | case KVM_CAP_NR_MEMSLOTS: | 
|  | r = KVM_MEMORY_SLOTS; | 
|  | break; | 
|  | case KVM_CAP_PV_MMU: | 
|  | r = !tdp_enabled; | 
|  | break; | 
|  | case KVM_CAP_IOMMU: | 
|  | r = iommu_found(); | 
|  | break; | 
|  | default: | 
|  | r = 0; | 
|  | break; | 
|  | } | 
|  | return r; | 
|  |  | 
|  | } | 
|  |  | 
|  | long kvm_arch_dev_ioctl(struct file *filp, | 
|  | unsigned int ioctl, unsigned long arg) | 
|  | { | 
|  | void __user *argp = (void __user *)arg; | 
|  | long r; | 
|  |  | 
|  | switch (ioctl) { | 
|  | case KVM_GET_MSR_INDEX_LIST: { | 
|  | struct kvm_msr_list __user *user_msr_list = argp; | 
|  | struct kvm_msr_list msr_list; | 
|  | unsigned n; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) | 
|  | goto out; | 
|  | n = msr_list.nmsrs; | 
|  | msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); | 
|  | if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) | 
|  | goto out; | 
|  | r = -E2BIG; | 
|  | if (n < num_msrs_to_save) | 
|  | goto out; | 
|  | r = -EFAULT; | 
|  | if (copy_to_user(user_msr_list->indices, &msrs_to_save, | 
|  | num_msrs_to_save * sizeof(u32))) | 
|  | goto out; | 
|  | if (copy_to_user(user_msr_list->indices | 
|  | + num_msrs_to_save * sizeof(u32), | 
|  | &emulated_msrs, | 
|  | ARRAY_SIZE(emulated_msrs) * sizeof(u32))) | 
|  | goto out; | 
|  | r = 0; | 
|  | break; | 
|  | } | 
|  | case KVM_GET_SUPPORTED_CPUID: { | 
|  | struct kvm_cpuid2 __user *cpuid_arg = argp; | 
|  | struct kvm_cpuid2 cpuid; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | 
|  | goto out; | 
|  | r = kvm_dev_ioctl_get_supported_cpuid(&cpuid, | 
|  | cpuid_arg->entries); | 
|  | if (r) | 
|  | goto out; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) | 
|  | goto out; | 
|  | r = 0; | 
|  | break; | 
|  | } | 
|  | default: | 
|  | r = -EINVAL; | 
|  | } | 
|  | out: | 
|  | return r; | 
|  | } | 
|  |  | 
|  | void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) | 
|  | { | 
|  | kvm_x86_ops->vcpu_load(vcpu, cpu); | 
|  | kvm_request_guest_time_update(vcpu); | 
|  | } | 
|  |  | 
|  | void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | kvm_x86_ops->vcpu_put(vcpu); | 
|  | kvm_put_guest_fpu(vcpu); | 
|  | } | 
|  |  | 
|  | static int is_efer_nx(void) | 
|  | { | 
|  | unsigned long long efer = 0; | 
|  |  | 
|  | rdmsrl_safe(MSR_EFER, &efer); | 
|  | return efer & EFER_NX; | 
|  | } | 
|  |  | 
|  | static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int i; | 
|  | struct kvm_cpuid_entry2 *e, *entry; | 
|  |  | 
|  | entry = NULL; | 
|  | for (i = 0; i < vcpu->arch.cpuid_nent; ++i) { | 
|  | e = &vcpu->arch.cpuid_entries[i]; | 
|  | if (e->function == 0x80000001) { | 
|  | entry = e; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) { | 
|  | entry->edx &= ~(1 << 20); | 
|  | printk(KERN_INFO "kvm: guest NX capability removed\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* when an old userspace process fills a new kernel module */ | 
|  | static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu, | 
|  | struct kvm_cpuid *cpuid, | 
|  | struct kvm_cpuid_entry __user *entries) | 
|  | { | 
|  | int r, i; | 
|  | struct kvm_cpuid_entry *cpuid_entries; | 
|  |  | 
|  | r = -E2BIG; | 
|  | if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) | 
|  | goto out; | 
|  | r = -ENOMEM; | 
|  | cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent); | 
|  | if (!cpuid_entries) | 
|  | goto out; | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(cpuid_entries, entries, | 
|  | cpuid->nent * sizeof(struct kvm_cpuid_entry))) | 
|  | goto out_free; | 
|  | for (i = 0; i < cpuid->nent; i++) { | 
|  | vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function; | 
|  | vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax; | 
|  | vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx; | 
|  | vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx; | 
|  | vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx; | 
|  | vcpu->arch.cpuid_entries[i].index = 0; | 
|  | vcpu->arch.cpuid_entries[i].flags = 0; | 
|  | vcpu->arch.cpuid_entries[i].padding[0] = 0; | 
|  | vcpu->arch.cpuid_entries[i].padding[1] = 0; | 
|  | vcpu->arch.cpuid_entries[i].padding[2] = 0; | 
|  | } | 
|  | vcpu->arch.cpuid_nent = cpuid->nent; | 
|  | cpuid_fix_nx_cap(vcpu); | 
|  | r = 0; | 
|  |  | 
|  | out_free: | 
|  | vfree(cpuid_entries); | 
|  | out: | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu, | 
|  | struct kvm_cpuid2 *cpuid, | 
|  | struct kvm_cpuid_entry2 __user *entries) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | r = -E2BIG; | 
|  | if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) | 
|  | goto out; | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&vcpu->arch.cpuid_entries, entries, | 
|  | cpuid->nent * sizeof(struct kvm_cpuid_entry2))) | 
|  | goto out; | 
|  | vcpu->arch.cpuid_nent = cpuid->nent; | 
|  | return 0; | 
|  |  | 
|  | out: | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu, | 
|  | struct kvm_cpuid2 *cpuid, | 
|  | struct kvm_cpuid_entry2 __user *entries) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | r = -E2BIG; | 
|  | if (cpuid->nent < vcpu->arch.cpuid_nent) | 
|  | goto out; | 
|  | r = -EFAULT; | 
|  | if (copy_to_user(entries, &vcpu->arch.cpuid_entries, | 
|  | vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2))) | 
|  | goto out; | 
|  | return 0; | 
|  |  | 
|  | out: | 
|  | cpuid->nent = vcpu->arch.cpuid_nent; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function, | 
|  | u32 index) | 
|  | { | 
|  | entry->function = function; | 
|  | entry->index = index; | 
|  | cpuid_count(entry->function, entry->index, | 
|  | &entry->eax, &entry->ebx, &entry->ecx, &entry->edx); | 
|  | entry->flags = 0; | 
|  | } | 
|  |  | 
|  | static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function, | 
|  | u32 index, int *nent, int maxnent) | 
|  | { | 
|  | const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) | | 
|  | bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) | | 
|  | bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) | | 
|  | bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) | | 
|  | bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) | | 
|  | bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) | | 
|  | bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) | | 
|  | bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) | | 
|  | bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) | | 
|  | bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP); | 
|  | const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) | | 
|  | bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) | | 
|  | bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) | | 
|  | bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) | | 
|  | bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) | | 
|  | bit(X86_FEATURE_PGE) | | 
|  | bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) | | 
|  | bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) | | 
|  | bit(X86_FEATURE_SYSCALL) | | 
|  | (is_efer_nx() ? bit(X86_FEATURE_NX) : 0) | | 
|  | #ifdef CONFIG_X86_64 | 
|  | bit(X86_FEATURE_LM) | | 
|  | #endif | 
|  | bit(X86_FEATURE_FXSR_OPT) | | 
|  | bit(X86_FEATURE_MMXEXT) | | 
|  | bit(X86_FEATURE_3DNOWEXT) | | 
|  | bit(X86_FEATURE_3DNOW); | 
|  | const u32 kvm_supported_word3_x86_features = | 
|  | bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16); | 
|  | const u32 kvm_supported_word6_x86_features = | 
|  | bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY) | | 
|  | bit(X86_FEATURE_SVM); | 
|  |  | 
|  | /* all calls to cpuid_count() should be made on the same cpu */ | 
|  | get_cpu(); | 
|  | do_cpuid_1_ent(entry, function, index); | 
|  | ++*nent; | 
|  |  | 
|  | switch (function) { | 
|  | case 0: | 
|  | entry->eax = min(entry->eax, (u32)0xb); | 
|  | break; | 
|  | case 1: | 
|  | entry->edx &= kvm_supported_word0_x86_features; | 
|  | entry->ecx &= kvm_supported_word3_x86_features; | 
|  | break; | 
|  | /* function 2 entries are STATEFUL. That is, repeated cpuid commands | 
|  | * may return different values. This forces us to get_cpu() before | 
|  | * issuing the first command, and also to emulate this annoying behavior | 
|  | * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */ | 
|  | case 2: { | 
|  | int t, times = entry->eax & 0xff; | 
|  |  | 
|  | entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC; | 
|  | entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT; | 
|  | for (t = 1; t < times && *nent < maxnent; ++t) { | 
|  | do_cpuid_1_ent(&entry[t], function, 0); | 
|  | entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC; | 
|  | ++*nent; | 
|  | } | 
|  | break; | 
|  | } | 
|  | /* function 4 and 0xb have additional index. */ | 
|  | case 4: { | 
|  | int i, cache_type; | 
|  |  | 
|  | entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | 
|  | /* read more entries until cache_type is zero */ | 
|  | for (i = 1; *nent < maxnent; ++i) { | 
|  | cache_type = entry[i - 1].eax & 0x1f; | 
|  | if (!cache_type) | 
|  | break; | 
|  | do_cpuid_1_ent(&entry[i], function, i); | 
|  | entry[i].flags |= | 
|  | KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | 
|  | ++*nent; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case 0xb: { | 
|  | int i, level_type; | 
|  |  | 
|  | entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | 
|  | /* read more entries until level_type is zero */ | 
|  | for (i = 1; *nent < maxnent; ++i) { | 
|  | level_type = entry[i - 1].ecx & 0xff00; | 
|  | if (!level_type) | 
|  | break; | 
|  | do_cpuid_1_ent(&entry[i], function, i); | 
|  | entry[i].flags |= | 
|  | KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | 
|  | ++*nent; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case 0x80000000: | 
|  | entry->eax = min(entry->eax, 0x8000001a); | 
|  | break; | 
|  | case 0x80000001: | 
|  | entry->edx &= kvm_supported_word1_x86_features; | 
|  | entry->ecx &= kvm_supported_word6_x86_features; | 
|  | break; | 
|  | } | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  | static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid, | 
|  | struct kvm_cpuid_entry2 __user *entries) | 
|  | { | 
|  | struct kvm_cpuid_entry2 *cpuid_entries; | 
|  | int limit, nent = 0, r = -E2BIG; | 
|  | u32 func; | 
|  |  | 
|  | if (cpuid->nent < 1) | 
|  | goto out; | 
|  | r = -ENOMEM; | 
|  | cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent); | 
|  | if (!cpuid_entries) | 
|  | goto out; | 
|  |  | 
|  | do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent); | 
|  | limit = cpuid_entries[0].eax; | 
|  | for (func = 1; func <= limit && nent < cpuid->nent; ++func) | 
|  | do_cpuid_ent(&cpuid_entries[nent], func, 0, | 
|  | &nent, cpuid->nent); | 
|  | r = -E2BIG; | 
|  | if (nent >= cpuid->nent) | 
|  | goto out_free; | 
|  |  | 
|  | do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent); | 
|  | limit = cpuid_entries[nent - 1].eax; | 
|  | for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func) | 
|  | do_cpuid_ent(&cpuid_entries[nent], func, 0, | 
|  | &nent, cpuid->nent); | 
|  | r = -EFAULT; | 
|  | if (copy_to_user(entries, cpuid_entries, | 
|  | nent * sizeof(struct kvm_cpuid_entry2))) | 
|  | goto out_free; | 
|  | cpuid->nent = nent; | 
|  | r = 0; | 
|  |  | 
|  | out_free: | 
|  | vfree(cpuid_entries); | 
|  | out: | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, | 
|  | struct kvm_lapic_state *s) | 
|  | { | 
|  | vcpu_load(vcpu); | 
|  | memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); | 
|  | vcpu_put(vcpu); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, | 
|  | struct kvm_lapic_state *s) | 
|  | { | 
|  | vcpu_load(vcpu); | 
|  | memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s); | 
|  | kvm_apic_post_state_restore(vcpu); | 
|  | vcpu_put(vcpu); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, | 
|  | struct kvm_interrupt *irq) | 
|  | { | 
|  | if (irq->irq < 0 || irq->irq >= 256) | 
|  | return -EINVAL; | 
|  | if (irqchip_in_kernel(vcpu->kvm)) | 
|  | return -ENXIO; | 
|  | vcpu_load(vcpu); | 
|  |  | 
|  | set_bit(irq->irq, vcpu->arch.irq_pending); | 
|  | set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary); | 
|  |  | 
|  | vcpu_put(vcpu); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | vcpu_load(vcpu); | 
|  | kvm_inject_nmi(vcpu); | 
|  | vcpu_put(vcpu); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, | 
|  | struct kvm_tpr_access_ctl *tac) | 
|  | { | 
|  | if (tac->flags) | 
|  | return -EINVAL; | 
|  | vcpu->arch.tpr_access_reporting = !!tac->enabled; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | long kvm_arch_vcpu_ioctl(struct file *filp, | 
