|  | /* Support for MMIO probes. | 
|  | * Benfit many code from kprobes | 
|  | * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>. | 
|  | *     2007 Alexander Eichner | 
|  | *     2008 Pekka Paalanen <pq@iki.fi> | 
|  | */ | 
|  |  | 
|  | #include <linux/list.h> | 
|  | #include <linux/rculist.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/hash.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/preempt.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/kdebug.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/io.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <linux/errno.h> | 
|  | #include <asm/debugreg.h> | 
|  | #include <linux/mmiotrace.h> | 
|  |  | 
|  | #define KMMIO_PAGE_HASH_BITS 4 | 
|  | #define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS) | 
|  |  | 
|  | struct kmmio_fault_page { | 
|  | struct list_head list; | 
|  | struct kmmio_fault_page *release_next; | 
|  | unsigned long page; /* location of the fault page */ | 
|  | pteval_t old_presence; /* page presence prior to arming */ | 
|  | bool armed; | 
|  |  | 
|  | /* | 
|  | * Number of times this page has been registered as a part | 
|  | * of a probe. If zero, page is disarmed and this may be freed. | 
|  | * Used only by writers (RCU) and post_kmmio_handler(). | 
|  | * Protected by kmmio_lock, when linked into kmmio_page_table. | 
|  | */ | 
|  | int count; | 
|  | }; | 
|  |  | 
|  | struct kmmio_delayed_release { | 
|  | struct rcu_head rcu; | 
|  | struct kmmio_fault_page *release_list; | 
|  | }; | 
|  |  | 
|  | struct kmmio_context { | 
|  | struct kmmio_fault_page *fpage; | 
|  | struct kmmio_probe *probe; | 
|  | unsigned long saved_flags; | 
|  | unsigned long addr; | 
|  | int active; | 
|  | }; | 
|  |  | 
|  | static DEFINE_SPINLOCK(kmmio_lock); | 
|  |  | 
|  | /* Protected by kmmio_lock */ | 
|  | unsigned int kmmio_count; | 
|  |  | 
|  | /* Read-protected by RCU, write-protected by kmmio_lock. */ | 
|  | static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE]; | 
|  | static LIST_HEAD(kmmio_probes); | 
|  |  | 
|  | static struct list_head *kmmio_page_list(unsigned long page) | 
|  | { | 
|  | return &kmmio_page_table[hash_long(page, KMMIO_PAGE_HASH_BITS)]; | 
|  | } | 
|  |  | 
|  | /* Accessed per-cpu */ | 
|  | static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx); | 
|  |  | 
|  | /* | 
|  | * this is basically a dynamic stabbing problem: | 
|  | * Could use the existing prio tree code or | 
|  | * Possible better implementations: | 
|  | * The Interval Skip List: A Data Structure for Finding All Intervals That | 
|  | * Overlap a Point (might be simple) | 
|  | * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup | 
|  | */ | 
|  | /* Get the kmmio at this addr (if any). You must be holding RCU read lock. */ | 
|  | static struct kmmio_probe *get_kmmio_probe(unsigned long addr) | 
|  | { | 
|  | struct kmmio_probe *p; | 
|  | list_for_each_entry_rcu(p, &kmmio_probes, list) { | 
|  | if (addr >= p->addr && addr < (p->addr + p->len)) | 
|  | return p; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* You must be holding RCU read lock. */ | 
|  | static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long page) | 
|  | { | 
|  | struct list_head *head; | 
|  | struct kmmio_fault_page *f; | 
|  |  | 
|  | page &= PAGE_MASK; | 
|  | head = kmmio_page_list(page); | 
|  | list_for_each_entry_rcu(f, head, list) { | 
|  | if (f->page == page) | 
|  | return f; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old) | 
|  | { | 
|  | pmdval_t v = pmd_val(*pmd); | 
|  | if (clear) { | 
|  | *old = v & _PAGE_PRESENT; | 
|  | v &= ~_PAGE_PRESENT; | 
|  | } else	/* presume this has been called with clear==true previously */ | 
|  | v |= *old; | 
|  | set_pmd(pmd, __pmd(v)); | 
|  | } | 
|  |  | 
