|  | /* | 
|  | Copyright (C) 2004 - 2009 rt2x00 SourceForge Project | 
|  | <http://rt2x00.serialmonkey.com> | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 2 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program; if not, write to the | 
|  | Free Software Foundation, Inc., | 
|  | 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | Module: rt2500pci | 
|  | Abstract: rt2500pci device specific routines. | 
|  | Supported chipsets: RT2560. | 
|  | */ | 
|  |  | 
|  | #include <linux/delay.h> | 
|  | #include <linux/etherdevice.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/eeprom_93cx6.h> | 
|  |  | 
|  | #include "rt2x00.h" | 
|  | #include "rt2x00pci.h" | 
|  | #include "rt2500pci.h" | 
|  |  | 
|  | /* | 
|  | * Register access. | 
|  | * All access to the CSR registers will go through the methods | 
|  | * rt2x00pci_register_read and rt2x00pci_register_write. | 
|  | * BBP and RF register require indirect register access, | 
|  | * and use the CSR registers BBPCSR and RFCSR to achieve this. | 
|  | * These indirect registers work with busy bits, | 
|  | * and we will try maximal REGISTER_BUSY_COUNT times to access | 
|  | * the register while taking a REGISTER_BUSY_DELAY us delay | 
|  | * between each attampt. When the busy bit is still set at that time, | 
|  | * the access attempt is considered to have failed, | 
|  | * and we will print an error. | 
|  | */ | 
|  | #define WAIT_FOR_BBP(__dev, __reg) \ | 
|  | rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg)) | 
|  | #define WAIT_FOR_RF(__dev, __reg) \ | 
|  | rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg)) | 
|  |  | 
|  | static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int word, const u8 value) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | mutex_lock(&rt2x00dev->csr_mutex); | 
|  |  | 
|  | /* | 
|  | * Wait until the BBP becomes available, afterwards we | 
|  | * can safely write the new data into the register. | 
|  | */ | 
|  | if (WAIT_FOR_BBP(rt2x00dev, ®)) { | 
|  | reg = 0; | 
|  | rt2x00_set_field32(®, BBPCSR_VALUE, value); | 
|  | rt2x00_set_field32(®, BBPCSR_REGNUM, word); | 
|  | rt2x00_set_field32(®, BBPCSR_BUSY, 1); | 
|  | rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 1); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, BBPCSR, reg); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&rt2x00dev->csr_mutex); | 
|  | } | 
|  |  | 
|  | static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int word, u8 *value) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | mutex_lock(&rt2x00dev->csr_mutex); | 
|  |  | 
|  | /* | 
|  | * Wait until the BBP becomes available, afterwards we | 
|  | * can safely write the read request into the register. | 
|  | * After the data has been written, we wait until hardware | 
|  | * returns the correct value, if at any time the register | 
|  | * doesn't become available in time, reg will be 0xffffffff | 
|  | * which means we return 0xff to the caller. | 
|  | */ | 
|  | if (WAIT_FOR_BBP(rt2x00dev, ®)) { | 
|  | reg = 0; | 
|  | rt2x00_set_field32(®, BBPCSR_REGNUM, word); | 
|  | rt2x00_set_field32(®, BBPCSR_BUSY, 1); | 
|  | rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 0); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, BBPCSR, reg); | 
|  |  | 
|  | WAIT_FOR_BBP(rt2x00dev, ®); | 
|  | } | 
|  |  | 
|  | *value = rt2x00_get_field32(reg, BBPCSR_VALUE); | 
|  |  | 
|  | mutex_unlock(&rt2x00dev->csr_mutex); | 
|  | } | 
|  |  | 
|  | static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int word, const u32 value) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | mutex_lock(&rt2x00dev->csr_mutex); | 
|  |  | 
|  | /* | 
|  | * Wait until the RF becomes available, afterwards we | 
|  | * can safely write the new data into the register. | 
|  | */ | 
|  | if (WAIT_FOR_RF(rt2x00dev, ®)) { | 
|  | reg = 0; | 
|  | rt2x00_set_field32(®, RFCSR_VALUE, value); | 
|  | rt2x00_set_field32(®, RFCSR_NUMBER_OF_BITS, 20); | 
|  | rt2x00_set_field32(®, RFCSR_IF_SELECT, 0); | 
|  | rt2x00_set_field32(®, RFCSR_BUSY, 1); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, RFCSR, reg); | 
|  | rt2x00_rf_write(rt2x00dev, word, value); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&rt2x00dev->csr_mutex); | 
|  | } | 
|  |  | 
|  | static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = eeprom->data; | 
|  | u32 reg; | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, CSR21, ®); | 
|  |  | 
|  | eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN); | 
|  | eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT); | 
|  | eeprom->reg_data_clock = | 
|  | !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK); | 
|  | eeprom->reg_chip_select = | 
|  | !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT); | 
|  | } | 
|  |  | 
|  | static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = eeprom->data; | 
|  | u32 reg = 0; | 
|  |  | 
|  | rt2x00_set_field32(®, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in); | 
|  | rt2x00_set_field32(®, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out); | 
|  | rt2x00_set_field32(®, CSR21_EEPROM_DATA_CLOCK, | 
|  | !!eeprom->reg_data_clock); | 
|  | rt2x00_set_field32(®, CSR21_EEPROM_CHIP_SELECT, | 
|  | !!eeprom->reg_chip_select); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, CSR21, reg); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_RT2X00_LIB_DEBUGFS | 
|  | static const struct rt2x00debug rt2500pci_rt2x00debug = { | 
|  | .owner	= THIS_MODULE, | 
|  | .csr	= { | 
|  | .read		= rt2x00pci_register_read, | 
|  | .write		= rt2x00pci_register_write, | 
|  | .flags		= RT2X00DEBUGFS_OFFSET, | 
|  | .word_base	= CSR_REG_BASE, | 
|  | .word_size	= sizeof(u32), | 
|  | .word_count	= CSR_REG_SIZE / sizeof(u32), | 
|  | }, | 
|  | .eeprom	= { | 
|  | .read		= rt2x00_eeprom_read, | 
|  | .write		= rt2x00_eeprom_write, | 
|  | .word_base	= EEPROM_BASE, | 
|  | .word_size	= sizeof(u16), | 
|  | .word_count	= EEPROM_SIZE / sizeof(u16), | 
|  | }, | 
|  | .bbp	= { | 
|  | .read		= rt2500pci_bbp_read, | 
|  | .write		= rt2500pci_bbp_write, | 
|  | .word_base	= BBP_BASE, | 
|  | .word_size	= sizeof(u8), | 
|  | .word_count	= BBP_SIZE / sizeof(u8), | 
|  | }, | 
|  | .rf	= { | 
|  | .read		= rt2x00_rf_read, | 
|  | .write		= rt2500pci_rf_write, | 
|  | .word_base	= RF_BASE, | 
|  | .word_size	= sizeof(u32), | 
|  | .word_count	= RF_SIZE / sizeof(u32), | 
|  | }, | 
|  | }; | 
|  | #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ | 
|  |  | 
|  | #ifdef CONFIG_RT2X00_LIB_RFKILL | 
|  | static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, GPIOCSR, ®); | 
|  | return rt2x00_get_field32(reg, GPIOCSR_BIT0); | 
|  | } | 
|  | #else | 
|  | #define rt2500pci_rfkill_poll	NULL | 
|  | #endif /* CONFIG_RT2X00_LIB_RFKILL */ | 
|  |  | 
|  | #ifdef CONFIG_RT2X00_LIB_LEDS | 
|  | static void rt2500pci_brightness_set(struct led_classdev *led_cdev, | 
|  | enum led_brightness brightness) | 
|  | { | 
|  | struct rt2x00_led *led = | 