|  | unsigned int ioctl, unsigned long arg) | 
|  | { | 
|  | struct kvm_vcpu *vcpu = filp->private_data; | 
|  | void __user *argp = (void __user *)arg; | 
|  | int r; | 
|  | struct kvm_lapic_state *lapic = NULL; | 
|  |  | 
|  | switch (ioctl) { | 
|  | case KVM_GET_LAPIC: { | 
|  | lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); | 
|  |  | 
|  | r = -ENOMEM; | 
|  | if (!lapic) | 
|  | goto out; | 
|  | r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic); | 
|  | if (r) | 
|  | goto out; | 
|  | r = -EFAULT; | 
|  | if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state))) | 
|  | goto out; | 
|  | r = 0; | 
|  | break; | 
|  | } | 
|  | case KVM_SET_LAPIC: { | 
|  | lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); | 
|  | r = -ENOMEM; | 
|  | if (!lapic) | 
|  | goto out; | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state))) | 
|  | goto out; | 
|  | r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic); | 
|  | if (r) | 
|  | goto out; | 
|  | r = 0; | 
|  | break; | 
|  | } | 
|  | case KVM_INTERRUPT: { | 
|  | struct kvm_interrupt irq; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&irq, argp, sizeof irq)) | 
|  | goto out; | 
|  | r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); | 
|  | if (r) | 
|  | goto out; | 
|  | r = 0; | 
|  | break; | 
|  | } | 
|  | case KVM_NMI: { | 
|  | r = kvm_vcpu_ioctl_nmi(vcpu); | 
|  | if (r) | 
|  | goto out; | 
|  | r = 0; | 
|  | break; | 
|  | } | 
|  | case KVM_SET_CPUID: { | 
|  | struct kvm_cpuid __user *cpuid_arg = argp; | 
|  | struct kvm_cpuid cpuid; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | 
|  | goto out; | 
|  | r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); | 
|  | if (r) | 
|  | goto out; | 
|  | break; | 
|  | } | 
|  | case KVM_SET_CPUID2: { | 
|  | struct kvm_cpuid2 __user *cpuid_arg = argp; | 
|  | struct kvm_cpuid2 cpuid; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | 
|  | goto out; | 
|  | r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, | 
|  | cpuid_arg->entries); | 
|  | if (r) | 
|  | goto out; | 
|  | break; | 
|  | } | 
|  | case KVM_GET_CPUID2: { | 
|  | struct kvm_cpuid2 __user *cpuid_arg = argp; | 
|  | struct kvm_cpuid2 cpuid; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | 
|  | goto out; | 
|  | r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, | 
|  | cpuid_arg->entries); | 
|  | if (r) | 
|  | goto out; | 
|  | r = -EFAULT; | 
|  | if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) | 
|  | goto out; | 
|  | r = 0; | 
|  | break; | 
|  | } | 
|  | case KVM_GET_MSRS: | 
|  | r = msr_io(vcpu, argp, kvm_get_msr, 1); | 
|  | break; | 
|  | case KVM_SET_MSRS: | 
|  | r = msr_io(vcpu, argp, do_set_msr, 0); | 
|  | break; | 
|  | case KVM_TPR_ACCESS_REPORTING: { | 
|  | struct kvm_tpr_access_ctl tac; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&tac, argp, sizeof tac)) | 
|  | goto out; | 
|  | r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); | 
|  | if (r) | 
|  | goto out; | 
|  | r = -EFAULT; | 
|  | if (copy_to_user(argp, &tac, sizeof tac)) | 
|  | goto out; | 
|  | r = 0; | 
|  | break; | 
|  | }; | 
|  | case KVM_SET_VAPIC_ADDR: { | 
|  | struct kvm_vapic_addr va; | 
|  |  | 
|  | r = -EINVAL; | 
|  | if (!irqchip_in_kernel(vcpu->kvm)) | 
|  | goto out; | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&va, argp, sizeof va)) | 
|  | goto out; | 
|  | r = 0; | 
|  | kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | r = -EINVAL; | 
|  | } | 
|  | out: | 
|  | if (lapic) | 
|  | kfree(lapic); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (addr > (unsigned int)(-3 * PAGE_SIZE)) | 
|  | return -1; | 
|  | ret = kvm_x86_ops->set_tss_addr(kvm, addr); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, | 
|  | u32 kvm_nr_mmu_pages) | 
|  | { | 
|  | if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) | 
|  | return -EINVAL; | 
|  |  | 
|  | down_write(&kvm->slots_lock); | 
|  |  | 
|  | kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); | 
|  | kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; | 
|  |  | 
|  | up_write(&kvm->slots_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) | 
|  | { | 
|  | return kvm->arch.n_alloc_mmu_pages; | 
|  | } | 
|  |  | 
|  | gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn) | 
|  | { | 
|  | int i; | 
|  | struct kvm_mem_alias *alias; | 
|  |  | 
|  | for (i = 0; i < kvm->arch.naliases; ++i) { | 
|  | alias = &kvm->arch.aliases[i]; | 
|  | if (gfn >= alias->base_gfn | 
|  | && gfn < alias->base_gfn + alias->npages) | 
|  | return alias->target_gfn + gfn - alias->base_gfn; | 
|  | } | 
|  | return gfn; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set a new alias region.  Aliases map a portion of physical memory into | 
|  | * another portion.  This is useful for memory windows, for example the PC | 
|  | * VGA region. | 
|  | */ | 
|  | static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm, | 
|  | struct kvm_memory_alias *alias) | 
|  | { | 
|  | int r, n; | 
|  | struct kvm_mem_alias *p; | 
|  |  | 
|  | r = -EINVAL; | 
|  | /* General sanity checks */ | 
|  | if (alias->memory_size & (PAGE_SIZE - 1)) | 
|  | goto out; | 
|  | if (alias->guest_phys_addr & (PAGE_SIZE - 1)) | 
|  | goto out; | 
|  | if (alias->slot >= KVM_ALIAS_SLOTS) | 
|  | goto out; | 
|  | if (alias->guest_phys_addr + alias->memory_size | 
|  | < alias->guest_phys_addr) | 
|  | goto out; | 
|  | if (alias->target_phys_addr + alias->memory_size | 
|  | < alias->target_phys_addr) | 
|  | goto out; | 
|  |  | 
|  | down_write(&kvm->slots_lock); | 
|  | spin_lock(&kvm->mmu_lock); | 
|  |  | 
|  | p = &kvm->arch.aliases[alias->slot]; | 
|  | p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT; | 
|  | p->npages = alias->memory_size >> PAGE_SHIFT; | 
|  | p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT; | 
|  |  | 
|  | for (n = KVM_ALIAS_SLOTS; n > 0; --n) | 
|  | if (kvm->arch.aliases[n - 1].npages) | 
|  | break; | 
|  | kvm->arch.naliases = n; | 
|  |  | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | kvm_mmu_zap_all(kvm); | 
|  |  | 
|  | up_write(&kvm->slots_lock); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out: | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | r = 0; | 
|  | switch (chip->chip_id) { | 
|  | case KVM_IRQCHIP_PIC_MASTER: | 
|  | memcpy(&chip->chip.pic, | 
|  | &pic_irqchip(kvm)->pics[0], | 
|  | sizeof(struct kvm_pic_state)); | 
|  | break; | 
|  | case KVM_IRQCHIP_PIC_SLAVE: | 
|  | memcpy(&chip->chip.pic, | 
|  | &pic_irqchip(kvm)->pics[1], | 
|  | sizeof(struct kvm_pic_state)); | 
|  | break; | 
|  | case KVM_IRQCHIP_IOAPIC: | 
|  | memcpy(&chip->chip.ioapic, | 
|  | ioapic_irqchip(kvm), | 
|  | sizeof(struct kvm_ioapic_state)); | 
|  | break; | 
|  | default: | 
|  | r = -EINVAL; | 
|  | break; | 
|  | } | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | r = 0; | 
|  | switch (chip->chip_id) { | 
|  | case KVM_IRQCHIP_PIC_MASTER: | 
|  | memcpy(&pic_irqchip(kvm)->pics[0], | 
|  | &chip->chip.pic, | 
|  | sizeof(struct kvm_pic_state)); | 
|  | break; | 
|  | case KVM_IRQCHIP_PIC_SLAVE: | 
|  | memcpy(&pic_irqchip(kvm)->pics[1], | 
|  | &chip->chip.pic, | 
|  | sizeof(struct kvm_pic_state)); | 
|  | break; | 
|  | case KVM_IRQCHIP_IOAPIC: | 
|  | memcpy(ioapic_irqchip(kvm), | 
|  | &chip->chip.ioapic, | 
|  | sizeof(struct kvm_ioapic_state)); | 
|  | break; | 
|  | default: | 
|  | r = -EINVAL; | 
|  | break; | 
|  | } | 
|  | kvm_pic_update_irq(pic_irqchip(kvm)); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) | 
|  | { | 
|  | int r = 0; | 
|  |  | 
|  | memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state)); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) | 
|  | { | 
|  | int r = 0; | 
|  |  | 
|  | memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state)); | 
|  | kvm_pit_load_count(kvm, 0, ps->channels[0].count); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int kvm_vm_ioctl_reinject(struct kvm *kvm, | 
|  | struct kvm_reinject_control *control) | 
|  | { | 
|  | if (!kvm->arch.vpit) | 
|  | return -ENXIO; | 
|  | kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get (and clear) the dirty memory log for a memory slot. | 
|  | */ | 
|  | int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, | 
|  | struct kvm_dirty_log *log) | 
|  | { | 
|  | int r; | 
|  | int n; | 
|  | struct kvm_memory_slot *memslot; | 
|  | int is_dirty = 0; | 
|  |  | 
|  | down_write(&kvm->slots_lock); | 
|  |  | 
|  | r = kvm_get_dirty_log(kvm, log, &is_dirty); | 
|  | if (r) | 
|  | goto out; | 
|  |  | 
|  | /* If nothing is dirty, don't bother messing with page tables. */ | 
|  | if (is_dirty) { | 
|  | kvm_mmu_slot_remove_write_access(kvm, log->slot); | 
|  | kvm_flush_remote_tlbs(kvm); | 
|  | memslot = &kvm->memslots[log->slot]; | 
|  | n = ALIGN(memslot->npages, BITS_PER_LONG) / 8; | 
|  | memset(memslot->dirty_bitmap, 0, n); | 
|  | } | 
|  | r = 0; | 
|  | out: | 
|  | up_write(&kvm->slots_lock); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | long kvm_arch_vm_ioctl(struct file *filp, | 
|  | unsigned int ioctl, unsigned long arg) | 
|  | { | 
|  | struct kvm *kvm = filp->private_data; | 
|  | void __user *argp = (void __user *)arg; | 
|  | int r = -EINVAL; | 
|  | /* | 
|  | * This union makes it completely explicit to gcc-3.x | 
|  | * that these two variables' stack usage should be | 
|  | * combined, not added together. | 
|  | */ | 
|  | union { | 
|  | struct kvm_pit_state ps; | 
|  | struct kvm_memory_alias alias; | 
|  | } u; | 
|  |  | 
|  | switch (ioctl) { | 
|  | case KVM_SET_TSS_ADDR: | 
|  | r = kvm_vm_ioctl_set_tss_addr(kvm, arg); | 
|  | if (r < 0) | 
|  | goto out; | 
|  | break; | 
|  | case KVM_SET_MEMORY_REGION: { | 
|  | struct kvm_memory_region kvm_mem; | 
|  | struct kvm_userspace_memory_region kvm_userspace_mem; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem)) | 
|  | goto out; | 
|  | kvm_userspace_mem.slot = kvm_mem.slot; | 
|  | kvm_userspace_mem.flags = kvm_mem.flags; | 
|  | kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr; | 
|  | kvm_userspace_mem.memory_size = kvm_mem.memory_size; | 
|  | r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0); | 
|  | if (r) | 
|  | goto out; | 
|  | break; | 
|  | } | 
|  | case KVM_SET_NR_MMU_PAGES: | 
|  | r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); | 
|  | if (r) | 
|  | goto out; | 
|  | break; | 
|  | case KVM_GET_NR_MMU_PAGES: | 
|  | r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); | 
|  | break; | 
|  | case KVM_SET_MEMORY_ALIAS: | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias))) | 
|  | goto out; | 
|  | r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias); | 
|  | if (r) | 
|  | goto out; | 
|  | break; | 
|  | case KVM_CREATE_IRQCHIP: | 
|  | r = -ENOMEM; | 
|  | kvm->arch.vpic = kvm_create_pic(kvm); | 
|  | if (kvm->arch.vpic) { | 
|  | r = kvm_ioapic_init(kvm); | 
|  | if (r) { | 
|  | kfree(kvm->arch.vpic); | 
|  | kvm->arch.vpic = NULL; | 
|  | goto out; | 
|  | } | 
|  | } else | 
|  | goto out; | 
|  | r = kvm_setup_default_irq_routing(kvm); | 
|  | if (r) { | 
|  | kfree(kvm->arch.vpic); | 
|  | kfree(kvm->arch.vioapic); | 
|  | goto out; | 
|  | } | 
|  | break; | 
|  | case KVM_CREATE_PIT: | 
|  | mutex_lock(&kvm->lock); | 
|  | r = -EEXIST; | 
|  | if (kvm->arch.vpit) | 
|  | goto create_pit_unlock; | 
|  | r = -ENOMEM; | 
|  | kvm->arch.vpit = kvm_create_pit(kvm); | 
|  | if (kvm->arch.vpit) | 
|  | r = 0; | 
|  | create_pit_unlock: | 
|  | mutex_unlock(&kvm->lock); | 
|  | break; | 
|  | case KVM_IRQ_LINE_STATUS: | 
|  | case KVM_IRQ_LINE: { | 
|  | struct kvm_irq_level irq_event; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&irq_event, argp, sizeof irq_event)) | 
|  | goto out; | 
|  | if (irqchip_in_kernel(kvm)) { | 
|  | __s32 status; | 
|  | mutex_lock(&kvm->lock); | 
|  | status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, | 
|  | irq_event.irq, irq_event.level); | 
|  | mutex_unlock(&kvm->lock); | 
|  | if (ioctl == KVM_IRQ_LINE_STATUS) { | 
|  | irq_event.status = status; | 
|  | if (copy_to_user(argp, &irq_event, | 
|  | sizeof irq_event)) | 
|  | goto out; | 
|  | } | 
|  | r = 0; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case KVM_GET_IRQCHIP: { | 
|  | /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ | 
|  | struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL); | 
|  |  | 
|  | r = -ENOMEM; | 
|  | if (!chip) | 
|  | goto out; | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(chip, argp, sizeof *chip)) | 
|  | goto get_irqchip_out; | 
|  | r = -ENXIO; | 
|  | if (!irqchip_in_kernel(kvm)) | 
|  | goto get_irqchip_out; | 
|  | r = kvm_vm_ioctl_get_irqchip(kvm, chip); | 
|  | if (r) | 
|  | goto get_irqchip_out; | 
|  | r = -EFAULT; | 
