|  | /***************************************************************************** | 
|  | *                                                                           * | 
|  | * File: sge.c                                                               * | 
|  | * $Revision: 1.26 $                                                         * | 
|  | * $Date: 2005/06/21 18:29:48 $                                              * | 
|  | * Description:                                                              * | 
|  | *  DMA engine.                                                              * | 
|  | *  part of the Chelsio 10Gb Ethernet Driver.                                * | 
|  | *                                                                           * | 
|  | * This program is free software; you can redistribute it and/or modify      * | 
|  | * it under the terms of the GNU General Public License, version 2, as       * | 
|  | * published by the Free Software Foundation.                                * | 
|  | *                                                                           * | 
|  | * You should have received a copy of the GNU General Public License along   * | 
|  | * with this program; if not, write to the Free Software Foundation, Inc.,   * | 
|  | * 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.                 * | 
|  | *                                                                           * | 
|  | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED    * | 
|  | * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF      * | 
|  | * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.                     * | 
|  | *                                                                           * | 
|  | * http://www.chelsio.com                                                    * | 
|  | *                                                                           * | 
|  | * Copyright (c) 2003 - 2005 Chelsio Communications, Inc.                    * | 
|  | * All rights reserved.                                                      * | 
|  | *                                                                           * | 
|  | * Maintainers: maintainers@chelsio.com                                      * | 
|  | *                                                                           * | 
|  | * Authors: Dimitrios Michailidis   <dm@chelsio.com>                         * | 
|  | *          Tina Yang               <tainay@chelsio.com>                     * | 
|  | *          Felix Marti             <felix@chelsio.com>                      * | 
|  | *          Scott Bardone           <sbardone@chelsio.com>                   * | 
|  | *          Kurt Ottaway            <kottaway@chelsio.com>                   * | 
|  | *          Frank DiMambro          <frank@chelsio.com>                      * | 
|  | *                                                                           * | 
|  | * History:                                                                  * | 
|  | *                                                                           * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | #include "common.h" | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/ktime.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/etherdevice.h> | 
|  | #include <linux/if_vlan.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/tcp.h> | 
|  | #include <linux/ip.h> | 
|  | #include <linux/in.h> | 
|  | #include <linux/if_arp.h> | 
|  |  | 
|  | #include "cpl5_cmd.h" | 
|  | #include "sge.h" | 
|  | #include "regs.h" | 
|  | #include "espi.h" | 
|  |  | 
|  | /* This belongs in if_ether.h */ | 
|  | #define ETH_P_CPL5 0xf | 
|  |  | 
|  | #define SGE_CMDQ_N		2 | 
|  | #define SGE_FREELQ_N		2 | 
|  | #define SGE_CMDQ0_E_N		1024 | 
|  | #define SGE_CMDQ1_E_N		128 | 
|  | #define SGE_FREEL_SIZE		4096 | 
|  | #define SGE_JUMBO_FREEL_SIZE	512 | 
|  | #define SGE_FREEL_REFILL_THRESH	16 | 
|  | #define SGE_RESPQ_E_N		1024 | 
|  | #define SGE_INTRTIMER_NRES	1000 | 
|  | #define SGE_RX_SM_BUF_SIZE	1536 | 
|  | #define SGE_TX_DESC_MAX_PLEN	16384 | 
|  |  | 
|  | #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4) | 
|  |  | 
|  | /* | 
|  | * Period of the TX buffer reclaim timer.  This timer does not need to run | 
|  | * frequently as TX buffers are usually reclaimed by new TX packets. | 
|  | */ | 
|  | #define TX_RECLAIM_PERIOD (HZ / 4) | 
|  |  | 
|  | #define M_CMD_LEN       0x7fffffff | 
|  | #define V_CMD_LEN(v)    (v) | 
|  | #define G_CMD_LEN(v)    ((v) & M_CMD_LEN) | 
|  | #define V_CMD_GEN1(v)   ((v) << 31) | 
|  | #define V_CMD_GEN2(v)   (v) | 
|  | #define F_CMD_DATAVALID (1 << 1) | 
|  | #define F_CMD_SOP       (1 << 2) | 
|  | #define V_CMD_EOP(v)    ((v) << 3) | 
|  |  | 
|  | /* | 
|  | * Command queue, receive buffer list, and response queue descriptors. | 
|  | */ | 
|  | #if defined(__BIG_ENDIAN_BITFIELD) | 
|  | struct cmdQ_e { | 
|  | u32 addr_lo; | 
|  | u32 len_gen; | 
|  | u32 flags; | 
|  | u32 addr_hi; | 
|  | }; | 
|  |  | 
|  | struct freelQ_e { | 
|  | u32 addr_lo; | 
|  | u32 len_gen; | 
|  | u32 gen2; | 
|  | u32 addr_hi; | 
|  | }; | 
|  |  | 
|  | struct respQ_e { | 
|  | u32 Qsleeping		: 4; | 
|  | u32 Cmdq1CreditReturn	: 5; | 
|  | u32 Cmdq1DmaComplete	: 5; | 
|  | u32 Cmdq0CreditReturn	: 5; | 
|  | u32 Cmdq0DmaComplete	: 5; | 
|  | u32 FreelistQid		: 2; | 
|  | u32 CreditValid		: 1; | 
|  | u32 DataValid		: 1; | 
|  | u32 Offload		: 1; | 
|  | u32 Eop			: 1; | 
|  | u32 Sop			: 1; | 
|  | u32 GenerationBit	: 1; | 
|  | u32 BufferLength; | 
|  | }; | 
|  | #elif defined(__LITTLE_ENDIAN_BITFIELD) | 
|  | struct cmdQ_e { | 
|  | u32 len_gen; | 
|  | u32 addr_lo; | 
|  | u32 addr_hi; | 
|  | u32 flags; | 
|  | }; | 
|  |  | 
|  | struct freelQ_e { | 
|  | u32 len_gen; | 
|  | u32 addr_lo; | 
|  | u32 addr_hi; | 
|  | u32 gen2; | 
|  | }; | 
|  |  | 
|  | struct respQ_e { | 
|  | u32 BufferLength; | 
|  | u32 GenerationBit	: 1; | 
|  | u32 Sop			: 1; | 
|  | u32 Eop			: 1; | 
|  | u32 Offload		: 1; | 
|  | u32 DataValid		: 1; | 
|  | u32 CreditValid		: 1; | 
|  | u32 FreelistQid		: 2; | 
|  | u32 Cmdq0DmaComplete	: 5; | 
|  | u32 Cmdq0CreditReturn	: 5; | 
|  | u32 Cmdq1DmaComplete	: 5; | 
|  | u32 Cmdq1CreditReturn	: 5; | 
|  | u32 Qsleeping		: 4; | 
|  | } ; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * SW Context Command and Freelist Queue Descriptors | 
|  | */ | 
|  | struct cmdQ_ce { | 
|  | struct sk_buff *skb; | 
|  | DECLARE_PCI_UNMAP_ADDR(dma_addr); | 
|  | DECLARE_PCI_UNMAP_LEN(dma_len); | 
|  | }; | 
|  |  | 
|  | struct freelQ_ce { | 
|  | struct sk_buff *skb; | 
|  | DECLARE_PCI_UNMAP_ADDR(dma_addr); | 
|  | DECLARE_PCI_UNMAP_LEN(dma_len); | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * SW command, freelist and response rings | 
|  | */ | 
|  | struct cmdQ { | 
|  | unsigned long   status;         /* HW DMA fetch status */ | 
|  | unsigned int    in_use;         /* # of in-use command descriptors */ | 
|  | unsigned int	size;	        /* # of descriptors */ | 
|  | unsigned int    processed;      /* total # of descs HW has processed */ | 
|  | unsigned int    cleaned;        /* total # of descs SW has reclaimed */ | 
|  | unsigned int    stop_thres;     /* SW TX queue suspend threshold */ | 
|  | u16		pidx;           /* producer index (SW) */ | 
|  | u16		cidx;           /* consumer index (HW) */ | 
|  | u8		genbit;         /* current generation (=valid) bit */ | 
|  | u8              sop;            /* is next entry start of packet? */ | 
|  | struct cmdQ_e  *entries;        /* HW command descriptor Q */ | 
|  | struct cmdQ_ce *centries;       /* SW command context descriptor Q */ | 
|  | dma_addr_t	dma_addr;       /* DMA addr HW command descriptor Q */ | 
|  | spinlock_t	lock;           /* Lock to protect cmdQ enqueuing */ | 
|  | }; | 
|  |  | 
|  | struct freelQ { | 
|  | unsigned int	credits;        /* # of available RX buffers */ | 
|  | unsigned int	size;	        /* free list capacity */ | 
|  | u16		pidx;           /* producer index (SW) */ | 
|  | u16		cidx;           /* consumer index (HW) */ | 
|  | u16		rx_buffer_size; /* Buffer size on this free list */ | 
|  | u16             dma_offset;     /* DMA offset to align IP headers */ | 
|  | u16             recycleq_idx;   /* skb recycle q to use */ | 
|  | u8		genbit;	        /* current generation (=valid) bit */ | 
|  | struct freelQ_e	*entries;       /* HW freelist descriptor Q */ | 
|  | struct freelQ_ce *centries;     /* SW freelist context descriptor Q */ | 
|  | dma_addr_t	dma_addr;       /* DMA addr HW freelist descriptor Q */ | 
|  | }; | 
|  |  | 
|  | struct respQ { | 
|  | unsigned int	credits;        /* credits to be returned to SGE */ | 
|  | unsigned int	size;	        /* # of response Q descriptors */ | 
|  | u16		cidx;	        /* consumer index (SW) */ | 
|  | u8		genbit;	        /* current generation(=valid) bit */ | 
|  | struct respQ_e *entries;        /* HW response descriptor Q */ | 
|  | dma_addr_t	dma_addr;       /* DMA addr HW response descriptor Q */ | 
