|  | /****************************************************************************** | 
|  | * | 
|  | *	(C)Copyright 1998,1999 SysKonnect, | 
|  | *	a business unit of Schneider & Koch & Co. Datensysteme GmbH. | 
|  | * | 
|  | *	See the file "skfddi.c" for further information. | 
|  | * | 
|  | *	This program is free software; you can redistribute it and/or modify | 
|  | *	it under the terms of the GNU General Public License as published by | 
|  | *	the Free Software Foundation; either version 2 of the License, or | 
|  | *	(at your option) any later version. | 
|  | * | 
|  | *	The information in this file is provided "AS IS" without warranty. | 
|  | * | 
|  | ******************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * FORMAC+ Driver for tag mode | 
|  | */ | 
|  |  | 
|  | #include "h/types.h" | 
|  | #include "h/fddi.h" | 
|  | #include "h/smc.h" | 
|  | #include "h/supern_2.h" | 
|  | #include <linux/bitrev.h> | 
|  |  | 
|  | #ifndef	lint | 
|  | static const char ID_sccs[] = "@(#)fplustm.c	1.32 99/02/23 (C) SK " ; | 
|  | #endif | 
|  |  | 
|  | #ifndef UNUSED | 
|  | #ifdef  lint | 
|  | #define UNUSED(x)	(x) = (x) | 
|  | #else | 
|  | #define UNUSED(x) | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #define FM_ADDRX	 (FM_ADDET|FM_EXGPA0|FM_EXGPA1) | 
|  | #define MS2BCLK(x)	((x)*12500L) | 
|  | #define US2BCLK(x)	((x)*1250L) | 
|  |  | 
|  | /* | 
|  | * prototypes for static function | 
|  | */ | 
|  | static void build_claim_beacon(struct s_smc *smc, u_long t_request); | 
|  | static int init_mac(struct s_smc *smc, int all); | 
|  | static void rtm_init(struct s_smc *smc); | 
|  | static void smt_split_up_fifo(struct s_smc *smc); | 
|  |  | 
|  | #if (!defined(NO_SMT_PANIC) || defined(DEBUG)) | 
|  | static	char write_mdr_warning [] = "E350 write_mdr() FM_SNPPND is set\n"; | 
|  | static	char cam_warning [] = "E_SMT_004: CAM still busy\n"; | 
|  | #endif | 
|  |  | 
|  | #define	DUMMY_READ()	smc->hw.mc_dummy = (u_short) inp(ADDR(B0_RAP)) | 
|  |  | 
|  | #define	CHECK_NPP() {	unsigned k = 10000 ;\ | 
|  | while ((inpw(FM_A(FM_STMCHN)) & FM_SNPPND) && k) k--;\ | 
|  | if (!k) { \ | 
|  | SMT_PANIC(smc,SMT_E0130, SMT_E0130_MSG) ; \ | 
|  | }	\ | 
|  | } | 
|  |  | 
|  | #define	CHECK_CAM() {	unsigned k = 10 ;\ | 
|  | while (!(inpw(FM_A(FM_AFSTAT)) & FM_DONE) && k) k--;\ | 
|  | if (!k) { \ | 
|  | SMT_PANIC(smc,SMT_E0131, SMT_E0131_MSG) ; \ | 
|  | }	\ | 
|  | } | 
|  |  | 
|  | const struct fddi_addr fddi_broadcast = {{0xff,0xff,0xff,0xff,0xff,0xff}}; | 
|  | static const struct fddi_addr null_addr = {{0,0,0,0,0,0}}; | 
|  | static const struct fddi_addr dbeacon_multi = {{0x01,0x80,0xc2,0x00,0x01,0x00}}; | 
|  |  | 
|  | static const u_short my_said = 0xffff ;	/* short address (n.u.) */ | 
|  | static const u_short my_sagp = 0xffff ;	/* short group address (n.u.) */ | 
|  |  | 
|  | /* | 
|  | * define my address | 
|  | */ | 
|  | #ifdef	USE_CAN_ADDR | 
|  | #define MA	smc->hw.fddi_canon_addr | 
|  | #else | 
|  | #define MA	smc->hw.fddi_home_addr | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | * useful interrupt bits | 
|  | */ | 
|  | static const int mac_imsk1u = FM_STXABRS | FM_STXABRA0 | FM_SXMTABT ; | 
|  | static const int mac_imsk1l = FM_SQLCKS | FM_SQLCKA0 | FM_SPCEPDS | FM_SPCEPDA0| | 
|  | FM_STBURS | FM_STBURA0 ; | 
|  |  | 
|  | /* delete FM_SRBFL after tests */ | 
|  | static const int mac_imsk2u = FM_SERRSF | FM_SNFSLD | FM_SRCVOVR | FM_SRBFL | | 
|  | FM_SMYCLM ; | 
|  | static const int mac_imsk2l = FM_STRTEXR | FM_SDUPCLM | FM_SFRMCTR | | 
|  | FM_SERRCTR | FM_SLSTCTR | | 
|  | FM_STRTEXP | FM_SMULTDA | FM_SRNGOP ; | 
|  |  | 
|  | static const int mac_imsk3u = FM_SRCVOVR2 | FM_SRBFL2 ; | 
|  | static const int mac_imsk3l = FM_SRPERRQ2 | FM_SRPERRQ1 ; | 
|  |  | 
|  | static const int mac_beacon_imsk2u = FM_SOTRBEC | FM_SMYBEC | FM_SBEC | | 
|  | FM_SLOCLM | FM_SHICLM | FM_SMYCLM | FM_SCLM ; | 
|  |  | 
|  |  | 
|  | static u_long mac_get_tneg(struct s_smc *smc) | 
|  | { | 
|  | u_long	tneg ; | 
|  |  | 
|  | tneg = (u_long)((long)inpw(FM_A(FM_TNEG))<<5) ; | 
|  | return((u_long)((tneg + ((inpw(FM_A(FM_TMRS))>>10)&0x1f)) | | 
|  | 0xffe00000L)) ; | 
|  | } | 
|  |  | 
|  | void mac_update_counter(struct s_smc *smc) | 
|  | { | 
|  | smc->mib.m[MAC0].fddiMACFrame_Ct = | 
|  | (smc->mib.m[MAC0].fddiMACFrame_Ct & 0xffff0000L) | 
|  | + (u_short) inpw(FM_A(FM_FCNTR)) ; | 
|  | smc->mib.m[MAC0].fddiMACLost_Ct = | 
|  | (smc->mib.m[MAC0].fddiMACLost_Ct & 0xffff0000L) | 
|  | + (u_short) inpw(FM_A(FM_LCNTR)) ; | 
|  | smc->mib.m[MAC0].fddiMACError_Ct = | 
|  | (smc->mib.m[MAC0].fddiMACError_Ct & 0xffff0000L) | 
|  | + (u_short) inpw(FM_A(FM_ECNTR)) ; | 
|  | smc->mib.m[MAC0].fddiMACT_Neg = mac_get_tneg(smc) ; | 
|  | #ifdef SMT_REAL_TOKEN_CT | 
|  | /* | 
|  | * If the token counter is emulated it is updated in smt_event. | 
|  | */ | 
|  | TBD | 
|  | #else | 
|  | smt_emulate_token_ct( smc, MAC0 ); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * write long value into buffer memory over memory data register (MDR), | 
|  | */ | 
|  | static void write_mdr(struct s_smc *smc, u_long val) | 
|  | { | 
|  | CHECK_NPP() ; | 
|  | MDRW(val) ; | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | /* | 
|  | * read long value from buffer memory over memory data register (MDR), | 
|  | */ | 
|  | static u_long read_mdr(struct s_smc *smc, unsigned int addr) | 
|  | { | 
|  | long p ; | 
|  | CHECK_NPP() ; | 
|  | MARR(addr) ; | 
|  | outpw(FM_A(FM_CMDREG1),FM_IRMEMWO) ; | 
|  | CHECK_NPP() ;	/* needed for PCI to prevent from timeing violations */ | 
|  | /*	p = MDRR() ; */	/* bad read values if the workaround */ | 
|  | /* smc->hw.mc_dummy = *((short volatile far *)(addr)))*/ | 
|  | /* is used */ | 
|  | p = (u_long)inpw(FM_A(FM_MDRU))<<16 ; | 
|  | p += (u_long)inpw(FM_A(FM_MDRL)) ; | 
|  | return(p) ; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * clear buffer memory | 
|  | */ | 
|  | static void init_ram(struct s_smc *smc) | 
|  | { | 
|  | u_short i ; | 
|  |  | 
|  | smc->hw.fp.fifo.rbc_ram_start = 0 ; | 
|  | smc->hw.fp.fifo.rbc_ram_end = | 
|  | smc->hw.fp.fifo.rbc_ram_start + RBC_MEM_SIZE ; | 
|  | CHECK_NPP() ; | 
|  | MARW(smc->hw.fp.fifo.rbc_ram_start) ; | 
|  | for (i = smc->hw.fp.fifo.rbc_ram_start; | 