|  | if (copy_to_user(argp, chip, sizeof *chip)) | 
|  | goto get_irqchip_out; | 
|  | r = 0; | 
|  | get_irqchip_out: | 
|  | kfree(chip); | 
|  | if (r) | 
|  | goto out; | 
|  | break; | 
|  | } | 
|  | case KVM_SET_IRQCHIP: { | 
|  | /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ | 
|  | struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL); | 
|  |  | 
|  | r = -ENOMEM; | 
|  | if (!chip) | 
|  | goto out; | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(chip, argp, sizeof *chip)) | 
|  | goto set_irqchip_out; | 
|  | r = -ENXIO; | 
|  | if (!irqchip_in_kernel(kvm)) | 
|  | goto set_irqchip_out; | 
|  | r = kvm_vm_ioctl_set_irqchip(kvm, chip); | 
|  | if (r) | 
|  | goto set_irqchip_out; | 
|  | r = 0; | 
|  | set_irqchip_out: | 
|  | kfree(chip); | 
|  | if (r) | 
|  | goto out; | 
|  | break; | 
|  | } | 
|  | case KVM_GET_PIT: { | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) | 
|  | goto out; | 
|  | r = -ENXIO; | 
|  | if (!kvm->arch.vpit) | 
|  | goto out; | 
|  | r = kvm_vm_ioctl_get_pit(kvm, &u.ps); | 
|  | if (r) | 
|  | goto out; | 
|  | r = -EFAULT; | 
|  | if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) | 
|  | goto out; | 
|  | r = 0; | 
|  | break; | 
|  | } | 
|  | case KVM_SET_PIT: { | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&u.ps, argp, sizeof u.ps)) | 
|  | goto out; | 
|  | r = -ENXIO; | 
|  | if (!kvm->arch.vpit) | 
|  | goto out; | 
|  | r = kvm_vm_ioctl_set_pit(kvm, &u.ps); | 
|  | if (r) | 
|  | goto out; | 
|  | r = 0; | 
|  | break; | 
|  | } | 
|  | case KVM_REINJECT_CONTROL: { | 
|  | struct kvm_reinject_control control; | 
|  | r =  -EFAULT; | 
|  | if (copy_from_user(&control, argp, sizeof(control))) | 
|  | goto out; | 
|  | r = kvm_vm_ioctl_reinject(kvm, &control); | 
|  | if (r) | 
|  | goto out; | 
|  | r = 0; | 
|  | break; | 
|  | } | 
|  | default: | 
|  | ; | 
|  | } | 
|  | out: | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void kvm_init_msr_list(void) | 
|  | { | 
|  | u32 dummy[2]; | 
|  | unsigned i, j; | 
|  |  | 
|  | for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) { | 
|  | if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) | 
|  | continue; | 
|  | if (j < i) | 
|  | msrs_to_save[j] = msrs_to_save[i]; | 
|  | j++; | 
|  | } | 
|  | num_msrs_to_save = j; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only apic need an MMIO device hook, so shortcut now.. | 
|  | */ | 
|  | static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu, | 
|  | gpa_t addr, int len, | 
|  | int is_write) | 
|  | { | 
|  | struct kvm_io_device *dev; | 
|  |  | 
|  | if (vcpu->arch.apic) { | 
|  | dev = &vcpu->arch.apic->dev; | 
|  | if (dev->in_range(dev, addr, len, is_write)) | 
|  | return dev; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu, | 
|  | gpa_t addr, int len, | 
|  | int is_write) | 
|  | { | 
|  | struct kvm_io_device *dev; | 
|  |  | 
|  | dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write); | 
|  | if (dev == NULL) | 
|  | dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len, | 
|  | is_write); | 
|  | return dev; | 
|  | } | 
|  |  | 
|  | static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | void *data = val; | 
|  | int r = X86EMUL_CONTINUE; | 
|  |  | 
|  | while (bytes) { | 
|  | gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr); | 
|  | unsigned offset = addr & (PAGE_SIZE-1); | 
|  | unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); | 
|  | int ret; | 
|  |  | 
|  | if (gpa == UNMAPPED_GVA) { | 
|  | r = X86EMUL_PROPAGATE_FAULT; | 
|  | goto out; | 
|  | } | 
|  | ret = kvm_read_guest(vcpu->kvm, gpa, data, toread); | 
|  | if (ret < 0) { | 
|  | r = X86EMUL_UNHANDLEABLE; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | bytes -= toread; | 
|  | data += toread; | 
|  | addr += toread; | 
|  | } | 
|  | out: | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | void *data = val; | 
|  | int r = X86EMUL_CONTINUE; | 
|  |  | 
|  | while (bytes) { | 
|  | gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr); | 
|  | unsigned offset = addr & (PAGE_SIZE-1); | 
|  | unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); | 
|  | int ret; | 
|  |  | 
|  | if (gpa == UNMAPPED_GVA) { | 
|  | r = X86EMUL_PROPAGATE_FAULT; | 
|  | goto out; | 
|  | } | 
|  | ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite); | 
|  | if (ret < 0) { | 
|  | r = X86EMUL_UNHANDLEABLE; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | bytes -= towrite; | 
|  | data += towrite; | 
|  | addr += towrite; | 
|  | } | 
|  | out: | 
|  | return r; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int emulator_read_emulated(unsigned long addr, | 
|  | void *val, | 
|  | unsigned int bytes, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_io_device *mmio_dev; | 
|  | gpa_t                 gpa; | 
|  |  | 
|  | if (vcpu->mmio_read_completed) { | 
|  | memcpy(val, vcpu->mmio_data, bytes); | 
|  | vcpu->mmio_read_completed = 0; | 
|  | return X86EMUL_CONTINUE; | 
|  | } | 
|  |  | 
|  | gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr); | 
|  |  | 
|  | /* For APIC access vmexit */ | 
|  | if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) | 
|  | goto mmio; | 
|  |  | 
|  | if (kvm_read_guest_virt(addr, val, bytes, vcpu) | 
|  | == X86EMUL_CONTINUE) | 
|  | return X86EMUL_CONTINUE; | 
|  | if (gpa == UNMAPPED_GVA) | 
|  | return X86EMUL_PROPAGATE_FAULT; | 
|  |  | 
|  | mmio: | 
|  | /* | 
|  | * Is this MMIO handled locally? | 
|  | */ | 
|  | mutex_lock(&vcpu->kvm->lock); | 
|  | mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0); | 
|  | if (mmio_dev) { | 
|  | kvm_iodevice_read(mmio_dev, gpa, bytes, val); | 
|  | mutex_unlock(&vcpu->kvm->lock); | 
|  | return X86EMUL_CONTINUE; | 
|  | } | 
|  | mutex_unlock(&vcpu->kvm->lock); | 
|  |  | 
|  | vcpu->mmio_needed = 1; | 
|  | vcpu->mmio_phys_addr = gpa; | 
|  | vcpu->mmio_size = bytes; | 
|  | vcpu->mmio_is_write = 0; | 
|  |  | 
|  | return X86EMUL_UNHANDLEABLE; | 
|  | } | 
|  |  | 
|  | int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, | 
|  | const void *val, int bytes) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); | 
|  | if (ret < 0) | 
|  | return 0; | 
|  | kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int emulator_write_emulated_onepage(unsigned long addr, | 
|  | const void *val, | 
|  | unsigned int bytes, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_io_device *mmio_dev; | 
|  | gpa_t                 gpa; | 
|  |  | 
|  | gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr); | 
|  |  | 
|  | if (gpa == UNMAPPED_GVA) { | 
|  | kvm_inject_page_fault(vcpu, addr, 2); | 
|  | return X86EMUL_PROPAGATE_FAULT; | 
|  | } | 
|  |  | 
|  | /* For APIC access vmexit */ | 
|  | if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) | 
|  | goto mmio; | 
|  |  | 
|  | if (emulator_write_phys(vcpu, gpa, val, bytes)) | 
|  | return X86EMUL_CONTINUE; | 
|  |  | 
|  | mmio: | 
|  | /* | 
|  | * Is this MMIO handled locally? | 
|  | */ | 
|  | mutex_lock(&vcpu->kvm->lock); | 
|  | mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1); | 
|  | if (mmio_dev) { | 
|  | kvm_iodevice_write(mmio_dev, gpa, bytes, val); | 
|  | mutex_unlock(&vcpu->kvm->lock); | 
|  | return X86EMUL_CONTINUE; | 
|  | } | 
|  | mutex_unlock(&vcpu->kvm->lock); | 
|  |  | 
|  | vcpu->mmio_needed = 1; | 
|  | vcpu->mmio_phys_addr = gpa; | 
|  | vcpu->mmio_size = bytes; | 
|  | vcpu->mmio_is_write = 1; | 
|  | memcpy(vcpu->mmio_data, val, bytes); | 
|  |  | 
|  | return X86EMUL_CONTINUE; | 
|  | } | 
|  |  | 
|  | int emulator_write_emulated(unsigned long addr, | 
|  | const void *val, | 
|  | unsigned int bytes, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | /* Crossing a page boundary? */ | 
|  | if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { | 
|  | int rc, now; | 
|  |  | 
|  | now = -addr & ~PAGE_MASK; | 
|  | rc = emulator_write_emulated_onepage(addr, val, now, vcpu); | 
|  | if (rc != X86EMUL_CONTINUE) | 
|  | return rc; | 
|  | addr += now; | 
|  | val += now; | 
|  | bytes -= now; | 
|  | } | 
|  | return emulator_write_emulated_onepage(addr, val, bytes, vcpu); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(emulator_write_emulated); | 
|  |  | 
|  | static int emulator_cmpxchg_emulated(unsigned long addr, | 
|  | const void *old, | 
|  | const void *new, | 
|  | unsigned int bytes, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | static int reported; | 
|  |  | 
|  | if (!reported) { | 
|  | reported = 1; | 
|  | printk(KERN_WARNING "kvm: emulating exchange as write\n"); | 
|  | } | 
|  | #ifndef CONFIG_X86_64 | 
|  | /* guests cmpxchg8b have to be emulated atomically */ | 
|  | if (bytes == 8) { | 
|  | gpa_t gpa; | 
|  | struct page *page; | 
|  | char *kaddr; | 
|  | u64 val; | 
|  |  | 
|  | gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr); | 
|  |  | 
|  | if (gpa == UNMAPPED_GVA || | 
|  | (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) | 
|  | goto emul_write; | 
|  |  | 
|  | if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) | 
|  | goto emul_write; | 
|  |  | 
|  | val = *(u64 *)new; | 
|  |  | 
|  | page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); | 
|  |  | 
|  | kaddr = kmap_atomic(page, KM_USER0); | 
|  | set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val); | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  | kvm_release_page_dirty(page); | 
|  | } | 
|  | emul_write: | 
|  | #endif | 
|  |  | 
|  | return emulator_write_emulated(addr, new, bytes, vcpu); | 
|  | } | 
|  |  | 
|  | static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) | 
|  | { | 
|  | return kvm_x86_ops->get_segment_base(vcpu, seg); | 
|  | } | 
|  |  | 
|  | int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address) | 
|  | { | 
|  | kvm_mmu_invlpg(vcpu, address); | 
|  | return X86EMUL_CONTINUE; | 
|  | } | 
|  |  | 
|  | int emulate_clts(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | KVMTRACE_0D(CLTS, vcpu, handler); | 
|  | kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS); | 
|  | return X86EMUL_CONTINUE; | 
|  | } | 
|  |  | 
|  | int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest) | 
|  | { | 
|  | struct kvm_vcpu *vcpu = ctxt->vcpu; | 
|  |  | 
|  | switch (dr) { | 
|  | case 0 ... 3: | 
|  | *dest = kvm_x86_ops->get_dr(vcpu, dr); | 
|  | return X86EMUL_CONTINUE; | 
|  | default: | 
|  | pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr); | 
|  | return X86EMUL_UNHANDLEABLE; | 
|  | } | 
|  | } | 
|  |  | 
|  | int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) | 
|  | { | 
|  | unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U; | 
|  | int exception; | 
|  |  | 
|  | kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception); | 
|  | if (exception) { | 
|  | /* FIXME: better handling */ | 
|  | return X86EMUL_UNHANDLEABLE; | 
|  | } | 
|  | return X86EMUL_CONTINUE; | 
|  | } | 
|  |  | 
|  | void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context) | 
|  | { | 
|  | u8 opcodes[4]; | 
|  | unsigned long rip = kvm_rip_read(vcpu); | 
|  | unsigned long rip_linear; | 
|  |  | 
|  | if (!printk_ratelimit()) | 
|  | return; | 
|  |  | 
|  | rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS); | 
|  |  | 
|  | kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu); | 
|  |  | 
|  | printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n", | 
|  | context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_report_emulation_failure); | 
|  |  | 
|  | static struct x86_emulate_ops emulate_ops = { | 
|  | .read_std            = kvm_read_guest_virt, | 
|  | .read_emulated       = emulator_read_emulated, | 
|  | .write_emulated      = emulator_write_emulated, | 
|  | .cmpxchg_emulated    = emulator_cmpxchg_emulated, | 
|  | }; | 
|  |  | 
|  | static void cache_all_regs(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | kvm_register_read(vcpu, VCPU_REGS_RAX); | 
|  | kvm_register_read(vcpu, VCPU_REGS_RSP); | 
|  | kvm_register_read(vcpu, VCPU_REGS_RIP); | 
|  | vcpu->arch.regs_dirty = ~0; | 
|  | } | 
|  |  | 
|  | int emulate_instruction(struct kvm_vcpu *vcpu, | 
|  | struct kvm_run *run, | 
|  | unsigned long cr2, | 
|  | u16 error_code, | 
|  | int emulation_type) | 
|  | { | 
|  | int r; | 
|  | struct decode_cache *c; | 
|  |  | 
|  | kvm_clear_exception_queue(vcpu); | 
|  | vcpu->arch.mmio_fault_cr2 = cr2; | 
|  | /* | 
|  | * TODO: fix x86_emulate.c to use guest_read/write_register | 
|  | * instead of direct ->regs accesses, can save hundred cycles | 
|  | * on Intel for instructions that don't read/change RSP, for | 
|  | * for example. | 
|  | */ | 
|  | cache_all_regs(vcpu); | 
|  |  | 
|  | vcpu->mmio_is_write = 0; | 
|  | vcpu->arch.pio.string = 0; | 
|  |  | 