|  | container_of(led_cdev, struct rt2x00_led, led_dev); | 
|  | unsigned int enabled = brightness != LED_OFF; | 
|  | u32 reg; | 
|  |  | 
|  | rt2x00pci_register_read(led->rt2x00dev, LEDCSR, ®); | 
|  |  | 
|  | if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) | 
|  | rt2x00_set_field32(®, LEDCSR_LINK, enabled); | 
|  | else if (led->type == LED_TYPE_ACTIVITY) | 
|  | rt2x00_set_field32(®, LEDCSR_ACTIVITY, enabled); | 
|  |  | 
|  | rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg); | 
|  | } | 
|  |  | 
|  | static int rt2500pci_blink_set(struct led_classdev *led_cdev, | 
|  | unsigned long *delay_on, | 
|  | unsigned long *delay_off) | 
|  | { | 
|  | struct rt2x00_led *led = | 
|  | container_of(led_cdev, struct rt2x00_led, led_dev); | 
|  | u32 reg; | 
|  |  | 
|  | rt2x00pci_register_read(led->rt2x00dev, LEDCSR, ®); | 
|  | rt2x00_set_field32(®, LEDCSR_ON_PERIOD, *delay_on); | 
|  | rt2x00_set_field32(®, LEDCSR_OFF_PERIOD, *delay_off); | 
|  | rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00_led *led, | 
|  | enum led_type type) | 
|  | { | 
|  | led->rt2x00dev = rt2x00dev; | 
|  | led->type = type; | 
|  | led->led_dev.brightness_set = rt2500pci_brightness_set; | 
|  | led->led_dev.blink_set = rt2500pci_blink_set; | 
|  | led->flags = LED_INITIALIZED; | 
|  | } | 
|  | #endif /* CONFIG_RT2X00_LIB_LEDS */ | 
|  |  | 
|  | /* | 
|  | * Configuration handlers. | 
|  | */ | 
|  | static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int filter_flags) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * Start configuration steps. | 
|  | * Note that the version error will always be dropped | 
|  | * and broadcast frames will always be accepted since | 
|  | * there is no filter for it at this time. | 
|  | */ | 
|  | rt2x00pci_register_read(rt2x00dev, RXCSR0, ®); | 
|  | rt2x00_set_field32(®, RXCSR0_DROP_CRC, | 
|  | !(filter_flags & FIF_FCSFAIL)); | 
|  | rt2x00_set_field32(®, RXCSR0_DROP_PHYSICAL, | 
|  | !(filter_flags & FIF_PLCPFAIL)); | 
|  | rt2x00_set_field32(®, RXCSR0_DROP_CONTROL, | 
|  | !(filter_flags & FIF_CONTROL)); | 
|  | rt2x00_set_field32(®, RXCSR0_DROP_NOT_TO_ME, | 
|  | !(filter_flags & FIF_PROMISC_IN_BSS)); | 
|  | rt2x00_set_field32(®, RXCSR0_DROP_TODS, | 
|  | !(filter_flags & FIF_PROMISC_IN_BSS) && | 
|  | !rt2x00dev->intf_ap_count); | 
|  | rt2x00_set_field32(®, RXCSR0_DROP_VERSION_ERROR, 1); | 
|  | rt2x00_set_field32(®, RXCSR0_DROP_MCAST, | 
|  | !(filter_flags & FIF_ALLMULTI)); | 
|  | rt2x00_set_field32(®, RXCSR0_DROP_BCAST, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, RXCSR0, reg); | 
|  | } | 
|  |  | 
|  | static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00_intf *intf, | 
|  | struct rt2x00intf_conf *conf, | 
|  | const unsigned int flags) | 
|  | { | 
|  | struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, QID_BEACON); | 
|  | unsigned int bcn_preload; | 
|  | u32 reg; | 
|  |  | 
|  | if (flags & CONFIG_UPDATE_TYPE) { | 
|  | /* | 
|  | * Enable beacon config | 
|  | */ | 
|  | bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20); | 
|  | rt2x00pci_register_read(rt2x00dev, BCNCSR1, ®); | 
|  | rt2x00_set_field32(®, BCNCSR1_PRELOAD, bcn_preload); | 
|  | rt2x00_set_field32(®, BCNCSR1_BEACON_CWMIN, queue->cw_min); | 
|  | rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg); | 
|  |  | 
|  | /* | 
|  | * Enable synchronisation. | 
|  | */ | 
|  | rt2x00pci_register_read(rt2x00dev, CSR14, ®); | 
|  | rt2x00_set_field32(®, CSR14_TSF_COUNT, 1); | 
|  | rt2x00_set_field32(®, CSR14_TSF_SYNC, conf->sync); | 
|  | rt2x00_set_field32(®, CSR14_TBCN, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, CSR14, reg); | 
|  | } | 
|  |  | 
|  | if (flags & CONFIG_UPDATE_MAC) | 
|  | rt2x00pci_register_multiwrite(rt2x00dev, CSR3, | 
|  | conf->mac, sizeof(conf->mac)); | 
|  |  | 
|  | if (flags & CONFIG_UPDATE_BSSID) | 
|  | rt2x00pci_register_multiwrite(rt2x00dev, CSR5, | 
|  | conf->bssid, sizeof(conf->bssid)); | 
|  | } | 
|  |  | 
|  | static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_erp *erp) | 
|  | { | 
|  | int preamble_mask; | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * When short preamble is enabled, we should set bit 0x08 | 
|  | */ | 
|  | preamble_mask = erp->short_preamble << 3; | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, TXCSR1, ®); | 
|  | rt2x00_set_field32(®, TXCSR1_ACK_TIMEOUT, | 
|  | erp->ack_timeout); | 
|  | rt2x00_set_field32(®, TXCSR1_ACK_CONSUME_TIME, | 
|  | erp->ack_consume_time); | 
|  | rt2x00pci_register_write(rt2x00dev, TXCSR1, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, ARCSR2, ®); | 
|  | rt2x00_set_field32(®, ARCSR2_SIGNAL, 0x00); | 
|  | rt2x00_set_field32(®, ARCSR2_SERVICE, 0x04); | 
|  | rt2x00_set_field32(®, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10)); | 
|  | rt2x00pci_register_write(rt2x00dev, ARCSR2, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, ARCSR3, ®); | 
|  | rt2x00_set_field32(®, ARCSR3_SIGNAL, 0x01 | preamble_mask); | 
|  | rt2x00_set_field32(®, ARCSR3_SERVICE, 0x04); | 
|  | rt2x00_set_field32(®, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20)); | 
|  | rt2x00pci_register_write(rt2x00dev, ARCSR3, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, ARCSR4, ®); | 
|  | rt2x00_set_field32(®, ARCSR4_SIGNAL, 0x02 | preamble_mask); | 
|  | rt2x00_set_field32(®, ARCSR4_SERVICE, 0x04); | 
|  | rt2x00_set_field32(®, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55)); | 
|  | rt2x00pci_register_write(rt2x00dev, ARCSR4, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, ARCSR5, ®); | 
|  | rt2x00_set_field32(®, ARCSR5_SIGNAL, 0x03 | preamble_mask); | 
|  | rt2x00_set_field32(®, ARCSR5_SERVICE, 0x84); | 
|  | rt2x00_set_field32(®, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110)); | 
|  | rt2x00pci_register_write(rt2x00dev, ARCSR5, reg); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, CSR11, ®); | 
|  | rt2x00_set_field32(®, CSR11_SLOT_TIME, erp->slot_time); | 
|  | rt2x00pci_register_write(rt2x00dev, CSR11, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, CSR18, ®); | 
|  | rt2x00_set_field32(®, CSR18_SIFS, erp->sifs); | 
|  | rt2x00_set_field32(®, CSR18_PIFS, erp->pifs); | 
|  | rt2x00pci_register_write(rt2x00dev, CSR18, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, CSR19, ®); | 
|  | rt2x00_set_field32(®, CSR19_DIFS, erp->difs); | 
|  | rt2x00_set_field32(®, CSR19_EIFS, erp->eifs); | 
|  | rt2x00pci_register_write(rt2x00dev, CSR19, reg); | 
|  | } | 
|  |  | 
|  | static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev, | 
|  | struct antenna_setup *ant) | 
|  | { | 
|  | u32 reg; | 
|  | u8 r14; | 
|  | u8 r2; | 
|  |  | 
|  | /* | 
|  | * We should never come here because rt2x00lib is supposed | 
|  | * to catch this and send us the correct antenna explicitely. | 
|  | */ | 
|  | BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY || | 
|  | ant->tx == ANTENNA_SW_DIVERSITY); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, BBPCSR1, ®); | 