|  | i < (u_short) (smc->hw.fp.fifo.rbc_ram_end-1); i++) | 
|  | write_mdr(smc,0L) ; | 
|  | /* Erase the last byte too */ | 
|  | write_mdr(smc,0L) ; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * set receive FIFO pointer | 
|  | */ | 
|  | static void set_recvptr(struct s_smc *smc) | 
|  | { | 
|  | /* | 
|  | * initialize the pointer for receive queue 1 | 
|  | */ | 
|  | outpw(FM_A(FM_RPR1),smc->hw.fp.fifo.rx1_fifo_start) ;	/* RPR1 */ | 
|  | outpw(FM_A(FM_SWPR1),smc->hw.fp.fifo.rx1_fifo_start) ;	/* SWPR1 */ | 
|  | outpw(FM_A(FM_WPR1),smc->hw.fp.fifo.rx1_fifo_start) ;	/* WPR1 */ | 
|  | outpw(FM_A(FM_EARV1),smc->hw.fp.fifo.tx_s_start-1) ;	/* EARV1 */ | 
|  |  | 
|  | /* | 
|  | * initialize the pointer for receive queue 2 | 
|  | */ | 
|  | if (smc->hw.fp.fifo.rx2_fifo_size) { | 
|  | outpw(FM_A(FM_RPR2),smc->hw.fp.fifo.rx2_fifo_start) ; | 
|  | outpw(FM_A(FM_SWPR2),smc->hw.fp.fifo.rx2_fifo_start) ; | 
|  | outpw(FM_A(FM_WPR2),smc->hw.fp.fifo.rx2_fifo_start) ; | 
|  | outpw(FM_A(FM_EARV2),smc->hw.fp.fifo.rbc_ram_end-1) ; | 
|  | } | 
|  | else { | 
|  | outpw(FM_A(FM_RPR2),smc->hw.fp.fifo.rbc_ram_end-1) ; | 
|  | outpw(FM_A(FM_SWPR2),smc->hw.fp.fifo.rbc_ram_end-1) ; | 
|  | outpw(FM_A(FM_WPR2),smc->hw.fp.fifo.rbc_ram_end-1) ; | 
|  | outpw(FM_A(FM_EARV2),smc->hw.fp.fifo.rbc_ram_end-1) ; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * set transmit FIFO pointer | 
|  | */ | 
|  | static void set_txptr(struct s_smc *smc) | 
|  | { | 
|  | outpw(FM_A(FM_CMDREG2),FM_IRSTQ) ;	/* reset transmit queues */ | 
|  |  | 
|  | /* | 
|  | * initialize the pointer for asynchronous transmit queue | 
|  | */ | 
|  | outpw(FM_A(FM_RPXA0),smc->hw.fp.fifo.tx_a0_start) ;	/* RPXA0 */ | 
|  | outpw(FM_A(FM_SWPXA0),smc->hw.fp.fifo.tx_a0_start) ;	/* SWPXA0 */ | 
|  | outpw(FM_A(FM_WPXA0),smc->hw.fp.fifo.tx_a0_start) ;	/* WPXA0 */ | 
|  | outpw(FM_A(FM_EAA0),smc->hw.fp.fifo.rx2_fifo_start-1) ;	/* EAA0 */ | 
|  |  | 
|  | /* | 
|  | * initialize the pointer for synchronous transmit queue | 
|  | */ | 
|  | if (smc->hw.fp.fifo.tx_s_size) { | 
|  | outpw(FM_A(FM_RPXS),smc->hw.fp.fifo.tx_s_start) ; | 
|  | outpw(FM_A(FM_SWPXS),smc->hw.fp.fifo.tx_s_start) ; | 
|  | outpw(FM_A(FM_WPXS),smc->hw.fp.fifo.tx_s_start) ; | 
|  | outpw(FM_A(FM_EAS),smc->hw.fp.fifo.tx_a0_start-1) ; | 
|  | } | 
|  | else { | 
|  | outpw(FM_A(FM_RPXS),smc->hw.fp.fifo.tx_a0_start-1) ; | 
|  | outpw(FM_A(FM_SWPXS),smc->hw.fp.fifo.tx_a0_start-1) ; | 
|  | outpw(FM_A(FM_WPXS),smc->hw.fp.fifo.tx_a0_start-1) ; | 
|  | outpw(FM_A(FM_EAS),smc->hw.fp.fifo.tx_a0_start-1) ; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * init memory buffer management registers | 
|  | */ | 
|  | static void init_rbc(struct s_smc *smc) | 
|  | { | 
|  | u_short	rbc_ram_addr ; | 
|  |  | 
|  | /* | 
|  | * set unused pointers or permanent pointers | 
|  | */ | 
|  | rbc_ram_addr = smc->hw.fp.fifo.rx2_fifo_start - 1 ; | 
|  |  | 
|  | outpw(FM_A(FM_RPXA1),rbc_ram_addr) ;	/* a1-send pointer */ | 
|  | outpw(FM_A(FM_WPXA1),rbc_ram_addr) ; | 
|  | outpw(FM_A(FM_SWPXA1),rbc_ram_addr) ; | 
|  | outpw(FM_A(FM_EAA1),rbc_ram_addr) ; | 
|  |  | 
|  | set_recvptr(smc) ; | 
|  | set_txptr(smc) ; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * init rx pointer | 
|  | */ | 
|  | static void init_rx(struct s_smc *smc) | 
|  | { | 
|  | struct s_smt_rx_queue	*queue ; | 
|  |  | 
|  | /* | 
|  | * init all tx data structures for receive queue 1 | 
|  | */ | 
|  | smc->hw.fp.rx[QUEUE_R1] = queue = &smc->hw.fp.rx_q[QUEUE_R1] ; | 
|  | queue->rx_bmu_ctl = (HW_PTR) ADDR(B0_R1_CSR) ; | 
|  | queue->rx_bmu_dsc = (HW_PTR) ADDR(B4_R1_DA) ; | 
|  |  | 
|  | /* | 
|  | * init all tx data structures for receive queue 2 | 
|  | */ | 
|  | smc->hw.fp.rx[QUEUE_R2] = queue = &smc->hw.fp.rx_q[QUEUE_R2] ; | 
|  | queue->rx_bmu_ctl = (HW_PTR) ADDR(B0_R2_CSR) ; | 
|  | queue->rx_bmu_dsc = (HW_PTR) ADDR(B4_R2_DA) ; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * set the TSYNC register of the FORMAC to regulate synchronous transmission | 
|  | */ | 
|  | void set_formac_tsync(struct s_smc *smc, long sync_bw) | 
|  | { | 
|  | outpw(FM_A(FM_TSYNC),(unsigned int) (((-sync_bw) >> 5) & 0xffff) ) ; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * init all tx data structures | 
|  | */ | 
|  | static void init_tx(struct s_smc *smc) | 
|  | { | 
|  | struct s_smt_tx_queue	*queue ; | 
|  |  | 
|  | /* | 
|  | * init all tx data structures for the synchronous queue | 
|  | */ | 
|  | smc->hw.fp.tx[QUEUE_S] = queue = &smc->hw.fp.tx_q[QUEUE_S] ; | 
|  | queue->tx_bmu_ctl = (HW_PTR) ADDR(B0_XS_CSR) ; | 
|  | queue->tx_bmu_dsc = (HW_PTR) ADDR(B5_XS_DA) ; | 
|  |  | 
|  | #ifdef ESS | 
|  | set_formac_tsync(smc,smc->ess.sync_bw) ; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * init all tx data structures for the asynchronous queue 0 | 
|  | */ | 
|  | smc->hw.fp.tx[QUEUE_A0] = queue = &smc->hw.fp.tx_q[QUEUE_A0] ; | 
|  | queue->tx_bmu_ctl = (HW_PTR) ADDR(B0_XA_CSR) ; | 
|  | queue->tx_bmu_dsc = (HW_PTR) ADDR(B5_XA_DA) ; | 
|  |  | 
|  |  | 
|  | llc_recover_tx(smc) ; | 
|  | } | 
|  |  | 
|  | static void mac_counter_init(struct s_smc *smc) | 
|  | { | 
|  | int i ; | 
|  | u_long *ec ; | 
|  |  | 
|  | /* | 
|  | * clear FORMAC+ frame-, lost- and error counter | 
|  | */ | 
|  | outpw(FM_A(FM_FCNTR),0) ; | 
|  | outpw(FM_A(FM_LCNTR),0) ; | 
|  | outpw(FM_A(FM_ECNTR),0) ; | 
|  | /* | 
|  | * clear internal error counter stucture | 
|  | */ | 
|  | ec = (u_long *)&smc->hw.fp.err_stats ; | 
|  | for (i = (sizeof(struct err_st)/sizeof(long)) ; i ; i--) | 
|  | *ec++ = 0L ; | 
|  | smc->mib.m[MAC0].fddiMACRingOp_Ct = 0 ; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * set FORMAC address, and t_request | 
|  | */ | 
|  | static	void set_formac_addr(struct s_smc *smc) | 
|  | { | 
|  | long	t_requ = smc->mib.m[MAC0].fddiMACT_Req ; | 
|  |  | 
|  | outpw(FM_A(FM_SAID),my_said) ;	/* set short address */ | 
|  | outpw(FM_A(FM_LAIL),(unsigned)((smc->hw.fddi_home_addr.a[4]<<8) + | 
|  | smc->hw.fddi_home_addr.a[5])) ; | 
|  | outpw(FM_A(FM_LAIC),(unsigned)((smc->hw.fddi_home_addr.a[2]<<8) + | 
|  | smc->hw.fddi_home_addr.a[3])) ; | 
|  | outpw(FM_A(FM_LAIM),(unsigned)((smc->hw.fddi_home_addr.a[0]<<8) + | 
|  | smc->hw.fddi_home_addr.a[1])) ; | 
|  |  | 