|  | if (!(emulation_type & EMULTYPE_NO_DECODE)) { | 
|  | int cs_db, cs_l; | 
|  | kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); | 
|  |  | 
|  | vcpu->arch.emulate_ctxt.vcpu = vcpu; | 
|  | vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu); | 
|  | vcpu->arch.emulate_ctxt.mode = | 
|  | (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM) | 
|  | ? X86EMUL_MODE_REAL : cs_l | 
|  | ? X86EMUL_MODE_PROT64 :	cs_db | 
|  | ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16; | 
|  |  | 
|  | r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops); | 
|  |  | 
|  | /* Reject the instructions other than VMCALL/VMMCALL when | 
|  | * try to emulate invalid opcode */ | 
|  | c = &vcpu->arch.emulate_ctxt.decode; | 
|  | if ((emulation_type & EMULTYPE_TRAP_UD) && | 
|  | (!(c->twobyte && c->b == 0x01 && | 
|  | (c->modrm_reg == 0 || c->modrm_reg == 3) && | 
|  | c->modrm_mod == 3 && c->modrm_rm == 1))) | 
|  | return EMULATE_FAIL; | 
|  |  | 
|  | ++vcpu->stat.insn_emulation; | 
|  | if (r)  { | 
|  | ++vcpu->stat.insn_emulation_fail; | 
|  | if (kvm_mmu_unprotect_page_virt(vcpu, cr2)) | 
|  | return EMULATE_DONE; | 
|  | return EMULATE_FAIL; | 
|  | } | 
|  | } | 
|  |  | 
|  | r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops); | 
|  |  | 
|  | if (vcpu->arch.pio.string) | 
|  | return EMULATE_DO_MMIO; | 
|  |  | 
|  | if ((r || vcpu->mmio_is_write) && run) { | 
|  | run->exit_reason = KVM_EXIT_MMIO; | 
|  | run->mmio.phys_addr = vcpu->mmio_phys_addr; | 
|  | memcpy(run->mmio.data, vcpu->mmio_data, 8); | 
|  | run->mmio.len = vcpu->mmio_size; | 
|  | run->mmio.is_write = vcpu->mmio_is_write; | 
|  | } | 
|  |  | 
|  | if (r) { | 
|  | if (kvm_mmu_unprotect_page_virt(vcpu, cr2)) | 
|  | return EMULATE_DONE; | 
|  | if (!vcpu->mmio_needed) { | 
|  | kvm_report_emulation_failure(vcpu, "mmio"); | 
|  | return EMULATE_FAIL; | 
|  | } | 
|  | return EMULATE_DO_MMIO; | 
|  | } | 
|  |  | 
|  | kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags); | 
|  |  | 
|  | if (vcpu->mmio_is_write) { | 
|  | vcpu->mmio_needed = 0; | 
|  | return EMULATE_DO_MMIO; | 
|  | } | 
|  |  | 
|  | return EMULATE_DONE; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(emulate_instruction); | 
|  |  | 
|  | static int pio_copy_data(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | void *p = vcpu->arch.pio_data; | 
|  | gva_t q = vcpu->arch.pio.guest_gva; | 
|  | unsigned bytes; | 
|  | int ret; | 
|  |  | 
|  | bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count; | 
|  | if (vcpu->arch.pio.in) | 
|  | ret = kvm_write_guest_virt(q, p, bytes, vcpu); | 
|  | else | 
|  | ret = kvm_read_guest_virt(q, p, bytes, vcpu); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int complete_pio(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_pio_request *io = &vcpu->arch.pio; | 
|  | long delta; | 
|  | int r; | 
|  | unsigned long val; | 
|  |  | 
|  | if (!io->string) { | 
|  | if (io->in) { | 
|  | val = kvm_register_read(vcpu, VCPU_REGS_RAX); | 
|  | memcpy(&val, vcpu->arch.pio_data, io->size); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RAX, val); | 
|  | } | 
|  | } else { | 
|  | if (io->in) { | 
|  | r = pio_copy_data(vcpu); | 
|  | if (r) | 
|  | return r; | 
|  | } | 
|  |  | 
|  | delta = 1; | 
|  | if (io->rep) { | 
|  | delta *= io->cur_count; | 
|  | /* | 
|  | * The size of the register should really depend on | 
|  | * current address size. | 
|  | */ | 
|  | val = kvm_register_read(vcpu, VCPU_REGS_RCX); | 
|  | val -= delta; | 
|  | kvm_register_write(vcpu, VCPU_REGS_RCX, val); | 
|  | } | 
|  | if (io->down) | 
|  | delta = -delta; | 
|  | delta *= io->size; | 
|  | if (io->in) { | 
|  | val = kvm_register_read(vcpu, VCPU_REGS_RDI); | 
|  | val += delta; | 
|  | kvm_register_write(vcpu, VCPU_REGS_RDI, val); | 
|  | } else { | 
|  | val = kvm_register_read(vcpu, VCPU_REGS_RSI); | 
|  | val += delta; | 
|  | kvm_register_write(vcpu, VCPU_REGS_RSI, val); | 
|  | } | 
|  | } | 
|  |  | 
|  | io->count -= io->cur_count; | 
|  | io->cur_count = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void kernel_pio(struct kvm_io_device *pio_dev, | 
|  | struct kvm_vcpu *vcpu, | 
|  | void *pd) | 
|  | { | 
|  | /* TODO: String I/O for in kernel device */ | 
|  |  | 
|  | mutex_lock(&vcpu->kvm->lock); | 
|  | if (vcpu->arch.pio.in) | 
|  | kvm_iodevice_read(pio_dev, vcpu->arch.pio.port, | 
|  | vcpu->arch.pio.size, | 
|  | pd); | 
|  | else | 
|  | kvm_iodevice_write(pio_dev, vcpu->arch.pio.port, | 
|  | vcpu->arch.pio.size, | 
|  | pd); | 
|  | mutex_unlock(&vcpu->kvm->lock); | 
|  | } | 
|  |  | 
|  | static void pio_string_write(struct kvm_io_device *pio_dev, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_pio_request *io = &vcpu->arch.pio; | 
|  | void *pd = vcpu->arch.pio_data; | 
|  | int i; | 
|  |  | 
|  | mutex_lock(&vcpu->kvm->lock); | 
|  | for (i = 0; i < io->cur_count; i++) { | 
|  | kvm_iodevice_write(pio_dev, io->port, | 
|  | io->size, | 
|  | pd); | 
|  | pd += io->size; | 
|  | } | 
|  | mutex_unlock(&vcpu->kvm->lock); | 
|  | } | 
|  |  | 
|  | static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu, | 
|  | gpa_t addr, int len, | 
|  | int is_write) | 
|  | { | 
|  | return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write); | 
|  | } | 
|  |  | 
|  | int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in, | 
|  | int size, unsigned port) | 
|  | { | 
|  | struct kvm_io_device *pio_dev; | 
|  | unsigned long val; | 
|  |  | 
|  | vcpu->run->exit_reason = KVM_EXIT_IO; | 
|  | vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; | 
|  | vcpu->run->io.size = vcpu->arch.pio.size = size; | 
|  | vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; | 
|  | vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1; | 
|  | vcpu->run->io.port = vcpu->arch.pio.port = port; | 
|  | vcpu->arch.pio.in = in; | 
|  | vcpu->arch.pio.string = 0; | 
|  | vcpu->arch.pio.down = 0; | 
|  | vcpu->arch.pio.rep = 0; | 
|  |  | 
|  | if (vcpu->run->io.direction == KVM_EXIT_IO_IN) | 
|  | KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size, | 
|  | handler); | 
|  | else | 
|  | KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size, | 
|  | handler); | 
|  |  | 
|  | val = kvm_register_read(vcpu, VCPU_REGS_RAX); | 
|  | memcpy(vcpu->arch.pio_data, &val, 4); | 
|  |  | 
|  | pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in); | 
|  | if (pio_dev) { | 
|  | kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data); | 
|  | complete_pio(vcpu); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_emulate_pio); | 
|  |  | 
|  | int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in, | 
|  | int size, unsigned long count, int down, | 
|  | gva_t address, int rep, unsigned port) | 
|  | { | 
|  | unsigned now, in_page; | 
|  | int ret = 0; | 
|  | struct kvm_io_device *pio_dev; | 
|  |  | 
|  | vcpu->run->exit_reason = KVM_EXIT_IO; | 
|  | vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; | 
|  | vcpu->run->io.size = vcpu->arch.pio.size = size; | 
|  | vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; | 
|  | vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count; | 
|  | vcpu->run->io.port = vcpu->arch.pio.port = port; | 
|  | vcpu->arch.pio.in = in; | 
|  | vcpu->arch.pio.string = 1; | 
|  | vcpu->arch.pio.down = down; | 
|  | vcpu->arch.pio.rep = rep; | 
|  |  | 
|  | if (vcpu->run->io.direction == KVM_EXIT_IO_IN) | 
|  | KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size, | 
|  | handler); | 
|  | else | 
|  | KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size, | 
|  | handler); | 
|  |  | 
|  | if (!count) { | 
|  | kvm_x86_ops->skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (!down) | 
|  | in_page = PAGE_SIZE - offset_in_page(address); | 
|  | else | 
|  | in_page = offset_in_page(address) + size; | 
|  | now = min(count, (unsigned long)in_page / size); | 
|  | if (!now) | 
|  | now = 1; | 
|  | if (down) { | 
|  | /* | 
|  | * String I/O in reverse.  Yuck.  Kill the guest, fix later. | 
|  | */ | 
|  | pr_unimpl(vcpu, "guest string pio down\n"); | 
|  | kvm_inject_gp(vcpu, 0); | 
|  | return 1; | 
|  | } | 
|  | vcpu->run->io.count = now; | 
|  | vcpu->arch.pio.cur_count = now; | 
|  |  | 
|  | if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count) | 
|  | kvm_x86_ops->skip_emulated_instruction(vcpu); | 
|  |  | 
|  | vcpu->arch.pio.guest_gva = address; | 
|  |  | 
|  | pio_dev = vcpu_find_pio_dev(vcpu, port, | 
|  | vcpu->arch.pio.cur_count, | 
|  | !vcpu->arch.pio.in); | 
|  | if (!vcpu->arch.pio.in) { | 
|  | /* string PIO write */ | 
|  | ret = pio_copy_data(vcpu); | 
|  | if (ret == X86EMUL_PROPAGATE_FAULT) { | 
|  | kvm_inject_gp(vcpu, 0); | 
|  | return 1; | 
|  | } | 
|  | if (ret == 0 && pio_dev) { | 
|  | pio_string_write(pio_dev, vcpu); | 
|  | complete_pio(vcpu); | 
|  | if (vcpu->arch.pio.count == 0) | 
|  | ret = 1; | 
|  | } | 
|  | } else if (pio_dev) | 
|  | pr_unimpl(vcpu, "no string pio read support yet, " | 
|  | "port %x size %d count %ld\n", | 
|  | port, size, count); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_emulate_pio_string); | 
|  |  | 
|  | static void bounce_off(void *info) | 
|  | { | 
|  | /* nothing */ | 
|  | } | 
|  |  | 
|  | static unsigned int  ref_freq; | 
|  | static unsigned long tsc_khz_ref; | 
|  |  | 
|  | static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, | 
|  | void *data) | 
|  | { | 
|  | struct cpufreq_freqs *freq = data; | 
|  | struct kvm *kvm; | 
|  | struct kvm_vcpu *vcpu; | 
|  | int i, send_ipi = 0; | 
|  |  | 
|  | if (!ref_freq) | 
|  | ref_freq = freq->old; | 
|  |  | 
|  | if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) | 
|  | return 0; | 
|  | if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) | 
|  | return 0; | 
|  | per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); | 
|  |  | 
|  | spin_lock(&kvm_lock); | 
|  | list_for_each_entry(kvm, &vm_list, vm_list) { | 
|  | for (i = 0; i < KVM_MAX_VCPUS; ++i) { | 
|  | vcpu = kvm->vcpus[i]; | 
|  | if (!vcpu) | 
|  | continue; | 
|  | if (vcpu->cpu != freq->cpu) | 
|  | continue; | 
|  | if (!kvm_request_guest_time_update(vcpu)) | 
|  | continue; | 
|  | if (vcpu->cpu != smp_processor_id()) | 
|  | send_ipi++; | 
|  | } | 
|  | } | 
|  | spin_unlock(&kvm_lock); | 
|  |  | 
|  | if (freq->old < freq->new && send_ipi) { | 
|  | /* | 
|  | * We upscale the frequency.  Must make the guest | 
|  | * doesn't see old kvmclock values while running with | 
|  | * the new frequency, otherwise we risk the guest sees | 
|  | * time go backwards. | 
|  | * | 
|  | * In case we update the frequency for another cpu | 
|  | * (which might be in guest context) send an interrupt | 
|  | * to kick the cpu out of guest context.  Next time | 
|  | * guest context is entered kvmclock will be updated, | 
|  | * so the guest will not see stale values. | 
|  | */ | 
|  | smp_call_function_single(freq->cpu, bounce_off, NULL, 1); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct notifier_block kvmclock_cpufreq_notifier_block = { | 
|  | .notifier_call  = kvmclock_cpufreq_notifier | 
|  | }; | 
|  |  | 
|  | int kvm_arch_init(void *opaque) | 
|  | { | 
|  | int r, cpu; | 
|  | struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque; | 
|  |  | 
|  | if (kvm_x86_ops) { | 
|  | printk(KERN_ERR "kvm: already loaded the other module\n"); | 
|  | r = -EEXIST; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!ops->cpu_has_kvm_support()) { | 
|  | printk(KERN_ERR "kvm: no hardware support\n"); | 
|  | r = -EOPNOTSUPP; | 
|  | goto out; | 
|  | } | 
|  | if (ops->disabled_by_bios()) { | 
|  | printk(KERN_ERR "kvm: disabled by bios\n"); | 
|  | r = -EOPNOTSUPP; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | r = kvm_mmu_module_init(); | 
|  | if (r) | 
|  | goto out; | 
|  |  | 
|  | kvm_init_msr_list(); | 
|  |  | 
|  | kvm_x86_ops = ops; | 
|  | kvm_mmu_set_nonpresent_ptes(0ull, 0ull); | 
|  | kvm_mmu_set_base_ptes(PT_PRESENT_MASK); | 
|  | kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, | 
|  | PT_DIRTY_MASK, PT64_NX_MASK, 0, 0); | 
|  |  | 
|  | for_each_possible_cpu(cpu) | 
|  | per_cpu(cpu_tsc_khz, cpu) = tsc_khz; | 
|  | if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { | 
|  | tsc_khz_ref = tsc_khz; | 
|  | cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, | 
|  | CPUFREQ_TRANSITION_NOTIFIER); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out: | 
|  | return r; | 
|  | } | 
|  |  | 
|  | void kvm_arch_exit(void) | 
|  | { | 
|  | if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) | 
|  | cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, | 
|  | CPUFREQ_TRANSITION_NOTIFIER); | 
|  | kvm_x86_ops = NULL; | 
|  | kvm_mmu_module_exit(); | 
|  | } | 
|  |  | 