|  | rt2500pci_bbp_read(rt2x00dev, 14, &r14); | 
|  | rt2500pci_bbp_read(rt2x00dev, 2, &r2); | 
|  |  | 
|  | /* | 
|  | * Configure the TX antenna. | 
|  | */ | 
|  | switch (ant->tx) { | 
|  | case ANTENNA_A: | 
|  | rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0); | 
|  | rt2x00_set_field32(®, BBPCSR1_CCK, 0); | 
|  | rt2x00_set_field32(®, BBPCSR1_OFDM, 0); | 
|  | break; | 
|  | case ANTENNA_B: | 
|  | default: | 
|  | rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2); | 
|  | rt2x00_set_field32(®, BBPCSR1_CCK, 2); | 
|  | rt2x00_set_field32(®, BBPCSR1_OFDM, 2); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Configure the RX antenna. | 
|  | */ | 
|  | switch (ant->rx) { | 
|  | case ANTENNA_A: | 
|  | rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0); | 
|  | break; | 
|  | case ANTENNA_B: | 
|  | default: | 
|  | rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * RT2525E and RT5222 need to flip TX I/Q | 
|  | */ | 
|  | if (rt2x00_rf(&rt2x00dev->chip, RF2525E) || | 
|  | rt2x00_rf(&rt2x00dev->chip, RF5222)) { | 
|  | rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1); | 
|  | rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 1); | 
|  | rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 1); | 
|  |  | 
|  | /* | 
|  | * RT2525E does not need RX I/Q Flip. | 
|  | */ | 
|  | if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) | 
|  | rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0); | 
|  | } else { | 
|  | rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 0); | 
|  | rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 0); | 
|  | } | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg); | 
|  | rt2500pci_bbp_write(rt2x00dev, 14, r14); | 
|  | rt2500pci_bbp_write(rt2x00dev, 2, r2); | 
|  | } | 
|  |  | 
|  | static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev, | 
|  | struct rf_channel *rf, const int txpower) | 
|  | { | 
|  | u8 r70; | 
|  |  | 
|  | /* | 
|  | * Set TXpower. | 
|  | */ | 
|  | rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); | 
|  |  | 
|  | /* | 
|  | * Switch on tuning bits. | 
|  | * For RT2523 devices we do not need to update the R1 register. | 
|  | */ | 
|  | if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) | 
|  | rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1); | 
|  | rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1); | 
|  |  | 
|  | /* | 
|  | * For RT2525 we should first set the channel to half band higher. | 
|  | */ | 
|  | if (rt2x00_rf(&rt2x00dev->chip, RF2525)) { | 
|  | static const u32 vals[] = { | 
|  | 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a, | 
|  | 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a, | 
|  | 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a, | 
|  | 0x00080d2e, 0x00080d3a | 
|  | }; | 
|  |  | 
|  | rt2500pci_rf_write(rt2x00dev, 1, rf->rf1); | 
|  | rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]); | 
|  | rt2500pci_rf_write(rt2x00dev, 3, rf->rf3); | 
|  | if (rf->rf4) | 
|  | rt2500pci_rf_write(rt2x00dev, 4, rf->rf4); | 
|  | } | 
|  |  | 
|  | rt2500pci_rf_write(rt2x00dev, 1, rf->rf1); | 
|  | rt2500pci_rf_write(rt2x00dev, 2, rf->rf2); | 
|  | rt2500pci_rf_write(rt2x00dev, 3, rf->rf3); | 
|  | if (rf->rf4) | 
|  | rt2500pci_rf_write(rt2x00dev, 4, rf->rf4); | 
|  |  | 
|  | /* | 
|  | * Channel 14 requires the Japan filter bit to be set. | 
|  | */ | 
|  | r70 = 0x46; | 
|  | rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14); | 
|  | rt2500pci_bbp_write(rt2x00dev, 70, r70); | 
|  |  | 
|  | msleep(1); | 
|  |  | 
|  | /* | 
|  | * Switch off tuning bits. | 
|  | * For RT2523 devices we do not need to update the R1 register. | 
|  | */ | 
|  | if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) { | 
|  | rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0); | 
|  | rt2500pci_rf_write(rt2x00dev, 1, rf->rf1); | 
|  | } | 
|  |  | 
|  | rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0); | 
|  | rt2500pci_rf_write(rt2x00dev, 3, rf->rf3); | 
|  |  | 
|  | /* | 
|  | * Clear false CRC during channel switch. | 
|  | */ | 
|  | rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1); | 
|  | } | 
|  |  | 
|  | static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev, | 
|  | const int txpower) | 
|  | { | 
|  | u32 rf3; | 
|  |  | 
|  | rt2x00_rf_read(rt2x00dev, 3, &rf3); | 
|  | rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); | 
|  | rt2500pci_rf_write(rt2x00dev, 3, rf3); | 
|  | } | 
|  |  | 
|  | static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_conf *libconf) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, CSR11, ®); | 
|  | rt2x00_set_field32(®, CSR11_LONG_RETRY, | 
|  | libconf->conf->long_frame_max_tx_count); | 
|  | rt2x00_set_field32(®, CSR11_SHORT_RETRY, | 
|  | libconf->conf->short_frame_max_tx_count); | 
|  | rt2x00pci_register_write(rt2x00dev, CSR11, reg); | 
|  | } | 
|  |  | 
|  | static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_conf *libconf) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, TXCSR1, ®); | 
|  | rt2x00_set_field32(®, TXCSR1_TSF_OFFSET, IEEE80211_HEADER); | 
|  | rt2x00_set_field32(®, TXCSR1_AUTORESPONDER, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, TXCSR1, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, CSR12, ®); | 
|  | rt2x00_set_field32(®, CSR12_BEACON_INTERVAL, | 
|  | libconf->conf->beacon_int * 16); | 
|  | rt2x00_set_field32(®, CSR12_CFP_MAX_DURATION, | 
|  | libconf->conf->beacon_int * 16); | 
|  | rt2x00pci_register_write(rt2x00dev, CSR12, reg); | 
|  | } | 
|  |  | 
|  | static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_conf *libconf) | 
|  | { | 
|  | enum dev_state state = | 
|  | (libconf->conf->flags & IEEE80211_CONF_PS) ? | 
|  | STATE_SLEEP : STATE_AWAKE; | 
|  | u32 reg; | 
|  |  | 
|  | if (state == STATE_SLEEP) { | 
|  | rt2x00pci_register_read(rt2x00dev, CSR20, ®); | 
|  | rt2x00_set_field32(®, CSR20_DELAY_AFTER_TBCN, | 
|  | (libconf->conf->beacon_int - 20) * 16); | 
|  | rt2x00_set_field32(®, CSR20_TBCN_BEFORE_WAKEUP, | 
|  | libconf->conf->listen_interval - 1); | 
|  |  | 
|  | /* We must first disable autowake before it can be enabled */ | 
|  | rt2x00_set_field32(®, CSR20_AUTOWAKE, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, CSR20, reg); | 
|  |  | 
|  | rt2x00_set_field32(®, CSR20_AUTOWAKE, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, CSR20, reg); | 
|  | } | 
|  |  | 
|  | rt2x00dev->ops->lib->set_device_state(rt2x00dev, state); | 
|  | } | 
|  |  | 
|  | static void rt2500pci_config(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_conf *libconf, | 
|  | const unsigned int flags) | 
|  | { | 
|  | if (flags & IEEE80211_CONF_CHANGE_CHANNEL) | 
|  | rt2500pci_config_channel(rt2x00dev, &libconf->rf, | 
|  | libconf->conf->power_level); | 
|  | if ((flags & IEEE80211_CONF_CHANGE_POWER) && | 
|  | !(flags & IEEE80211_CONF_CHANGE_CHANNEL)) | 
|  | rt2500pci_config_txpower(rt2x00dev, | 
|  | libconf->conf->power_level); | 
|  | if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS) | 