|  | outpw(FM_A(FM_SAGP),my_sagp) ;	/* set short group address */ | 
|  |  | 
|  | outpw(FM_A(FM_LAGL),(unsigned)((smc->hw.fp.group_addr.a[4]<<8) + | 
|  | smc->hw.fp.group_addr.a[5])) ; | 
|  | outpw(FM_A(FM_LAGC),(unsigned)((smc->hw.fp.group_addr.a[2]<<8) + | 
|  | smc->hw.fp.group_addr.a[3])) ; | 
|  | outpw(FM_A(FM_LAGM),(unsigned)((smc->hw.fp.group_addr.a[0]<<8) + | 
|  | smc->hw.fp.group_addr.a[1])) ; | 
|  |  | 
|  | /* set r_request regs. (MSW & LSW of TRT ) */ | 
|  | outpw(FM_A(FM_TREQ1),(unsigned)(t_requ>>16)) ; | 
|  | outpw(FM_A(FM_TREQ0),(unsigned)t_requ) ; | 
|  | } | 
|  |  | 
|  | static void set_int(char *p, int l) | 
|  | { | 
|  | p[0] = (char)(l >> 24) ; | 
|  | p[1] = (char)(l >> 16) ; | 
|  | p[2] = (char)(l >> 8) ; | 
|  | p[3] = (char)(l >> 0) ; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * copy TX descriptor to buffer mem | 
|  | * append FC field and MAC frame | 
|  | * if more bit is set in descr | 
|  | *	append pointer to descriptor (endless loop) | 
|  | * else | 
|  | *	append 'end of chain' pointer | 
|  | */ | 
|  | static void copy_tx_mac(struct s_smc *smc, u_long td, struct fddi_mac *mac, | 
|  | unsigned off, int len) | 
|  | /* u_long td;		 transmit descriptor */ | 
|  | /* struct fddi_mac *mac; mac frame pointer */ | 
|  | /* unsigned off;	 start address within buffer memory */ | 
|  | /* int len ;		 length of the frame including the FC */ | 
|  | { | 
|  | int	i ; | 
|  | __le32	*p ; | 
|  |  | 
|  | CHECK_NPP() ; | 
|  | MARW(off) ;		/* set memory address reg for writes */ | 
|  |  | 
|  | p = (__le32 *) mac ; | 
|  | for (i = (len + 3)/4 ; i ; i--) { | 
|  | if (i == 1) { | 
|  | /* last word, set the tag bit */ | 
|  | outpw(FM_A(FM_CMDREG2),FM_ISTTB) ; | 
|  | } | 
|  | write_mdr(smc,le32_to_cpu(*p)) ; | 
|  | p++ ; | 
|  | } | 
|  |  | 
|  | outpw(FM_A(FM_CMDREG2),FM_ISTTB) ;	/* set the tag bit */ | 
|  | write_mdr(smc,td) ;	/* write over memory data reg to buffer */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | BEGIN_MANUAL_ENTRY(module;tests;3) | 
|  | How to test directed beacon frames | 
|  | ---------------------------------------------------------------- | 
|  |  | 
|  | o Insert a break point in the function build_claim_beacon() | 
|  | before calling copy_tx_mac() for building the claim frame. | 
|  | o Modify the RM3_DETECT case so that the RM6_DETECT state | 
|  | will always entered from the RM3_DETECT state (function rmt_fsm(), | 
|  | rmt.c) | 
|  | o Compile the driver. | 
|  | o Set the parameter TREQ in the protocol.ini or net.cfg to a | 
|  | small value to make sure your station will win the claim | 
|  | process. | 
|  | o Start the driver. | 
|  | o When you reach the break point, modify the SA and DA address | 
|  | of the claim frame (e.g. SA = DA = 10005affffff). | 
|  | o When you see RM3_DETECT and RM6_DETECT, observe the direct | 
|  | beacon frames on the UPPSLANA. | 
|  |  | 
|  | END_MANUAL_ENTRY | 
|  | */ | 
|  | static void directed_beacon(struct s_smc *smc) | 
|  | { | 
|  | SK_LOC_DECL(__le32,a[2]) ; | 
|  |  | 
|  | /* | 
|  | * set UNA in frame | 
|  | * enable FORMAC to send endless queue of directed beacon | 
|  | * important: the UNA starts at byte 1 (not at byte 0) | 
|  | */ | 
|  | * (char *) a = (char) ((long)DBEACON_INFO<<24L) ; | 
|  | a[1] = 0 ; | 
|  | memcpy((char *)a+1,(char *) &smc->mib.m[MAC0].fddiMACUpstreamNbr,6) ; | 
|  |  | 
|  | CHECK_NPP() ; | 
|  | /* set memory address reg for writes */ | 
|  | MARW(smc->hw.fp.fifo.rbc_ram_start+DBEACON_FRAME_OFF+4) ; | 
|  | write_mdr(smc,le32_to_cpu(a[0])) ; | 
|  | outpw(FM_A(FM_CMDREG2),FM_ISTTB) ;	/* set the tag bit */ | 
|  | write_mdr(smc,le32_to_cpu(a[1])) ; | 
|  |  | 
|  | outpw(FM_A(FM_SABC),smc->hw.fp.fifo.rbc_ram_start + DBEACON_FRAME_OFF) ; | 
|  | } | 
|  |  | 
|  | /* | 
|  | setup claim & beacon pointer | 
|  | NOTE : | 
|  | special frame packets end with a pointer to their own | 
|  | descriptor, and the MORE bit is set in the descriptor | 
|  | */ | 
|  | static void build_claim_beacon(struct s_smc *smc, u_long t_request) | 
|  | { | 
|  | u_int	td ; | 
|  | int	len ; | 
|  | struct fddi_mac_sf *mac ; | 
|  |  | 
|  | /* | 
|  | * build claim packet | 
|  | */ | 
|  | len = 17 ; | 
|  | td = TX_DESCRIPTOR | ((((u_int)len-1)&3)<<27) ; | 
|  | mac = &smc->hw.fp.mac_sfb ; | 
|  | mac->mac_fc = FC_CLAIM ; | 
|  | /* DA == SA in claim frame */ | 
|  | mac->mac_source = mac->mac_dest = MA ; | 
|  | /* 2's complement */ | 
|  | set_int((char *)mac->mac_info,(int)t_request) ; | 
|  |  | 
|  | copy_tx_mac(smc,td,(struct fddi_mac *)mac, | 
|  | smc->hw.fp.fifo.rbc_ram_start + CLAIM_FRAME_OFF,len) ; | 
|  | /* set CLAIM start pointer */ | 
|  | outpw(FM_A(FM_SACL),smc->hw.fp.fifo.rbc_ram_start + CLAIM_FRAME_OFF) ; | 
|  |  | 
|  | /* | 
|  | * build beacon packet | 
|  | */ | 
|  | len = 17 ; | 
|  | td = TX_DESCRIPTOR | ((((u_int)len-1)&3)<<27) ; | 
|  | mac->mac_fc = FC_BEACON ; | 
|  | mac->mac_source = MA ; | 
|  | mac->mac_dest = null_addr ;		/* DA == 0 in beacon frame */ | 
|  | set_int((char *) mac->mac_info,((int)BEACON_INFO<<24) + 0 ) ; | 
|  |  | 
|  | copy_tx_mac(smc,td,(struct fddi_mac *)mac, | 
|  | smc->hw.fp.fifo.rbc_ram_start + BEACON_FRAME_OFF,len) ; | 
|  | /* set beacon start pointer */ | 
|  | outpw(FM_A(FM_SABC),smc->hw.fp.fifo.rbc_ram_start + BEACON_FRAME_OFF) ; | 
|  |  | 
|  | /* | 
|  | * build directed beacon packet | 
|  | * contains optional UNA | 
|  | */ | 
|  | len = 23 ; | 
|  | td = TX_DESCRIPTOR | ((((u_int)len-1)&3)<<27) ; | 
|  | mac->mac_fc = FC_BEACON ; | 
|  | mac->mac_source = MA ; | 
|  | mac->mac_dest = dbeacon_multi ;		/* multicast */ | 
|  | set_int((char *) mac->mac_info,((int)DBEACON_INFO<<24) + 0 ) ; | 
|  | set_int((char *) mac->mac_info+4,0) ; | 
|  | set_int((char *) mac->mac_info+8,0) ; | 
|  |  | 
|  | copy_tx_mac(smc,td,(struct fddi_mac *)mac, | 
|  | smc->hw.fp.fifo.rbc_ram_start + DBEACON_FRAME_OFF,len) ; | 
|  |  | 
|  | /* end of claim/beacon queue */ | 
|  | outpw(FM_A(FM_EACB),smc->hw.fp.fifo.rx1_fifo_start-1) ; | 
|  |  | 
|  | outpw(FM_A(FM_WPXSF),0) ; | 
|  | outpw(FM_A(FM_RPXSF),0) ; | 
|  | } | 
|  |  | 
|  | static void formac_rcv_restart(struct s_smc *smc) | 
|  | { | 
|  | /* enable receive function */ | 
|  | SETMASK(FM_A(FM_MDREG1),smc->hw.fp.rx_mode,FM_ADDRX) ; | 