|  | }; | 
|  |  | 
|  | /* Bit flags for cmdQ.status */ | 
|  | enum { | 
|  | CMDQ_STAT_RUNNING = 1,          /* fetch engine is running */ | 
|  | CMDQ_STAT_LAST_PKT_DB = 2       /* last packet rung the doorbell */ | 
|  | }; | 
|  |  | 
|  | /* T204 TX SW scheduler */ | 
|  |  | 
|  | /* Per T204 TX port */ | 
|  | struct sched_port { | 
|  | unsigned int	avail;		/* available bits - quota */ | 
|  | unsigned int	drain_bits_per_1024ns; /* drain rate */ | 
|  | unsigned int	speed;		/* drain rate, mbps */ | 
|  | unsigned int	mtu;		/* mtu size */ | 
|  | struct sk_buff_head skbq;	/* pending skbs */ | 
|  | }; | 
|  |  | 
|  | /* Per T204 device */ | 
|  | struct sched { | 
|  | ktime_t         last_updated;   /* last time quotas were computed */ | 
|  | unsigned int	max_avail;	/* max bits to be sent to any port */ | 
|  | unsigned int	port;		/* port index (round robin ports) */ | 
|  | unsigned int	num;		/* num skbs in per port queues */ | 
|  | struct sched_port p[MAX_NPORTS]; | 
|  | struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */ | 
|  | }; | 
|  | static void restart_sched(unsigned long); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Main SGE data structure | 
|  | * | 
|  | * Interrupts are handled by a single CPU and it is likely that on a MP system | 
|  | * the application is migrated to another CPU. In that scenario, we try to | 
|  | * seperate the RX(in irq context) and TX state in order to decrease memory | 
|  | * contention. | 
|  | */ | 
|  | struct sge { | 
|  | struct adapter *adapter;	/* adapter backpointer */ | 
|  | struct net_device *netdev;      /* netdevice backpointer */ | 
|  | struct freelQ	freelQ[SGE_FREELQ_N]; /* buffer free lists */ | 
|  | struct respQ	respQ;		/* response Q */ | 
|  | unsigned long   stopped_tx_queues; /* bitmap of suspended Tx queues */ | 
|  | unsigned int	rx_pkt_pad;     /* RX padding for L2 packets */ | 
|  | unsigned int	jumbo_fl;       /* jumbo freelist Q index */ | 
|  | unsigned int	intrtimer_nres;	/* no-resource interrupt timer */ | 
|  | unsigned int    fixed_intrtimer;/* non-adaptive interrupt timer */ | 
|  | struct timer_list tx_reclaim_timer; /* reclaims TX buffers */ | 
|  | struct timer_list espibug_timer; | 
|  | unsigned long	espibug_timeout; | 
|  | struct sk_buff	*espibug_skb[MAX_NPORTS]; | 
|  | u32		sge_control;	/* shadow value of sge control reg */ | 
|  | struct sge_intr_counts stats; | 
|  | struct sge_port_stats *port_stats[MAX_NPORTS]; | 
|  | struct sched	*tx_sched; | 
|  | struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * stop tasklet and free all pending skb's | 
|  | */ | 
|  | static void tx_sched_stop(struct sge *sge) | 
|  | { | 
|  | struct sched *s = sge->tx_sched; | 
|  | int i; | 
|  |  | 
|  | tasklet_kill(&s->sched_tsk); | 
|  |  | 
|  | for (i = 0; i < MAX_NPORTS; i++) | 
|  | __skb_queue_purge(&s->p[s->port].skbq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * t1_sched_update_parms() is called when the MTU or link speed changes. It | 
|  | * re-computes scheduler parameters to scope with the change. | 
|  | */ | 
|  | unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port, | 
|  | unsigned int mtu, unsigned int speed) | 
|  | { | 
|  | struct sched *s = sge->tx_sched; | 
|  | struct sched_port *p = &s->p[port]; | 
|  | unsigned int max_avail_segs; | 
|  |  | 
|  | pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu, speed); | 
|  | if (speed) | 
|  | p->speed = speed; | 
|  | if (mtu) | 
|  | p->mtu = mtu; | 
|  |  | 
|  | if (speed || mtu) { | 
|  | unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40); | 
|  | do_div(drain, (p->mtu + 50) * 1000); | 
|  | p->drain_bits_per_1024ns = (unsigned int) drain; | 
|  |  | 
|  | if (p->speed < 1000) | 
|  | p->drain_bits_per_1024ns = | 
|  | 90 * p->drain_bits_per_1024ns / 100; | 
|  | } | 
|  |  | 
|  | if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) { | 
|  | p->drain_bits_per_1024ns -= 16; | 
|  | s->max_avail = max(4096U, p->mtu + 16 + 14 + 4); | 
|  | max_avail_segs = max(1U, 4096 / (p->mtu - 40)); | 
|  | } else { | 
|  | s->max_avail = 16384; | 
|  | max_avail_segs = max(1U, 9000 / (p->mtu - 40)); | 
|  | } | 
|  |  | 
|  | pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u " | 
|  | "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu, | 
|  | p->speed, s->max_avail, max_avail_segs, | 
|  | p->drain_bits_per_1024ns); | 
|  |  | 
|  | return max_avail_segs * (p->mtu - 40); | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  |  | 
|  | /* | 
|  | * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of | 
|  | * data that can be pushed per port. | 
|  | */ | 
|  | void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val) | 
|  | { | 
|  | struct sched *s = sge->tx_sched; | 
|  | unsigned int i; | 
|  |  | 
|  | s->max_avail = val; | 
|  | for (i = 0; i < MAX_NPORTS; i++) | 
|  | t1_sched_update_parms(sge, i, 0, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port | 
|  | * is draining. | 
|  | */ | 
|  | void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port, | 
|  | unsigned int val) | 
|  | { | 
|  | struct sched *s = sge->tx_sched; | 
|  | struct sched_port *p = &s->p[port]; | 
|  | p->drain_bits_per_1024ns = val * 1024 / 1000; | 
|  | t1_sched_update_parms(sge, port, 0, 0); | 
|  | } | 
|  |  | 
|  | #endif  /*  0  */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * get_clock() implements a ns clock (see ktime_get) | 
|  | */ | 
|  | static inline ktime_t get_clock(void) | 
|  | { | 
|  | struct timespec ts; | 
|  |  | 
|  | ktime_get_ts(&ts); | 
|  | return timespec_to_ktime(ts); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * tx_sched_init() allocates resources and does basic initialization. | 
|  | */ | 
|  | static int tx_sched_init(struct sge *sge) | 
|  | { | 
|  | struct sched *s; | 
|  | int i; | 
|  |  | 
|  | s = kzalloc(sizeof (struct sched), GFP_KERNEL); | 
|  | if (!s) | 
|  | return -ENOMEM; | 
|  |  | 
|  | pr_debug("tx_sched_init\n"); | 
|  | tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge); | 
|  | sge->tx_sched = s; | 
|  |  | 
|  | for (i = 0; i < MAX_NPORTS; i++) { | 
|  | skb_queue_head_init(&s->p[i].skbq); | 
|  | t1_sched_update_parms(sge, i, 1500, 1000); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sched_update_avail() computes the delta since the last time it was called | 
|  | * and updates the per port quota (number of bits that can be sent to the any | 
|  | * port). | 
|  | */ | 
|  | static inline int sched_update_avail(struct sge *sge) | 
|  | { | 
|  | struct sched *s = sge->tx_sched; | 
|  | ktime_t now = get_clock(); | 
|  | unsigned int i; | 
|  | long long delta_time_ns; | 
|  |  | 
|  | delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated)); | 
|  |  | 
|  | pr_debug("sched_update_avail delta=%lld\n", delta_time_ns); | 
|  | if (delta_time_ns < 15000) | 
|  | return 0; | 
|  |  | 
|  | for (i = 0; i < MAX_NPORTS; i++) { | 
|  | struct sched_port *p = &s->p[i]; | 
|  | unsigned int delta_avail; | 
|  |  | 
|  | delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13; | 
|  | p->avail = min(p->avail + delta_avail, s->max_avail); | 
|  | } | 
|  |  | 
|  | s->last_updated = now; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sched_skb() is called from two different places. In the tx path, any | 
|  | * packet generating load on an output port will call sched_skb() | 
|  | * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq | 
|  | * context (skb == NULL). | 
|  | * The scheduler only returns a skb (which will then be sent) if the | 
|  | * length of the skb is <= the current quota of the output port. | 
|  | */ | 
|  | static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb, | 
|  | unsigned int credits) | 
|  | { | 
|  | struct sched *s = sge->tx_sched; | 
|  | struct sk_buff_head *skbq; | 
|  | unsigned int i, len, update = 1; | 
|  |  | 
|  | pr_debug("sched_skb %p\n", skb); | 
|  | if (!skb) { | 
|  | if (!s->num) | 
|  | return NULL; | 
|  | } else { | 
|  | skbq = &s->p[skb->dev->if_port].skbq; | 
|  | __skb_queue_tail(skbq, skb); | 
|  | s->num++; | 
|  | skb = NULL; | 
|  | } | 
|  |  | 
|  | if (credits < MAX_SKB_FRAGS + 1) | 
|  | goto out; | 
|  |  | 
|  | again: | 
|  | for (i = 0; i < MAX_NPORTS; i++) { | 
|  | s->port = ++s->port & (MAX_NPORTS - 1); | 
|  | skbq = &s->p[s->port].skbq; | 
|  |  | 
|  | skb = skb_peek(skbq); | 
|  |  | 
|  | if (!skb) | 
|  | continue; | 
|  |  | 
|  | len = skb->len; | 
|  | if (len <= s->p[s->port].avail) { | 
|  | s->p[s->port].avail -= len; | 
|  | s->num--; | 
|  | __skb_unlink(skb, skbq); | 
|  | goto out; | 
|  | } | 
|  | skb = NULL; | 
|  | } | 
|  |  | 
|  | if (update-- && sched_update_avail(sge)) | 
|  | goto again; | 
|  |  | 
|  | out: | 
|  | /* If there are more pending skbs, we use the hardware to schedule us | 
|  | * again. | 
|  | */ | 
|  | if (s->num && !skb) { | 
|  | struct cmdQ *q = &sge->cmdQ[0]; | 
|  | clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); | 
|  | if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) { | 
