|  | /* | 
|  | *  drivers/cpufreq/cpufreq_conservative.c | 
|  | * | 
|  | *  Copyright (C)  2001 Russell King | 
|  | *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>. | 
|  | *                      Jun Nakajima <jun.nakajima@intel.com> | 
|  | *            (C)  2009 Alexander Clouter <alex@digriz.org.uk> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/cpufreq.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/hrtimer.h> | 
|  | #include <linux/tick.h> | 
|  | #include <linux/ktime.h> | 
|  | #include <linux/sched.h> | 
|  |  | 
|  | /* | 
|  | * dbs is used in this file as a shortform for demandbased switching | 
|  | * It helps to keep variable names smaller, simpler | 
|  | */ | 
|  |  | 
|  | #define DEF_FREQUENCY_UP_THRESHOLD		(80) | 
|  | #define DEF_FREQUENCY_DOWN_THRESHOLD		(20) | 
|  |  | 
|  | /* | 
|  | * The polling frequency of this governor depends on the capability of | 
|  | * the processor. Default polling frequency is 1000 times the transition | 
|  | * latency of the processor. The governor will work on any processor with | 
|  | * transition latency <= 10mS, using appropriate sampling | 
|  | * rate. | 
|  | * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL) | 
|  | * this governor will not work. | 
|  | * All times here are in uS. | 
|  | */ | 
|  | static unsigned int def_sampling_rate; | 
|  | #define MIN_SAMPLING_RATE_RATIO			(2) | 
|  | /* for correct statistics, we need at least 10 ticks between each measure */ | 
|  | #define MIN_STAT_SAMPLING_RATE 			\ | 
|  | (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10)) | 
|  | #define MIN_SAMPLING_RATE			\ | 
|  | (def_sampling_rate / MIN_SAMPLING_RATE_RATIO) | 
|  | /* Above MIN_SAMPLING_RATE will vanish with its sysfs file soon | 
|  | * Define the minimal settable sampling rate to the greater of: | 
|  | *   - "HW transition latency" * 100 (same as default sampling / 10) | 
|  | *   - MIN_STAT_SAMPLING_RATE | 
|  | * To avoid that userspace shoots itself. | 
|  | */ | 
|  | static unsigned int minimum_sampling_rate(void) | 
|  | { | 
|  | return max(def_sampling_rate / 10, MIN_STAT_SAMPLING_RATE); | 
|  | } | 
|  |  | 
|  | /* This will also vanish soon with removing sampling_rate_max */ | 
|  | #define MAX_SAMPLING_RATE			(500 * def_sampling_rate) | 
|  | #define LATENCY_MULTIPLIER			(1000) | 
|  | #define DEF_SAMPLING_DOWN_FACTOR		(1) | 
|  | #define MAX_SAMPLING_DOWN_FACTOR		(10) | 
|  | #define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000) | 
|  |  | 
|  | static void do_dbs_timer(struct work_struct *work); | 
|  |  | 
|  | struct cpu_dbs_info_s { | 
|  | cputime64_t prev_cpu_idle; | 
|  | cputime64_t prev_cpu_wall; | 
|  | cputime64_t prev_cpu_nice; | 
|  | struct cpufreq_policy *cur_policy; | 
|  | struct delayed_work work; | 
|  | unsigned int down_skip; | 
|  | unsigned int requested_freq; | 
|  | int cpu; | 
|  | unsigned int enable:1; | 
|  | }; | 
|  | static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info); | 
|  |  | 
|  | static unsigned int dbs_enable;	/* number of CPUs using this policy */ | 
|  |  | 
|  | /* | 
|  | * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug | 
|  | * lock and dbs_mutex. cpu_hotplug lock should always be held before | 
|  | * dbs_mutex. If any function that can potentially take cpu_hotplug lock | 
|  | * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then | 
|  | * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock | 
|  | * is recursive for the same process. -Venki | 
|  | */ | 
|  | static DEFINE_MUTEX(dbs_mutex); | 
|  |  | 
|  | static struct workqueue_struct	*kconservative_wq; | 
|  |  | 
|  | static struct dbs_tuners { | 
|  | unsigned int sampling_rate; | 