|  |  | 
|  | outpw(FM_A(FM_CMDREG1),FM_ICLLR) ;	/* clear receive lock */ | 
|  | } | 
|  |  | 
|  | void formac_tx_restart(struct s_smc *smc) | 
|  | { | 
|  | outpw(FM_A(FM_CMDREG1),FM_ICLLS) ;	/* clear s-frame lock */ | 
|  | outpw(FM_A(FM_CMDREG1),FM_ICLLA0) ;	/* clear a-frame lock */ | 
|  | } | 
|  |  | 
|  | static void enable_formac(struct s_smc *smc) | 
|  | { | 
|  | /* set formac IMSK : 0 enables irq */ | 
|  | outpw(FM_A(FM_IMSK1U),(unsigned short)~mac_imsk1u); | 
|  | outpw(FM_A(FM_IMSK1L),(unsigned short)~mac_imsk1l); | 
|  | outpw(FM_A(FM_IMSK2U),(unsigned short)~mac_imsk2u); | 
|  | outpw(FM_A(FM_IMSK2L),(unsigned short)~mac_imsk2l); | 
|  | outpw(FM_A(FM_IMSK3U),(unsigned short)~mac_imsk3u); | 
|  | outpw(FM_A(FM_IMSK3L),(unsigned short)~mac_imsk3l); | 
|  | } | 
|  |  | 
|  | #if 0	/* Removed because the driver should use the ASICs TX complete IRQ. */ | 
|  | /* The FORMACs tx complete IRQ should be used any longer */ | 
|  |  | 
|  | /* | 
|  | BEGIN_MANUAL_ENTRY(if,func;others;4) | 
|  |  | 
|  | void enable_tx_irq(smc, queue) | 
|  | struct s_smc *smc ; | 
|  | u_short	queue ; | 
|  |  | 
|  | Function	DOWNCALL	(SMT, fplustm.c) | 
|  | enable_tx_irq() enables the FORMACs transmit complete | 
|  | interrupt of the queue. | 
|  |  | 
|  | Para	queue	= QUEUE_S:	synchronous queue | 
|  | = QUEUE_A0:	asynchronous queue | 
|  |  | 
|  | Note	After any ring operational change the transmit complete | 
|  | interrupts are disabled. | 
|  | The operating system dependent module must enable | 
|  | the transmit complete interrupt of a queue, | 
|  | - when it queues the first frame, | 
|  | because of no transmit resources are beeing | 
|  | available and | 
|  | - when it escapes from the function llc_restart_tx | 
|  | while some frames are still queued. | 
|  |  | 
|  | END_MANUAL_ENTRY | 
|  | */ | 
|  | void enable_tx_irq(struct s_smc *smc, u_short queue) | 
|  | /* u_short queue; 0 = synchronous queue, 1 = asynchronous queue 0 */ | 
|  | { | 
|  | u_short	imask ; | 
|  |  | 
|  | imask = ~(inpw(FM_A(FM_IMSK1U))) ; | 
|  |  | 
|  | if (queue == 0) { | 
|  | outpw(FM_A(FM_IMSK1U),~(imask|FM_STEFRMS)) ; | 
|  | } | 
|  | if (queue == 1) { | 
|  | outpw(FM_A(FM_IMSK1U),~(imask|FM_STEFRMA0)) ; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | BEGIN_MANUAL_ENTRY(if,func;others;4) | 
|  |  | 
|  | void disable_tx_irq(smc, queue) | 
|  | struct s_smc *smc ; | 
|  | u_short	queue ; | 
|  |  | 
|  | Function	DOWNCALL	(SMT, fplustm.c) | 
|  | disable_tx_irq disables the FORMACs transmit complete | 
|  | interrupt of the queue | 
|  |  | 
|  | Para	queue	= QUEUE_S:	synchronous queue | 
|  | = QUEUE_A0:	asynchronous queue | 
|  |  | 
|  | Note	The operating system dependent module should disable | 
|  | the transmit complete interrupts if it escapes from the | 
|  | function llc_restart_tx and no frames are queued. | 
|  |  | 
|  | END_MANUAL_ENTRY | 
|  | */ | 
|  | void disable_tx_irq(struct s_smc *smc, u_short queue) | 
|  | /* u_short queue; 0 = synchronous queue, 1 = asynchronous queue 0 */ | 
|  | { | 
|  | u_short	imask ; | 
|  |  | 
|  | imask = ~(inpw(FM_A(FM_IMSK1U))) ; | 
|  |  | 
|  | if (queue == 0) { | 
|  | outpw(FM_A(FM_IMSK1U),~(imask&~FM_STEFRMS)) ; | 
|  | } | 
|  | if (queue == 1) { | 
|  | outpw(FM_A(FM_IMSK1U),~(imask&~FM_STEFRMA0)) ; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void disable_formac(struct s_smc *smc) | 
|  | { | 
|  | /* clear formac IMSK : 1 disables irq */ | 
|  | outpw(FM_A(FM_IMSK1U),MW) ; | 
|  | outpw(FM_A(FM_IMSK1L),MW) ; | 
|  | outpw(FM_A(FM_IMSK2U),MW) ; | 
|  | outpw(FM_A(FM_IMSK2L),MW) ; | 
|  | outpw(FM_A(FM_IMSK3U),MW) ; | 
|  | outpw(FM_A(FM_IMSK3L),MW) ; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void mac_ring_up(struct s_smc *smc, int up) | 
|  | { | 
|  | if (up) { | 
|  | formac_rcv_restart(smc) ;	/* enable receive function */ | 
|  | smc->hw.mac_ring_is_up = TRUE ; | 
|  | llc_restart_tx(smc) ;		/* TX queue */ | 
|  | } | 
|  | else { | 
|  | /* disable receive function */ | 
|  | SETMASK(FM_A(FM_MDREG1),FM_MDISRCV,FM_ADDET) ; | 
|  |  | 
|  | /* abort current transmit activity */ | 
|  | outpw(FM_A(FM_CMDREG2),FM_IACTR) ; | 
|  |  | 
|  | smc->hw.mac_ring_is_up = FALSE ; | 
|  | } | 
|  | } | 
|  |  | 
|  | /*--------------------------- ISR handling ----------------------------------*/ | 
|  | /* | 
|  | * mac1_irq is in drvfbi.c | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * mac2_irq:	status bits for the receive queue 1, and ring status | 
|  | * 		ring status indication bits | 
|  | */ | 
|  | void mac2_irq(struct s_smc *smc, u_short code_s2u, u_short code_s2l) | 
|  | { | 
|  | u_short	change_s2l ; | 
|  | u_short	change_s2u ; | 
|  |  | 
|  | /* (jd) 22-Feb-1999 | 
|  | * Restart 2_DMax Timer after end of claiming or beaconing | 
|  | */ | 
|  | if (code_s2u & (FM_SCLM|FM_SHICLM|FM_SBEC|FM_SOTRBEC)) { | 
|  | queue_event(smc,EVENT_RMT,RM_TX_STATE_CHANGE) ; | 
|  | } | 
|  | else if (code_s2l & (FM_STKISS)) { | 
|  | queue_event(smc,EVENT_RMT,RM_TX_STATE_CHANGE) ; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * XOR current st bits with the last to avoid useless RMT event queuing | 
|  | */ | 
|  | change_s2l = smc->hw.fp.s2l ^ code_s2l ; | 
|  | change_s2u = smc->hw.fp.s2u ^ code_s2u ; | 
|  |  | 
|  | if ((change_s2l & FM_SRNGOP) || | 
|  | (!smc->hw.mac_ring_is_up && ((code_s2l & FM_SRNGOP)))) { | 
|  | if (code_s2l & FM_SRNGOP) { | 
|  | mac_ring_up(smc,1) ; | 
|  | queue_event(smc,EVENT_RMT,RM_RING_OP) ; | 
|  | smc->mib.m[MAC0].fddiMACRingOp_Ct++ ; | 
|  | } | 
|  | else { | 
|  | mac_ring_up(smc,0) ; | 
|  | queue_event(smc,EVENT_RMT,RM_RING_NON_OP) ; | 
|  | } | 
|  | goto mac2_end ; | 
|  | } | 
|  | if (code_s2l & FM_SMISFRM) {	/* missed frame */ | 
|  | smc->mib.m[MAC0].fddiMACNotCopied_Ct++ ; | 
|  | } | 
|  | if (code_s2u & (FM_SRCVOVR |	/* recv. FIFO overflow */ | 
|  | FM_SRBFL)) {	/* recv. buffer full */ | 
|  | smc->hw.mac_ct.mac_r_restart_counter++ ; | 
|  | /*		formac_rcv_restart(smc) ;	*/ | 
|  | smt_stat_counter(smc,1) ; | 
|  | /*		goto mac2_end ;			*/ | 
|  | } | 
|  | if (code_s2u & FM_SOTRBEC) | 
|  | queue_event(smc,EVENT_RMT,RM_OTHER_BEACON) ; | 
|  | if (code_s2u & FM_SMYBEC) | 
|  | queue_event(smc,EVENT_RMT,RM_MY_BEACON) ; | 