|  | rt2500pci_config_retry_limit(rt2x00dev, libconf); | 
|  | if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL) | 
|  | rt2500pci_config_duration(rt2x00dev, libconf); | 
|  | if (flags & IEEE80211_CONF_CHANGE_PS) | 
|  | rt2500pci_config_ps(rt2x00dev, libconf); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Link tuning | 
|  | */ | 
|  | static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev, | 
|  | struct link_qual *qual) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * Update FCS error count from register. | 
|  | */ | 
|  | rt2x00pci_register_read(rt2x00dev, CNT0, ®); | 
|  | qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR); | 
|  |  | 
|  | /* | 
|  | * Update False CCA count from register. | 
|  | */ | 
|  | rt2x00pci_register_read(rt2x00dev, CNT3, ®); | 
|  | qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA); | 
|  | } | 
|  |  | 
|  | static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev, | 
|  | struct link_qual *qual, u8 vgc_level) | 
|  | { | 
|  | if (qual->vgc_level_reg != vgc_level) { | 
|  | rt2500pci_bbp_write(rt2x00dev, 17, vgc_level); | 
|  | qual->vgc_level_reg = vgc_level; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev, | 
|  | struct link_qual *qual) | 
|  | { | 
|  | rt2500pci_set_vgc(rt2x00dev, qual, 0x48); | 
|  | } | 
|  |  | 
|  | static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev, | 
|  | struct link_qual *qual, const u32 count) | 
|  | { | 
|  | /* | 
|  | * To prevent collisions with MAC ASIC on chipsets | 
|  | * up to version C the link tuning should halt after 20 | 
|  | * seconds while being associated. | 
|  | */ | 
|  | if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D && | 
|  | rt2x00dev->intf_associated && count > 20) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Chipset versions C and lower should directly continue | 
|  | * to the dynamic CCA tuning. Chipset version D and higher | 
|  | * should go straight to dynamic CCA tuning when they | 
|  | * are not associated. | 
|  | */ | 
|  | if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D || | 
|  | !rt2x00dev->intf_associated) | 
|  | goto dynamic_cca_tune; | 
|  |  | 
|  | /* | 
|  | * A too low RSSI will cause too much false CCA which will | 
|  | * then corrupt the R17 tuning. To remidy this the tuning should | 
|  | * be stopped (While making sure the R17 value will not exceed limits) | 
|  | */ | 
|  | if (qual->rssi < -80 && count > 20) { | 
|  | if (qual->vgc_level_reg >= 0x41) | 
|  | rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Special big-R17 for short distance | 
|  | */ | 
|  | if (qual->rssi >= -58) { | 
|  | rt2500pci_set_vgc(rt2x00dev, qual, 0x50); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Special mid-R17 for middle distance | 
|  | */ | 
|  | if (qual->rssi >= -74) { | 
|  | rt2500pci_set_vgc(rt2x00dev, qual, 0x41); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Leave short or middle distance condition, restore r17 | 
|  | * to the dynamic tuning range. | 
|  | */ | 
|  | if (qual->vgc_level_reg >= 0x41) { | 
|  | rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level); | 
|  | return; | 
|  | } | 
|  |  | 
|  | dynamic_cca_tune: | 
|  |  | 
|  | /* | 
|  | * R17 is inside the dynamic tuning range, | 
|  | * start tuning the link based on the false cca counter. | 
|  | */ | 
|  | if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40) { | 
|  | rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg); | 
|  | qual->vgc_level = qual->vgc_level_reg; | 
|  | } else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32) { | 
|  | rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg); | 
|  | qual->vgc_level = qual->vgc_level_reg; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialization functions. | 
|  | */ | 
|  | static bool rt2500pci_get_entry_state(struct queue_entry *entry) | 
|  | { | 
|  | struct queue_entry_priv_pci *entry_priv = entry->priv_data; | 
|  | u32 word; | 
|  |  | 
|  | if (entry->queue->qid == QID_RX) { | 
|  | rt2x00_desc_read(entry_priv->desc, 0, &word); | 
|  |  | 
|  | return rt2x00_get_field32(word, RXD_W0_OWNER_NIC); | 
|  | } else { | 
|  | rt2x00_desc_read(entry_priv->desc, 0, &word); | 
|  |  | 
|  | return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || | 
|  | rt2x00_get_field32(word, TXD_W0_VALID)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rt2500pci_clear_entry(struct queue_entry *entry) | 
|  | { | 
|  | struct queue_entry_priv_pci *entry_priv = entry->priv_data; | 
|  | struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); | 
|  | u32 word; | 
|  |  | 
|  | if (entry->queue->qid == QID_RX) { | 
|  | rt2x00_desc_read(entry_priv->desc, 1, &word); | 
|  | rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma); | 
|  | rt2x00_desc_write(entry_priv->desc, 1, word); | 
|  |  | 
|  | rt2x00_desc_read(entry_priv->desc, 0, &word); | 
|  | rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1); | 
|  | rt2x00_desc_write(entry_priv->desc, 0, word); | 
|  | } else { | 
|  | rt2x00_desc_read(entry_priv->desc, 0, &word); | 
|  | rt2x00_set_field32(&word, TXD_W0_VALID, 0); | 
|  | rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0); | 
|  | rt2x00_desc_write(entry_priv->desc, 0, word); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | struct queue_entry_priv_pci *entry_priv; | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * Initialize registers. | 
|  | */ | 
|  | rt2x00pci_register_read(rt2x00dev, TXCSR2, ®); | 
|  | rt2x00_set_field32(®, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size); | 
|  | rt2x00_set_field32(®, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit); | 
|  | rt2x00_set_field32(®, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit); | 
|  | rt2x00_set_field32(®, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit); | 
|  | rt2x00pci_register_write(rt2x00dev, TXCSR2, reg); | 
|  |  | 
|  | entry_priv = rt2x00dev->tx[1].entries[0].priv_data; | 
|  | rt2x00pci_register_read(rt2x00dev, TXCSR3, ®); | 
|  | rt2x00_set_field32(®, TXCSR3_TX_RING_REGISTER, | 
|  | entry_priv->desc_dma); | 
|  | rt2x00pci_register_write(rt2x00dev, TXCSR3, reg); | 
|  |  | 
|  | entry_priv = rt2x00dev->tx[0].entries[0].priv_data; | 
|  | rt2x00pci_register_read(rt2x00dev, TXCSR5, ®); | 
|  | rt2x00_set_field32(®, TXCSR5_PRIO_RING_REGISTER, | 
|  | entry_priv->desc_dma); | 
|  | rt2x00pci_register_write(rt2x00dev, TXCSR5, reg); | 
|  |  | 
|  | entry_priv = rt2x00dev->bcn[1].entries[0].priv_data; | 
|  | rt2x00pci_register_read(rt2x00dev, TXCSR4, ®); | 
|  | rt2x00_set_field32(®, TXCSR4_ATIM_RING_REGISTER, | 
|  | entry_priv->desc_dma); | 
|  | rt2x00pci_register_write(rt2x00dev, TXCSR4, reg); | 
|  |  | 
|  | entry_priv = rt2x00dev->bcn[0].entries[0].priv_data; | 
|  | rt2x00pci_register_read(rt2x00dev, TXCSR6, ®); | 
|  | rt2x00_set_field32(®, TXCSR6_BEACON_RING_REGISTER, | 
|  | entry_priv->desc_dma); | 
|  | rt2x00pci_register_write(rt2x00dev, TXCSR6, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, RXCSR1, ®); | 