|  | unsigned int sampling_down_factor; | 
|  | unsigned int up_threshold; | 
|  | unsigned int down_threshold; | 
|  | unsigned int ignore_nice; | 
|  | unsigned int freq_step; | 
|  | } dbs_tuners_ins = { | 
|  | .up_threshold = DEF_FREQUENCY_UP_THRESHOLD, | 
|  | .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD, | 
|  | .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR, | 
|  | .ignore_nice = 0, | 
|  | .freq_step = 5, | 
|  | }; | 
|  |  | 
|  | static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu, | 
|  | cputime64_t *wall) | 
|  | { | 
|  | cputime64_t idle_time; | 
|  | cputime64_t cur_wall_time; | 
|  | cputime64_t busy_time; | 
|  |  | 
|  | cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); | 
|  | busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user, | 
|  | kstat_cpu(cpu).cpustat.system); | 
|  |  | 
|  | busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq); | 
|  | busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq); | 
|  | busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal); | 
|  | busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice); | 
|  |  | 
|  | idle_time = cputime64_sub(cur_wall_time, busy_time); | 
|  | if (wall) | 
|  | *wall = cur_wall_time; | 
|  |  | 
|  | return idle_time; | 
|  | } | 
|  |  | 
|  | static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall) | 
|  | { | 
|  | u64 idle_time = get_cpu_idle_time_us(cpu, wall); | 
|  |  | 
|  | if (idle_time == -1ULL) | 
|  | return get_cpu_idle_time_jiffy(cpu, wall); | 
|  |  | 
|  | return idle_time; | 
|  | } | 
|  |  | 
|  | /* keep track of frequency transitions */ | 
|  | static int | 
|  | dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val, | 
|  | void *data) | 
|  | { | 
|  | struct cpufreq_freqs *freq = data; | 
|  | struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info, | 
|  | freq->cpu); | 
|  |  | 
|  | struct cpufreq_policy *policy; | 
|  |  | 
|  | if (!this_dbs_info->enable) | 
|  | return 0; | 
|  |  | 
|  | policy = this_dbs_info->cur_policy; | 
|  |  | 
|  | /* | 
|  | * we only care if our internally tracked freq moves outside | 
|  | * the 'valid' ranges of freqency available to us otherwise | 
|  | * we do not change it | 
|  | */ | 
|  | if (this_dbs_info->requested_freq > policy->max | 
|  | || this_dbs_info->requested_freq < policy->min) | 
|  | this_dbs_info->requested_freq = freq->new; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct notifier_block dbs_cpufreq_notifier_block = { | 
|  | .notifier_call = dbs_cpufreq_notifier | 
|  | }; | 
|  |  | 
|  | /************************** sysfs interface ************************/ | 
|  | static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf) | 
|  | { | 
|  | static int print_once; | 
|  |  | 
|  | if (!print_once) { | 
|  | printk(KERN_INFO "CPUFREQ: conservative sampling_rate_max " | 
|  | "sysfs file is deprecated - used by: %s\n", | 
|  | current->comm); | 
|  | print_once = 1; | 
|  | } | 
|  | return sprintf(buf, "%u\n", MAX_SAMPLING_RATE); | 
|  | } | 
|  |  | 
|  | static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf) | 
|  | { | 
|  | static int print_once; | 
|  |  | 
|  | if (!print_once) { | 
|  | printk(KERN_INFO "CPUFREQ: conservative sampling_rate_max " | 
|  | "sysfs file is deprecated - used by: %s\n", current->comm); | 
|  | print_once = 1; | 
|  | } | 
|  | return sprintf(buf, "%u\n", MIN_SAMPLING_RATE); | 
|  | } | 
|  |  | 
|  | #define define_one_ro(_name)		\ | 
|  | static struct freq_attr _name =		\ | 
|  | __ATTR(_name, 0444, show_##_name, NULL) | 
|  |  | 
|  | define_one_ro(sampling_rate_max); | 
|  | define_one_ro(sampling_rate_min); | 
|  |  | 
|  | /* cpufreq_conservative Governor Tunables */ | 