|  | if (change_s2u & code_s2u & FM_SLOCLM) { | 
|  | DB_RMTN(2,"RMT : lower claim received\n",0,0) ; | 
|  | } | 
|  | if ((code_s2u & FM_SMYCLM) && !(code_s2l & FM_SDUPCLM)) { | 
|  | /* | 
|  | * This is my claim and that claim is not detected as a | 
|  | * duplicate one. | 
|  | */ | 
|  | queue_event(smc,EVENT_RMT,RM_MY_CLAIM) ; | 
|  | } | 
|  | if (code_s2l & FM_SDUPCLM) { | 
|  | /* | 
|  | * If a duplicate claim frame (same SA but T_Bid != T_Req) | 
|  | * this flag will be set. | 
|  | * In the RMT state machine we need a RM_VALID_CLAIM event | 
|  | * to do the appropriate state change. | 
|  | * RM(34c) | 
|  | */ | 
|  | queue_event(smc,EVENT_RMT,RM_VALID_CLAIM) ; | 
|  | } | 
|  | if (change_s2u & code_s2u & FM_SHICLM) { | 
|  | DB_RMTN(2,"RMT : higher claim received\n",0,0) ; | 
|  | } | 
|  | if ( (code_s2l & FM_STRTEXP) || | 
|  | (code_s2l & FM_STRTEXR) ) | 
|  | queue_event(smc,EVENT_RMT,RM_TRT_EXP) ; | 
|  | if (code_s2l & FM_SMULTDA) { | 
|  | /* | 
|  | * The MAC has found a 2. MAC with the same address. | 
|  | * Signal dup_addr_test = failed to RMT state machine. | 
|  | * RM(25) | 
|  | */ | 
|  | smc->r.dup_addr_test = DA_FAILED ; | 
|  | queue_event(smc,EVENT_RMT,RM_DUP_ADDR) ; | 
|  | } | 
|  | if (code_s2u & FM_SBEC) | 
|  | smc->hw.fp.err_stats.err_bec_stat++ ; | 
|  | if (code_s2u & FM_SCLM) | 
|  | smc->hw.fp.err_stats.err_clm_stat++ ; | 
|  | if (code_s2l & FM_STVXEXP) | 
|  | smc->mib.m[MAC0].fddiMACTvxExpired_Ct++ ; | 
|  | if ((code_s2u & (FM_SBEC|FM_SCLM))) { | 
|  | if (!(change_s2l & FM_SRNGOP) && (smc->hw.fp.s2l & FM_SRNGOP)) { | 
|  | mac_ring_up(smc,0) ; | 
|  | queue_event(smc,EVENT_RMT,RM_RING_NON_OP) ; | 
|  |  | 
|  | mac_ring_up(smc,1) ; | 
|  | queue_event(smc,EVENT_RMT,RM_RING_OP) ; | 
|  | smc->mib.m[MAC0].fddiMACRingOp_Ct++ ; | 
|  | } | 
|  | } | 
|  | if (code_s2l & FM_SPHINV) | 
|  | smc->hw.fp.err_stats.err_phinv++ ; | 
|  | if (code_s2l & FM_SSIFG) | 
|  | smc->hw.fp.err_stats.err_sifg_det++ ; | 
|  | if (code_s2l & FM_STKISS) | 
|  | smc->hw.fp.err_stats.err_tkiss++ ; | 
|  | if (code_s2l & FM_STKERR) | 
|  | smc->hw.fp.err_stats.err_tkerr++ ; | 
|  | if (code_s2l & FM_SFRMCTR) | 
|  | smc->mib.m[MAC0].fddiMACFrame_Ct += 0x10000L ; | 
|  | if (code_s2l & FM_SERRCTR) | 
|  | smc->mib.m[MAC0].fddiMACError_Ct += 0x10000L ; | 
|  | if (code_s2l & FM_SLSTCTR) | 
|  | smc->mib.m[MAC0].fddiMACLost_Ct  += 0x10000L ; | 
|  | if (code_s2u & FM_SERRSF) { | 
|  | SMT_PANIC(smc,SMT_E0114, SMT_E0114_MSG) ; | 
|  | } | 
|  | mac2_end: | 
|  | /* notice old status */ | 
|  | smc->hw.fp.s2l = code_s2l ; | 
|  | smc->hw.fp.s2u = code_s2u ; | 
|  | outpw(FM_A(FM_IMSK2U),~mac_imsk2u) ; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mac3_irq:	receive queue 2 bits and address detection bits | 
|  | */ | 
|  | void mac3_irq(struct s_smc *smc, u_short code_s3u, u_short code_s3l) | 
|  | { | 
|  | UNUSED(code_s3l) ; | 
|  |  | 
|  | if (code_s3u & (FM_SRCVOVR2 |	/* recv. FIFO overflow */ | 
|  | FM_SRBFL2)) {	/* recv. buffer full */ | 
|  | smc->hw.mac_ct.mac_r_restart_counter++ ; | 
|  | smt_stat_counter(smc,1); | 
|  | } | 
|  |  | 
|  |  | 
|  | if (code_s3u & FM_SRPERRQ2) {	/* parity error receive queue 2 */ | 
|  | SMT_PANIC(smc,SMT_E0115, SMT_E0115_MSG) ; | 
|  | } | 
|  | if (code_s3u & FM_SRPERRQ1) {	/* parity error receive queue 2 */ | 
|  | SMT_PANIC(smc,SMT_E0116, SMT_E0116_MSG) ; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * take formac offline | 
|  | */ | 
|  | static void formac_offline(struct s_smc *smc) | 
|  | { | 
|  | outpw(FM_A(FM_CMDREG2),FM_IACTR) ;/* abort current transmit activity */ | 
|  |  | 
|  | /* disable receive function */ | 
|  | SETMASK(FM_A(FM_MDREG1),FM_MDISRCV,FM_ADDET) ; | 
|  |  | 
|  | /* FORMAC+ 'Initialize Mode' */ | 
|  | SETMASK(FM_A(FM_MDREG1),FM_MINIT,FM_MMODE) ; | 
|  |  | 
|  | disable_formac(smc) ; | 
|  | smc->hw.mac_ring_is_up = FALSE ; | 
|  | smc->hw.hw_state = STOPPED ; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * bring formac online | 
|  | */ | 
|  | static void formac_online(struct s_smc *smc) | 
|  | { | 
|  | enable_formac(smc) ; | 
|  | SETMASK(FM_A(FM_MDREG1),FM_MONLINE | FM_SELRA | MDR1INIT | | 
|  | smc->hw.fp.rx_mode, FM_MMODE | FM_SELRA | FM_ADDRX) ; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * FORMAC+ full init. (tx, rx, timer, counter, claim & beacon) | 
|  | */ | 
|  | int init_fplus(struct s_smc *smc) | 
|  | { | 
|  | smc->hw.fp.nsa_mode = FM_MRNNSAFNMA ; | 
|  | smc->hw.fp.rx_mode = FM_MDAMA ; | 
|  | smc->hw.fp.group_addr = fddi_broadcast ; | 
|  | smc->hw.fp.func_addr = 0 ; | 
|  | smc->hw.fp.frselreg_init = 0 ; | 
|  |  | 
|  | init_driver_fplus(smc) ; | 
|  | if (smc->s.sas == SMT_DAS) | 
|  | smc->hw.fp.mdr3init |= FM_MENDAS ; | 
|  |  | 
|  | smc->hw.mac_ct.mac_nobuf_counter = 0 ; | 
|  | smc->hw.mac_ct.mac_r_restart_counter = 0 ; | 
|  |  | 
|  | smc->hw.fp.fm_st1u = (HW_PTR) ADDR(B0_ST1U) ; | 
|  | smc->hw.fp.fm_st1l = (HW_PTR) ADDR(B0_ST1L) ; | 
|  | smc->hw.fp.fm_st2u = (HW_PTR) ADDR(B0_ST2U) ; | 
|  | smc->hw.fp.fm_st2l = (HW_PTR) ADDR(B0_ST2L) ; | 
|  | smc->hw.fp.fm_st3u = (HW_PTR) ADDR(B0_ST3U) ; | 
|  | smc->hw.fp.fm_st3l = (HW_PTR) ADDR(B0_ST3L) ; | 
|  |  | 
|  | smc->hw.fp.s2l = smc->hw.fp.s2u = 0 ; | 
|  | smc->hw.mac_ring_is_up = 0 ; | 
|  |  | 
|  | mac_counter_init(smc) ; | 
|  |  | 
|  | /* convert BCKL units to symbol time */ | 
|  | smc->hw.mac_pa.t_neg = (u_long)0 ; | 
|  | smc->hw.mac_pa.t_pri = (u_long)0 ; | 
|  |  | 
|  | /* make sure all PCI settings are correct */ | 
|  | mac_do_pci_fix(smc) ; | 
|  |  | 
|  | return(init_mac(smc,1)) ; | 
|  | /* enable_formac(smc) ; */ | 
|  | } | 
|  |  | 
|  | static int init_mac(struct s_smc *smc, int all) | 
|  | { | 
|  | u_short	t_max,x ; | 
|  | u_long	time=0 ; | 
|  |  | 
|  | /* | 
|  | * clear memory | 
|  | */ | 
|  | outpw(FM_A(FM_MDREG1),FM_MINIT) ;	/* FORMAC+ init mode */ | 
|  | set_formac_addr(smc) ; | 
|  | outpw(FM_A(FM_MDREG1),FM_MMEMACT) ;	/* FORMAC+ memory activ mode */ | 
|  | /* Note: Mode register 2 is set here, incase parity is enabled. */ | 
|  | outpw(FM_A(FM_MDREG2),smc->hw.fp.mdr2init) ; | 
|  |  | 
|  | if (all) { | 
|  | init_ram(smc) ; | 
|  | } | 
|  | else { | 
|  | /* | 
|  | * reset the HPI, the Master and the BMUs | 
|  | */ | 