|  | static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old) | 
|  | { | 
|  | pteval_t v = pte_val(*pte); | 
|  | if (clear) { | 
|  | *old = v & _PAGE_PRESENT; | 
|  | v &= ~_PAGE_PRESENT; | 
|  | } else	/* presume this has been called with clear==true previously */ | 
|  | v |= *old; | 
|  | set_pte_atomic(pte, __pte(v)); | 
|  | } | 
|  |  | 
|  | static int clear_page_presence(struct kmmio_fault_page *f, bool clear) | 
|  | { | 
|  | unsigned int level; | 
|  | pte_t *pte = lookup_address(f->page, &level); | 
|  |  | 
|  | if (!pte) { | 
|  | pr_err("kmmio: no pte for page 0x%08lx\n", f->page); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | switch (level) { | 
|  | case PG_LEVEL_2M: | 
|  | clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence); | 
|  | break; | 
|  | case PG_LEVEL_4K: | 
|  | clear_pte_presence(pte, clear, &f->old_presence); | 
|  | break; | 
|  | default: | 
|  | pr_err("kmmio: unexpected page level 0x%x.\n", level); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | __flush_tlb_one(f->page); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mark the given page as not present. Access to it will trigger a fault. | 
|  | * | 
|  | * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the | 
|  | * protection is ignored here. RCU read lock is assumed held, so the struct | 
|  | * will not disappear unexpectedly. Furthermore, the caller must guarantee, | 
|  | * that double arming the same virtual address (page) cannot occur. | 
|  | * | 
|  | * Double disarming on the other hand is allowed, and may occur when a fault | 
|  | * and mmiotrace shutdown happen simultaneously. | 
|  | */ | 
|  | static int arm_kmmio_fault_page(struct kmmio_fault_page *f) | 
|  | { | 
|  | int ret; | 
|  | WARN_ONCE(f->armed, KERN_ERR "kmmio page already armed.\n"); | 
|  | if (f->armed) { | 
|  | pr_warning("kmmio double-arm: page 0x%08lx, ref %d, old %d\n", | 
|  | f->page, f->count, !!f->old_presence); | 
|  | } | 
|  | ret = clear_page_presence(f, true); | 
|  | WARN_ONCE(ret < 0, KERN_ERR "kmmio arming 0x%08lx failed.\n", f->page); | 
|  | f->armed = true; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** Restore the given page to saved presence state. */ | 
|  | static void disarm_kmmio_fault_page(struct kmmio_fault_page *f) | 
|  | { | 
|  | int ret = clear_page_presence(f, false); | 
|  | WARN_ONCE(ret < 0, | 
|  | KERN_ERR "kmmio disarming 0x%08lx failed.\n", f->page); | 
|  | f->armed = false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is being called from do_page_fault(). | 
|  | * | 
|  | * We may be in an interrupt or a critical section. Also prefecthing may | 
|  | * trigger a page fault. We may be in the middle of process switch. | 
|  | * We cannot take any locks, because we could be executing especially | 
|  | * within a kmmio critical section. | 
|  | * | 
|  | * Local interrupts are disabled, so preemption cannot happen. | 
|  | * Do not enable interrupts, do not sleep, and watch out for other CPUs. | 
|  | */ | 
|  | /* | 
|  | * Interrupts are disabled on entry as trap3 is an interrupt gate | 
|  | * and they remain disabled thorough out this function. | 
|  | */ | 
|  | int kmmio_handler(struct pt_regs *regs, unsigned long addr) | 
|  | { | 
|  | struct kmmio_context *ctx; | 
|  | struct kmmio_fault_page *faultpage; | 
|  | int ret = 0; /* default to fault not handled */ | 
|  |  | 
|  | /* | 
|  | * Preemption is now disabled to prevent process switch during | 
|  | * single stepping. We can only handle one active kmmio trace | 
|  | * per cpu, so ensure that we finish it before something else | 
|  | * gets to run. We also hold the RCU read lock over single | 
|  | * stepping to avoid looking up the probe and kmmio_fault_page | 
|  | * again. | 
|  | */ | 
|  | preempt_disable(); | 
|  | rcu_read_lock(); | 
|  |  | 