|  | #define show_one(file_name, object)					\ | 
|  | static ssize_t show_##file_name						\ | 
|  | (struct cpufreq_policy *unused, char *buf)				\ | 
|  | {									\ | 
|  | return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\ | 
|  | } | 
|  | show_one(sampling_rate, sampling_rate); | 
|  | show_one(sampling_down_factor, sampling_down_factor); | 
|  | show_one(up_threshold, up_threshold); | 
|  | show_one(down_threshold, down_threshold); | 
|  | show_one(ignore_nice_load, ignore_nice); | 
|  | show_one(freq_step, freq_step); | 
|  |  | 
|  | static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned int input; | 
|  | int ret; | 
|  | ret = sscanf(buf, "%u", &input); | 
|  |  | 
|  | if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | mutex_lock(&dbs_mutex); | 
|  | dbs_tuners_ins.sampling_down_factor = input; | 
|  | mutex_unlock(&dbs_mutex); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t store_sampling_rate(struct cpufreq_policy *unused, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned int input; | 
|  | int ret; | 
|  | ret = sscanf(buf, "%u", &input); | 
|  |  | 
|  | if (ret != 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | mutex_lock(&dbs_mutex); | 
|  | dbs_tuners_ins.sampling_rate = max(input, minimum_sampling_rate()); | 
|  | mutex_unlock(&dbs_mutex); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t store_up_threshold(struct cpufreq_policy *unused, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned int input; | 
|  | int ret; | 
|  | ret = sscanf(buf, "%u", &input); | 
|  |  | 
|  | mutex_lock(&dbs_mutex); | 
|  | if (ret != 1 || input > 100 || | 
|  | input <= dbs_tuners_ins.down_threshold) { | 
|  | mutex_unlock(&dbs_mutex); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | dbs_tuners_ins.up_threshold = input; | 
|  | mutex_unlock(&dbs_mutex); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t store_down_threshold(struct cpufreq_policy *unused, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned int input; | 
|  | int ret; | 
|  | ret = sscanf(buf, "%u", &input); | 
|  |  | 
|  | mutex_lock(&dbs_mutex); | 
|  | /* cannot be lower than 11 otherwise freq will not fall */ | 
|  | if (ret != 1 || input < 11 || input > 100 || | 
|  | input >= dbs_tuners_ins.up_threshold) { | 
|  | mutex_unlock(&dbs_mutex); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | dbs_tuners_ins.down_threshold = input; | 
|  | mutex_unlock(&dbs_mutex); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned int input; | 
|  | int ret; | 
|  |  | 
|  | unsigned int j; | 
|  |  | 
|  | ret = sscanf(buf, "%u", &input); | 
|  | if (ret != 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (input > 1) | 
|  | input = 1; | 
|  |  | 
|  | mutex_lock(&dbs_mutex); | 
|  | if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */ | 
|  | mutex_unlock(&dbs_mutex); | 
|  | return count; | 
|  | } | 
|  | dbs_tuners_ins.ignore_nice = input; | 
|  |  | 
|  | /* we need to re-evaluate prev_cpu_idle */ | 
|  | for_each_online_cpu(j) { | 
|  | struct cpu_dbs_info_s *dbs_info; | 
|  | dbs_info = &per_cpu(cpu_dbs_info, j); | 
|  | dbs_info->prev_cpu_idle = get_cpu_idle_time(j, | 
|  | &dbs_info->prev_cpu_wall); | 
|  | if (dbs_tuners_ins.ignore_nice) | 
|  | dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice; | 
|  | } | 
|  | mutex_unlock(&dbs_mutex); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t store_freq_step(struct cpufreq_policy *policy, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned int input; | 
|  | int ret; | 
|  | ret = sscanf(buf, "%u", &input); | 
|  |  | 
|  | if (ret != 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (input > 100) | 
|  | input = 100; | 
|  |  | 