|  | outp(ADDR(B0_CTRL), CTRL_HPI_SET) ; | 
|  | time = hwt_quick_read(smc) ; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * set all pointers, frames etc | 
|  | */ | 
|  | smt_split_up_fifo(smc) ; | 
|  |  | 
|  | init_tx(smc) ; | 
|  | init_rx(smc) ; | 
|  | init_rbc(smc) ; | 
|  |  | 
|  | build_claim_beacon(smc,smc->mib.m[MAC0].fddiMACT_Req) ; | 
|  |  | 
|  | /* set RX threshold */ | 
|  | /* see Errata #SN2 Phantom receive overflow */ | 
|  | outpw(FM_A(FM_FRMTHR),14<<12) ;		/* switch on */ | 
|  |  | 
|  | /* set formac work mode */ | 
|  | outpw(FM_A(FM_MDREG1),MDR1INIT | FM_SELRA | smc->hw.fp.rx_mode) ; | 
|  | outpw(FM_A(FM_MDREG2),smc->hw.fp.mdr2init) ; | 
|  | outpw(FM_A(FM_MDREG3),smc->hw.fp.mdr3init) ; | 
|  | outpw(FM_A(FM_FRSELREG),smc->hw.fp.frselreg_init) ; | 
|  |  | 
|  | /* set timer */ | 
|  | /* | 
|  | * errata #22 fplus: | 
|  | * T_MAX must not be FFFE | 
|  | * or one of FFDF, FFB8, FF91 (-0x27 etc..) | 
|  | */ | 
|  | t_max = (u_short)(smc->mib.m[MAC0].fddiMACT_Max/32) ; | 
|  | x = t_max/0x27 ; | 
|  | x *= 0x27 ; | 
|  | if ((t_max == 0xfffe) || (t_max - x == 0x16)) | 
|  | t_max-- ; | 
|  | outpw(FM_A(FM_TMAX),(u_short)t_max) ; | 
|  |  | 
|  | /* BugFix for report #10204 */ | 
|  | if (smc->mib.m[MAC0].fddiMACTvxValue < (u_long) (- US2BCLK(52))) { | 
|  | outpw(FM_A(FM_TVX), (u_short) (- US2BCLK(52))/255 & MB) ; | 
|  | } else { | 
|  | outpw(FM_A(FM_TVX), | 
|  | (u_short)((smc->mib.m[MAC0].fddiMACTvxValue/255) & MB)) ; | 
|  | } | 
|  |  | 
|  | outpw(FM_A(FM_CMDREG1),FM_ICLLS) ;	/* clear s-frame lock */ | 
|  | outpw(FM_A(FM_CMDREG1),FM_ICLLA0) ;	/* clear a-frame lock */ | 
|  | outpw(FM_A(FM_CMDREG1),FM_ICLLR);	/* clear receive lock */ | 
|  |  | 
|  | /* Auto unlock receice threshold for receive queue 1 and 2 */ | 
|  | outpw(FM_A(FM_UNLCKDLY),(0xff|(0xff<<8))) ; | 
|  |  | 
|  | rtm_init(smc) ;				/* RT-Monitor */ | 
|  |  | 
|  | if (!all) { | 
|  | /* | 
|  | * after 10ms, reset the BMUs and repair the rings | 
|  | */ | 
|  | hwt_wait_time(smc,time,MS2BCLK(10)) ; | 
|  | outpd(ADDR(B0_R1_CSR),CSR_SET_RESET) ; | 
|  | outpd(ADDR(B0_XA_CSR),CSR_SET_RESET) ; | 
|  | outpd(ADDR(B0_XS_CSR),CSR_SET_RESET) ; | 
|  | outp(ADDR(B0_CTRL), CTRL_HPI_CLR) ; | 
|  | outpd(ADDR(B0_R1_CSR),CSR_CLR_RESET) ; | 
|  | outpd(ADDR(B0_XA_CSR),CSR_CLR_RESET) ; | 
|  | outpd(ADDR(B0_XS_CSR),CSR_CLR_RESET) ; | 
|  | if (!smc->hw.hw_is_64bit) { | 
|  | outpd(ADDR(B4_R1_F), RX_WATERMARK) ; | 
|  | outpd(ADDR(B5_XA_F), TX_WATERMARK) ; | 
|  | outpd(ADDR(B5_XS_F), TX_WATERMARK) ; | 
|  | } | 
|  | smc->hw.hw_state = STOPPED ; | 
|  | mac_drv_repair_descr(smc) ; | 
|  | } | 
|  | smc->hw.hw_state = STARTED ; | 
|  |  | 
|  | return(0) ; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * called by CFM | 
|  | */ | 
|  | void config_mux(struct s_smc *smc, int mux) | 
|  | { | 
|  | plc_config_mux(smc,mux) ; | 
|  |  | 
|  | SETMASK(FM_A(FM_MDREG1),FM_SELRA,FM_SELRA) ; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * called by RMT | 
|  | * enable CLAIM/BEACON interrupts | 
|  | * (only called if these events are of interest, e.g. in DETECT state | 
|  | * the interrupt must not be permanently enabled | 
|  | * RMT calls this function periodically (timer driven polling) | 
|  | */ | 
|  | void sm_mac_check_beacon_claim(struct s_smc *smc) | 
|  | { | 
|  | /* set formac IMSK : 0 enables irq */ | 
|  | outpw(FM_A(FM_IMSK2U),~(mac_imsk2u | mac_beacon_imsk2u)) ; | 
|  | /* the driver must receive the directed beacons */ | 
|  | formac_rcv_restart(smc) ; | 
|  | process_receive(smc) ; | 
|  | } | 
|  |  | 
|  | /*-------------------------- interface functions ----------------------------*/ | 
|  | /* | 
|  | * control MAC layer	(called by RMT) | 
|  | */ | 
|  | void sm_ma_control(struct s_smc *smc, int mode) | 
|  | { | 
|  | switch(mode) { | 
|  | case MA_OFFLINE : | 
|  | /* Add to make the MAC offline in RM0_ISOLATED state */ | 
|  | formac_offline(smc) ; | 
|  | break ; | 
|  | case MA_RESET : | 
|  | (void)init_mac(smc,0) ; | 
|  | break ; | 
|  | case MA_BEACON : | 
|  | formac_online(smc) ; | 
|  | break ; | 
|  | case MA_DIRECTED : | 
|  | directed_beacon(smc) ; | 
|  | break ; | 
|  | case MA_TREQ : | 
|  | /* | 
|  | * no actions necessary, TREQ is already set | 
|  | */ | 
|  | break ; | 
|  | } | 
|  | } | 
|  |  | 
|  | int sm_mac_get_tx_state(struct s_smc *smc) | 
|  | { | 
|  | return((inpw(FM_A(FM_STMCHN))>>4)&7) ; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * multicast functions | 
|  | */ | 
|  |  | 
|  | static struct s_fpmc* mac_get_mc_table(struct s_smc *smc, | 
|  | struct fddi_addr *user, | 
|  | struct fddi_addr *own, | 
|  | int del, int can) | 
|  | { | 
|  | struct s_fpmc	*tb ; | 
|  | struct s_fpmc	*slot ; | 
|  | u_char	*p ; | 
|  | int i ; | 
|  |  | 
|  | /* | 
|  | * set own = can(user) | 
|  | */ | 
|  | *own = *user ; | 
|  | if (can) { | 
|  | p = own->a ; | 
|  | for (i = 0 ; i < 6 ; i++, p++) | 
|  | *p = bitrev8(*p); | 
|  | } | 
|  | slot = NULL; | 
|  | for (i = 0, tb = smc->hw.fp.mc.table ; i < FPMAX_MULTICAST ; i++, tb++){ | 
|  | if (!tb->n) {		/* not used */ | 
|  | if (!del && !slot)	/* if !del save first free */ | 
|  | slot = tb ; | 
|  | continue ; | 
|  | } | 
|  | if (memcmp((char *)&tb->a,(char *)own,6)) | 
|  | continue ; | 
|  | return(tb) ; | 
|  | } | 
|  | return(slot) ;			/* return first free or NULL */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | BEGIN_MANUAL_ENTRY(if,func;others;2) | 
|  |  | 
|  | void mac_clear_multicast(smc) | 
|  | struct s_smc *smc ; | 
|  |  | 
|  | Function	DOWNCALL	(SMT, fplustm.c) | 
|  | Clear all multicast entries | 
|  |  | 
|  | END_MANUAL_ENTRY() | 
|  | */ | 
|  | void mac_clear_multicast(struct s_smc *smc) | 
|  | { | 
|  | struct s_fpmc	*tb ; | 
|  | int i ; | 
|  |  | 
|  | smc->hw.fp.os_slots_used = 0 ;	/* note the SMT addresses */ | 
|  | /* will not be deleted */ | 
|  | for (i = 0, tb = smc->hw.fp.mc.table ; i < FPMAX_MULTICAST ; i++, tb++){ | 
|  | if (!tb->perm) { | 
|  | tb->n = 0 ; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | BEGIN_MANUAL_ENTRY(if,func;others;2) | 
|  |  | 
|  | int mac_add_multicast(smc,addr,can) | 
|  | struct s_smc *smc ; | 
|  | struct fddi_addr *addr ; | 
|  | int can ; | 
|  |  | 
|  | Function	DOWNCALL	(SMC, fplustm.c) | 