|  | set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); | 
|  | writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL); | 
|  | } | 
|  | } | 
|  | pr_debug("sched_skb ret %p\n", skb); | 
|  |  | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * PIO to indicate that memory mapped Q contains valid descriptor(s). | 
|  | */ | 
|  | static inline void doorbell_pio(struct adapter *adapter, u32 val) | 
|  | { | 
|  | wmb(); | 
|  | writel(val, adapter->regs + A_SG_DOORBELL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Frees all RX buffers on the freelist Q. The caller must make sure that | 
|  | * the SGE is turned off before calling this function. | 
|  | */ | 
|  | static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q) | 
|  | { | 
|  | unsigned int cidx = q->cidx; | 
|  |  | 
|  | while (q->credits--) { | 
|  | struct freelQ_ce *ce = &q->centries[cidx]; | 
|  |  | 
|  | pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr), | 
|  | pci_unmap_len(ce, dma_len), | 
|  | PCI_DMA_FROMDEVICE); | 
|  | dev_kfree_skb(ce->skb); | 
|  | ce->skb = NULL; | 
|  | if (++cidx == q->size) | 
|  | cidx = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free RX free list and response queue resources. | 
|  | */ | 
|  | static void free_rx_resources(struct sge *sge) | 
|  | { | 
|  | struct pci_dev *pdev = sge->adapter->pdev; | 
|  | unsigned int size, i; | 
|  |  | 
|  | if (sge->respQ.entries) { | 
|  | size = sizeof(struct respQ_e) * sge->respQ.size; | 
|  | pci_free_consistent(pdev, size, sge->respQ.entries, | 
|  | sge->respQ.dma_addr); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < SGE_FREELQ_N; i++) { | 
|  | struct freelQ *q = &sge->freelQ[i]; | 
|  |  | 
|  | if (q->centries) { | 
|  | free_freelQ_buffers(pdev, q); | 
|  | kfree(q->centries); | 
|  | } | 
|  | if (q->entries) { | 
|  | size = sizeof(struct freelQ_e) * q->size; | 
|  | pci_free_consistent(pdev, size, q->entries, | 
|  | q->dma_addr); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocates basic RX resources, consisting of memory mapped freelist Qs and a | 
|  | * response queue. | 
|  | */ | 
|  | static int alloc_rx_resources(struct sge *sge, struct sge_params *p) | 
|  | { | 
|  | struct pci_dev *pdev = sge->adapter->pdev; | 
|  | unsigned int size, i; | 
|  |  | 
|  | for (i = 0; i < SGE_FREELQ_N; i++) { | 
|  | struct freelQ *q = &sge->freelQ[i]; | 
|  |  | 
|  | q->genbit = 1; | 
|  | q->size = p->freelQ_size[i]; | 
|  | q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN; | 
|  | size = sizeof(struct freelQ_e) * q->size; | 
|  | q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr); | 
|  | if (!q->entries) | 
|  | goto err_no_mem; | 
|  |  | 
|  | size = sizeof(struct freelQ_ce) * q->size; | 
|  | q->centries = kzalloc(size, GFP_KERNEL); | 
|  | if (!q->centries) | 
|  | goto err_no_mem; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the buffer sizes for the two free lists.  FL0 accommodates | 
|  | * regular sized Ethernet frames, FL1 is sized not to exceed 16K, | 
|  | * including all the sk_buff overhead. | 
|  | * | 
|  | * Note: For T2 FL0 and FL1 are reversed. | 
|  | */ | 
|  | sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE + | 
|  | sizeof(struct cpl_rx_data) + | 
|  | sge->freelQ[!sge->jumbo_fl].dma_offset; | 
|  |  | 
|  | size = (16 * 1024) - | 
|  | SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); | 
|  |  | 
|  | sge->freelQ[sge->jumbo_fl].rx_buffer_size = size; | 
|  |  | 
|  | /* | 
|  | * Setup which skb recycle Q should be used when recycling buffers from | 
|  | * each free list. | 
|  | */ | 
|  | sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0; | 
|  | sge->freelQ[sge->jumbo_fl].recycleq_idx = 1; | 
|  |  | 
|  | sge->respQ.genbit = 1; | 
|  | sge->respQ.size = SGE_RESPQ_E_N; | 
|  | sge->respQ.credits = 0; | 
|  | size = sizeof(struct respQ_e) * sge->respQ.size; | 
|  | sge->respQ.entries = | 
|  | pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr); | 
|  | if (!sge->respQ.entries) | 
|  | goto err_no_mem; | 
|  | return 0; | 
|  |  | 
|  | err_no_mem: | 
|  | free_rx_resources(sge); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reclaims n TX descriptors and frees the buffers associated with them. | 
|  | */ | 
|  | static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n) | 
|  | { | 
|  | struct cmdQ_ce *ce; | 
|  | struct pci_dev *pdev = sge->adapter->pdev; | 
|  | unsigned int cidx = q->cidx; | 
|  |  | 
|  | q->in_use -= n; | 
|  | ce = &q->centries[cidx]; | 
|  | while (n--) { | 
|  | if (likely(pci_unmap_len(ce, dma_len))) { | 
|  | pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr), | 
|  | pci_unmap_len(ce, dma_len), | 
|  | PCI_DMA_TODEVICE); | 
|  | if (q->sop) | 
|  | q->sop = 0; | 
|  | } | 
|  | if (ce->skb) { | 
|  | dev_kfree_skb_any(ce->skb); | 
|  | q->sop = 1; | 
|  | } | 
|  | ce++; | 
|  | if (++cidx == q->size) { | 
|  | cidx = 0; | 
|  | ce = q->centries; | 
|  | } | 
|  | } | 
|  | q->cidx = cidx; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free TX resources. | 
|  | * | 
|  | * Assumes that SGE is stopped and all interrupts are disabled. | 
|  | */ | 
|  | static void free_tx_resources(struct sge *sge) | 
|  | { | 
|  | struct pci_dev *pdev = sge->adapter->pdev; | 
|  | unsigned int size, i; | 
|  |  | 
|  | for (i = 0; i < SGE_CMDQ_N; i++) { | 
|  | struct cmdQ *q = &sge->cmdQ[i]; | 
|  |  | 
|  | if (q->centries) { | 
|  | if (q->in_use) | 
|  | free_cmdQ_buffers(sge, q, q->in_use); | 
|  | kfree(q->centries); | 
|  | } | 
|  | if (q->entries) { | 
|  | size = sizeof(struct cmdQ_e) * q->size; | 
|  | pci_free_consistent(pdev, size, q->entries, | 
|  | q->dma_addr); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocates basic TX resources, consisting of memory mapped command Qs. | 
|  | */ | 
|  | static int alloc_tx_resources(struct sge *sge, struct sge_params *p) | 
|  | { | 
|  | struct pci_dev *pdev = sge->adapter->pdev; | 
|  | unsigned int size, i; | 
|  |  | 
|  | for (i = 0; i < SGE_CMDQ_N; i++) { | 
|  | struct cmdQ *q = &sge->cmdQ[i]; | 
|  |  | 
|  | q->genbit = 1; | 
|  | q->sop = 1; | 
|  | q->size = p->cmdQ_size[i]; | 
|  | q->in_use = 0; | 
|  | q->status = 0; | 
|  | q->processed = q->cleaned = 0; | 
|  | q->stop_thres = 0; | 
|  | spin_lock_init(&q->lock); | 
|  | size = sizeof(struct cmdQ_e) * q->size; | 
|  | q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr); | 
|  | if (!q->entries) | 
|  | goto err_no_mem; | 
|  |  | 
|  | size = sizeof(struct cmdQ_ce) * q->size; | 
|  | q->centries = kzalloc(size, GFP_KERNEL); | 
|  | if (!q->centries) | 
|  | goto err_no_mem; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE | 
|  | * only.  For queue 0 set the stop threshold so we can handle one more | 
|  | * packet from each port, plus reserve an additional 24 entries for | 
|  | * Ethernet packets only.  Queue 1 never suspends nor do we reserve | 
|  | * space for Ethernet packets. | 
|  | */ | 
|  | sge->cmdQ[0].stop_thres = sge->adapter->params.nports * | 
|  | (MAX_SKB_FRAGS + 1); | 
|  | return 0; | 
|  |  | 
|  | err_no_mem: | 
|  | free_tx_resources(sge); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static inline void setup_ring_params(struct adapter *adapter, u64 addr, | 
|  | u32 size, int base_reg_lo, | 
|  | int base_reg_hi, int size_reg) | 
|  | { | 
|  | writel((u32)addr, adapter->regs + base_reg_lo); | 
|  | writel(addr >> 32, adapter->regs + base_reg_hi); | 
|  | writel(size, adapter->regs + size_reg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enable/disable VLAN acceleration. | 
|  | */ | 
|  | void t1_set_vlan_accel(struct adapter *adapter, int on_off) | 
|  | { | 
|  | struct sge *sge = adapter->sge; | 
|  |  | 
|  | sge->sge_control &= ~F_VLAN_XTRACT; | 
|  | if (on_off) | 
|  | sge->sge_control |= F_VLAN_XTRACT; | 
|  | if (adapter->open_device_map) { | 
|  | writel(sge->sge_control, adapter->regs + A_SG_CONTROL); | 
|  | readl(adapter->regs + A_SG_CONTROL);   /* flush */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Programs the various SGE registers. However, the engine is not yet enabled, | 
|  | * but sge->sge_control is setup and ready to go. | 
|  | */ | 
|  | static void configure_sge(struct sge *sge, struct sge_params *p) | 
|  | { | 
|  | struct adapter *ap = sge->adapter; | 
|  |  | 
|  | writel(0, ap->regs + A_SG_CONTROL); | 
|  | setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size, | 
|  | A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE); | 
|  | setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size, | 
|  | A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE); | 
|  | setup_ring_params(ap, sge->freelQ[0].dma_addr, | 
|  | sge->freelQ[0].size, A_SG_FL0BASELWR, | 
|  | A_SG_FL0BASEUPR, A_SG_FL0SIZE); | 
|  | setup_ring_params(ap, sge->freelQ[1].dma_addr, | 
|  | sge->freelQ[1].size, A_SG_FL1BASELWR, | 
|  | A_SG_FL1BASEUPR, A_SG_FL1SIZE); | 
|  |  | 
|  | /* The threshold comparison uses <. */ | 
|  | writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD); | 