|  | /* no need to test here if freq_step is zero as the user might actually | 
|  | * want this, they would be crazy though :) */ | 
|  | mutex_lock(&dbs_mutex); | 
|  | dbs_tuners_ins.freq_step = input; | 
|  | mutex_unlock(&dbs_mutex); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | #define define_one_rw(_name) \ | 
|  | static struct freq_attr _name = \ | 
|  | __ATTR(_name, 0644, show_##_name, store_##_name) | 
|  |  | 
|  | define_one_rw(sampling_rate); | 
|  | define_one_rw(sampling_down_factor); | 
|  | define_one_rw(up_threshold); | 
|  | define_one_rw(down_threshold); | 
|  | define_one_rw(ignore_nice_load); | 
|  | define_one_rw(freq_step); | 
|  |  | 
|  | static struct attribute *dbs_attributes[] = { | 
|  | &sampling_rate_max.attr, | 
|  | &sampling_rate_min.attr, | 
|  | &sampling_rate.attr, | 
|  | &sampling_down_factor.attr, | 
|  | &up_threshold.attr, | 
|  | &down_threshold.attr, | 
|  | &ignore_nice_load.attr, | 
|  | &freq_step.attr, | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | static struct attribute_group dbs_attr_group = { | 
|  | .attrs = dbs_attributes, | 
|  | .name = "conservative", | 
|  | }; | 
|  |  | 
|  | /************************** sysfs end ************************/ | 
|  |  | 
|  | static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info) | 
|  | { | 
|  | unsigned int load = 0; | 
|  | unsigned int freq_target; | 
|  |  | 
|  | struct cpufreq_policy *policy; | 
|  | unsigned int j; | 
|  |  | 
|  | policy = this_dbs_info->cur_policy; | 
|  |  | 
|  | /* | 
|  | * Every sampling_rate, we check, if current idle time is less | 
|  | * than 20% (default), then we try to increase frequency | 
|  | * Every sampling_rate*sampling_down_factor, we check, if current | 
|  | * idle time is more than 80%, then we try to decrease frequency | 
|  | * | 
|  | * Any frequency increase takes it to the maximum frequency. | 
|  | * Frequency reduction happens at minimum steps of | 
|  | * 5% (default) of maximum frequency | 
|  | */ | 
|  |  | 
|  | /* Get Absolute Load */ | 
|  | for_each_cpu(j, policy->cpus) { | 
|  | struct cpu_dbs_info_s *j_dbs_info; | 
|  | cputime64_t cur_wall_time, cur_idle_time; | 
|  | unsigned int idle_time, wall_time; | 
|  |  | 
|  | j_dbs_info = &per_cpu(cpu_dbs_info, j); | 
|  |  | 
|  | cur_idle_time = get_cpu_idle_time(j, &cur_wall_time); | 
|  |  | 
|  | wall_time = (unsigned int) cputime64_sub(cur_wall_time, | 
|  | j_dbs_info->prev_cpu_wall); | 
|  | j_dbs_info->prev_cpu_wall = cur_wall_time; | 
|  |  | 
|  | idle_time = (unsigned int) cputime64_sub(cur_idle_time, | 
|  | j_dbs_info->prev_cpu_idle); | 
|  | j_dbs_info->prev_cpu_idle = cur_idle_time; | 
|  |  | 
|  | if (dbs_tuners_ins.ignore_nice) { | 
|  | cputime64_t cur_nice; | 
|  | unsigned long cur_nice_jiffies; | 
|  |  | 
|  | cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice, | 
|  | j_dbs_info->prev_cpu_nice); | 
|  | /* | 
|  | * Assumption: nice time between sampling periods will | 
|  | * be less than 2^32 jiffies for 32 bit sys | 
|  | */ | 
|  | cur_nice_jiffies = (unsigned long) | 
|  | cputime64_to_jiffies64(cur_nice); | 
|  |  | 
|  | j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice; | 
|  | idle_time += jiffies_to_usecs(cur_nice_jiffies); | 
|  | } | 
|  |  | 
|  | if (unlikely(!wall_time || wall_time < idle_time)) | 
|  | continue; | 
|  |  | 
|  | load = 100 * (wall_time - idle_time) / wall_time; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * break out if we 'cannot' reduce the speed as the user might | 
|  | * want freq_step to be zero | 
|  | */ | 
|  | if (dbs_tuners_ins.freq_step == 0) | 
|  | return; | 
|  |  | 
|  | /* Check for frequency increase */ | 
|  | if (load > dbs_tuners_ins.up_threshold) { | 