|  | Add an entry to the multicast table | 
|  |  | 
|  | Para	addr	pointer to a multicast address | 
|  | can	= 0:	the multicast address has the physical format | 
|  | = 1:	the multicast address has the canonical format | 
|  | | 0x80	permanent | 
|  |  | 
|  | Returns	0: success | 
|  | 1: address table full | 
|  |  | 
|  | Note	After a 'driver reset' or a 'station set address' all | 
|  | entries of the multicast table are cleared. | 
|  | In this case the driver has to fill the multicast table again. | 
|  | After the operating system dependent module filled | 
|  | the multicast table it must call mac_update_multicast | 
|  | to activate the new multicast addresses! | 
|  |  | 
|  | END_MANUAL_ENTRY() | 
|  | */ | 
|  | int mac_add_multicast(struct s_smc *smc, struct fddi_addr *addr, int can) | 
|  | { | 
|  | SK_LOC_DECL(struct fddi_addr,own) ; | 
|  | struct s_fpmc	*tb ; | 
|  |  | 
|  | /* | 
|  | * check if there are free table entries | 
|  | */ | 
|  | if (can & 0x80) { | 
|  | if (smc->hw.fp.smt_slots_used >= SMT_MAX_MULTI) { | 
|  | return(1) ; | 
|  | } | 
|  | } | 
|  | else { | 
|  | if (smc->hw.fp.os_slots_used >= FPMAX_MULTICAST-SMT_MAX_MULTI) { | 
|  | return(1) ; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find empty slot | 
|  | */ | 
|  | if (!(tb = mac_get_mc_table(smc,addr,&own,0,can & ~0x80))) | 
|  | return(1) ; | 
|  | tb->n++ ; | 
|  | tb->a = own ; | 
|  | tb->perm = (can & 0x80) ? 1 : 0 ; | 
|  |  | 
|  | if (can & 0x80) | 
|  | smc->hw.fp.smt_slots_used++ ; | 
|  | else | 
|  | smc->hw.fp.os_slots_used++ ; | 
|  |  | 
|  | return(0) ; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mode | 
|  | */ | 
|  |  | 
|  | #define RX_MODE_PROM		0x1 | 
|  | #define RX_MODE_ALL_MULTI	0x2 | 
|  |  | 
|  | /* | 
|  | BEGIN_MANUAL_ENTRY(if,func;others;2) | 
|  |  | 
|  | void mac_update_multicast(smc) | 
|  | struct s_smc *smc ; | 
|  |  | 
|  | Function	DOWNCALL	(SMT, fplustm.c) | 
|  | Update FORMAC multicast registers | 
|  |  | 
|  | END_MANUAL_ENTRY() | 
|  | */ | 
|  | void mac_update_multicast(struct s_smc *smc) | 
|  | { | 
|  | struct s_fpmc	*tb ; | 
|  | u_char	*fu ; | 
|  | int	i ; | 
|  |  | 
|  | /* | 
|  | * invalidate the CAM | 
|  | */ | 
|  | outpw(FM_A(FM_AFCMD),FM_IINV_CAM) ; | 
|  |  | 
|  | /* | 
|  | * set the functional address | 
|  | */ | 
|  | if (smc->hw.fp.func_addr) { | 
|  | fu = (u_char *) &smc->hw.fp.func_addr ; | 
|  | outpw(FM_A(FM_AFMASK2),0xffff) ; | 
|  | outpw(FM_A(FM_AFMASK1),(u_short) ~((fu[0] << 8) + fu[1])) ; | 
|  | outpw(FM_A(FM_AFMASK0),(u_short) ~((fu[2] << 8) + fu[3])) ; | 
|  | outpw(FM_A(FM_AFPERS),FM_VALID|FM_DA) ; | 
|  | outpw(FM_A(FM_AFCOMP2), 0xc000) ; | 
|  | outpw(FM_A(FM_AFCOMP1), 0x0000) ; | 
|  | outpw(FM_A(FM_AFCOMP0), 0x0000) ; | 
|  | outpw(FM_A(FM_AFCMD),FM_IWRITE_CAM) ; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * set the mask and the personality register(s) | 
|  | */ | 
|  | outpw(FM_A(FM_AFMASK0),0xffff) ; | 
|  | outpw(FM_A(FM_AFMASK1),0xffff) ; | 
|  | outpw(FM_A(FM_AFMASK2),0xffff) ; | 
|  | outpw(FM_A(FM_AFPERS),FM_VALID|FM_DA) ; | 
|  |  | 
|  | for (i = 0, tb = smc->hw.fp.mc.table; i < FPMAX_MULTICAST; i++, tb++) { | 
|  | if (tb->n) { | 
|  | CHECK_CAM() ; | 
|  |  | 
|  | /* | 
|  | * write the multicast address into the CAM | 
|  | */ | 
|  | outpw(FM_A(FM_AFCOMP2), | 
|  | (u_short)((tb->a.a[0]<<8)+tb->a.a[1])) ; | 
|  | outpw(FM_A(FM_AFCOMP1), | 
|  | (u_short)((tb->a.a[2]<<8)+tb->a.a[3])) ; | 
|  | outpw(FM_A(FM_AFCOMP0), | 
|  | (u_short)((tb->a.a[4]<<8)+tb->a.a[5])) ; | 
|  | outpw(FM_A(FM_AFCMD),FM_IWRITE_CAM) ; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | BEGIN_MANUAL_ENTRY(if,func;others;3) | 
|  |  | 
|  | void mac_set_rx_mode(smc,mode) | 
|  | struct s_smc *smc ; | 
|  | int mode ; | 
|  |  | 
|  | Function	DOWNCALL/INTERN	(SMT, fplustm.c) | 
|  | This function enables / disables the selected receive. | 
|  | Don't call this function if the hardware module is | 
|  | used -- use mac_drv_rx_mode() instead of. | 
|  |  | 
|  | Para	mode =	1	RX_ENABLE_ALLMULTI	enable all multicasts | 
|  | 2	RX_DISABLE_ALLMULTI	disable "enable all multicasts" | 
|  | 3	RX_ENABLE_PROMISC	enable promiscous | 
|  | 4	RX_DISABLE_PROMISC	disable promiscous | 
|  | 5	RX_ENABLE_NSA		enable reception of NSA frames | 
|  | 6	RX_DISABLE_NSA		disable reception of NSA frames | 
|  |  | 
|  | Note	The selected receive modes will be lost after 'driver reset' | 
|  | or 'set station address' | 
|  |  | 
|  | END_MANUAL_ENTRY | 
|  | */ | 
|  | void mac_set_rx_mode(struct s_smc *smc, int mode) | 
|  | { | 
|  | switch (mode) { | 
|  | case RX_ENABLE_ALLMULTI : | 
|  | smc->hw.fp.rx_prom |= RX_MODE_ALL_MULTI ; | 
|  | break ; | 
|  | case RX_DISABLE_ALLMULTI : | 
|  | smc->hw.fp.rx_prom &= ~RX_MODE_ALL_MULTI ; | 
|  | break ; | 
|  | case RX_ENABLE_PROMISC : | 
|  | smc->hw.fp.rx_prom |= RX_MODE_PROM ; | 
|  | break ; | 
|  | case RX_DISABLE_PROMISC : | 
|  | smc->hw.fp.rx_prom &= ~RX_MODE_PROM ; | 
|  | break ; | 
|  | case RX_ENABLE_NSA : | 
|  | smc->hw.fp.nsa_mode = FM_MDAMA ; | 
|  | smc->hw.fp.rx_mode = (smc->hw.fp.rx_mode & ~FM_ADDET) | | 
|  | smc->hw.fp.nsa_mode ; | 
|  | break ; | 
|  | case RX_DISABLE_NSA : | 
|  | smc->hw.fp.nsa_mode = FM_MRNNSAFNMA ; | 
|  | smc->hw.fp.rx_mode = (smc->hw.fp.rx_mode & ~FM_ADDET) | | 
|  | smc->hw.fp.nsa_mode ; | 
|  | break ; | 
|  | } | 
|  | if (smc->hw.fp.rx_prom & RX_MODE_PROM) { | 
|  | smc->hw.fp.rx_mode = FM_MLIMPROM ; | 
|  | } | 
|  | else if (smc->hw.fp.rx_prom & RX_MODE_ALL_MULTI) { | 
|  | smc->hw.fp.rx_mode = smc->hw.fp.nsa_mode | FM_EXGPA0 ; | 
|  | } | 
|  | else | 
|  | smc->hw.fp.rx_mode = smc->hw.fp.nsa_mode ; | 
|  | SETMASK(FM_A(FM_MDREG1),smc->hw.fp.rx_mode,FM_ADDRX) ; | 
|  | mac_update_multicast(smc) ; | 
|  | } | 
|  |  | 
|  | /* | 
|  | BEGIN_MANUAL_ENTRY(module;tests;3) | 
|  | How to test the Restricted Token Monitor | 
|  | ---------------------------------------------------------------- | 
|  |  | 
|  | o Insert a break point in the function rtm_irq() | 
|  | o Remove all stations with a restricted token monitor from the | 
|  | network. | 
|  | o Connect a UPPS ISA or EISA station to the network. | 
|  | o Give the FORMAC of UPPS station the command to send | 
|  | restricted tokens until the ring becomes instable. | 