|  | int kvm_emulate_halt(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | ++vcpu->stat.halt_exits; | 
|  | KVMTRACE_0D(HLT, vcpu, handler); | 
|  | if (irqchip_in_kernel(vcpu->kvm)) { | 
|  | vcpu->arch.mp_state = KVM_MP_STATE_HALTED; | 
|  | return 1; | 
|  | } else { | 
|  | vcpu->run->exit_reason = KVM_EXIT_HLT; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_emulate_halt); | 
|  |  | 
|  | static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0, | 
|  | unsigned long a1) | 
|  | { | 
|  | if (is_long_mode(vcpu)) | 
|  | return a0; | 
|  | else | 
|  | return a0 | ((gpa_t)a1 << 32); | 
|  | } | 
|  |  | 
|  | int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned long nr, a0, a1, a2, a3, ret; | 
|  | int r = 1; | 
|  |  | 
|  | nr = kvm_register_read(vcpu, VCPU_REGS_RAX); | 
|  | a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); | 
|  | a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); | 
|  | a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); | 
|  | a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); | 
|  |  | 
|  | KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler); | 
|  |  | 
|  | if (!is_long_mode(vcpu)) { | 
|  | nr &= 0xFFFFFFFF; | 
|  | a0 &= 0xFFFFFFFF; | 
|  | a1 &= 0xFFFFFFFF; | 
|  | a2 &= 0xFFFFFFFF; | 
|  | a3 &= 0xFFFFFFFF; | 
|  | } | 
|  |  | 
|  | switch (nr) { | 
|  | case KVM_HC_VAPIC_POLL_IRQ: | 
|  | ret = 0; | 
|  | break; | 
|  | case KVM_HC_MMU_OP: | 
|  | r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret); | 
|  | break; | 
|  | default: | 
|  | ret = -KVM_ENOSYS; | 
|  | break; | 
|  | } | 
|  | kvm_register_write(vcpu, VCPU_REGS_RAX, ret); | 
|  | ++vcpu->stat.hypercalls; | 
|  | return r; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); | 
|  |  | 
|  | int kvm_fix_hypercall(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | char instruction[3]; | 
|  | int ret = 0; | 
|  | unsigned long rip = kvm_rip_read(vcpu); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Blow out the MMU to ensure that no other VCPU has an active mapping | 
|  | * to ensure that the updated hypercall appears atomically across all | 
|  | * VCPUs. | 
|  | */ | 
|  | kvm_mmu_zap_all(vcpu->kvm); | 
|  |  | 
|  | kvm_x86_ops->patch_hypercall(vcpu, instruction); | 
|  | if (emulator_write_emulated(rip, instruction, 3, vcpu) | 
|  | != X86EMUL_CONTINUE) | 
|  | ret = -EFAULT; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u64 mk_cr_64(u64 curr_cr, u32 new_val) | 
|  | { | 
|  | return (curr_cr & ~((1ULL << 32) - 1)) | new_val; | 
|  | } | 
|  |  | 
|  | void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base) | 
|  | { | 
|  | struct descriptor_table dt = { limit, base }; | 
|  |  | 
|  | kvm_x86_ops->set_gdt(vcpu, &dt); | 
|  | } | 
|  |  | 
|  | void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base) | 
|  | { | 
|  | struct descriptor_table dt = { limit, base }; | 
|  |  | 
|  | kvm_x86_ops->set_idt(vcpu, &dt); | 
|  | } | 
|  |  | 
|  | void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw, | 
|  | unsigned long *rflags) | 
|  | { | 
|  | kvm_lmsw(vcpu, msw); | 
|  | *rflags = kvm_x86_ops->get_rflags(vcpu); | 
|  | } | 
|  |  | 
|  | unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr) | 
|  | { | 
|  | unsigned long value; | 
|  |  | 
|  | kvm_x86_ops->decache_cr4_guest_bits(vcpu); | 
|  | switch (cr) { | 
|  | case 0: | 
|  | value = vcpu->arch.cr0; | 
|  | break; | 
|  | case 2: | 
|  | value = vcpu->arch.cr2; | 
|  | break; | 
|  | case 3: | 
|  | value = vcpu->arch.cr3; | 
|  | break; | 
|  | case 4: | 
|  | value = vcpu->arch.cr4; | 
|  | break; | 
|  | case 8: | 
|  | value = kvm_get_cr8(vcpu); | 
|  | break; | 
|  | default: | 
|  | vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr); | 
|  | return 0; | 
|  | } | 
|  | KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value, | 
|  | (u32)((u64)value >> 32), handler); | 
|  |  | 
|  | return value; | 
|  | } | 
|  |  | 
|  | void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val, | 
|  | unsigned long *rflags) | 
|  | { | 
|  | KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val, | 
|  | (u32)((u64)val >> 32), handler); | 
|  |  | 
|  | switch (cr) { | 
|  | case 0: | 
|  | kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val)); | 
|  | *rflags = kvm_x86_ops->get_rflags(vcpu); | 
|  | break; | 
|  | case 2: | 
|  | vcpu->arch.cr2 = val; | 
|  | break; | 
|  | case 3: | 
|  | kvm_set_cr3(vcpu, val); | 
|  | break; | 
|  | case 4: | 
|  | kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val)); | 
|  | break; | 
|  | case 8: | 
|  | kvm_set_cr8(vcpu, val & 0xfUL); | 
|  | break; | 
|  | default: | 
|  | vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i) | 
|  | { | 
|  | struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i]; | 
|  | int j, nent = vcpu->arch.cpuid_nent; | 
|  |  | 
|  | e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT; | 
|  | /* when no next entry is found, the current entry[i] is reselected */ | 
|  | for (j = i + 1; ; j = (j + 1) % nent) { | 
|  | struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j]; | 
|  | if (ej->function == e->function) { | 
|  | ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT; | 
|  | return j; | 
|  | } | 
|  | } | 
|  | return 0; /* silence gcc, even though control never reaches here */ | 
|  | } | 
|  |  | 
|  | /* find an entry with matching function, matching index (if needed), and that | 
|  | * should be read next (if it's stateful) */ | 
|  | static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e, | 
|  | u32 function, u32 index) | 
|  | { | 
|  | if (e->function != function) | 
|  | return 0; | 
|  | if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index) | 
|  | return 0; | 
|  | if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) && | 
|  | !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT)) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu, | 
|  | u32 function, u32 index) | 
|  | { | 
|  | int i; | 
|  | struct kvm_cpuid_entry2 *best = NULL; | 
|  |  | 
|  | for (i = 0; i < vcpu->arch.cpuid_nent; ++i) { | 
|  | struct kvm_cpuid_entry2 *e; | 
|  |  | 
|  | e = &vcpu->arch.cpuid_entries[i]; | 
|  | if (is_matching_cpuid_entry(e, function, index)) { | 
|  | if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) | 
|  | move_to_next_stateful_cpuid_entry(vcpu, i); | 
|  | best = e; | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * Both basic or both extended? | 
|  | */ | 
|  | if (((e->function ^ function) & 0x80000000) == 0) | 
|  | if (!best || e->function > best->function) | 
|  | best = e; | 
|  | } | 
|  | return best; | 
|  | } | 
|  |  | 
|  | void kvm_emulate_cpuid(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u32 function, index; | 
|  | struct kvm_cpuid_entry2 *best; | 
|  |  | 
|  | function = kvm_register_read(vcpu, VCPU_REGS_RAX); | 
|  | index = kvm_register_read(vcpu, VCPU_REGS_RCX); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RAX, 0); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RBX, 0); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RCX, 0); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RDX, 0); | 
|  | best = kvm_find_cpuid_entry(vcpu, function, index); | 
|  | if (best) { | 
|  | kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx); | 
|  | } | 
|  | kvm_x86_ops->skip_emulated_instruction(vcpu); | 
|  | KVMTRACE_5D(CPUID, vcpu, function, | 
|  | (u32)kvm_register_read(vcpu, VCPU_REGS_RAX), | 
|  | (u32)kvm_register_read(vcpu, VCPU_REGS_RBX), | 
|  | (u32)kvm_register_read(vcpu, VCPU_REGS_RCX), | 
|  | (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_emulate_cpuid); | 
|  |  | 
|  | /* | 
|  | * Check if userspace requested an interrupt window, and that the | 
|  | * interrupt window is open. | 
|  | * | 
|  | * No need to exit to userspace if we already have an interrupt queued. | 
|  | */ | 
|  | static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu, | 
|  | struct kvm_run *kvm_run) | 
|  | { | 
|  | return (!vcpu->arch.irq_summary && | 
|  | kvm_run->request_interrupt_window && | 
|  | vcpu->arch.interrupt_window_open && | 
|  | (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF)); | 
|  | } | 
|  |  | 
|  | static void post_kvm_run_save(struct kvm_vcpu *vcpu, | 
|  | struct kvm_run *kvm_run) | 
|  | { | 
|  | kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0; | 
|  | kvm_run->cr8 = kvm_get_cr8(vcpu); | 
|  | kvm_run->apic_base = kvm_get_apic_base(vcpu); | 
|  | if (irqchip_in_kernel(vcpu->kvm)) | 
|  | kvm_run->ready_for_interrupt_injection = 1; | 
|  | else | 
|  | kvm_run->ready_for_interrupt_injection = | 
|  | (vcpu->arch.interrupt_window_open && | 
|  | vcpu->arch.irq_summary == 0); | 
|  | } | 
|  |  | 
|  | static void vapic_enter(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  | struct page *page; | 
|  |  | 
|  | if (!apic || !apic->vapic_addr) | 
|  | return; | 
|  |  | 
|  | page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); | 
|  |  | 
|  | vcpu->arch.apic->vapic_page = page; | 
|  | } | 
|  |  | 
|  | static void vapic_exit(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  |  | 
|  | if (!apic || !apic->vapic_addr) | 
|  | return; | 
|  |  | 
|  | down_read(&vcpu->kvm->slots_lock); | 
|  | kvm_release_page_dirty(apic->vapic_page); | 
|  | mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); | 
|  | up_read(&vcpu->kvm->slots_lock); | 
|  | } | 
|  |  | 
|  | static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | if (vcpu->requests) | 
|  | if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests)) | 
|  | kvm_mmu_unload(vcpu); | 
|  |  | 
|  | r = kvm_mmu_reload(vcpu); | 
|  | if (unlikely(r)) | 
|  | goto out; | 
|  |  | 
|  | if (vcpu->requests) { | 
|  | if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests)) | 
|  | __kvm_migrate_timers(vcpu); | 
|  | if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests)) | 
|  | kvm_write_guest_time(vcpu); | 
|  | if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests)) | 
|  | kvm_mmu_sync_roots(vcpu); | 
|  | if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests)) | 
|  | kvm_x86_ops->tlb_flush(vcpu); | 
|  | if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS, | 
|  | &vcpu->requests)) { | 
|  | kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS; | 
|  | r = 0; | 
|  | goto out; | 
|  | } | 
|  | if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) { | 
|  | kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; | 
|  | r = 0; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); | 
|  | kvm_inject_pending_timer_irqs(vcpu); | 
|  |  | 
|  | preempt_disable(); | 
|  |  | 
|  | kvm_x86_ops->prepare_guest_switch(vcpu); | 
|  | kvm_load_guest_fpu(vcpu); | 
|  |  | 
|  | local_irq_disable(); | 
|  |  | 
|  | if (vcpu->requests || need_resched() || signal_pending(current)) { | 
|  | local_irq_enable(); | 
|  | preempt_enable(); | 
|  | r = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | vcpu->guest_mode = 1; | 
|  | /* | 
|  | * Make sure that guest_mode assignment won't happen after | 
|  | * testing the pending IRQ vector bitmap. | 
|  | */ | 
|  | smp_wmb(); | 
|  |  | 
|  | if (vcpu->arch.exception.pending) | 
|  | __queue_exception(vcpu); | 
|  | else if (irqchip_in_kernel(vcpu->kvm)) | 
|  | kvm_x86_ops->inject_pending_irq(vcpu); | 
|  | else | 
|  | kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run); | 
|  |  | 
|  | kvm_lapic_sync_to_vapic(vcpu); | 
|  |  | 
|  | up_read(&vcpu->kvm->slots_lock); | 
|  |  | 
|  | kvm_guest_enter(); | 
|  |  | 
|  | get_debugreg(vcpu->arch.host_dr6, 6); | 
|  | get_debugreg(vcpu->arch.host_dr7, 7); | 
|  | if (unlikely(vcpu->arch.switch_db_regs)) { | 
|  | get_debugreg(vcpu->arch.host_db[0], 0); | 
|  | get_debugreg(vcpu->arch.host_db[1], 1); | 
|  | get_debugreg(vcpu->arch.host_db[2], 2); | 
|  | get_debugreg(vcpu->arch.host_db[3], 3); | 
|  |  | 
|  | set_debugreg(0, 7); | 
|  | set_debugreg(vcpu->arch.eff_db[0], 0); | 
|  | set_debugreg(vcpu->arch.eff_db[1], 1); | 
|  | set_debugreg(vcpu->arch.eff_db[2], 2); | 
|  | set_debugreg(vcpu->arch.eff_db[3], 3); | 
|  | } | 
|  |  | 
|  | KVMTRACE_0D(VMENTRY, vcpu, entryexit); | 
|  | kvm_x86_ops->run(vcpu, kvm_run); | 
|  |  | 
|  | if (unlikely(vcpu->arch.switch_db_regs)) { | 
|  | set_debugreg(0, 7); | 
|  | set_debugreg(vcpu->arch.host_db[0], 0); | 
|  | set_debugreg(vcpu->arch.host_db[1], 1); | 
|  | set_debugreg(vcpu->arch.host_db[2], 2); | 
|  | set_debugreg(vcpu->arch.host_db[3], 3); | 
|  | } | 
|  | set_debugreg(vcpu->arch.host_dr6, 6); | 
|  | set_debugreg(vcpu->arch.host_dr7, 7); | 
|  |  | 
|  | vcpu->guest_mode = 0; | 
|  | local_irq_enable(); | 
|  |  | 
|  | ++vcpu->stat.exits; | 
|  |  | 
|  | /* | 
|  | * We must have an instruction between local_irq_enable() and | 