|  |  | 
|  | setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size, | 
|  | A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE); | 
|  | writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT); | 
|  |  | 
|  | sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE | | 
|  | F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE | | 
|  | V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE | | 
|  | V_RX_PKT_OFFSET(sge->rx_pkt_pad); | 
|  |  | 
|  | #if defined(__BIG_ENDIAN_BITFIELD) | 
|  | sge->sge_control |= F_ENABLE_BIG_ENDIAN; | 
|  | #endif | 
|  |  | 
|  | /* Initialize no-resource timer */ | 
|  | sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap); | 
|  |  | 
|  | t1_sge_set_coalesce_params(sge, p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the payload capacity of the jumbo free-list buffers. | 
|  | */ | 
|  | static inline unsigned int jumbo_payload_capacity(const struct sge *sge) | 
|  | { | 
|  | return sge->freelQ[sge->jumbo_fl].rx_buffer_size - | 
|  | sge->freelQ[sge->jumbo_fl].dma_offset - | 
|  | sizeof(struct cpl_rx_data); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Frees all SGE related resources and the sge structure itself | 
|  | */ | 
|  | void t1_sge_destroy(struct sge *sge) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for_each_port(sge->adapter, i) | 
|  | free_percpu(sge->port_stats[i]); | 
|  |  | 
|  | kfree(sge->tx_sched); | 
|  | free_tx_resources(sge); | 
|  | free_rx_resources(sge); | 
|  | kfree(sge); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocates new RX buffers on the freelist Q (and tracks them on the freelist | 
|  | * context Q) until the Q is full or alloc_skb fails. | 
|  | * | 
|  | * It is possible that the generation bits already match, indicating that the | 
|  | * buffer is already valid and nothing needs to be done. This happens when we | 
|  | * copied a received buffer into a new sk_buff during the interrupt processing. | 
|  | * | 
|  | * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad), | 
|  | * we specify a RX_OFFSET in order to make sure that the IP header is 4B | 
|  | * aligned. | 
|  | */ | 
|  | static void refill_free_list(struct sge *sge, struct freelQ *q) | 
|  | { | 
|  | struct pci_dev *pdev = sge->adapter->pdev; | 
|  | struct freelQ_ce *ce = &q->centries[q->pidx]; | 
|  | struct freelQ_e *e = &q->entries[q->pidx]; | 
|  | unsigned int dma_len = q->rx_buffer_size - q->dma_offset; | 
|  |  | 
|  | while (q->credits < q->size) { | 
|  | struct sk_buff *skb; | 
|  | dma_addr_t mapping; | 
|  |  | 
|  | skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC); | 
|  | if (!skb) | 
|  | break; | 
|  |  | 
|  | skb_reserve(skb, q->dma_offset); | 
|  | mapping = pci_map_single(pdev, skb->data, dma_len, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | skb_reserve(skb, sge->rx_pkt_pad); | 
|  |  | 
|  | ce->skb = skb; | 
|  | pci_unmap_addr_set(ce, dma_addr, mapping); | 
|  | pci_unmap_len_set(ce, dma_len, dma_len); | 
|  | e->addr_lo = (u32)mapping; | 
|  | e->addr_hi = (u64)mapping >> 32; | 
|  | e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit); | 
|  | wmb(); | 
|  | e->gen2 = V_CMD_GEN2(q->genbit); | 
|  |  | 
|  | e++; | 
|  | ce++; | 
|  | if (++q->pidx == q->size) { | 
|  | q->pidx = 0; | 
|  | q->genbit ^= 1; | 
|  | ce = q->centries; | 
|  | e = q->entries; | 
|  | } | 
|  | q->credits++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calls refill_free_list for both free lists. If we cannot fill at least 1/4 | 
|  | * of both rings, we go into 'few interrupt mode' in order to give the system | 
|  | * time to free up resources. | 
|  | */ | 
|  | static void freelQs_empty(struct sge *sge) | 
|  | { | 
|  | struct adapter *adapter = sge->adapter; | 
|  | u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE); | 
|  | u32 irqholdoff_reg; | 
|  |  | 
|  | refill_free_list(sge, &sge->freelQ[0]); | 
|  | refill_free_list(sge, &sge->freelQ[1]); | 
|  |  | 
|  | if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) && | 
|  | sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) { | 
|  | irq_reg |= F_FL_EXHAUSTED; | 
|  | irqholdoff_reg = sge->fixed_intrtimer; | 
|  | } else { | 
|  | /* Clear the F_FL_EXHAUSTED interrupts for now */ | 
|  | irq_reg &= ~F_FL_EXHAUSTED; | 
|  | irqholdoff_reg = sge->intrtimer_nres; | 
|  | } | 
|  | writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER); | 
|  | writel(irq_reg, adapter->regs + A_SG_INT_ENABLE); | 
|  |  | 
|  | /* We reenable the Qs to force a freelist GTS interrupt later */ | 
|  | doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE); | 
|  | } | 
|  |  | 
|  | #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA) | 
|  | #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH) | 
|  | #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \ | 
|  | F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH) | 
|  |  | 
|  | /* | 
|  | * Disable SGE Interrupts | 
|  | */ | 
|  | void t1_sge_intr_disable(struct sge *sge) | 
|  | { | 
|  | u32 val = readl(sge->adapter->regs + A_PL_ENABLE); | 
|  |  | 
|  | writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE); | 
|  | writel(0, sge->adapter->regs + A_SG_INT_ENABLE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enable SGE interrupts. | 
|  | */ | 
|  | void t1_sge_intr_enable(struct sge *sge) | 
|  | { | 
|  | u32 en = SGE_INT_ENABLE; | 
|  | u32 val = readl(sge->adapter->regs + A_PL_ENABLE); | 
|  |  | 
|  | if (sge->adapter->flags & TSO_CAPABLE) | 
|  | en &= ~F_PACKET_TOO_BIG; | 
|  | writel(en, sge->adapter->regs + A_SG_INT_ENABLE); | 
|  | writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear SGE interrupts. | 
|  | */ | 
|  | void t1_sge_intr_clear(struct sge *sge) | 
|  | { | 
|  | writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE); | 
|  | writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SGE 'Error' interrupt handler | 
|  | */ | 
|  | int t1_sge_intr_error_handler(struct sge *sge) | 
|  | { | 
|  | struct adapter *adapter = sge->adapter; | 
|  | u32 cause = readl(adapter->regs + A_SG_INT_CAUSE); | 
|  |  | 
|  | if (adapter->flags & TSO_CAPABLE) | 
|  | cause &= ~F_PACKET_TOO_BIG; | 
|  | if (cause & F_RESPQ_EXHAUSTED) | 
|  | sge->stats.respQ_empty++; | 
|  | if (cause & F_RESPQ_OVERFLOW) { | 
|  | sge->stats.respQ_overflow++; | 
|  | CH_ALERT("%s: SGE response queue overflow\n", | 
|  | adapter->name); | 
|  | } | 
|  | if (cause & F_FL_EXHAUSTED) { | 
|  | sge->stats.freelistQ_empty++; | 
|  | freelQs_empty(sge); | 
|  | } | 
|  | if (cause & F_PACKET_TOO_BIG) { | 
|  | sge->stats.pkt_too_big++; | 
|  | CH_ALERT("%s: SGE max packet size exceeded\n", | 
|  | adapter->name); | 
|  | } | 
|  | if (cause & F_PACKET_MISMATCH) { | 
|  | sge->stats.pkt_mismatch++; | 
|  | CH_ALERT("%s: SGE packet mismatch\n", adapter->name); | 
|  | } | 
|  | if (cause & SGE_INT_FATAL) | 
|  | t1_fatal_err(adapter); | 
|  |  | 
|  | writel(cause, adapter->regs + A_SG_INT_CAUSE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge) | 
|  | { | 
|  | return &sge->stats; | 
|  | } | 
|  |  | 
|  | void t1_sge_get_port_stats(const struct sge *sge, int port, | 
|  | struct sge_port_stats *ss) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | memset(ss, 0, sizeof(*ss)); | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu); | 
|  |  | 
|  | ss->rx_cso_good += st->rx_cso_good; | 
|  | ss->tx_cso += st->tx_cso; | 
|  | ss->tx_tso += st->tx_tso; | 
|  | ss->tx_need_hdrroom += st->tx_need_hdrroom; | 
|  | ss->vlan_xtract += st->vlan_xtract; | 
|  | ss->vlan_insert += st->vlan_insert; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	recycle_fl_buf - recycle a free list buffer | 
|  | *	@fl: the free list | 
|  | *	@idx: index of buffer to recycle | 
|  | * | 
|  | *	Recycles the specified buffer on the given free list by adding it at | 
|  | *	the next available slot on the list. | 
|  | */ | 
|  | static void recycle_fl_buf(struct freelQ *fl, int idx) | 
|  | { | 
|  | struct freelQ_e *from = &fl->entries[idx]; | 
|  | struct freelQ_e *to = &fl->entries[fl->pidx]; | 
|  |  | 
|  | fl->centries[fl->pidx] = fl->centries[idx]; | 
|  | to->addr_lo = from->addr_lo; | 
|  | to->addr_hi = from->addr_hi; | 
|  | to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit); | 
|  | wmb(); | 
|  | to->gen2 = V_CMD_GEN2(fl->genbit); | 
|  | fl->credits++; | 
|  |  | 
|  | if (++fl->pidx == fl->size) { | 
|  | fl->pidx = 0; | 
|  | fl->genbit ^= 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int copybreak __read_mostly = 256; | 
|  | module_param(copybreak, int, 0); | 
|  | MODULE_PARM_DESC(copybreak, "Receive copy threshold"); | 
|  |  | 
|  | /** | 
|  | *	get_packet - return the next ingress packet buffer | 
|  | *	@pdev: the PCI device that received the packet | 
|  | *	@fl: the SGE free list holding the packet | 
|  | *	@len: the actual packet length, excluding any SGE padding | 
|  | * | 
|  | *	Get the next packet from a free list and complete setup of the | 
|  | *	sk_buff.  If the packet is small we make a copy and recycle the | 