|  | o Now connect your test test client. | 
|  | o The restricted token monitor should detect the restricted token, | 
|  | and your break point will be reached. | 
|  | o You can ovserve how the station will clean the ring. | 
|  |  | 
|  | END_MANUAL_ENTRY | 
|  | */ | 
|  | void rtm_irq(struct s_smc *smc) | 
|  | { | 
|  | outpw(ADDR(B2_RTM_CRTL),TIM_CL_IRQ) ;		/* clear IRQ */ | 
|  | if (inpw(ADDR(B2_RTM_CRTL)) & TIM_RES_TOK) { | 
|  | outpw(FM_A(FM_CMDREG1),FM_ICL) ;	/* force claim */ | 
|  | DB_RMT("RMT: fddiPATHT_Rmode expired\n",0,0) ; | 
|  | AIX_EVENT(smc, (u_long) FDDI_RING_STATUS, | 
|  | (u_long) FDDI_SMT_EVENT, | 
|  | (u_long) FDDI_RTT, smt_get_event_word(smc)); | 
|  | } | 
|  | outpw(ADDR(B2_RTM_CRTL),TIM_START) ;	/* enable RTM monitoring */ | 
|  | } | 
|  |  | 
|  | static void rtm_init(struct s_smc *smc) | 
|  | { | 
|  | outpd(ADDR(B2_RTM_INI),0) ;		/* timer = 0 */ | 
|  | outpw(ADDR(B2_RTM_CRTL),TIM_START) ;	/* enable IRQ */ | 
|  | } | 
|  |  | 
|  | void rtm_set_timer(struct s_smc *smc) | 
|  | { | 
|  | /* | 
|  | * MIB timer and hardware timer have the same resolution of 80nS | 
|  | */ | 
|  | DB_RMT("RMT: setting new fddiPATHT_Rmode, t = %d ns \n", | 
|  | (int) smc->mib.a[PATH0].fddiPATHT_Rmode,0) ; | 
|  | outpd(ADDR(B2_RTM_INI),smc->mib.a[PATH0].fddiPATHT_Rmode) ; | 
|  | } | 
|  |  | 
|  | static void smt_split_up_fifo(struct s_smc *smc) | 
|  | { | 
|  |  | 
|  | /* | 
|  | BEGIN_MANUAL_ENTRY(module;mem;1) | 
|  | ------------------------------------------------------------- | 
|  | RECEIVE BUFFER MEMORY DIVERSION | 
|  | ------------------------------------------------------------- | 
|  |  | 
|  | R1_RxD == SMT_R1_RXD_COUNT | 
|  | R2_RxD == SMT_R2_RXD_COUNT | 
|  |  | 
|  | SMT_R1_RXD_COUNT must be unequal zero | 
|  |  | 
|  | | R1_RxD R2_RxD |R1_RxD R2_RxD | R1_RxD R2_RxD | 
|  | |   x      0	   |  x	    1-3	  |   x     < 3 | 
|  | ---------------------------------------------------------------------- | 
|  | |   63,75 kB	   |    54,75	  |	R1_RxD | 
|  | rx queue 1 | RX_FIFO_SPACE | RX_LARGE_FIFO| ------------- * 63,75 kB | 
|  | |		   |		  | R1_RxD+R2_RxD | 
|  | ---------------------------------------------------------------------- | 
|  | |		   |    9 kB	  |     R2_RxD | 
|  | rx queue 2 |	0 kB	   | RX_SMALL_FIFO| ------------- * 63,75 kB | 
|  | |  (not used)   |		  | R1_RxD+R2_RxD | 
|  |  | 
|  | END_MANUAL_ENTRY | 
|  | */ | 
|  |  | 
|  | if (SMT_R1_RXD_COUNT == 0) { | 
|  | SMT_PANIC(smc,SMT_E0117, SMT_E0117_MSG) ; | 
|  | } | 
|  |  | 
|  | switch(SMT_R2_RXD_COUNT) { | 
|  | case 0: | 
|  | smc->hw.fp.fifo.rx1_fifo_size = RX_FIFO_SPACE ; | 
|  | smc->hw.fp.fifo.rx2_fifo_size = 0 ; | 
|  | break ; | 
|  | case 1: | 
|  | case 2: | 
|  | case 3: | 
|  | smc->hw.fp.fifo.rx1_fifo_size = RX_LARGE_FIFO ; | 
|  | smc->hw.fp.fifo.rx2_fifo_size = RX_SMALL_FIFO ; | 
|  | break ; | 
|  | default:	/* this is not the real defaule */ | 
|  | smc->hw.fp.fifo.rx1_fifo_size = RX_FIFO_SPACE * | 
|  | SMT_R1_RXD_COUNT/(SMT_R1_RXD_COUNT+SMT_R2_RXD_COUNT) ; | 
|  | smc->hw.fp.fifo.rx2_fifo_size = RX_FIFO_SPACE * | 
|  | SMT_R2_RXD_COUNT/(SMT_R1_RXD_COUNT+SMT_R2_RXD_COUNT) ; | 
|  | break ; | 
|  | } | 
|  |  | 
|  | /* | 
|  | BEGIN_MANUAL_ENTRY(module;mem;1) | 
|  | ------------------------------------------------------------- | 
|  | TRANSMIT BUFFER MEMORY DIVERSION | 
|  | ------------------------------------------------------------- | 
|  |  | 
|  |  | 
|  | | no sync bw	| sync bw available and | sync bw available and | 
|  | | available	| SynchTxMode = SPLIT	| SynchTxMode = ALL | 
|  | ----------------------------------------------------------------------- | 
|  | sync tx	 |     0 kB	|	32 kB		|	55 kB | 
|  | queue	 |		|   TX_MEDIUM_FIFO	|   TX_LARGE_FIFO | 
|  | ----------------------------------------------------------------------- | 
|  | async tx |    64 kB	|	32 kB		|	 9 k | 
|  | queue	 | TX_FIFO_SPACE|   TX_MEDIUM_FIFO	|   TX_SMALL_FIFO | 
|  |  | 
|  | END_MANUAL_ENTRY | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * set the tx mode bits | 
|  | */ | 
|  | if (smc->mib.a[PATH0].fddiPATHSbaPayload) { | 
|  | #ifdef ESS | 
|  | smc->hw.fp.fifo.fifo_config_mode |= | 
|  | smc->mib.fddiESSSynchTxMode | SYNC_TRAFFIC_ON ; | 
|  | #endif | 
|  | } | 
|  | else { | 
|  | smc->hw.fp.fifo.fifo_config_mode &= | 
|  | ~(SEND_ASYNC_AS_SYNC|SYNC_TRAFFIC_ON) ; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * split up the FIFO | 
|  | */ | 
|  | if (smc->hw.fp.fifo.fifo_config_mode & SYNC_TRAFFIC_ON) { | 
|  | if (smc->hw.fp.fifo.fifo_config_mode & SEND_ASYNC_AS_SYNC) { | 
|  | smc->hw.fp.fifo.tx_s_size = TX_LARGE_FIFO ; | 
|  | smc->hw.fp.fifo.tx_a0_size = TX_SMALL_FIFO ; | 
|  | } | 
|  | else { | 
|  | smc->hw.fp.fifo.tx_s_size = TX_MEDIUM_FIFO ; | 
|  | smc->hw.fp.fifo.tx_a0_size = TX_MEDIUM_FIFO ; | 
|  | } | 
|  | } | 
|  | else { | 
|  | smc->hw.fp.fifo.tx_s_size = 0 ; | 
|  | smc->hw.fp.fifo.tx_a0_size = TX_FIFO_SPACE ; | 
|  | } | 
|  |  | 
|  | smc->hw.fp.fifo.rx1_fifo_start = smc->hw.fp.fifo.rbc_ram_start + | 
|  | RX_FIFO_OFF ; | 
|  | smc->hw.fp.fifo.tx_s_start = smc->hw.fp.fifo.rx1_fifo_start + | 
|  | smc->hw.fp.fifo.rx1_fifo_size ; | 
|  | smc->hw.fp.fifo.tx_a0_start = smc->hw.fp.fifo.tx_s_start + | 
|  | smc->hw.fp.fifo.tx_s_size ; | 
|  | smc->hw.fp.fifo.rx2_fifo_start = smc->hw.fp.fifo.tx_a0_start + | 
|  | smc->hw.fp.fifo.tx_a0_size ; | 
|  |  | 
|  | DB_SMT("FIFO split: mode = %x\n",smc->hw.fp.fifo.fifo_config_mode,0) ; | 
|  | DB_SMT("rbc_ram_start =	%x	 rbc_ram_end = 	%x\n", | 
|  | smc->hw.fp.fifo.rbc_ram_start, smc->hw.fp.fifo.rbc_ram_end) ; | 
|  | DB_SMT("rx1_fifo_start = %x	 tx_s_start = 	%x\n", | 
|  | smc->hw.fp.fifo.rx1_fifo_start, smc->hw.fp.fifo.tx_s_start) ; | 
|  | DB_SMT("tx_a0_start =	%x	 rx2_fifo_start = 	%x\n", | 
|  | smc->hw.fp.fifo.tx_a0_start, smc->hw.fp.fifo.rx2_fifo_start) ; | 
|  | } | 
|  |  | 
|  | void formac_reinit_tx(struct s_smc *smc) | 
|  | { | 
|  | /* | 
|  | * Split up the FIFO and reinitialize the MAC if synchronous | 
|  | * bandwidth becomes available but no synchronous queue is | 
|  | * configured. | 
|  | */ | 
|  | if (!smc->hw.fp.fifo.tx_s_size && smc->mib.a[PATH0].fddiPATHSbaPayload){ | 
|  | (void)init_mac(smc,0) ; | 
|  | } | 
|  | } | 
|  |  |