|  | * kvm_guest_exit(), so the timer interrupt isn't delayed by | 
|  | * the interrupt shadow.  The stat.exits increment will do nicely. | 
|  | * But we need to prevent reordering, hence this barrier(): | 
|  | */ | 
|  | barrier(); | 
|  |  | 
|  | kvm_guest_exit(); | 
|  |  | 
|  | preempt_enable(); | 
|  |  | 
|  | down_read(&vcpu->kvm->slots_lock); | 
|  |  | 
|  | /* | 
|  | * Profile KVM exit RIPs: | 
|  | */ | 
|  | if (unlikely(prof_on == KVM_PROFILING)) { | 
|  | unsigned long rip = kvm_rip_read(vcpu); | 
|  | profile_hit(KVM_PROFILING, (void *)rip); | 
|  | } | 
|  |  | 
|  | if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu)) | 
|  | vcpu->arch.exception.pending = false; | 
|  |  | 
|  | kvm_lapic_sync_from_vapic(vcpu); | 
|  |  | 
|  | r = kvm_x86_ops->handle_exit(kvm_run, vcpu); | 
|  | out: | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) { | 
|  | pr_debug("vcpu %d received sipi with vector # %x\n", | 
|  | vcpu->vcpu_id, vcpu->arch.sipi_vector); | 
|  | kvm_lapic_reset(vcpu); | 
|  | r = kvm_arch_vcpu_reset(vcpu); | 
|  | if (r) | 
|  | return r; | 
|  | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; | 
|  | } | 
|  |  | 
|  | down_read(&vcpu->kvm->slots_lock); | 
|  | vapic_enter(vcpu); | 
|  |  | 
|  | r = 1; | 
|  | while (r > 0) { | 
|  | if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE) | 
|  | r = vcpu_enter_guest(vcpu, kvm_run); | 
|  | else { | 
|  | up_read(&vcpu->kvm->slots_lock); | 
|  | kvm_vcpu_block(vcpu); | 
|  | down_read(&vcpu->kvm->slots_lock); | 
|  | if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests)) | 
|  | if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) | 
|  | vcpu->arch.mp_state = | 
|  | KVM_MP_STATE_RUNNABLE; | 
|  | if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) | 
|  | r = -EINTR; | 
|  | } | 
|  |  | 
|  | if (r > 0) { | 
|  | if (dm_request_for_irq_injection(vcpu, kvm_run)) { | 
|  | r = -EINTR; | 
|  | kvm_run->exit_reason = KVM_EXIT_INTR; | 
|  | ++vcpu->stat.request_irq_exits; | 
|  | } | 
|  | if (signal_pending(current)) { | 
|  | r = -EINTR; | 
|  | kvm_run->exit_reason = KVM_EXIT_INTR; | 
|  | ++vcpu->stat.signal_exits; | 
|  | } | 
|  | if (need_resched()) { | 
|  | up_read(&vcpu->kvm->slots_lock); | 
|  | kvm_resched(vcpu); | 
|  | down_read(&vcpu->kvm->slots_lock); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | up_read(&vcpu->kvm->slots_lock); | 
|  | post_kvm_run_save(vcpu, kvm_run); | 
|  |  | 
|  | vapic_exit(vcpu); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) | 
|  | { | 
|  | int r; | 
|  | sigset_t sigsaved; | 
|  |  | 
|  | vcpu_load(vcpu); | 
|  |  | 
|  | if (vcpu->sigset_active) | 
|  | sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); | 
|  |  | 
|  | if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { | 
|  | kvm_vcpu_block(vcpu); | 
|  | clear_bit(KVM_REQ_UNHALT, &vcpu->requests); | 
|  | r = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* re-sync apic's tpr */ | 
|  | if (!irqchip_in_kernel(vcpu->kvm)) | 
|  | kvm_set_cr8(vcpu, kvm_run->cr8); | 
|  |  | 
|  | if (vcpu->arch.pio.cur_count) { | 
|  | r = complete_pio(vcpu); | 
|  | if (r) | 
|  | goto out; | 
|  | } | 
|  | #if CONFIG_HAS_IOMEM | 
|  | if (vcpu->mmio_needed) { | 
|  | memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8); | 
|  | vcpu->mmio_read_completed = 1; | 
|  | vcpu->mmio_needed = 0; | 
|  |  | 
|  | down_read(&vcpu->kvm->slots_lock); | 
|  | r = emulate_instruction(vcpu, kvm_run, | 
|  | vcpu->arch.mmio_fault_cr2, 0, | 
|  | EMULTYPE_NO_DECODE); | 
|  | up_read(&vcpu->kvm->slots_lock); | 
|  | if (r == EMULATE_DO_MMIO) { | 
|  | /* | 
|  | * Read-modify-write.  Back to userspace. | 
|  | */ | 
|  | r = 0; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) | 
|  | kvm_register_write(vcpu, VCPU_REGS_RAX, | 
|  | kvm_run->hypercall.ret); | 
|  |  | 
|  | r = __vcpu_run(vcpu, kvm_run); | 
|  |  | 
|  | out: | 
|  | if (vcpu->sigset_active) | 
|  | sigprocmask(SIG_SETMASK, &sigsaved, NULL); | 
|  |  | 
|  | vcpu_put(vcpu); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) | 
|  | { | 
|  | vcpu_load(vcpu); | 
|  |  | 
|  | regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); | 
|  | regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); | 
|  | regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); | 
|  | regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); | 
|  | regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); | 
|  | regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); | 
|  | regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); | 
|  | regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); | 
|  | #ifdef CONFIG_X86_64 | 
|  | regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); | 
|  | regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); | 
|  | regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); | 
|  | regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); | 
|  | regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); | 
|  | regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); | 
|  | regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); | 
|  | regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); | 
|  | #endif | 
|  |  | 
|  | regs->rip = kvm_rip_read(vcpu); | 
|  | regs->rflags = kvm_x86_ops->get_rflags(vcpu); | 
|  |  | 
|  | /* | 
|  | * Don't leak debug flags in case they were set for guest debugging | 
|  | */ | 
|  | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) | 
|  | regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF); | 
|  |  | 
|  | vcpu_put(vcpu); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) | 
|  | { | 
|  | vcpu_load(vcpu); | 
|  |  | 
|  | kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); | 
|  | #ifdef CONFIG_X86_64 | 
|  | kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); | 
|  | kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); | 
|  | kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); | 
|  | kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); | 
|  | kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); | 
|  | kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); | 
|  | kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); | 
|  | kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); | 
|  |  | 
|  | #endif | 
|  |  | 
|  | kvm_rip_write(vcpu, regs->rip); | 
|  | kvm_x86_ops->set_rflags(vcpu, regs->rflags); | 
|  |  | 
|  |  | 
|  | vcpu->arch.exception.pending = false; | 
|  |  | 
|  | vcpu_put(vcpu); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void kvm_get_segment(struct kvm_vcpu *vcpu, | 
|  | struct kvm_segment *var, int seg) | 
|  | { | 
|  | kvm_x86_ops->get_segment(vcpu, var, seg); | 
|  | } | 
|  |  | 
|  | void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) | 
|  | { | 
|  | struct kvm_segment cs; | 
|  |  | 
|  | kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); | 
|  | *db = cs.db; | 
|  | *l = cs.l; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); | 
|  |  | 
|  | int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, | 
|  | struct kvm_sregs *sregs) | 
|  | { | 
|  | struct descriptor_table dt; | 
|  | int pending_vec; | 
|  |  | 
|  | vcpu_load(vcpu); | 
|  |  | 
|  | kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); | 
|  | kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); | 
|  | kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); | 
|  | kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); | 
|  | kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); | 
|  | kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); | 
|  |  | 
|  | kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); | 
|  | kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); | 
|  |  | 
|  | kvm_x86_ops->get_idt(vcpu, &dt); | 
|  | sregs->idt.limit = dt.limit; | 
|  | sregs->idt.base = dt.base; | 
|  | kvm_x86_ops->get_gdt(vcpu, &dt); | 
|  | sregs->gdt.limit = dt.limit; | 
|  | sregs->gdt.base = dt.base; | 
|  |  | 
|  | kvm_x86_ops->decache_cr4_guest_bits(vcpu); | 
|  | sregs->cr0 = vcpu->arch.cr0; | 
|  | sregs->cr2 = vcpu->arch.cr2; | 
|  | sregs->cr3 = vcpu->arch.cr3; | 
|  | sregs->cr4 = vcpu->arch.cr4; | 
|  | sregs->cr8 = kvm_get_cr8(vcpu); | 
|  | sregs->efer = vcpu->arch.shadow_efer; | 
|  | sregs->apic_base = kvm_get_apic_base(vcpu); | 
|  |  | 
|  | if (irqchip_in_kernel(vcpu->kvm)) { | 
|  | memset(sregs->interrupt_bitmap, 0, | 
|  | sizeof sregs->interrupt_bitmap); | 
|  | pending_vec = kvm_x86_ops->get_irq(vcpu); | 
|  | if (pending_vec >= 0) | 
|  | set_bit(pending_vec, | 
|  | (unsigned long *)sregs->interrupt_bitmap); | 
|  | } else | 
|  | memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending, | 
|  | sizeof sregs->interrupt_bitmap); | 
|  |  | 
|  | vcpu_put(vcpu); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mp_state *mp_state) | 
|  | { | 
|  | vcpu_load(vcpu); | 
|  | mp_state->mp_state = vcpu->arch.mp_state; | 
|  | vcpu_put(vcpu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mp_state *mp_state) | 
|  | { | 
|  | vcpu_load(vcpu); | 
|  | vcpu->arch.mp_state = mp_state->mp_state; | 
|  | vcpu_put(vcpu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void kvm_set_segment(struct kvm_vcpu *vcpu, | 
|  | struct kvm_segment *var, int seg) | 
|  | { | 
|  | kvm_x86_ops->set_segment(vcpu, var, seg); | 
|  | } | 
|  |  | 
|  | static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector, | 
|  | struct kvm_segment *kvm_desct) | 
|  | { | 
|  | kvm_desct->base = seg_desc->base0; | 
|  | kvm_desct->base |= seg_desc->base1 << 16; | 
|  | kvm_desct->base |= seg_desc->base2 << 24; | 
|  | kvm_desct->limit = seg_desc->limit0; | 
|  | kvm_desct->limit |= seg_desc->limit << 16; | 
|  | if (seg_desc->g) { | 
|  | kvm_desct->limit <<= 12; | 
|  | kvm_desct->limit |= 0xfff; | 
|  | } | 
|  | kvm_desct->selector = selector; | 
|  | kvm_desct->type = seg_desc->type; | 
|  | kvm_desct->present = seg_desc->p; | 
|  | kvm_desct->dpl = seg_desc->dpl; | 
|  | kvm_desct->db = seg_desc->d; | 
|  | kvm_desct->s = seg_desc->s; | 
|  | kvm_desct->l = seg_desc->l; | 
|  | kvm_desct->g = seg_desc->g; | 
|  | kvm_desct->avl = seg_desc->avl; | 
|  | if (!selector) | 
|  | kvm_desct->unusable = 1; | 
|  | else | 
|  | kvm_desct->unusable = 0; | 
|  | kvm_desct->padding = 0; | 
|  | } | 
|  |  | 
|  | static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu, | 
|  | u16 selector, | 
|  | struct descriptor_table *dtable) | 
|  | { | 
|  | if (selector & 1 << 2) { | 
|  | struct kvm_segment kvm_seg; | 
|  |  | 
|  | kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR); | 
|  |  | 
|  | if (kvm_seg.unusable) | 
|  | dtable->limit = 0; | 
|  | else | 
|  | dtable->limit = kvm_seg.limit; | 
|  | dtable->base = kvm_seg.base; | 
|  | } | 
|  | else | 
|  | kvm_x86_ops->get_gdt(vcpu, dtable); | 
|  | } | 
|  |  | 
|  | /* allowed just for 8 bytes segments */ | 
|  | static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, | 
|  | struct desc_struct *seg_desc) | 
|  | { | 
|  | gpa_t gpa; | 
|  | struct descriptor_table dtable; | 
|  | u16 index = selector >> 3; | 
|  |  | 
|  | get_segment_descriptor_dtable(vcpu, selector, &dtable); | 
|  |  | 
|  | if (dtable.limit < index * 8 + 7) { | 
|  | kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc); | 
|  | return 1; | 
|  | } | 
|  | gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base); | 
|  | gpa += index * 8; | 
|  | return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8); | 
|  | } | 
|  |  | 
|  | /* allowed just for 8 bytes segments */ | 
|  | static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, | 
|  | struct desc_struct *seg_desc) | 
|  | { | 
|  | gpa_t gpa; | 
|  | struct descriptor_table dtable; | 
|  | u16 index = selector >> 3; | 
|  |  | 
|  | get_segment_descriptor_dtable(vcpu, selector, &dtable); | 
|  |  | 
|  | if (dtable.limit < index * 8 + 7) | 
|  | return 1; | 
|  | gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base); | 
|  | gpa += index * 8; | 
|  | return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8); | 
|  | } | 
|  |  | 
|  | static u32 get_tss_base_addr(struct kvm_vcpu *vcpu, | 
|  | struct desc_struct *seg_desc) | 
|  | { | 
|  | u32 base_addr; | 
|  |  | 
|  | base_addr = seg_desc->base0; | 
|  | base_addr |= (seg_desc->base1 << 16); | 
|  | base_addr |= (seg_desc->base2 << 24); | 
|  |  | 
|  | return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr); | 
|  | } | 
|  |  | 
|  | static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg) | 
|  | { | 
|  | struct kvm_segment kvm_seg; | 
|  |  | 
|  | kvm_get_segment(vcpu, &kvm_seg, seg); | 
|  | return kvm_seg.selector; | 
|  | } | 
|  |  | 