|  | *	original buffer, otherwise we use the original buffer itself.  If a | 
|  | *	positive drop threshold is supplied packets are dropped and their | 
|  | *	buffers recycled if (a) the number of remaining buffers is under the | 
|  | *	threshold and the packet is too big to copy, or (b) the packet should | 
|  | *	be copied but there is no memory for the copy. | 
|  | */ | 
|  | static inline struct sk_buff *get_packet(struct pci_dev *pdev, | 
|  | struct freelQ *fl, unsigned int len) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  | const struct freelQ_ce *ce = &fl->centries[fl->cidx]; | 
|  |  | 
|  | if (len < copybreak) { | 
|  | skb = alloc_skb(len + 2, GFP_ATOMIC); | 
|  | if (!skb) | 
|  | goto use_orig_buf; | 
|  |  | 
|  | skb_reserve(skb, 2);	/* align IP header */ | 
|  | skb_put(skb, len); | 
|  | pci_dma_sync_single_for_cpu(pdev, | 
|  | pci_unmap_addr(ce, dma_addr), | 
|  | pci_unmap_len(ce, dma_len), | 
|  | PCI_DMA_FROMDEVICE); | 
|  | skb_copy_from_linear_data(ce->skb, skb->data, len); | 
|  | pci_dma_sync_single_for_device(pdev, | 
|  | pci_unmap_addr(ce, dma_addr), | 
|  | pci_unmap_len(ce, dma_len), | 
|  | PCI_DMA_FROMDEVICE); | 
|  | recycle_fl_buf(fl, fl->cidx); | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | use_orig_buf: | 
|  | if (fl->credits < 2) { | 
|  | recycle_fl_buf(fl, fl->cidx); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr), | 
|  | pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE); | 
|  | skb = ce->skb; | 
|  | prefetch(skb->data); | 
|  |  | 
|  | skb_put(skb, len); | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	unexpected_offload - handle an unexpected offload packet | 
|  | *	@adapter: the adapter | 
|  | *	@fl: the free list that received the packet | 
|  | * | 
|  | *	Called when we receive an unexpected offload packet (e.g., the TOE | 
|  | *	function is disabled or the card is a NIC).  Prints a message and | 
|  | *	recycles the buffer. | 
|  | */ | 
|  | static void unexpected_offload(struct adapter *adapter, struct freelQ *fl) | 
|  | { | 
|  | struct freelQ_ce *ce = &fl->centries[fl->cidx]; | 
|  | struct sk_buff *skb = ce->skb; | 
|  |  | 
|  | pci_dma_sync_single_for_cpu(adapter->pdev, pci_unmap_addr(ce, dma_addr), | 
|  | pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE); | 
|  | CH_ERR("%s: unexpected offload packet, cmd %u\n", | 
|  | adapter->name, *skb->data); | 
|  | recycle_fl_buf(fl, fl->cidx); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * T1/T2 SGE limits the maximum DMA size per TX descriptor to | 
|  | * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the | 
|  | * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner. | 
|  | * Note that the *_large_page_tx_descs stuff will be optimized out when | 
|  | * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN. | 
|  | * | 
|  | * compute_large_page_descs() computes how many additional descriptors are | 
|  | * required to break down the stack's request. | 
|  | */ | 
|  | static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb) | 
|  | { | 
|  | unsigned int count = 0; | 
|  |  | 
|  | if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) { | 
|  | unsigned int nfrags = skb_shinfo(skb)->nr_frags; | 
|  | unsigned int i, len = skb->len - skb->data_len; | 
|  | while (len > SGE_TX_DESC_MAX_PLEN) { | 
|  | count++; | 
|  | len -= SGE_TX_DESC_MAX_PLEN; | 
|  | } | 
|  | for (i = 0; nfrags--; i++) { | 
|  | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | 
|  | len = frag->size; | 
|  | while (len > SGE_TX_DESC_MAX_PLEN) { | 
|  | count++; | 
|  | len -= SGE_TX_DESC_MAX_PLEN; | 
|  | } | 
|  | } | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write a cmdQ entry. | 
|  | * | 
|  | * Since this function writes the 'flags' field, it must not be used to | 
|  | * write the first cmdQ entry. | 
|  | */ | 
|  | static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping, | 
|  | unsigned int len, unsigned int gen, | 
|  | unsigned int eop) | 
|  | { | 
|  | if (unlikely(len > SGE_TX_DESC_MAX_PLEN)) | 
|  | BUG(); | 
|  | e->addr_lo = (u32)mapping; | 
|  | e->addr_hi = (u64)mapping >> 32; | 
|  | e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen); | 
|  | e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * See comment for previous function. | 
|  | * | 
|  | * write_tx_descs_large_page() writes additional SGE tx descriptors if | 
|  | * *desc_len exceeds HW's capability. | 
|  | */ | 
|  | static inline unsigned int write_large_page_tx_descs(unsigned int pidx, | 
|  | struct cmdQ_e **e, | 
|  | struct cmdQ_ce **ce, | 
|  | unsigned int *gen, | 
|  | dma_addr_t *desc_mapping, | 
|  | unsigned int *desc_len, | 
|  | unsigned int nfrags, | 
|  | struct cmdQ *q) | 
|  | { | 
|  | if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) { | 
|  | struct cmdQ_e *e1 = *e; | 
|  | struct cmdQ_ce *ce1 = *ce; | 
|  |  | 
|  | while (*desc_len > SGE_TX_DESC_MAX_PLEN) { | 
|  | *desc_len -= SGE_TX_DESC_MAX_PLEN; | 
|  | write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN, | 
|  | *gen, nfrags == 0 && *desc_len == 0); | 
|  | ce1->skb = NULL; | 
|  | pci_unmap_len_set(ce1, dma_len, 0); | 
|  | *desc_mapping += SGE_TX_DESC_MAX_PLEN; | 
|  | if (*desc_len) { | 
|  | ce1++; | 
|  | e1++; | 
|  | if (++pidx == q->size) { | 
|  | pidx = 0; | 
|  | *gen ^= 1; | 
|  | ce1 = q->centries; | 
|  | e1 = q->entries; | 
|  | } | 
|  | } | 
|  | } | 
|  | *e = e1; | 
|  | *ce = ce1; | 
|  | } | 
|  | return pidx; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write the command descriptors to transmit the given skb starting at | 
|  | * descriptor pidx with the given generation. | 
|  | */ | 
|  | static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb, | 
|  | unsigned int pidx, unsigned int gen, | 
|  | struct cmdQ *q) | 
|  | { | 
|  | dma_addr_t mapping, desc_mapping; | 
|  | struct cmdQ_e *e, *e1; | 
|  | struct cmdQ_ce *ce; | 
|  | unsigned int i, flags, first_desc_len, desc_len, | 
|  | nfrags = skb_shinfo(skb)->nr_frags; | 
|  |  | 
|  | e = e1 = &q->entries[pidx]; | 
|  | ce = &q->centries[pidx]; | 
|  |  | 
|  | mapping = pci_map_single(adapter->pdev, skb->data, | 
|  | skb->len - skb->data_len, PCI_DMA_TODEVICE); | 
|  |  | 
|  | desc_mapping = mapping; | 
|  | desc_len = skb->len - skb->data_len; | 
|  |  | 
|  | flags = F_CMD_DATAVALID | F_CMD_SOP | | 
|  | V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) | | 
|  | V_CMD_GEN2(gen); | 
|  | first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ? | 
|  | desc_len : SGE_TX_DESC_MAX_PLEN; | 
|  | e->addr_lo = (u32)desc_mapping; | 
|  | e->addr_hi = (u64)desc_mapping >> 32; | 
|  | e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen); | 
|  | ce->skb = NULL; | 
|  | pci_unmap_len_set(ce, dma_len, 0); | 
|  |  | 
|  | if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN && | 
|  | desc_len > SGE_TX_DESC_MAX_PLEN) { | 
|  | desc_mapping += first_desc_len; | 
|  | desc_len -= first_desc_len; | 
|  | e1++; | 
|  | ce++; | 
|  | if (++pidx == q->size) { | 
|  | pidx = 0; | 
|  | gen ^= 1; | 
|  | e1 = q->entries; | 
|  | ce = q->centries; | 
|  | } | 
|  | pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen, | 
|  | &desc_mapping, &desc_len, | 
|  | nfrags, q); | 
|  |  | 
|  | if (likely(desc_len)) | 
|  | write_tx_desc(e1, desc_mapping, desc_len, gen, | 
|  | nfrags == 0); | 
|  | } | 
|  |  | 
|  | ce->skb = NULL; | 
|  | pci_unmap_addr_set(ce, dma_addr, mapping); | 
|  | pci_unmap_len_set(ce, dma_len, skb->len - skb->data_len); | 
|  |  | 
|  | for (i = 0; nfrags--; i++) { | 
|  | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | 
|  | e1++; | 
|  | ce++; | 
|  | if (++pidx == q->size) { | 
|  | pidx = 0; | 
|  | gen ^= 1; | 
|  | e1 = q->entries; | 
|  | ce = q->centries; | 
|  | } | 
|  |  | 
|  | mapping = pci_map_page(adapter->pdev, frag->page, | 
|  | frag->page_offset, frag->size, | 
|  | PCI_DMA_TODEVICE); | 
|  | desc_mapping = mapping; | 
|  | desc_len = frag->size; | 
|  |  | 
|  | pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen, | 
|  | &desc_mapping, &desc_len, | 
|  | nfrags, q); | 
|  | if (likely(desc_len)) | 
|  | write_tx_desc(e1, desc_mapping, desc_len, gen, | 
|  | nfrags == 0); | 
|  | ce->skb = NULL; | 
|  | pci_unmap_addr_set(ce, dma_addr, mapping); | 
|  | pci_unmap_len_set(ce, dma_len, frag->size); | 
|  | } | 
|  | ce->skb = skb; | 
|  | wmb(); | 
|  | e->flags = flags; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clean up completed Tx buffers. | 
|  | */ | 
|  | static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q) | 
|  | { | 
|  | unsigned int reclaim = q->processed - q->cleaned; | 
|  |  | 
|  | if (reclaim) { | 
|  | pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n", | 
|  | q->processed, q->cleaned); | 
|  | free_cmdQ_buffers(sge, q, reclaim); | 
|  | q->cleaned += reclaim; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called from tasklet. Checks the scheduler for any | 
|  | * pending skbs that can be sent. | 
|  | */ | 
|  | static void restart_sched(unsigned long arg) | 