|  | faultpage = get_kmmio_fault_page(addr); | 
|  | if (!faultpage) { | 
|  | /* | 
|  | * Either this page fault is not caused by kmmio, or | 
|  | * another CPU just pulled the kmmio probe from under | 
|  | * our feet. The latter case should not be possible. | 
|  | */ | 
|  | goto no_kmmio; | 
|  | } | 
|  |  | 
|  | ctx = &get_cpu_var(kmmio_ctx); | 
|  | if (ctx->active) { | 
|  | if (addr == ctx->addr) { | 
|  | /* | 
|  | * A second fault on the same page means some other | 
|  | * condition needs handling by do_page_fault(), the | 
|  | * page really not being present is the most common. | 
|  | */ | 
|  | pr_debug("kmmio: secondary hit for 0x%08lx CPU %d.\n", | 
|  | addr, smp_processor_id()); | 
|  |  | 
|  | if (!faultpage->old_presence) | 
|  | pr_info("kmmio: unexpected secondary hit for " | 
|  | "address 0x%08lx on CPU %d.\n", addr, | 
|  | smp_processor_id()); | 
|  | } else { | 
|  | /* | 
|  | * Prevent overwriting already in-flight context. | 
|  | * This should not happen, let's hope disarming at | 
|  | * least prevents a panic. | 
|  | */ | 
|  | pr_emerg("kmmio: recursive probe hit on CPU %d, " | 
|  | "for address 0x%08lx. Ignoring.\n", | 
|  | smp_processor_id(), addr); | 
|  | pr_emerg("kmmio: previous hit was at 0x%08lx.\n", | 
|  | ctx->addr); | 
|  | disarm_kmmio_fault_page(faultpage); | 
|  | } | 
|  | goto no_kmmio_ctx; | 
|  | } | 
|  | ctx->active++; | 
|  |  | 
|  | ctx->fpage = faultpage; | 
|  | ctx->probe = get_kmmio_probe(addr); | 
|  | ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); | 
|  | ctx->addr = addr; | 
|  |  | 
|  | if (ctx->probe && ctx->probe->pre_handler) | 
|  | ctx->probe->pre_handler(ctx->probe, regs, addr); | 
|  |  | 
|  | /* | 
|  | * Enable single-stepping and disable interrupts for the faulting | 
|  | * context. Local interrupts must not get enabled during stepping. | 
|  | */ | 
|  | regs->flags |= X86_EFLAGS_TF; | 
|  | regs->flags &= ~X86_EFLAGS_IF; | 
|  |  | 
|  | /* Now we set present bit in PTE and single step. */ | 
|  | disarm_kmmio_fault_page(ctx->fpage); | 
|  |  | 
|  | /* | 
|  | * If another cpu accesses the same page while we are stepping, | 
|  | * the access will not be caught. It will simply succeed and the | 
|  | * only downside is we lose the event. If this becomes a problem, | 
|  | * the user should drop to single cpu before tracing. | 
|  | */ | 
|  |  | 
|  | put_cpu_var(kmmio_ctx); | 
|  | return 1; /* fault handled */ | 
|  |  | 
|  | no_kmmio_ctx: | 
|  | put_cpu_var(kmmio_ctx); | 
|  | no_kmmio: | 
|  | rcu_read_unlock(); | 
|  | preempt_enable_no_resched(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Interrupts are disabled on entry as trap1 is an interrupt gate | 
|  | * and they remain disabled thorough out this function. | 
|  | * This must always get called as the pair to kmmio_handler(). | 
|  | */ | 
|  | static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs) | 
|  | { | 
|  | int ret = 0; | 
|  | struct kmmio_context *ctx = &get_cpu_var(kmmio_ctx); | 
|  |  | 
|  | if (!ctx->active) { | 
|  | /* | 
|  | * debug traps without an active context are due to either | 
|  | * something external causing them (f.e. using a debugger while | 
|  | * mmio tracing enabled), or erroneous behaviour | 
|  | */ | 
|  | pr_warning("kmmio: unexpected debug trap on CPU %d.\n", | 
|  | smp_processor_id()); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (ctx->probe && ctx->probe->post_handler) | 
|  | ctx->probe->post_handler(ctx->probe, condition, regs); | 
|  |  | 
|  | /* Prevent racing against release_kmmio_fault_page(). */ | 
|  | spin_lock(&kmmio_lock); | 
|  | if (ctx->fpage->count) | 
|  | arm_kmmio_fault_page(ctx->fpage); | 
|  | spin_unlock(&kmmio_lock); | 
|  |  | 
|  | regs->flags &= ~X86_EFLAGS_TF; | 
|  | regs->flags |= ctx->saved_flags; | 