|  | this_dbs_info->down_skip = 0; | 
|  |  | 
|  | /* if we are already at full speed then break out early */ | 
|  | if (this_dbs_info->requested_freq == policy->max) | 
|  | return; | 
|  |  | 
|  | freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100; | 
|  |  | 
|  | /* max freq cannot be less than 100. But who knows.... */ | 
|  | if (unlikely(freq_target == 0)) | 
|  | freq_target = 5; | 
|  |  | 
|  | this_dbs_info->requested_freq += freq_target; | 
|  | if (this_dbs_info->requested_freq > policy->max) | 
|  | this_dbs_info->requested_freq = policy->max; | 
|  |  | 
|  | __cpufreq_driver_target(policy, this_dbs_info->requested_freq, | 
|  | CPUFREQ_RELATION_H); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The optimal frequency is the frequency that is the lowest that | 
|  | * can support the current CPU usage without triggering the up | 
|  | * policy. To be safe, we focus 10 points under the threshold. | 
|  | */ | 
|  | if (load < (dbs_tuners_ins.down_threshold - 10)) { | 
|  | freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100; | 
|  |  | 
|  | this_dbs_info->requested_freq -= freq_target; | 
|  | if (this_dbs_info->requested_freq < policy->min) | 
|  | this_dbs_info->requested_freq = policy->min; | 
|  |  | 
|  | /* | 
|  | * if we cannot reduce the frequency anymore, break out early | 
|  | */ | 
|  | if (policy->cur == policy->min) | 
|  | return; | 
|  |  | 
|  | __cpufreq_driver_target(policy, this_dbs_info->requested_freq, | 
|  | CPUFREQ_RELATION_H); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void do_dbs_timer(struct work_struct *work) | 
|  | { | 
|  | struct cpu_dbs_info_s *dbs_info = | 
|  | container_of(work, struct cpu_dbs_info_s, work.work); | 
|  | unsigned int cpu = dbs_info->cpu; | 
|  |  | 
|  | /* We want all CPUs to do sampling nearly on same jiffy */ | 
|  | int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate); | 
|  |  | 
|  | delay -= jiffies % delay; | 
|  |  | 
|  | if (lock_policy_rwsem_write(cpu) < 0) | 
|  | return; | 
|  |  | 
|  | if (!dbs_info->enable) { | 
|  | unlock_policy_rwsem_write(cpu); | 
|  | return; | 
|  | } | 
|  |  | 
|  | dbs_check_cpu(dbs_info); | 
|  |  | 
|  | queue_delayed_work_on(cpu, kconservative_wq, &dbs_info->work, delay); | 
|  | unlock_policy_rwsem_write(cpu); | 
|  | } | 
|  |  | 
|  | static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info) | 
|  | { | 
|  | /* We want all CPUs to do sampling nearly on same jiffy */ | 
|  | int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate); | 
|  | delay -= jiffies % delay; | 
|  |  | 
|  | dbs_info->enable = 1; | 
|  | INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer); | 
|  | queue_delayed_work_on(dbs_info->cpu, kconservative_wq, &dbs_info->work, | 
|  | delay); | 
|  | } | 
|  |  | 
|  | static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info) | 
|  | { | 
|  | dbs_info->enable = 0; | 
|  | cancel_delayed_work(&dbs_info->work); | 
|  | } | 
|  |  | 
|  | static int cpufreq_governor_dbs(struct cpufreq_policy *policy, | 
|  | unsigned int event) | 
|  | { | 
|  | unsigned int cpu = policy->cpu; | 
|  | struct cpu_dbs_info_s *this_dbs_info; | 
|  | unsigned int j; | 
|  | int rc; | 
|  |  | 
|  | this_dbs_info = &per_cpu(cpu_dbs_info, cpu); | 
|  |  | 
|  | switch (event) { | 
|  | case CPUFREQ_GOV_START: | 
|  | if ((!cpu_online(cpu)) || (!policy->cur)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (this_dbs_info->enable) /* Already enabled */ | 
|  | break; | 
|  |  | 
|  | mutex_lock(&dbs_mutex); | 
|  |  | 
|  | rc = sysfs_create_group(&policy->kobj, &dbs_attr_group); | 
|  | if (rc) { | 
|  | mutex_unlock(&dbs_mutex); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | for_each_cpu(j, policy->cpus) { | 