|  | { | 
|  | struct sge *sge = (struct sge *) arg; | 
|  | struct adapter *adapter = sge->adapter; | 
|  | struct cmdQ *q = &sge->cmdQ[0]; | 
|  | struct sk_buff *skb; | 
|  | unsigned int credits, queued_skb = 0; | 
|  |  | 
|  | spin_lock(&q->lock); | 
|  | reclaim_completed_tx(sge, q); | 
|  |  | 
|  | credits = q->size - q->in_use; | 
|  | pr_debug("restart_sched credits=%d\n", credits); | 
|  | while ((skb = sched_skb(sge, NULL, credits)) != NULL) { | 
|  | unsigned int genbit, pidx, count; | 
|  | count = 1 + skb_shinfo(skb)->nr_frags; | 
|  | count += compute_large_page_tx_descs(skb); | 
|  | q->in_use += count; | 
|  | genbit = q->genbit; | 
|  | pidx = q->pidx; | 
|  | q->pidx += count; | 
|  | if (q->pidx >= q->size) { | 
|  | q->pidx -= q->size; | 
|  | q->genbit ^= 1; | 
|  | } | 
|  | write_tx_descs(adapter, skb, pidx, genbit, q); | 
|  | credits = q->size - q->in_use; | 
|  | queued_skb = 1; | 
|  | } | 
|  |  | 
|  | if (queued_skb) { | 
|  | clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); | 
|  | if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) { | 
|  | set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); | 
|  | writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL); | 
|  | } | 
|  | } | 
|  | spin_unlock(&q->lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	sge_rx - process an ingress ethernet packet | 
|  | *	@sge: the sge structure | 
|  | *	@fl: the free list that contains the packet buffer | 
|  | *	@len: the packet length | 
|  | * | 
|  | *	Process an ingress ethernet pakcet and deliver it to the stack. | 
|  | */ | 
|  | static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  | const struct cpl_rx_pkt *p; | 
|  | struct adapter *adapter = sge->adapter; | 
|  | struct sge_port_stats *st; | 
|  |  | 
|  | skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad); | 
|  | if (unlikely(!skb)) { | 
|  | sge->stats.rx_drops++; | 
|  | return; | 
|  | } | 
|  |  | 
|  | p = (const struct cpl_rx_pkt *) skb->data; | 
|  | if (p->iff >= adapter->params.nports) { | 
|  | kfree_skb(skb); | 
|  | return; | 
|  | } | 
|  | __skb_pull(skb, sizeof(*p)); | 
|  |  | 
|  | st = per_cpu_ptr(sge->port_stats[p->iff], smp_processor_id()); | 
|  |  | 
|  | skb->protocol = eth_type_trans(skb, adapter->port[p->iff].dev); | 
|  | if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff && | 
|  | skb->protocol == htons(ETH_P_IP) && | 
|  | (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) { | 
|  | ++st->rx_cso_good; | 
|  | skb->ip_summed = CHECKSUM_UNNECESSARY; | 
|  | } else | 
|  | skb->ip_summed = CHECKSUM_NONE; | 
|  |  | 
|  | if (unlikely(adapter->vlan_grp && p->vlan_valid)) { | 
|  | st->vlan_xtract++; | 
|  | vlan_hwaccel_receive_skb(skb, adapter->vlan_grp, | 
|  | ntohs(p->vlan)); | 
|  | } else | 
|  | netif_receive_skb(skb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns true if a command queue has enough available descriptors that | 
|  | * we can resume Tx operation after temporarily disabling its packet queue. | 
|  | */ | 
|  | static inline int enough_free_Tx_descs(const struct cmdQ *q) | 
|  | { | 
|  | unsigned int r = q->processed - q->cleaned; | 
|  |  | 
|  | return q->in_use - r < (q->size >> 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called when sufficient space has become available in the SGE command queues | 
|  | * after the Tx packet schedulers have been suspended to restart the Tx path. | 
|  | */ | 
|  | static void restart_tx_queues(struct sge *sge) | 
|  | { | 
|  | struct adapter *adap = sge->adapter; | 
|  | int i; | 
|  |  | 
|  | if (!enough_free_Tx_descs(&sge->cmdQ[0])) | 
|  | return; | 
|  |  | 
|  | for_each_port(adap, i) { | 
|  | struct net_device *nd = adap->port[i].dev; | 
|  |  | 
|  | if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) && | 
|  | netif_running(nd)) { | 
|  | sge->stats.cmdQ_restarted[2]++; | 
|  | netif_wake_queue(nd); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0 | 
|  | * information. | 
|  | */ | 
|  | static unsigned int update_tx_info(struct adapter *adapter, | 
|  | unsigned int flags, | 
|  | unsigned int pr0) | 
|  | { | 
|  | struct sge *sge = adapter->sge; | 
|  | struct cmdQ *cmdq = &sge->cmdQ[0]; | 
|  |  | 
|  | cmdq->processed += pr0; | 
|  | if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) { | 
|  | freelQs_empty(sge); | 
|  | flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE); | 
|  | } | 
|  | if (flags & F_CMDQ0_ENABLE) { | 
|  | clear_bit(CMDQ_STAT_RUNNING, &cmdq->status); | 
|  |  | 
|  | if (cmdq->cleaned + cmdq->in_use != cmdq->processed && | 
|  | !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) { | 
|  | set_bit(CMDQ_STAT_RUNNING, &cmdq->status); | 
|  | writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL); | 
|  | } | 
|  | if (sge->tx_sched) | 
|  | tasklet_hi_schedule(&sge->tx_sched->sched_tsk); | 
|  |  | 
|  | flags &= ~F_CMDQ0_ENABLE; | 
|  | } | 
|  |  | 
|  | if (unlikely(sge->stopped_tx_queues != 0)) | 
|  | restart_tx_queues(sge); | 
|  |  | 
|  | return flags; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process SGE responses, up to the supplied budget.  Returns the number of | 
|  | * responses processed.  A negative budget is effectively unlimited. | 
|  | */ | 
|  | static int process_responses(struct adapter *adapter, int budget) | 
|  | { | 
|  | struct sge *sge = adapter->sge; | 
|  | struct respQ *q = &sge->respQ; | 
|  | struct respQ_e *e = &q->entries[q->cidx]; | 
|  | int done = 0; | 
|  | unsigned int flags = 0; | 
|  | unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0}; | 
|  |  | 
|  | while (done < budget && e->GenerationBit == q->genbit) { | 
|  | flags |= e->Qsleeping; | 
|  |  | 
|  | cmdq_processed[0] += e->Cmdq0CreditReturn; | 
|  | cmdq_processed[1] += e->Cmdq1CreditReturn; | 
|  |  | 
|  | /* We batch updates to the TX side to avoid cacheline | 
|  | * ping-pong of TX state information on MP where the sender | 
|  | * might run on a different CPU than this function... | 
|  | */ | 
|  | if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) { | 
|  | flags = update_tx_info(adapter, flags, cmdq_processed[0]); | 
|  | cmdq_processed[0] = 0; | 
|  | } | 
|  |  | 
|  | if (unlikely(cmdq_processed[1] > 16)) { | 
|  | sge->cmdQ[1].processed += cmdq_processed[1]; | 
|  | cmdq_processed[1] = 0; | 
|  | } | 
|  |  | 
|  | if (likely(e->DataValid)) { | 
|  | struct freelQ *fl = &sge->freelQ[e->FreelistQid]; | 
|  |  | 
|  | BUG_ON(!e->Sop || !e->Eop); | 
|  | if (unlikely(e->Offload)) | 
|  | unexpected_offload(adapter, fl); | 
|  | else | 
|  | sge_rx(sge, fl, e->BufferLength); | 
|  |  | 
|  | ++done; | 
|  |  | 
|  | /* | 
|  | * Note: this depends on each packet consuming a | 
|  | * single free-list buffer; cf. the BUG above. | 
|  | */ | 
|  | if (++fl->cidx == fl->size) | 
|  | fl->cidx = 0; | 
|  | prefetch(fl->centries[fl->cidx].skb); | 
|  |  | 
|  | if (unlikely(--fl->credits < | 
|  | fl->size - SGE_FREEL_REFILL_THRESH)) | 
|  | refill_free_list(sge, fl); | 
|  | } else | 
|  | sge->stats.pure_rsps++; | 
|  |  | 
|  | e++; | 
|  | if (unlikely(++q->cidx == q->size)) { | 
|  | q->cidx = 0; | 
|  | q->genbit ^= 1; | 
|  | e = q->entries; | 
|  | } | 
|  | prefetch(e); | 
|  |  | 
|  | if (++q->credits > SGE_RESPQ_REPLENISH_THRES) { | 
|  | writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT); | 
|  | q->credits = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | flags = update_tx_info(adapter, flags, cmdq_processed[0]); | 
|  | sge->cmdQ[1].processed += cmdq_processed[1]; | 
|  |  | 
|  | return done; | 
|  | } | 
|  |  | 
|  | static inline int responses_pending(const struct adapter *adapter) | 
|  | { | 
|  | const struct respQ *Q = &adapter->sge->respQ; | 
|  | const struct respQ_e *e = &Q->entries[Q->cidx]; | 
|  |  | 
|  | return (e->GenerationBit == Q->genbit); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A simpler version of process_responses() that handles only pure (i.e., | 
|  | * non data-carrying) responses.  Such respones are too light-weight to justify | 
|  | * calling a softirq when using NAPI, so we handle them specially in hard | 
|  | * interrupt context.  The function is called with a pointer to a response, | 
|  | * which the caller must ensure is a valid pure response.  Returns 1 if it | 
|  | * encounters a valid data-carrying response, 0 otherwise. | 
|  | */ | 
|  | static int process_pure_responses(struct adapter *adapter) | 
|  | { | 
|  | struct sge *sge = adapter->sge; | 
|  | struct respQ *q = &sge->respQ; | 
|  | struct respQ_e *e = &q->entries[q->cidx]; | 
|  | const struct freelQ *fl = &sge->freelQ[e->FreelistQid]; | 
|  | unsigned int flags = 0; | 
|  | unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0}; | 
|  |  | 
|  | prefetch(fl->centries[fl->cidx].skb); | 
|  | if (e->DataValid) | 
|  | return 1; | 
|  |  | 
|  | do { | 
|  | flags |= e->Qsleeping; | 
|  |  | 
|  | cmdq_processed[0] += e->Cmdq0CreditReturn; | 
|  | cmdq_processed[1] += e->Cmdq1CreditReturn; | 
|  |  | 
|  | e++; | 