|  |  | 
|  | /* These were acquired in kmmio_handler(). */ | 
|  | ctx->active--; | 
|  | BUG_ON(ctx->active); | 
|  | rcu_read_unlock(); | 
|  | preempt_enable_no_resched(); | 
|  |  | 
|  | /* | 
|  | * if somebody else is singlestepping across a probe point, flags | 
|  | * will have TF set, in which case, continue the remaining processing | 
|  | * of do_debug, as if this is not a probe hit. | 
|  | */ | 
|  | if (!(regs->flags & X86_EFLAGS_TF)) | 
|  | ret = 1; | 
|  | out: | 
|  | put_cpu_var(kmmio_ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* You must be holding kmmio_lock. */ | 
|  | static int add_kmmio_fault_page(unsigned long page) | 
|  | { | 
|  | struct kmmio_fault_page *f; | 
|  |  | 
|  | page &= PAGE_MASK; | 
|  | f = get_kmmio_fault_page(page); | 
|  | if (f) { | 
|  | if (!f->count) | 
|  | arm_kmmio_fault_page(f); | 
|  | f->count++; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | f = kzalloc(sizeof(*f), GFP_ATOMIC); | 
|  | if (!f) | 
|  | return -1; | 
|  |  | 
|  | f->count = 1; | 
|  | f->page = page; | 
|  |  | 
|  | if (arm_kmmio_fault_page(f)) { | 
|  | kfree(f); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | list_add_rcu(&f->list, kmmio_page_list(f->page)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* You must be holding kmmio_lock. */ | 
|  | static void release_kmmio_fault_page(unsigned long page, | 
|  | struct kmmio_fault_page **release_list) | 
|  | { | 
|  | struct kmmio_fault_page *f; | 
|  |  | 
|  | page &= PAGE_MASK; | 
|  | f = get_kmmio_fault_page(page); | 
|  | if (!f) | 
|  | return; | 
|  |  | 
|  | f->count--; | 
|  | BUG_ON(f->count < 0); | 
|  | if (!f->count) { | 
|  | disarm_kmmio_fault_page(f); | 
|  | f->release_next = *release_list; | 
|  | *release_list = f; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * With page-unaligned ioremaps, one or two armed pages may contain | 
|  | * addresses from outside the intended mapping. Events for these addresses | 
|  | * are currently silently dropped. The events may result only from programming | 
|  | * mistakes by accessing addresses before the beginning or past the end of a | 
|  | * mapping. | 
|  | */ | 
|  | int register_kmmio_probe(struct kmmio_probe *p) | 
|  | { | 
|  | unsigned long flags; | 
|  | int ret = 0; | 
|  | unsigned long size = 0; | 
|  | const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK); | 
|  |  | 
|  | spin_lock_irqsave(&kmmio_lock, flags); | 
|  | if (get_kmmio_probe(p->addr)) { | 
|  | ret = -EEXIST; | 
|  | goto out; | 
|  | } | 
|  | kmmio_count++; | 
|  | list_add_rcu(&p->list, &kmmio_probes); | 
|  | while (size < size_lim) { | 
|  | if (add_kmmio_fault_page(p->addr + size)) | 
|  | pr_err("kmmio: Unable to set page fault.\n"); | 
|  | size += PAGE_SIZE; | 
|  | } | 
|  | out: | 
|  | spin_unlock_irqrestore(&kmmio_lock, flags); | 
|  | /* | 
|  | * XXX: What should I do here? | 
|  | * Here was a call to global_flush_tlb(), but it does not exist | 
|  | * anymore. It seems it's not needed after all. | 
|  | */ | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(register_kmmio_probe); | 
|  |  | 
|  | static void rcu_free_kmmio_fault_pages(struct rcu_head *head) | 
|  | { | 
|  | struct kmmio_delayed_release *dr = container_of( | 
|  | head, | 
|  | struct kmmio_delayed_release, | 
|  | rcu); | 
|  | struct kmmio_fault_page *f = dr->release_list; | 
|  | while (f) { | 
|  | struct kmmio_fault_page *next = f->release_next; | 
|  | BUG_ON(f->count); | 
|  | kfree(f); | 
|  | f = next; | 
|  | } | 
|  | kfree(dr); | 
|  | } | 
|  |  | 
|  | static void remove_kmmio_fault_pages(struct rcu_head *head) | 
|  | { | 
|  | struct kmmio_delayed_release *dr = | 
|  | container_of(head, struct kmmio_delayed_release, rcu); | 
|  | struct kmmio_fault_page *f = dr->release_list; | 