|  | struct cpu_dbs_info_s *j_dbs_info; | 
|  | j_dbs_info = &per_cpu(cpu_dbs_info, j); | 
|  | j_dbs_info->cur_policy = policy; | 
|  |  | 
|  | j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j, | 
|  | &j_dbs_info->prev_cpu_wall); | 
|  | if (dbs_tuners_ins.ignore_nice) { | 
|  | j_dbs_info->prev_cpu_nice = | 
|  | kstat_cpu(j).cpustat.nice; | 
|  | } | 
|  | } | 
|  | this_dbs_info->down_skip = 0; | 
|  | this_dbs_info->requested_freq = policy->cur; | 
|  |  | 
|  | dbs_enable++; | 
|  | /* | 
|  | * Start the timerschedule work, when this governor | 
|  | * is used for first time | 
|  | */ | 
|  | if (dbs_enable == 1) { | 
|  | unsigned int latency; | 
|  | /* policy latency is in nS. Convert it to uS first */ | 
|  | latency = policy->cpuinfo.transition_latency / 1000; | 
|  | if (latency == 0) | 
|  | latency = 1; | 
|  |  | 
|  | def_sampling_rate = | 
|  | max(latency * LATENCY_MULTIPLIER, | 
|  | MIN_STAT_SAMPLING_RATE); | 
|  |  | 
|  | dbs_tuners_ins.sampling_rate = def_sampling_rate; | 
|  |  | 
|  | cpufreq_register_notifier( | 
|  | &dbs_cpufreq_notifier_block, | 
|  | CPUFREQ_TRANSITION_NOTIFIER); | 
|  | } | 
|  | dbs_timer_init(this_dbs_info); | 
|  |  | 
|  | mutex_unlock(&dbs_mutex); | 
|  |  | 
|  | break; | 
|  |  | 
|  | case CPUFREQ_GOV_STOP: | 
|  | mutex_lock(&dbs_mutex); | 
|  | dbs_timer_exit(this_dbs_info); | 
|  | sysfs_remove_group(&policy->kobj, &dbs_attr_group); | 
|  | dbs_enable--; | 
|  |  | 
|  | /* | 
|  | * Stop the timerschedule work, when this governor | 
|  | * is used for first time | 
|  | */ | 
|  | if (dbs_enable == 0) | 
|  | cpufreq_unregister_notifier( | 
|  | &dbs_cpufreq_notifier_block, | 
|  | CPUFREQ_TRANSITION_NOTIFIER); | 
|  |  | 
|  | mutex_unlock(&dbs_mutex); | 
|  |  | 
|  | break; | 
|  |  | 
|  | case CPUFREQ_GOV_LIMITS: | 
|  | mutex_lock(&dbs_mutex); | 
|  | if (policy->max < this_dbs_info->cur_policy->cur) | 
|  | __cpufreq_driver_target( | 
|  | this_dbs_info->cur_policy, | 
|  | policy->max, CPUFREQ_RELATION_H); | 
|  | else if (policy->min > this_dbs_info->cur_policy->cur) | 
|  | __cpufreq_driver_target( | 
|  | this_dbs_info->cur_policy, | 
|  | policy->min, CPUFREQ_RELATION_L); | 
|  | mutex_unlock(&dbs_mutex); | 
|  |  | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE | 
|  | static | 
|  | #endif | 
|  | struct cpufreq_governor cpufreq_gov_conservative = { | 
|  | .name			= "conservative", | 
|  | .governor		= cpufreq_governor_dbs, | 
|  | .max_transition_latency	= TRANSITION_LATENCY_LIMIT, | 
|  | .owner			= THIS_MODULE, | 
|  | }; | 
|  |  | 
|  | static int __init cpufreq_gov_dbs_init(void) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | kconservative_wq = create_workqueue("kconservative"); | 
|  | if (!kconservative_wq) { | 
|  | printk(KERN_ERR "Creation of kconservative failed\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | err = cpufreq_register_governor(&cpufreq_gov_conservative); | 
|  | if (err) | 
|  | destroy_workqueue(kconservative_wq); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void __exit cpufreq_gov_dbs_exit(void) | 
|  | { | 
|  | cpufreq_unregister_governor(&cpufreq_gov_conservative); | 
|  | destroy_workqueue(kconservative_wq); | 
|  | } | 
|  |  | 
|  |  | 
|  | MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>"); | 
|  | MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for " | 
|  | "Low Latency Frequency Transition capable processors " | 
|  | "optimised for use in a battery environment"); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE | 
|  | fs_initcall(cpufreq_gov_dbs_init); | 
|  | #else | 
|  | module_init(cpufreq_gov_dbs_init); | 
|  | #endif | 
|  | module_exit(cpufreq_gov_dbs_exit); |