|  | if (unlikely(++q->cidx == q->size)) { | 
|  | q->cidx = 0; | 
|  | q->genbit ^= 1; | 
|  | e = q->entries; | 
|  | } | 
|  | prefetch(e); | 
|  |  | 
|  | if (++q->credits > SGE_RESPQ_REPLENISH_THRES) { | 
|  | writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT); | 
|  | q->credits = 0; | 
|  | } | 
|  | sge->stats.pure_rsps++; | 
|  | } while (e->GenerationBit == q->genbit && !e->DataValid); | 
|  |  | 
|  | flags = update_tx_info(adapter, flags, cmdq_processed[0]); | 
|  | sge->cmdQ[1].processed += cmdq_processed[1]; | 
|  |  | 
|  | return e->GenerationBit == q->genbit; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handler for new data events when using NAPI.  This does not need any locking | 
|  | * or protection from interrupts as data interrupts are off at this point and | 
|  | * other adapter interrupts do not interfere. | 
|  | */ | 
|  | int t1_poll(struct napi_struct *napi, int budget) | 
|  | { | 
|  | struct adapter *adapter = container_of(napi, struct adapter, napi); | 
|  | int work_done = process_responses(adapter, budget); | 
|  |  | 
|  | if (likely(work_done < budget)) { | 
|  | napi_complete(napi); | 
|  | writel(adapter->sge->respQ.cidx, | 
|  | adapter->regs + A_SG_SLEEPING); | 
|  | } | 
|  | return work_done; | 
|  | } | 
|  |  | 
|  | irqreturn_t t1_interrupt(int irq, void *data) | 
|  | { | 
|  | struct adapter *adapter = data; | 
|  | struct sge *sge = adapter->sge; | 
|  | int handled; | 
|  |  | 
|  | if (likely(responses_pending(adapter))) { | 
|  | writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE); | 
|  |  | 
|  | if (napi_schedule_prep(&adapter->napi)) { | 
|  | if (process_pure_responses(adapter)) | 
|  | __napi_schedule(&adapter->napi); | 
|  | else { | 
|  | /* no data, no NAPI needed */ | 
|  | writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING); | 
|  | /* undo schedule_prep */ | 
|  | napi_enable(&adapter->napi); | 
|  | } | 
|  | } | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | spin_lock(&adapter->async_lock); | 
|  | handled = t1_slow_intr_handler(adapter); | 
|  | spin_unlock(&adapter->async_lock); | 
|  |  | 
|  | if (!handled) | 
|  | sge->stats.unhandled_irqs++; | 
|  |  | 
|  | return IRQ_RETVAL(handled != 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it. | 
|  | * | 
|  | * The code figures out how many entries the sk_buff will require in the | 
|  | * cmdQ and updates the cmdQ data structure with the state once the enqueue | 
|  | * has complete. Then, it doesn't access the global structure anymore, but | 
|  | * uses the corresponding fields on the stack. In conjuction with a spinlock | 
|  | * around that code, we can make the function reentrant without holding the | 
|  | * lock when we actually enqueue (which might be expensive, especially on | 
|  | * architectures with IO MMUs). | 
|  | * | 
|  | * This runs with softirqs disabled. | 
|  | */ | 
|  | static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter, | 
|  | unsigned int qid, struct net_device *dev) | 
|  | { | 
|  | struct sge *sge = adapter->sge; | 
|  | struct cmdQ *q = &sge->cmdQ[qid]; | 
|  | unsigned int credits, pidx, genbit, count, use_sched_skb = 0; | 
|  |  | 
|  | if (!spin_trylock(&q->lock)) | 
|  | return NETDEV_TX_LOCKED; | 
|  |  | 
|  | reclaim_completed_tx(sge, q); | 
|  |  | 
|  | pidx = q->pidx; | 
|  | credits = q->size - q->in_use; | 
|  | count = 1 + skb_shinfo(skb)->nr_frags; | 
|  | count += compute_large_page_tx_descs(skb); | 
|  |  | 
|  | /* Ethernet packet */ | 
|  | if (unlikely(credits < count)) { | 
|  | if (!netif_queue_stopped(dev)) { | 
|  | netif_stop_queue(dev); | 
|  | set_bit(dev->if_port, &sge->stopped_tx_queues); | 
|  | sge->stats.cmdQ_full[2]++; | 
|  | CH_ERR("%s: Tx ring full while queue awake!\n", | 
|  | adapter->name); | 
|  | } | 
|  | spin_unlock(&q->lock); | 
|  | return NETDEV_TX_BUSY; | 
|  | } | 
|  |  | 
|  | if (unlikely(credits - count < q->stop_thres)) { | 
|  | netif_stop_queue(dev); | 
|  | set_bit(dev->if_port, &sge->stopped_tx_queues); | 
|  | sge->stats.cmdQ_full[2]++; | 
|  | } | 
|  |  | 
|  | /* T204 cmdQ0 skbs that are destined for a certain port have to go | 
|  | * through the scheduler. | 
|  | */ | 
|  | if (sge->tx_sched && !qid && skb->dev) { | 
|  | use_sched: | 
|  | use_sched_skb = 1; | 
|  | /* Note that the scheduler might return a different skb than | 
|  | * the one passed in. | 
|  | */ | 
|  | skb = sched_skb(sge, skb, credits); | 
|  | if (!skb) { | 
|  | spin_unlock(&q->lock); | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  | pidx = q->pidx; | 
|  | count = 1 + skb_shinfo(skb)->nr_frags; | 
|  | count += compute_large_page_tx_descs(skb); | 
|  | } | 
|  |  | 
|  | q->in_use += count; | 
|  | genbit = q->genbit; | 
|  | pidx = q->pidx; | 
|  | q->pidx += count; | 
|  | if (q->pidx >= q->size) { | 
|  | q->pidx -= q->size; | 
|  | q->genbit ^= 1; | 
|  | } | 
|  | spin_unlock(&q->lock); | 
|  |  | 
|  | write_tx_descs(adapter, skb, pidx, genbit, q); | 
|  |  | 
|  | /* | 
|  | * We always ring the doorbell for cmdQ1.  For cmdQ0, we only ring | 
|  | * the doorbell if the Q is asleep. There is a natural race, where | 
|  | * the hardware is going to sleep just after we checked, however, | 
|  | * then the interrupt handler will detect the outstanding TX packet | 
|  | * and ring the doorbell for us. | 
|  | */ | 
|  | if (qid) | 
|  | doorbell_pio(adapter, F_CMDQ1_ENABLE); | 
|  | else { | 
|  | clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); | 
|  | if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) { | 
|  | set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); | 
|  | writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (use_sched_skb) { | 
|  | if (spin_trylock(&q->lock)) { | 
|  | credits = q->size - q->in_use; | 
|  | skb = NULL; | 
|  | goto use_sched; | 
|  | } | 
|  | } | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14)) | 
|  |  | 
|  | /* | 
|  | *	eth_hdr_len - return the length of an Ethernet header | 
|  | *	@data: pointer to the start of the Ethernet header | 
|  | * | 
|  | *	Returns the length of an Ethernet header, including optional VLAN tag. | 
|  | */ | 
|  | static inline int eth_hdr_len(const void *data) | 
|  | { | 
|  | const struct ethhdr *e = data; | 
|  |  | 
|  | return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Adds the CPL header to the sk_buff and passes it to t1_sge_tx. | 
|  | */ | 
|  | int t1_start_xmit(struct sk_buff *skb, struct net_device *dev) | 
|  | { | 
|  | struct adapter *adapter = dev->ml_priv; | 
|  | struct sge *sge = adapter->sge; | 
|  | struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[dev->if_port], | 
|  | smp_processor_id()); | 
|  | struct cpl_tx_pkt *cpl; | 
|  | struct sk_buff *orig_skb = skb; | 
|  | int ret; | 
|  |  | 
|  | if (skb->protocol == htons(ETH_P_CPL5)) | 
|  | goto send; | 
|  |  | 
|  | /* | 
|  | * We are using a non-standard hard_header_len. | 
|  | * Allocate more header room in the rare cases it is not big enough. | 
|  | */ | 
|  | if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) { | 
|  | skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso)); | 
|  | ++st->tx_need_hdrroom; | 
|  | dev_kfree_skb_any(orig_skb); | 
|  | if (!skb) | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | if (skb_shinfo(skb)->gso_size) { | 
|  | int eth_type; | 
|  | struct cpl_tx_pkt_lso *hdr; | 
|  |  | 
|  | ++st->tx_tso; | 
|  |  | 
|  | eth_type = skb_network_offset(skb) == ETH_HLEN ? | 
|  | CPL_ETH_II : CPL_ETH_II_VLAN; | 
|  |  | 
|  | hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr)); | 
|  | hdr->opcode = CPL_TX_PKT_LSO; | 
|  | hdr->ip_csum_dis = hdr->l4_csum_dis = 0; | 
|  | hdr->ip_hdr_words = ip_hdr(skb)->ihl; | 
|  | hdr->tcp_hdr_words = tcp_hdr(skb)->doff; | 
|  | hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type, | 
|  | skb_shinfo(skb)->gso_size)); | 
|  | hdr->len = htonl(skb->len - sizeof(*hdr)); | 
|  | cpl = (struct cpl_tx_pkt *)hdr; | 
|  | } else { | 
|  | /* | 
|  | * Packets shorter than ETH_HLEN can break the MAC, drop them | 
|  | * early.  Also, we may get oversized packets because some | 
|  | * parts of the kernel don't handle our unusual hard_header_len | 
|  | * right, drop those too. | 
|  | */ | 
|  | if (unlikely(skb->len < ETH_HLEN || | 
|  | skb->len > dev->mtu + eth_hdr_len(skb->data))) { | 
|  | pr_debug("%s: packet size %d hdr %d mtu%d\n", dev->name, | 
|  | skb->len, eth_hdr_len(skb->data), dev->mtu); | 
|  | dev_kfree_skb_any(skb); | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | if (!(adapter->flags & UDP_CSUM_CAPABLE) && | 
|  | skb->ip_summed == CHECKSUM_PARTIAL && | 
|  | ip_hdr(skb)->protocol == IPPROTO_UDP) { | 
|  | if (unlikely(skb_checksum_help(skb))) { | 
|  | pr_debug("%s: unable to do udp checksum\n", dev->name); | 
|  | dev_kfree_skb_any(skb); | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Hmmm, assuming to catch the gratious arp... and we'll use | 
|  | * it to flush out stuck espi packets... | 
|  | */ | 
|  | if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) { | 