|  | struct kmmio_fault_page **prevp = &dr->release_list; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&kmmio_lock, flags); | 
|  | while (f) { | 
|  | if (!f->count) { | 
|  | list_del_rcu(&f->list); | 
|  | prevp = &f->release_next; | 
|  | } else { | 
|  | *prevp = f->release_next; | 
|  | } | 
|  | f = f->release_next; | 
|  | } | 
|  | spin_unlock_irqrestore(&kmmio_lock, flags); | 
|  |  | 
|  | /* This is the real RCU destroy call. */ | 
|  | call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove a kmmio probe. You have to synchronize_rcu() before you can be | 
|  | * sure that the callbacks will not be called anymore. Only after that | 
|  | * you may actually release your struct kmmio_probe. | 
|  | * | 
|  | * Unregistering a kmmio fault page has three steps: | 
|  | * 1. release_kmmio_fault_page() | 
|  | *    Disarm the page, wait a grace period to let all faults finish. | 
|  | * 2. remove_kmmio_fault_pages() | 
|  | *    Remove the pages from kmmio_page_table. | 
|  | * 3. rcu_free_kmmio_fault_pages() | 
|  | *    Actally free the kmmio_fault_page structs as with RCU. | 
|  | */ | 
|  | void unregister_kmmio_probe(struct kmmio_probe *p) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned long size = 0; | 
|  | const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK); | 
|  | struct kmmio_fault_page *release_list = NULL; | 
|  | struct kmmio_delayed_release *drelease; | 
|  |  | 
|  | spin_lock_irqsave(&kmmio_lock, flags); | 
|  | while (size < size_lim) { | 
|  | release_kmmio_fault_page(p->addr + size, &release_list); | 
|  | size += PAGE_SIZE; | 
|  | } | 
|  | list_del_rcu(&p->list); | 
|  | kmmio_count--; | 
|  | spin_unlock_irqrestore(&kmmio_lock, flags); | 
|  |  | 
|  | drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC); | 
|  | if (!drelease) { | 
|  | pr_crit("kmmio: leaking kmmio_fault_page objects.\n"); | 
|  | return; | 
|  | } | 
|  | drelease->release_list = release_list; | 
|  |  | 
|  | /* | 
|  | * This is not really RCU here. We have just disarmed a set of | 
|  | * pages so that they cannot trigger page faults anymore. However, | 
|  | * we cannot remove the pages from kmmio_page_table, | 
|  | * because a probe hit might be in flight on another CPU. The | 
|  | * pages are collected into a list, and they will be removed from | 
|  | * kmmio_page_table when it is certain that no probe hit related to | 
|  | * these pages can be in flight. RCU grace period sounds like a | 
|  | * good choice. | 
|  | * | 
|  | * If we removed the pages too early, kmmio page fault handler might | 
|  | * not find the respective kmmio_fault_page and determine it's not | 
|  | * a kmmio fault, when it actually is. This would lead to madness. | 
|  | */ | 
|  | call_rcu(&drelease->rcu, remove_kmmio_fault_pages); | 
|  | } | 
|  | EXPORT_SYMBOL(unregister_kmmio_probe); | 
|  |  | 
|  | static int | 
|  | kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args) | 
|  | { | 
|  | struct die_args *arg = args; | 
|  |  | 
|  | if (val == DIE_DEBUG && (arg->err & DR_STEP)) | 
|  | if (post_kmmio_handler(arg->err, arg->regs) == 1) | 
|  | return NOTIFY_STOP; | 
|  |  | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  |  | 
|  | static struct notifier_block nb_die = { | 
|  | .notifier_call = kmmio_die_notifier | 
|  | }; | 
|  |  | 
|  | int kmmio_init(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) | 
|  | INIT_LIST_HEAD(&kmmio_page_table[i]); | 
|  |  | 
|  | return register_die_notifier(&nb_die); | 
|  | } | 
|  |  | 
|  | void kmmio_cleanup(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | unregister_die_notifier(&nb_die); | 
|  | for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) { | 
|  | WARN_ONCE(!list_empty(&kmmio_page_table[i]), | 
|  | KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n"); | 
|  | } | 
|  | } |