|  | rt2x00_set_field32(®, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size); | 
|  | rt2x00_set_field32(®, RXCSR1_NUM_RXD, rt2x00dev->rx->limit); | 
|  | rt2x00pci_register_write(rt2x00dev, RXCSR1, reg); | 
|  |  | 
|  | entry_priv = rt2x00dev->rx->entries[0].priv_data; | 
|  | rt2x00pci_register_read(rt2x00dev, RXCSR2, ®); | 
|  | rt2x00_set_field32(®, RXCSR2_RX_RING_REGISTER, | 
|  | entry_priv->desc_dma); | 
|  | rt2x00pci_register_write(rt2x00dev, RXCSR2, reg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002); | 
|  | rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002); | 
|  | rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002); | 
|  | rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, TIMECSR, ®); | 
|  | rt2x00_set_field32(®, TIMECSR_US_COUNT, 33); | 
|  | rt2x00_set_field32(®, TIMECSR_US_64_COUNT, 63); | 
|  | rt2x00_set_field32(®, TIMECSR_BEACON_EXPECT, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, TIMECSR, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, CSR9, ®); | 
|  | rt2x00_set_field32(®, CSR9_MAX_FRAME_UNIT, | 
|  | rt2x00dev->rx->data_size / 128); | 
|  | rt2x00pci_register_write(rt2x00dev, CSR9, reg); | 
|  |  | 
|  | /* | 
|  | * Always use CWmin and CWmax set in descriptor. | 
|  | */ | 
|  | rt2x00pci_register_read(rt2x00dev, CSR11, ®); | 
|  | rt2x00_set_field32(®, CSR11_CW_SELECT, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, CSR11, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, CSR14, ®); | 
|  | rt2x00_set_field32(®, CSR14_TSF_COUNT, 0); | 
|  | rt2x00_set_field32(®, CSR14_TSF_SYNC, 0); | 
|  | rt2x00_set_field32(®, CSR14_TBCN, 0); | 
|  | rt2x00_set_field32(®, CSR14_TCFP, 0); | 
|  | rt2x00_set_field32(®, CSR14_TATIMW, 0); | 
|  | rt2x00_set_field32(®, CSR14_BEACON_GEN, 0); | 
|  | rt2x00_set_field32(®, CSR14_CFP_COUNT_PRELOAD, 0); | 
|  | rt2x00_set_field32(®, CSR14_TBCM_PRELOAD, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, CSR14, reg); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, CNT3, 0); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, TXCSR8, ®); | 
|  | rt2x00_set_field32(®, TXCSR8_BBP_ID0, 10); | 
|  | rt2x00_set_field32(®, TXCSR8_BBP_ID0_VALID, 1); | 
|  | rt2x00_set_field32(®, TXCSR8_BBP_ID1, 11); | 
|  | rt2x00_set_field32(®, TXCSR8_BBP_ID1_VALID, 1); | 
|  | rt2x00_set_field32(®, TXCSR8_BBP_ID2, 13); | 
|  | rt2x00_set_field32(®, TXCSR8_BBP_ID2_VALID, 1); | 
|  | rt2x00_set_field32(®, TXCSR8_BBP_ID3, 12); | 
|  | rt2x00_set_field32(®, TXCSR8_BBP_ID3_VALID, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, TXCSR8, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, ARTCSR0, ®); | 
|  | rt2x00_set_field32(®, ARTCSR0_ACK_CTS_1MBS, 112); | 
|  | rt2x00_set_field32(®, ARTCSR0_ACK_CTS_2MBS, 56); | 
|  | rt2x00_set_field32(®, ARTCSR0_ACK_CTS_5_5MBS, 20); | 
|  | rt2x00_set_field32(®, ARTCSR0_ACK_CTS_11MBS, 10); | 
|  | rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, ARTCSR1, ®); | 
|  | rt2x00_set_field32(®, ARTCSR1_ACK_CTS_6MBS, 45); | 
|  | rt2x00_set_field32(®, ARTCSR1_ACK_CTS_9MBS, 37); | 
|  | rt2x00_set_field32(®, ARTCSR1_ACK_CTS_12MBS, 33); | 
|  | rt2x00_set_field32(®, ARTCSR1_ACK_CTS_18MBS, 29); | 
|  | rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, ARTCSR2, ®); | 
|  | rt2x00_set_field32(®, ARTCSR2_ACK_CTS_24MBS, 29); | 
|  | rt2x00_set_field32(®, ARTCSR2_ACK_CTS_36MBS, 25); | 
|  | rt2x00_set_field32(®, ARTCSR2_ACK_CTS_48MBS, 25); | 
|  | rt2x00_set_field32(®, ARTCSR2_ACK_CTS_54MBS, 25); | 
|  | rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, RXCSR3, ®); | 
|  | rt2x00_set_field32(®, RXCSR3_BBP_ID0, 47); /* CCK Signal */ | 
|  | rt2x00_set_field32(®, RXCSR3_BBP_ID0_VALID, 1); | 
|  | rt2x00_set_field32(®, RXCSR3_BBP_ID1, 51); /* Rssi */ | 
|  | rt2x00_set_field32(®, RXCSR3_BBP_ID1_VALID, 1); | 
|  | rt2x00_set_field32(®, RXCSR3_BBP_ID2, 42); /* OFDM Rate */ | 
|  | rt2x00_set_field32(®, RXCSR3_BBP_ID2_VALID, 1); | 
|  | rt2x00_set_field32(®, RXCSR3_BBP_ID3, 51); /* RSSI */ | 
|  | rt2x00_set_field32(®, RXCSR3_BBP_ID3_VALID, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, RXCSR3, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, PCICSR, ®); | 
|  | rt2x00_set_field32(®, PCICSR_BIG_ENDIAN, 0); | 
|  | rt2x00_set_field32(®, PCICSR_RX_TRESHOLD, 0); | 
|  | rt2x00_set_field32(®, PCICSR_TX_TRESHOLD, 3); | 
|  | rt2x00_set_field32(®, PCICSR_BURST_LENTH, 1); | 
|  | rt2x00_set_field32(®, PCICSR_ENABLE_CLK, 1); | 
|  | rt2x00_set_field32(®, PCICSR_READ_MULTIPLE, 1); | 
|  | rt2x00_set_field32(®, PCICSR_WRITE_INVALID, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, PCICSR, reg); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00); | 
|  | rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0); | 
|  |  | 
|  | if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) | 
|  | return -EBUSY; | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223); | 
|  | rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, MACCSR2, ®); | 
|  | rt2x00_set_field32(®, MACCSR2_DELAY, 64); | 
|  | rt2x00pci_register_write(rt2x00dev, MACCSR2, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, RALINKCSR, ®); | 
|  | rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA0, 17); | 
|  | rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID0, 26); | 
|  | rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID0, 1); | 
|  | rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA1, 0); | 
|  | rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID1, 26); | 
|  | rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID1, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, CSR1, ®); | 
|  | rt2x00_set_field32(®, CSR1_SOFT_RESET, 1); | 
|  | rt2x00_set_field32(®, CSR1_BBP_RESET, 0); | 
|  | rt2x00_set_field32(®, CSR1_HOST_READY, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, CSR1, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, CSR1, ®); | 
|  | rt2x00_set_field32(®, CSR1_SOFT_RESET, 0); | 
|  | rt2x00_set_field32(®, CSR1_HOST_READY, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, CSR1, reg); | 
|  |  | 
|  | /* | 
|  | * We must clear the FCS and FIFO error count. | 
|  | * These registers are cleared on read, | 
|  | * so we may pass a useless variable to store the value. | 
|  | */ | 
|  | rt2x00pci_register_read(rt2x00dev, CNT0, ®); | 
|  | rt2x00pci_register_read(rt2x00dev, CNT4, ®); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | unsigned int i; | 
|  | u8 value; | 
|  |  | 
|  | for (i = 0; i < REGISTER_BUSY_COUNT; i++) { | 
|  | rt2500pci_bbp_read(rt2x00dev, 0, &value); | 
|  | if ((value != 0xff) && (value != 0x00)) | 
|  | return 0; | 
|  | udelay(REGISTER_BUSY_DELAY); | 
|  | } | 
|  |  | 
|  | ERROR(rt2x00dev, "BBP register access failed, aborting.\n"); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | unsigned int i; | 
|  | u16 eeprom; | 
|  | u8 reg_id; | 
|  | u8 value; | 
|  |  | 
|  | if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev))) | 