|  | if (skb->protocol == htons(ETH_P_ARP) && | 
|  | arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) { | 
|  | adapter->sge->espibug_skb[dev->if_port] = skb; | 
|  | /* We want to re-use this skb later. We | 
|  | * simply bump the reference count and it | 
|  | * will not be freed... | 
|  | */ | 
|  | skb = skb_get(skb); | 
|  | } | 
|  | } | 
|  |  | 
|  | cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl)); | 
|  | cpl->opcode = CPL_TX_PKT; | 
|  | cpl->ip_csum_dis = 1;    /* SW calculates IP csum */ | 
|  | cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1; | 
|  | /* the length field isn't used so don't bother setting it */ | 
|  |  | 
|  | st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL); | 
|  | } | 
|  | cpl->iff = dev->if_port; | 
|  |  | 
|  | #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) | 
|  | if (adapter->vlan_grp && vlan_tx_tag_present(skb)) { | 
|  | cpl->vlan_valid = 1; | 
|  | cpl->vlan = htons(vlan_tx_tag_get(skb)); | 
|  | st->vlan_insert++; | 
|  | } else | 
|  | #endif | 
|  | cpl->vlan_valid = 0; | 
|  |  | 
|  | send: | 
|  | dev->trans_start = jiffies; | 
|  | ret = t1_sge_tx(skb, adapter, 0, dev); | 
|  |  | 
|  | /* If transmit busy, and we reallocated skb's due to headroom limit, | 
|  | * then silently discard to avoid leak. | 
|  | */ | 
|  | if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) { | 
|  | dev_kfree_skb_any(skb); | 
|  | ret = NETDEV_TX_OK; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Callback for the Tx buffer reclaim timer.  Runs with softirqs disabled. | 
|  | */ | 
|  | static void sge_tx_reclaim_cb(unsigned long data) | 
|  | { | 
|  | int i; | 
|  | struct sge *sge = (struct sge *)data; | 
|  |  | 
|  | for (i = 0; i < SGE_CMDQ_N; ++i) { | 
|  | struct cmdQ *q = &sge->cmdQ[i]; | 
|  |  | 
|  | if (!spin_trylock(&q->lock)) | 
|  | continue; | 
|  |  | 
|  | reclaim_completed_tx(sge, q); | 
|  | if (i == 0 && q->in_use) {    /* flush pending credits */ | 
|  | writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL); | 
|  | } | 
|  | spin_unlock(&q->lock); | 
|  | } | 
|  | mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Propagate changes of the SGE coalescing parameters to the HW. | 
|  | */ | 
|  | int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p) | 
|  | { | 
|  | sge->fixed_intrtimer = p->rx_coalesce_usecs * | 
|  | core_ticks_per_usec(sge->adapter); | 
|  | writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocates both RX and TX resources and configures the SGE. However, | 
|  | * the hardware is not enabled yet. | 
|  | */ | 
|  | int t1_sge_configure(struct sge *sge, struct sge_params *p) | 
|  | { | 
|  | if (alloc_rx_resources(sge, p)) | 
|  | return -ENOMEM; | 
|  | if (alloc_tx_resources(sge, p)) { | 
|  | free_rx_resources(sge); | 
|  | return -ENOMEM; | 
|  | } | 
|  | configure_sge(sge, p); | 
|  |  | 
|  | /* | 
|  | * Now that we have sized the free lists calculate the payload | 
|  | * capacity of the large buffers.  Other parts of the driver use | 
|  | * this to set the max offload coalescing size so that RX packets | 
|  | * do not overflow our large buffers. | 
|  | */ | 
|  | p->large_buf_capacity = jumbo_payload_capacity(sge); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Disables the DMA engine. | 
|  | */ | 
|  | void t1_sge_stop(struct sge *sge) | 
|  | { | 
|  | int i; | 
|  | writel(0, sge->adapter->regs + A_SG_CONTROL); | 
|  | readl(sge->adapter->regs + A_SG_CONTROL); /* flush */ | 
|  |  | 
|  | if (is_T2(sge->adapter)) | 
|  | del_timer_sync(&sge->espibug_timer); | 
|  |  | 
|  | del_timer_sync(&sge->tx_reclaim_timer); | 
|  | if (sge->tx_sched) | 
|  | tx_sched_stop(sge); | 
|  |  | 
|  | for (i = 0; i < MAX_NPORTS; i++) | 
|  | kfree_skb(sge->espibug_skb[i]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enables the DMA engine. | 
|  | */ | 
|  | void t1_sge_start(struct sge *sge) | 
|  | { | 
|  | refill_free_list(sge, &sge->freelQ[0]); | 
|  | refill_free_list(sge, &sge->freelQ[1]); | 
|  |  | 
|  | writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL); | 
|  | doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE); | 
|  | readl(sge->adapter->regs + A_SG_CONTROL); /* flush */ | 
|  |  | 
|  | mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD); | 
|  |  | 
|  | if (is_T2(sge->adapter)) | 
|  | mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Callback for the T2 ESPI 'stuck packet feature' workaorund | 
|  | */ | 
|  | static void espibug_workaround_t204(unsigned long data) | 
|  | { | 
|  | struct adapter *adapter = (struct adapter *)data; | 
|  | struct sge *sge = adapter->sge; | 
|  | unsigned int nports = adapter->params.nports; | 
|  | u32 seop[MAX_NPORTS]; | 
|  |  | 
|  | if (adapter->open_device_map & PORT_MASK) { | 
|  | int i; | 
|  |  | 
|  | if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < nports; i++) { | 
|  | struct sk_buff *skb = sge->espibug_skb[i]; | 
|  |  | 
|  | if (!netif_running(adapter->port[i].dev) || | 
|  | netif_queue_stopped(adapter->port[i].dev) || | 
|  | !seop[i] || ((seop[i] & 0xfff) != 0) || !skb) | 
|  | continue; | 
|  |  | 
|  | if (!skb->cb[0]) { | 
|  | u8 ch_mac_addr[ETH_ALEN] = { | 
|  | 0x0, 0x7, 0x43, 0x0, 0x0, 0x0 | 
|  | }; | 
|  |  | 
|  | skb_copy_to_linear_data_offset(skb, | 
|  | sizeof(struct cpl_tx_pkt), | 
|  | ch_mac_addr, | 
|  | ETH_ALEN); | 
|  | skb_copy_to_linear_data_offset(skb, | 
|  | skb->len - 10, | 
|  | ch_mac_addr, | 
|  | ETH_ALEN); | 
|  | skb->cb[0] = 0xff; | 
|  | } | 
|  |  | 
|  | /* bump the reference count to avoid freeing of | 
|  | * the skb once the DMA has completed. | 
|  | */ | 
|  | skb = skb_get(skb); | 
|  | t1_sge_tx(skb, adapter, 0, adapter->port[i].dev); | 
|  | } | 
|  | } | 
|  | mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout); | 
|  | } | 
|  |  | 
|  | static void espibug_workaround(unsigned long data) | 
|  | { | 
|  | struct adapter *adapter = (struct adapter *)data; | 
|  | struct sge *sge = adapter->sge; | 
|  |  | 
|  | if (netif_running(adapter->port[0].dev)) { | 
|  | struct sk_buff *skb = sge->espibug_skb[0]; | 
|  | u32 seop = t1_espi_get_mon(adapter, 0x930, 0); | 
|  |  | 
|  | if ((seop & 0xfff0fff) == 0xfff && skb) { | 
|  | if (!skb->cb[0]) { | 
|  | u8 ch_mac_addr[ETH_ALEN] = | 
|  | {0x0, 0x7, 0x43, 0x0, 0x0, 0x0}; | 
|  | skb_copy_to_linear_data_offset(skb, | 
|  | sizeof(struct cpl_tx_pkt), | 
|  | ch_mac_addr, | 
|  | ETH_ALEN); | 
|  | skb_copy_to_linear_data_offset(skb, | 
|  | skb->len - 10, | 
|  | ch_mac_addr, | 
|  | ETH_ALEN); | 
|  | skb->cb[0] = 0xff; | 
|  | } | 
|  |  | 
|  | /* bump the reference count to avoid freeing of the | 
|  | * skb once the DMA has completed. | 
|  | */ | 
|  | skb = skb_get(skb); | 
|  | t1_sge_tx(skb, adapter, 0, adapter->port[0].dev); | 
|  | } | 
|  | } | 
|  | mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Creates a t1_sge structure and returns suggested resource parameters. | 
|  | */ | 
|  | struct sge * __devinit t1_sge_create(struct adapter *adapter, | 
|  | struct sge_params *p) | 
|  | { | 
|  | struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL); | 
|  | int i; | 
|  |  | 
|  | if (!sge) | 
|  | return NULL; | 
|  |  | 
|  | sge->adapter = adapter; | 
|  | sge->netdev = adapter->port[0].dev; | 
|  | sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2; | 
|  | sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0; | 
|  |  | 
|  | for_each_port(adapter, i) { | 
|  | sge->port_stats[i] = alloc_percpu(struct sge_port_stats); | 
|  | if (!sge->port_stats[i]) | 
|  | goto nomem_port; | 
|  | } | 
|  |  | 
|  | init_timer(&sge->tx_reclaim_timer); | 
|  | sge->tx_reclaim_timer.data = (unsigned long)sge; | 
|  | sge->tx_reclaim_timer.function = sge_tx_reclaim_cb; | 
|  |  | 
|  | if (is_T2(sge->adapter)) { | 
|  | init_timer(&sge->espibug_timer); | 
|  |  | 
|  | if (adapter->params.nports > 1) { | 
|  | tx_sched_init(sge); | 
|  | sge->espibug_timer.function = espibug_workaround_t204; | 
|  | } else | 
|  | sge->espibug_timer.function = espibug_workaround; | 
|  | sge->espibug_timer.data = (unsigned long)sge->adapter; | 
|  |  | 
|  | sge->espibug_timeout = 1; | 
|  | /* for T204, every 10ms */ | 
|  | if (adapter->params.nports > 1) | 
|  | sge->espibug_timeout = HZ/100; | 
|  | } | 
|  |  | 
|  |  | 
|  | p->cmdQ_size[0] = SGE_CMDQ0_E_N; | 
|  | p->cmdQ_size[1] = SGE_CMDQ1_E_N; | 
|  | p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE; | 
|  | p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE; | 
|  | if (sge->tx_sched) { | 
|  | if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) | 
|  | p->rx_coalesce_usecs = 15; | 
|  | else | 
|  | p->rx_coalesce_usecs = 50; | 
|  | } else | 
|  | p->rx_coalesce_usecs = 50; | 
|  |  | 
|  | p->coalesce_enable = 0; | 
|  | p->sample_interval_usecs = 0; | 
|  |  | 
|  | return sge; | 
|  | nomem_port: | 
|  | while (i >= 0) { | 
|  | free_percpu(sge->port_stats[i]); | 
|  | --i; | 
|  | } | 
|  | kfree(sge); | 
|  | return NULL; | 
|  |  | 
|  | } |