|  | static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu, | 
|  | u16 selector, | 
|  | struct kvm_segment *kvm_seg) | 
|  | { | 
|  | struct desc_struct seg_desc; | 
|  |  | 
|  | if (load_guest_segment_descriptor(vcpu, selector, &seg_desc)) | 
|  | return 1; | 
|  | seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg) | 
|  | { | 
|  | struct kvm_segment segvar = { | 
|  | .base = selector << 4, | 
|  | .limit = 0xffff, | 
|  | .selector = selector, | 
|  | .type = 3, | 
|  | .present = 1, | 
|  | .dpl = 3, | 
|  | .db = 0, | 
|  | .s = 1, | 
|  | .l = 0, | 
|  | .g = 0, | 
|  | .avl = 0, | 
|  | .unusable = 0, | 
|  | }; | 
|  | kvm_x86_ops->set_segment(vcpu, &segvar, seg); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, | 
|  | int type_bits, int seg) | 
|  | { | 
|  | struct kvm_segment kvm_seg; | 
|  |  | 
|  | if (!(vcpu->arch.cr0 & X86_CR0_PE)) | 
|  | return kvm_load_realmode_segment(vcpu, selector, seg); | 
|  | if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg)) | 
|  | return 1; | 
|  | kvm_seg.type |= type_bits; | 
|  |  | 
|  | if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS && | 
|  | seg != VCPU_SREG_LDTR) | 
|  | if (!kvm_seg.s) | 
|  | kvm_seg.unusable = 1; | 
|  |  | 
|  | kvm_set_segment(vcpu, &kvm_seg, seg); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void save_state_to_tss32(struct kvm_vcpu *vcpu, | 
|  | struct tss_segment_32 *tss) | 
|  | { | 
|  | tss->cr3 = vcpu->arch.cr3; | 
|  | tss->eip = kvm_rip_read(vcpu); | 
|  | tss->eflags = kvm_x86_ops->get_rflags(vcpu); | 
|  | tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX); | 
|  | tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); | 
|  | tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX); | 
|  | tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX); | 
|  | tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP); | 
|  | tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP); | 
|  | tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI); | 
|  | tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI); | 
|  | tss->es = get_segment_selector(vcpu, VCPU_SREG_ES); | 
|  | tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS); | 
|  | tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS); | 
|  | tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS); | 
|  | tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS); | 
|  | tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS); | 
|  | tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR); | 
|  | tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR); | 
|  | } | 
|  |  | 
|  | static int load_state_from_tss32(struct kvm_vcpu *vcpu, | 
|  | struct tss_segment_32 *tss) | 
|  | { | 
|  | kvm_set_cr3(vcpu, tss->cr3); | 
|  |  | 
|  | kvm_rip_write(vcpu, tss->eip); | 
|  | kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2); | 
|  |  | 
|  | kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi); | 
|  |  | 
|  | if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR)) | 
|  | return 1; | 
|  |  | 
|  | if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES)) | 
|  | return 1; | 
|  |  | 
|  | if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS)) | 
|  | return 1; | 
|  |  | 
|  | if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS)) | 
|  | return 1; | 
|  |  | 
|  | if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS)) | 
|  | return 1; | 
|  |  | 
|  | if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS)) | 
|  | return 1; | 
|  |  | 
|  | if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void save_state_to_tss16(struct kvm_vcpu *vcpu, | 
|  | struct tss_segment_16 *tss) | 
|  | { | 
|  | tss->ip = kvm_rip_read(vcpu); | 
|  | tss->flag = kvm_x86_ops->get_rflags(vcpu); | 
|  | tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX); | 
|  | tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX); | 
|  | tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX); | 
|  | tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX); | 
|  | tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP); | 
|  | tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP); | 
|  | tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI); | 
|  | tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI); | 
|  |  | 
|  | tss->es = get_segment_selector(vcpu, VCPU_SREG_ES); | 
|  | tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS); | 
|  | tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS); | 
|  | tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS); | 
|  | tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR); | 
|  | tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR); | 
|  | } | 
|  |  | 
|  | static int load_state_from_tss16(struct kvm_vcpu *vcpu, | 
|  | struct tss_segment_16 *tss) | 
|  | { | 
|  | kvm_rip_write(vcpu, tss->ip); | 
|  | kvm_x86_ops->set_rflags(vcpu, tss->flag | 2); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di); | 
|  |  | 
|  | if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR)) | 
|  | return 1; | 
|  |  | 
|  | if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES)) | 
|  | return 1; | 
|  |  | 
|  | if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS)) | 
|  | return 1; | 
|  |  | 
|  | if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS)) | 
|  | return 1; | 
|  |  | 
|  | if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector, | 
|  | u32 old_tss_base, | 
|  | struct desc_struct *nseg_desc) | 
|  | { | 
|  | struct tss_segment_16 tss_segment_16; | 
|  | int ret = 0; | 
|  |  | 
|  | if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16, | 
|  | sizeof tss_segment_16)) | 
|  | goto out; | 
|  |  | 
|  | save_state_to_tss16(vcpu, &tss_segment_16); | 
|  |  | 
|  | if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16, | 
|  | sizeof tss_segment_16)) | 
|  | goto out; | 
|  |  | 
|  | if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc), | 
|  | &tss_segment_16, sizeof tss_segment_16)) | 
|  | goto out; | 
|  |  | 
|  | if (load_state_from_tss16(vcpu, &tss_segment_16)) | 
|  | goto out; | 
|  |  | 
|  | ret = 1; | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector, | 
|  | u32 old_tss_base, | 
|  | struct desc_struct *nseg_desc) | 
|  | { | 
|  | struct tss_segment_32 tss_segment_32; | 
|  | int ret = 0; | 
|  |  | 
|  | if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32, | 
|  | sizeof tss_segment_32)) | 
|  | goto out; | 
|  |  | 
|  | save_state_to_tss32(vcpu, &tss_segment_32); | 
|  |  | 
|  | if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32, | 
|  | sizeof tss_segment_32)) | 
|  | goto out; | 
|  |  | 
|  | if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc), | 
|  | &tss_segment_32, sizeof tss_segment_32)) | 
|  | goto out; | 
|  |  | 
|  | if (load_state_from_tss32(vcpu, &tss_segment_32)) | 
|  | goto out; | 
|  |  | 
|  | ret = 1; | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason) | 
|  | { | 
|  | struct kvm_segment tr_seg; | 
|  | struct desc_struct cseg_desc; | 
|  | struct desc_struct nseg_desc; | 
|  | int ret = 0; | 
|  | u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR); | 
|  | u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR); | 
|  |  | 
|  | old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base); | 
|  |  | 
|  | /* FIXME: Handle errors. Failure to read either TSS or their | 
|  | * descriptors should generate a pagefault. | 
|  | */ | 
|  | if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc)) | 
|  | goto out; | 
|  |  | 
|  | if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc)) | 
|  | goto out; | 
|  |  | 
|  | if (reason != TASK_SWITCH_IRET) { | 
|  | int cpl; | 
|  |  | 
|  | cpl = kvm_x86_ops->get_cpl(vcpu); | 
|  | if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) { | 
|  | kvm_queue_exception_e(vcpu, GP_VECTOR, 0); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) { | 
|  | kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) { | 
|  | cseg_desc.type &= ~(1 << 1); //clear the B flag | 
|  | save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc); | 
|  | } | 
|  |  | 
|  | if (reason == TASK_SWITCH_IRET) { | 
|  | u32 eflags = kvm_x86_ops->get_rflags(vcpu); | 
|  | kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT); | 
|  | } | 
|  |  | 
|  | kvm_x86_ops->skip_emulated_instruction(vcpu); | 
|  |  | 
|  | if (nseg_desc.type & 8) | 
|  | ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base, | 
|  | &nseg_desc); | 
|  | else | 
|  | ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base, | 
|  | &nseg_desc); | 
|  |  | 
|  | if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) { | 
|  | u32 eflags = kvm_x86_ops->get_rflags(vcpu); | 
|  | kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT); | 
|  | } | 
|  |  | 
|  | if (reason != TASK_SWITCH_IRET) { | 
|  | nseg_desc.type |= (1 << 1); | 
|  | save_guest_segment_descriptor(vcpu, tss_selector, | 
|  | &nseg_desc); | 
|  | } | 
|  |  | 
|  | kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS); | 
|  | seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg); | 
|  | tr_seg.type = 11; | 
|  | kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_task_switch); | 
|  |  | 
|  | int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, | 
|  | struct kvm_sregs *sregs) | 
|  | { | 
|  | int mmu_reset_needed = 0; | 
|  | int i, pending_vec, max_bits; | 
|  | struct descriptor_table dt; | 
|  |  | 
|  | vcpu_load(vcpu); | 
|  |  | 
|  | dt.limit = sregs->idt.limit; | 
|  | dt.base = sregs->idt.base; | 
|  | kvm_x86_ops->set_idt(vcpu, &dt); | 
|  | dt.limit = sregs->gdt.limit; | 
|  | dt.base = sregs->gdt.base; | 
|  | kvm_x86_ops->set_gdt(vcpu, &dt); | 
|  |  | 
|  | vcpu->arch.cr2 = sregs->cr2; | 
|  | mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3; | 
|  | vcpu->arch.cr3 = sregs->cr3; | 
|  |  | 
|  | kvm_set_cr8(vcpu, sregs->cr8); | 
|  |  | 
|  | mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer; | 
|  | kvm_x86_ops->set_efer(vcpu, sregs->efer); | 
|  | kvm_set_apic_base(vcpu, sregs->apic_base); | 
|  |  | 
|  | kvm_x86_ops->decache_cr4_guest_bits(vcpu); | 
|  |  | 
|  | mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0; | 
|  | kvm_x86_ops->set_cr0(vcpu, sregs->cr0); | 
|  | vcpu->arch.cr0 = sregs->cr0; | 
|  |  | 
|  | mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4; | 
|  | kvm_x86_ops->set_cr4(vcpu, sregs->cr4); | 
|  | if (!is_long_mode(vcpu) && is_pae(vcpu)) | 
|  | load_pdptrs(vcpu, vcpu->arch.cr3); | 
|  |  | 
|  | if (mmu_reset_needed) | 
|  | kvm_mmu_reset_context(vcpu); | 
|  |  | 
|  | if (!irqchip_in_kernel(vcpu->kvm)) { | 
|  | memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap, | 
|  | sizeof vcpu->arch.irq_pending); | 
|  | vcpu->arch.irq_summary = 0; | 
|  | for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i) | 
|  | if (vcpu->arch.irq_pending[i]) | 
|  | __set_bit(i, &vcpu->arch.irq_summary); | 
|  | } else { | 
|  | max_bits = (sizeof sregs->interrupt_bitmap) << 3; | 
|  | pending_vec = find_first_bit( | 
|  | (const unsigned long *)sregs->interrupt_bitmap, | 
|  | max_bits); | 
|  | /* Only pending external irq is handled here */ | 
|  | if (pending_vec < max_bits) { | 
|  | kvm_x86_ops->set_irq(vcpu, pending_vec); | 
|  | pr_debug("Set back pending irq %d\n", | 
|  | pending_vec); | 
|  | } | 
|  | kvm_pic_clear_isr_ack(vcpu->kvm); | 
|  | } | 
|  |  | 
|  | kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); | 
|  | kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); | 
|  | kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); | 
|  | kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); | 
|  | kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); | 
|  | kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); | 
|  |  | 
|  | kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); | 
|  | kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); | 
|  |  | 
|  | /* Older userspace won't unhalt the vcpu on reset. */ | 
|  | if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 && | 
|  | sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && | 
|  | !(vcpu->arch.cr0 & X86_CR0_PE)) | 
|  | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; | 
|  |  | 
|  | vcpu_put(vcpu); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, | 
|  | struct kvm_guest_debug *dbg) | 
|  | { | 
|  | int i, r; | 
|  |  | 
|  | vcpu_load(vcpu); | 
|  |  | 
|  | if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) == | 
|  | (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) { | 
|  | for (i = 0; i < KVM_NR_DB_REGS; ++i) | 
|  | vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; | 
|  | vcpu->arch.switch_db_regs = | 
|  | (dbg->arch.debugreg[7] & DR7_BP_EN_MASK); | 