|  | return -EACCES; | 
|  |  | 
|  | rt2500pci_bbp_write(rt2x00dev, 3, 0x02); | 
|  | rt2500pci_bbp_write(rt2x00dev, 4, 0x19); | 
|  | rt2500pci_bbp_write(rt2x00dev, 14, 0x1c); | 
|  | rt2500pci_bbp_write(rt2x00dev, 15, 0x30); | 
|  | rt2500pci_bbp_write(rt2x00dev, 16, 0xac); | 
|  | rt2500pci_bbp_write(rt2x00dev, 18, 0x18); | 
|  | rt2500pci_bbp_write(rt2x00dev, 19, 0xff); | 
|  | rt2500pci_bbp_write(rt2x00dev, 20, 0x1e); | 
|  | rt2500pci_bbp_write(rt2x00dev, 21, 0x08); | 
|  | rt2500pci_bbp_write(rt2x00dev, 22, 0x08); | 
|  | rt2500pci_bbp_write(rt2x00dev, 23, 0x08); | 
|  | rt2500pci_bbp_write(rt2x00dev, 24, 0x70); | 
|  | rt2500pci_bbp_write(rt2x00dev, 25, 0x40); | 
|  | rt2500pci_bbp_write(rt2x00dev, 26, 0x08); | 
|  | rt2500pci_bbp_write(rt2x00dev, 27, 0x23); | 
|  | rt2500pci_bbp_write(rt2x00dev, 30, 0x10); | 
|  | rt2500pci_bbp_write(rt2x00dev, 31, 0x2b); | 
|  | rt2500pci_bbp_write(rt2x00dev, 32, 0xb9); | 
|  | rt2500pci_bbp_write(rt2x00dev, 34, 0x12); | 
|  | rt2500pci_bbp_write(rt2x00dev, 35, 0x50); | 
|  | rt2500pci_bbp_write(rt2x00dev, 39, 0xc4); | 
|  | rt2500pci_bbp_write(rt2x00dev, 40, 0x02); | 
|  | rt2500pci_bbp_write(rt2x00dev, 41, 0x60); | 
|  | rt2500pci_bbp_write(rt2x00dev, 53, 0x10); | 
|  | rt2500pci_bbp_write(rt2x00dev, 54, 0x18); | 
|  | rt2500pci_bbp_write(rt2x00dev, 56, 0x08); | 
|  | rt2500pci_bbp_write(rt2x00dev, 57, 0x10); | 
|  | rt2500pci_bbp_write(rt2x00dev, 58, 0x08); | 
|  | rt2500pci_bbp_write(rt2x00dev, 61, 0x6d); | 
|  | rt2500pci_bbp_write(rt2x00dev, 62, 0x10); | 
|  |  | 
|  | for (i = 0; i < EEPROM_BBP_SIZE; i++) { | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom); | 
|  |  | 
|  | if (eeprom != 0xffff && eeprom != 0x0000) { | 
|  | reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); | 
|  | value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); | 
|  | rt2500pci_bbp_write(rt2x00dev, reg_id, value); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Device state switch handlers. | 
|  | */ | 
|  | static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev, | 
|  | enum dev_state state) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, RXCSR0, ®); | 
|  | rt2x00_set_field32(®, RXCSR0_DISABLE_RX, | 
|  | (state == STATE_RADIO_RX_OFF) || | 
|  | (state == STATE_RADIO_RX_OFF_LINK)); | 
|  | rt2x00pci_register_write(rt2x00dev, RXCSR0, reg); | 
|  | } | 
|  |  | 
|  | static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev, | 
|  | enum dev_state state) | 
|  | { | 
|  | int mask = (state == STATE_RADIO_IRQ_OFF); | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * When interrupts are being enabled, the interrupt registers | 
|  | * should clear the register to assure a clean state. | 
|  | */ | 
|  | if (state == STATE_RADIO_IRQ_ON) { | 
|  | rt2x00pci_register_read(rt2x00dev, CSR7, ®); | 
|  | rt2x00pci_register_write(rt2x00dev, CSR7, reg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only toggle the interrupts bits we are going to use. | 
|  | * Non-checked interrupt bits are disabled by default. | 
|  | */ | 
|  | rt2x00pci_register_read(rt2x00dev, CSR8, ®); | 
|  | rt2x00_set_field32(®, CSR8_TBCN_EXPIRE, mask); | 
|  | rt2x00_set_field32(®, CSR8_TXDONE_TXRING, mask); | 
|  | rt2x00_set_field32(®, CSR8_TXDONE_ATIMRING, mask); | 
|  | rt2x00_set_field32(®, CSR8_TXDONE_PRIORING, mask); | 
|  | rt2x00_set_field32(®, CSR8_RXDONE, mask); | 
|  | rt2x00pci_register_write(rt2x00dev, CSR8, reg); | 
|  | } | 
|  |  | 
|  | static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | /* | 
|  | * Initialize all registers. | 
|  | */ | 
|  | if (unlikely(rt2500pci_init_queues(rt2x00dev) || | 
|  | rt2500pci_init_registers(rt2x00dev) || | 
|  | rt2500pci_init_bbp(rt2x00dev))) | 
|  | return -EIO; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | /* | 
|  | * Disable power | 
|  | */ | 
|  | rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0); | 
|  | } | 
|  |  | 
|  | static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev, | 
|  | enum dev_state state) | 
|  | { | 
|  | u32 reg; | 
|  | unsigned int i; | 
|  | char put_to_sleep; | 
|  | char bbp_state; | 
|  | char rf_state; | 
|  |  | 
|  | put_to_sleep = (state != STATE_AWAKE); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, PWRCSR1, ®); | 
|  | rt2x00_set_field32(®, PWRCSR1_SET_STATE, 1); | 
|  | rt2x00_set_field32(®, PWRCSR1_BBP_DESIRE_STATE, state); | 
|  | rt2x00_set_field32(®, PWRCSR1_RF_DESIRE_STATE, state); | 
|  | rt2x00_set_field32(®, PWRCSR1_PUT_TO_SLEEP, put_to_sleep); | 
|  | rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg); | 
|  |  | 
|  | /* | 
|  | * Device is not guaranteed to be in the requested state yet. | 
|  | * We must wait until the register indicates that the | 
|  | * device has entered the correct state. | 
|  | */ | 
|  | for (i = 0; i < REGISTER_BUSY_COUNT; i++) { | 
|  | rt2x00pci_register_read(rt2x00dev, PWRCSR1, ®); | 
|  | bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE); | 
|  | rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE); | 
|  | if (bbp_state == state && rf_state == state) | 
|  | return 0; | 
|  | msleep(10); | 
|  | } | 
|  |  | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev, | 
|  | enum dev_state state) | 
|  | { | 
|  | int retval = 0; | 
|  |  | 
|  | switch (state) { | 
|  | case STATE_RADIO_ON: | 
|  | retval = rt2500pci_enable_radio(rt2x00dev); | 
|  | break; | 
|  | case STATE_RADIO_OFF: | 
|  | rt2500pci_disable_radio(rt2x00dev); | 
|  | break; | 
|  | case STATE_RADIO_RX_ON: | 
|  | case STATE_RADIO_RX_ON_LINK: | 
|  | case STATE_RADIO_RX_OFF: | 
|  | case STATE_RADIO_RX_OFF_LINK: | 
|  | rt2500pci_toggle_rx(rt2x00dev, state); | 
|  | break; | 
|  | case STATE_RADIO_IRQ_ON: | 
|  | case STATE_RADIO_IRQ_OFF: | 
|  | rt2500pci_toggle_irq(rt2x00dev, state); | 
|  | break; | 
|  | case STATE_DEEP_SLEEP: | 
|  | case STATE_SLEEP: | 
|  | case STATE_STANDBY: | 
|  | case STATE_AWAKE: | 
|  | retval = rt2500pci_set_state(rt2x00dev, state); | 
|  | break; | 
|  | default: | 
|  | retval = -ENOTSUPP; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (unlikely(retval)) | 
|  | ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n", | 
|  | state, retval); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TX descriptor initialization | 
|  | */ | 
|  | static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev, | 
|  | struct sk_buff *skb, | 
|  | struct txentry_desc *txdesc) | 
|  | { | 
|  | struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb); | 
|  | struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data; | 
|  | __le32 *txd = skbdesc->desc; | 
|  | u32 word; | 
|  |  | 
|  | /* | 
|  | * Start writing the descriptor words. | 
|  | */ | 
|  | rt2x00_desc_read(entry_priv->desc, 1, &word); | 
|  | rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma); | 
|  | rt2x00_desc_write(entry_priv->desc, 1, word); | 
|  |  | 
|  | rt2x00_desc_read(txd, 2, &word); | 
|  | rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER); | 
|  | rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs); | 
|  | rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min); | 
|  | rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max); | 
|  | rt2x00_desc_write(txd, 2, word); | 
|  |  | 
|  | rt2x00_desc_read(txd, 3, &word); | 
|  | rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal); | 
|  | rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service); | 
|  | rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low); | 
|  | rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high); | 
|  | rt2x00_desc_write(txd, 3, word); | 
|  |  | 
|  | rt2x00_desc_read(txd, 10, &word); | 
|  | rt2x00_set_field32(&word, TXD_W10_RTS, | 
|  | test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)); | 
|  | rt2x00_desc_write(txd, 10, word); | 
|  |  | 
|  | rt2x00_desc_read(txd, 0, &word); | 
|  | rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1); | 
|  | rt2x00_set_field32(&word, TXD_W0_VALID, 1); | 
|  | rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, | 
|  | test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXD_W0_ACK, | 
|  | test_bit(ENTRY_TXD_ACK, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, | 
|  | test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXD_W0_OFDM, | 
|  | (txdesc->rate_mode == RATE_MODE_OFDM)); | 
|  | rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1); | 
|  | rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs); | 
|  | rt2x00_set_field32(&word, TXD_W0_RETRY_MODE, | 
|  | test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len); | 
|  | rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE); | 
|  | rt2x00_desc_write(txd, 0, word); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TX data initialization | 
|  | */ | 
|  | static void rt2500pci_write_beacon(struct queue_entry *entry) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; | 
|  | struct queue_entry_priv_pci *entry_priv = entry->priv_data; | 
|  | struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); | 
|  | u32 word; | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * Disable beaconing while we are reloading the beacon data, | 
|  | * otherwise we might be sending out invalid data. | 
|  | */ | 
|  | rt2x00pci_register_read(rt2x00dev, CSR14, ®); | 
|  | rt2x00_set_field32(®, CSR14_TSF_COUNT, 0); | 
|  | rt2x00_set_field32(®, CSR14_TBCN, 0); | 
|  | rt2x00_set_field32(®, CSR14_BEACON_GEN, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, CSR14, reg); | 
|  |  | 
|  | /* | 
|  | * Replace rt2x00lib allocated descriptor with the | 
|  | * pointer to the _real_ hardware descriptor. | 
|  | * After that, map the beacon to DMA and update the | 
|  | * descriptor. | 
|  | */ | 
|  | memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len); | 
|  | skbdesc->desc = entry_priv->desc; | 
|  |  | 
|  | rt2x00queue_map_txskb(rt2x00dev, entry->skb); | 
|  |  | 
|  | rt2x00_desc_read(entry_priv->desc, 1, &word); | 
|  | rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma); | 
|  | rt2x00_desc_write(entry_priv->desc, 1, word); | 
|  | } | 
|  |  | 
|  | static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev, | 
|  | const enum data_queue_qid queue) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | if (queue == QID_BEACON) { | 
|  | rt2x00pci_register_read(rt2x00dev, CSR14, ®); | 
|  | if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) { | 
|  | rt2x00_set_field32(®, CSR14_TSF_COUNT, 1); | 
|  | rt2x00_set_field32(®, CSR14_TBCN, 1); | 
|  | rt2x00_set_field32(®, CSR14_BEACON_GEN, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, CSR14, reg); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, TXCSR0, ®); | 
|  | rt2x00_set_field32(®, TXCSR0_KICK_PRIO, (queue == QID_AC_BE)); | 
|  | rt2x00_set_field32(®, TXCSR0_KICK_TX, (queue == QID_AC_BK)); | 
|  | rt2x00_set_field32(®, TXCSR0_KICK_ATIM, (queue == QID_ATIM)); | 
|  | rt2x00pci_register_write(rt2x00dev, TXCSR0, reg); | 
|  | } | 
|  |  | 
|  | static void rt2500pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev, | 
|  | const enum data_queue_qid qid) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | if (qid == QID_BEACON) { | 
|  | rt2x00pci_register_write(rt2x00dev, CSR14, 0); | 
|  | } else { | 
|  | rt2x00pci_register_read(rt2x00dev, TXCSR0, ®); | 
|  | rt2x00_set_field32(®, TXCSR0_ABORT, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, TXCSR0, reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * RX control handlers | 
|  | */ | 
|  | static void rt2500pci_fill_rxdone(struct queue_entry *entry, | 
|  | struct rxdone_entry_desc *rxdesc) | 
|  | { | 
|  | struct queue_entry_priv_pci *entry_priv = entry->priv_data; | 
|  | u32 word0; | 
|  | u32 word2; | 
|  |  | 
|  | rt2x00_desc_read(entry_priv->desc, 0, &word0); | 
|  | rt2x00_desc_read(entry_priv->desc, 2, &word2); | 
|  |  | 
|  | if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR)) | 
|  | rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; | 
|  | if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR)) | 
|  | rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC; | 
|  |  | 
|  | /* | 
|  | * Obtain the status about this packet. | 
|  | * When frame was received with an OFDM bitrate, | 
|  | * the signal is the PLCP value. If it was received with | 
|  | * a CCK bitrate the signal is the rate in 100kbit/s. | 
|  | */ | 
|  | rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL); | 
|  | rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) - | 
|  | entry->queue->rt2x00dev->rssi_offset; | 
|  | rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); | 
|  |  | 
|  | if (rt2x00_get_field32(word0, RXD_W0_OFDM)) | 
|  | rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP; | 
|  | else | 
|  | rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE; | 
|  | if (rt2x00_get_field32(word0, RXD_W0_MY_BSS)) | 
|  | rxdesc->dev_flags |= RXDONE_MY_BSS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Interrupt functions. | 
|  | */ | 
|  | static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev, | 
|  | const enum data_queue_qid queue_idx) | 
|  | { | 
|  | struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx); | 
|  | struct queue_entry_priv_pci *entry_priv; | 
|  | struct queue_entry *entry; | 
|  | struct txdone_entry_desc txdesc; | 
|  | u32 word; | 
|  |  | 
|  | while (!rt2x00queue_empty(queue)) { | 
|  | entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE); | 
|  | entry_priv = entry->priv_data; | 
|  | rt2x00_desc_read(entry_priv->desc, 0, &word); | 
|  |  | 
|  | if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || | 
|  | !rt2x00_get_field32(word, TXD_W0_VALID)) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Obtain the status about this packet. | 
|  | */ | 
|  | txdesc.flags = 0; | 
|  | switch (rt2x00_get_field32(word, TXD_W0_RESULT)) { | 
|  | case 0: /* Success */ | 
|  | case 1: /* Success with retry */ | 
|  | __set_bit(TXDONE_SUCCESS, &txdesc.flags); | 
|  | break; | 
|  | case 2: /* Failure, excessive retries */ | 