|  | } else { | 
|  | for (i = 0; i < KVM_NR_DB_REGS; i++) | 
|  | vcpu->arch.eff_db[i] = vcpu->arch.db[i]; | 
|  | vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK); | 
|  | } | 
|  |  | 
|  | r = kvm_x86_ops->set_guest_debug(vcpu, dbg); | 
|  |  | 
|  | if (dbg->control & KVM_GUESTDBG_INJECT_DB) | 
|  | kvm_queue_exception(vcpu, DB_VECTOR); | 
|  | else if (dbg->control & KVM_GUESTDBG_INJECT_BP) | 
|  | kvm_queue_exception(vcpu, BP_VECTOR); | 
|  |  | 
|  | vcpu_put(vcpu); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when | 
|  | * we have asm/x86/processor.h | 
|  | */ | 
|  | struct fxsave { | 
|  | u16	cwd; | 
|  | u16	swd; | 
|  | u16	twd; | 
|  | u16	fop; | 
|  | u64	rip; | 
|  | u64	rdp; | 
|  | u32	mxcsr; | 
|  | u32	mxcsr_mask; | 
|  | u32	st_space[32];	/* 8*16 bytes for each FP-reg = 128 bytes */ | 
|  | #ifdef CONFIG_X86_64 | 
|  | u32	xmm_space[64];	/* 16*16 bytes for each XMM-reg = 256 bytes */ | 
|  | #else | 
|  | u32	xmm_space[32];	/* 8*16 bytes for each XMM-reg = 128 bytes */ | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Translate a guest virtual address to a guest physical address. | 
|  | */ | 
|  | int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, | 
|  | struct kvm_translation *tr) | 
|  | { | 
|  | unsigned long vaddr = tr->linear_address; | 
|  | gpa_t gpa; | 
|  |  | 
|  | vcpu_load(vcpu); | 
|  | down_read(&vcpu->kvm->slots_lock); | 
|  | gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr); | 
|  | up_read(&vcpu->kvm->slots_lock); | 
|  | tr->physical_address = gpa; | 
|  | tr->valid = gpa != UNMAPPED_GVA; | 
|  | tr->writeable = 1; | 
|  | tr->usermode = 0; | 
|  | vcpu_put(vcpu); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) | 
|  | { | 
|  | struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image; | 
|  |  | 
|  | vcpu_load(vcpu); | 
|  |  | 
|  | memcpy(fpu->fpr, fxsave->st_space, 128); | 
|  | fpu->fcw = fxsave->cwd; | 
|  | fpu->fsw = fxsave->swd; | 
|  | fpu->ftwx = fxsave->twd; | 
|  | fpu->last_opcode = fxsave->fop; | 
|  | fpu->last_ip = fxsave->rip; | 
|  | fpu->last_dp = fxsave->rdp; | 
|  | memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); | 
|  |  | 
|  | vcpu_put(vcpu); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) | 
|  | { | 
|  | struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image; | 
|  |  | 
|  | vcpu_load(vcpu); | 
|  |  | 
|  | memcpy(fxsave->st_space, fpu->fpr, 128); | 
|  | fxsave->cwd = fpu->fcw; | 
|  | fxsave->swd = fpu->fsw; | 
|  | fxsave->twd = fpu->ftwx; | 
|  | fxsave->fop = fpu->last_opcode; | 
|  | fxsave->rip = fpu->last_ip; | 
|  | fxsave->rdp = fpu->last_dp; | 
|  | memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); | 
|  |  | 
|  | vcpu_put(vcpu); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void fx_init(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned after_mxcsr_mask; | 
|  |  | 
|  | /* | 
|  | * Touch the fpu the first time in non atomic context as if | 
|  | * this is the first fpu instruction the exception handler | 
|  | * will fire before the instruction returns and it'll have to | 
|  | * allocate ram with GFP_KERNEL. | 
|  | */ | 
|  | if (!used_math()) | 
|  | kvm_fx_save(&vcpu->arch.host_fx_image); | 
|  |  | 
|  | /* Initialize guest FPU by resetting ours and saving into guest's */ | 
|  | preempt_disable(); | 
|  | kvm_fx_save(&vcpu->arch.host_fx_image); | 
|  | kvm_fx_finit(); | 
|  | kvm_fx_save(&vcpu->arch.guest_fx_image); | 
|  | kvm_fx_restore(&vcpu->arch.host_fx_image); | 
|  | preempt_enable(); | 
|  |  | 
|  | vcpu->arch.cr0 |= X86_CR0_ET; | 
|  | after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space); | 
|  | vcpu->arch.guest_fx_image.mxcsr = 0x1f80; | 
|  | memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask, | 
|  | 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(fx_init); | 
|  |  | 
|  | void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (!vcpu->fpu_active || vcpu->guest_fpu_loaded) | 
|  | return; | 
|  |  | 
|  | vcpu->guest_fpu_loaded = 1; | 
|  | kvm_fx_save(&vcpu->arch.host_fx_image); | 
|  | kvm_fx_restore(&vcpu->arch.guest_fx_image); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_load_guest_fpu); | 
|  |  | 
|  | void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (!vcpu->guest_fpu_loaded) | 
|  | return; | 
|  |  | 
|  | vcpu->guest_fpu_loaded = 0; | 
|  | kvm_fx_save(&vcpu->arch.guest_fx_image); | 
|  | kvm_fx_restore(&vcpu->arch.host_fx_image); | 
|  | ++vcpu->stat.fpu_reload; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_put_guest_fpu); | 
|  |  | 
|  | void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (vcpu->arch.time_page) { | 
|  | kvm_release_page_dirty(vcpu->arch.time_page); | 
|  | vcpu->arch.time_page = NULL; | 
|  | } | 
|  |  | 
|  | kvm_x86_ops->vcpu_free(vcpu); | 
|  | } | 
|  |  | 
|  | struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, | 
|  | unsigned int id) | 
|  | { | 
|  | return kvm_x86_ops->vcpu_create(kvm, id); | 
|  | } | 
|  |  | 
|  | int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | /* We do fxsave: this must be aligned. */ | 
|  | BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF); | 
|  |  | 
|  | vcpu->arch.mtrr_state.have_fixed = 1; | 
|  | vcpu_load(vcpu); | 
|  | r = kvm_arch_vcpu_reset(vcpu); | 
|  | if (r == 0) | 
|  | r = kvm_mmu_setup(vcpu); | 
|  | vcpu_put(vcpu); | 
|  | if (r < 0) | 
|  | goto free_vcpu; | 
|  |  | 
|  | return 0; | 
|  | free_vcpu: | 
|  | kvm_x86_ops->vcpu_free(vcpu); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | vcpu_load(vcpu); | 
|  | kvm_mmu_unload(vcpu); | 
|  | vcpu_put(vcpu); | 
|  |  | 
|  | kvm_x86_ops->vcpu_free(vcpu); | 
|  | } | 
|  |  | 
|  | int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | vcpu->arch.nmi_pending = false; | 
|  | vcpu->arch.nmi_injected = false; | 
|  |  | 
|  | vcpu->arch.switch_db_regs = 0; | 
|  | memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); | 
|  | vcpu->arch.dr6 = DR6_FIXED_1; | 
|  | vcpu->arch.dr7 = DR7_FIXED_1; | 
|  |  | 
|  | return kvm_x86_ops->vcpu_reset(vcpu); | 
|  | } | 
|  |  | 
|  | void kvm_arch_hardware_enable(void *garbage) | 
|  | { | 
|  | kvm_x86_ops->hardware_enable(garbage); | 
|  | } | 
|  |  | 
|  | void kvm_arch_hardware_disable(void *garbage) | 
|  | { | 
|  | kvm_x86_ops->hardware_disable(garbage); | 
|  | } | 
|  |  | 
|  | int kvm_arch_hardware_setup(void) | 
|  | { | 
|  | return kvm_x86_ops->hardware_setup(); | 
|  | } | 
|  |  | 
|  | void kvm_arch_hardware_unsetup(void) | 
|  | { | 
|  | kvm_x86_ops->hardware_unsetup(); | 
|  | } | 
|  |  | 
|  | void kvm_arch_check_processor_compat(void *rtn) | 
|  | { | 
|  | kvm_x86_ops->check_processor_compatibility(rtn); | 
|  | } | 
|  |  | 
|  | int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct page *page; | 
|  | struct kvm *kvm; | 
|  | int r; | 
|  |  | 
|  | BUG_ON(vcpu->kvm == NULL); | 
|  | kvm = vcpu->kvm; | 
|  |  | 
|  | vcpu->arch.mmu.root_hpa = INVALID_PAGE; | 
|  | if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0) | 
|  | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; | 
|  | else | 
|  | vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; | 
|  |  | 
|  | page = alloc_page(GFP_KERNEL | __GFP_ZERO); | 
|  | if (!page) { | 
|  | r = -ENOMEM; | 
|  | goto fail; | 
|  | } | 
|  | vcpu->arch.pio_data = page_address(page); | 
|  |  | 
|  | r = kvm_mmu_create(vcpu); | 
|  | if (r < 0) | 
|  | goto fail_free_pio_data; | 
|  |  | 
|  | if (irqchip_in_kernel(kvm)) { | 
|  | r = kvm_create_lapic(vcpu); | 
|  | if (r < 0) | 
|  | goto fail_mmu_destroy; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail_mmu_destroy: | 
|  | kvm_mmu_destroy(vcpu); | 
|  | fail_free_pio_data: | 
|  | free_page((unsigned long)vcpu->arch.pio_data); | 
|  | fail: | 
|  | return r; | 
|  | } | 
|  |  | 
|  | void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | kvm_free_lapic(vcpu); | 
|  | down_read(&vcpu->kvm->slots_lock); | 
|  | kvm_mmu_destroy(vcpu); | 
|  | up_read(&vcpu->kvm->slots_lock); | 
|  | free_page((unsigned long)vcpu->arch.pio_data); | 
|  | } | 
|  |  | 
|  | struct  kvm *kvm_arch_create_vm(void) | 
|  | { | 
|  | struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL); | 
|  |  | 
|  | if (!kvm) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); | 
|  | INIT_LIST_HEAD(&kvm->arch.oos_global_pages); | 
|  | INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); | 
|  |  | 
|  | /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ | 
|  | set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); | 
|  |  | 
|  | rdtscll(kvm->arch.vm_init_tsc); | 
|  |  | 
|  | return kvm; | 
|  | } | 
|  |  | 
|  | static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | vcpu_load(vcpu); | 
|  | kvm_mmu_unload(vcpu); | 
|  | vcpu_put(vcpu); | 
|  | } | 
|  |  | 
|  | static void kvm_free_vcpus(struct kvm *kvm) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | /* | 
|  | * Unpin any mmu pages first. | 
|  | */ | 
|  | for (i = 0; i < KVM_MAX_VCPUS; ++i) | 
|  | if (kvm->vcpus[i]) | 
|  | kvm_unload_vcpu_mmu(kvm->vcpus[i]); | 
|  | for (i = 0; i < KVM_MAX_VCPUS; ++i) { | 
|  | if (kvm->vcpus[i]) { | 
|  | kvm_arch_vcpu_free(kvm->vcpus[i]); | 
|  | kvm->vcpus[i] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | void kvm_arch_sync_events(struct kvm *kvm) | 
|  | { | 
|  | kvm_free_all_assigned_devices(kvm); | 
|  | } | 
|  |  | 
|  | void kvm_arch_destroy_vm(struct kvm *kvm) | 
|  | { | 
|  | kvm_iommu_unmap_guest(kvm); | 
|  | kvm_free_pit(kvm); | 
|  | kfree(kvm->arch.vpic); | 
|  | kfree(kvm->arch.vioapic); | 
|  | kvm_free_vcpus(kvm); | 
|  | kvm_free_physmem(kvm); | 
|  | if (kvm->arch.apic_access_page) | 
|  | put_page(kvm->arch.apic_access_page); | 
|  | if (kvm->arch.ept_identity_pagetable) | 
|  | put_page(kvm->arch.ept_identity_pagetable); | 
|  | kfree(kvm); | 
|  | } | 
|  |  | 
|  | int kvm_arch_set_memory_region(struct kvm *kvm, | 
|  | struct kvm_userspace_memory_region *mem, | 
|  | struct kvm_memory_slot old, | 
|  | int user_alloc) | 
|  | { | 
|  | int npages = mem->memory_size >> PAGE_SHIFT; | 
|  | struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot]; | 
|  |  | 
|  | /*To keep backward compatibility with older userspace, | 
|  | *x86 needs to hanlde !user_alloc case. | 
|  | */ | 
|  | if (!user_alloc) { | 
|  | if (npages && !old.rmap) { | 
|  | unsigned long userspace_addr; | 
|  |  | 
|  | down_write(¤t->mm->mmap_sem); | 
|  | userspace_addr = do_mmap(NULL, 0, | 
|  | npages * PAGE_SIZE, | 
|  | PROT_READ | PROT_WRITE, | 
|  | MAP_PRIVATE | MAP_ANONYMOUS, | 
|  | 0); | 
|  | up_write(¤t->mm->mmap_sem); | 
|  |  | 
|  | if (IS_ERR((void *)userspace_addr)) | 
|  | return PTR_ERR((void *)userspace_addr); | 
|  |  | 
|  | /* set userspace_addr atomically for kvm_hva_to_rmapp */ | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | memslot->userspace_addr = userspace_addr; | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | } else { | 
|  | if (!old.user_alloc && old.rmap) { | 
|  | int ret; | 
|  |  | 
|  | down_write(¤t->mm->mmap_sem); | 
|  | ret = do_munmap(current->mm, old.userspace_addr, | 
|  | old.npages * PAGE_SIZE); | 
|  | up_write(¤t->mm->mmap_sem); | 
|  | if (ret < 0) | 
|  | printk(KERN_WARNING | 
|  | "kvm_vm_ioctl_set_memory_region: " | 
|  | "failed to munmap memory\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!kvm->arch.n_requested_mmu_pages) { | 
|  | unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); | 
|  | kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); | 
|  | } | 
|  |  | 
|  | kvm_mmu_slot_remove_write_access(kvm, mem->slot); | 
|  | kvm_flush_remote_tlbs(kvm); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void kvm_arch_flush_shadow(struct kvm *kvm) | 
|  | { | 
|  | kvm_mmu_zap_all(kvm); | 
|  | } | 
|  |  | 
|  | int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE | 
|  | || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED | 
|  | || vcpu->arch.nmi_pending; | 
|  | } | 
|  |  | 
|  | static void vcpu_kick_intr(void *info) | 
|  | { | 
|  | #ifdef DEBUG | 
|  | struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info; | 
|  | printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void kvm_vcpu_kick(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int ipi_pcpu = vcpu->cpu; | 
|  | int cpu = get_cpu(); | 
|  |  | 
|  | if (waitqueue_active(&vcpu->wq)) { | 
|  | wake_up_interruptible(&vcpu->wq); | 
|  | ++vcpu->stat.halt_wakeup; | 
|  | } | 
|  | /* | 
|  | * We may be called synchronously with irqs disabled in guest mode, | 
|  | * So need not to call smp_call_function_single() in that case. | 
|  | */ | 
|  | if (vcpu->guest_mode && vcpu->cpu != cpu) | 
|  | smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0); | 
|  | put_cpu(); | 
|  | } |