|  | __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags); | 
|  | /* Don't break, this is a failed frame! */ | 
|  | default: /* Failure */ | 
|  | __set_bit(TXDONE_FAILURE, &txdesc.flags); | 
|  | } | 
|  | txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT); | 
|  |  | 
|  | rt2x00lib_txdone(entry, &txdesc); | 
|  | } | 
|  | } | 
|  |  | 
|  | static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = dev_instance; | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * Get the interrupt sources & saved to local variable. | 
|  | * Write register value back to clear pending interrupts. | 
|  | */ | 
|  | rt2x00pci_register_read(rt2x00dev, CSR7, ®); | 
|  | rt2x00pci_register_write(rt2x00dev, CSR7, reg); | 
|  |  | 
|  | if (!reg) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) | 
|  | return IRQ_HANDLED; | 
|  |  | 
|  | /* | 
|  | * Handle interrupts, walk through all bits | 
|  | * and run the tasks, the bits are checked in order of | 
|  | * priority. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * 1 - Beacon timer expired interrupt. | 
|  | */ | 
|  | if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE)) | 
|  | rt2x00lib_beacondone(rt2x00dev); | 
|  |  | 
|  | /* | 
|  | * 2 - Rx ring done interrupt. | 
|  | */ | 
|  | if (rt2x00_get_field32(reg, CSR7_RXDONE)) | 
|  | rt2x00pci_rxdone(rt2x00dev); | 
|  |  | 
|  | /* | 
|  | * 3 - Atim ring transmit done interrupt. | 
|  | */ | 
|  | if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING)) | 
|  | rt2500pci_txdone(rt2x00dev, QID_ATIM); | 
|  |  | 
|  | /* | 
|  | * 4 - Priority ring transmit done interrupt. | 
|  | */ | 
|  | if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING)) | 
|  | rt2500pci_txdone(rt2x00dev, QID_AC_BE); | 
|  |  | 
|  | /* | 
|  | * 5 - Tx ring transmit done interrupt. | 
|  | */ | 
|  | if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) | 
|  | rt2500pci_txdone(rt2x00dev, QID_AC_BK); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Device probe functions. | 
|  | */ | 
|  | static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | struct eeprom_93cx6 eeprom; | 
|  | u32 reg; | 
|  | u16 word; | 
|  | u8 *mac; | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, CSR21, ®); | 
|  |  | 
|  | eeprom.data = rt2x00dev; | 
|  | eeprom.register_read = rt2500pci_eepromregister_read; | 
|  | eeprom.register_write = rt2500pci_eepromregister_write; | 
|  | eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ? | 
|  | PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66; | 
|  | eeprom.reg_data_in = 0; | 
|  | eeprom.reg_data_out = 0; | 
|  | eeprom.reg_data_clock = 0; | 
|  | eeprom.reg_chip_select = 0; | 
|  |  | 
|  | eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom, | 
|  | EEPROM_SIZE / sizeof(u16)); | 
|  |  | 
|  | /* | 
|  | * Start validation of the data that has been read. | 
|  | */ | 
|  | mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); | 
|  | if (!is_valid_ether_addr(mac)) { | 
|  | random_ether_addr(mac); | 
|  | EEPROM(rt2x00dev, "MAC: %pM\n", mac); | 
|  | } | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word); | 
|  | if (word == 0xffff) { | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2); | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, | 
|  | ANTENNA_SW_DIVERSITY); | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, | 
|  | ANTENNA_SW_DIVERSITY); | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE, | 
|  | LED_MODE_DEFAULT); | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); | 
|  | EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word); | 
|  | } | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word); | 
|  | if (word == 0xffff) { | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); | 
|  | EEPROM(rt2x00dev, "NIC: 0x%04x\n", word); | 
|  | } | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word); | 
|  | if (word == 0xffff) { | 
|  | rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI, | 
|  | DEFAULT_RSSI_OFFSET); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word); | 
|  | EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u32 reg; | 
|  | u16 value; | 
|  | u16 eeprom; | 
|  |  | 
|  | /* | 
|  | * Read EEPROM word for configuration. | 
|  | */ | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); | 
|  |  | 
|  | /* | 
|  | * Identify RF chipset. | 
|  | */ | 
|  | value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); | 
|  | rt2x00pci_register_read(rt2x00dev, CSR0, ®); | 
|  | rt2x00_set_chip(rt2x00dev, RT2560, value, reg); | 
|  |  | 
|  | if (!rt2x00_rf(&rt2x00dev->chip, RF2522) && | 
|  | !rt2x00_rf(&rt2x00dev->chip, RF2523) && | 
|  | !rt2x00_rf(&rt2x00dev->chip, RF2524) && | 
|  | !rt2x00_rf(&rt2x00dev->chip, RF2525) && | 
|  | !rt2x00_rf(&rt2x00dev->chip, RF2525E) && | 
|  | !rt2x00_rf(&rt2x00dev->chip, RF5222)) { | 
|  | ERROR(rt2x00dev, "Invalid RF chipset detected.\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Identify default antenna configuration. | 
|  | */ | 
|  | rt2x00dev->default_ant.tx = | 
|  | rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); | 
|  | rt2x00dev->default_ant.rx = | 
|  | rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); | 
|  |  | 
|  | /* | 
|  | * Store led mode, for correct led behaviour. | 
|  | */ | 
|  | #ifdef CONFIG_RT2X00_LIB_LEDS | 
|  | value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE); | 
|  |  | 
|  | rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); | 
|  | if (value == LED_MODE_TXRX_ACTIVITY || | 
|  | value == LED_MODE_DEFAULT || | 
|  | value == LED_MODE_ASUS) | 
|  | rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual, | 
|  | LED_TYPE_ACTIVITY); | 
|  | #endif /* CONFIG_RT2X00_LIB_LEDS */ | 
|  |  | 
|  | /* | 
|  | * Detect if this device has an hardware controlled radio. | 
|  | */ | 
|  | #ifdef CONFIG_RT2X00_LIB_RFKILL | 
|  | if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) | 
|  | __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags); | 
|  | #endif /* CONFIG_RT2X00_LIB_RFKILL */ | 
|  |  | 
|  | /* | 
|  | * Check if the BBP tuning should be enabled. | 
|  | */ | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom); | 
|  |  | 
|  | if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE)) | 
|  | __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags); | 
|  |  | 
|  | /* | 
|  | * Read the RSSI <-> dBm offset information. | 
|  | */ | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom); | 
|  | rt2x00dev->rssi_offset = | 
|  | rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * RF value list for RF2522 | 
|  | * Supports: 2.4 GHz | 
|  | */ | 
|  | static const struct rf_channel rf_vals_bg_2522[] = { | 
|  | { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 }, | 
|  | { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 }, | 
|  | { 3,  0x00002050, 0x000c2002, 0x00000101, 0 }, | 
|  | { 4,  0x00002050, 0x000c2016, 0x00000101, 0 }, | 
|  | { 5,  0x00002050, 0x000c202a, 0x00000101, 0 }, | 
|  | { 6,  0x00002050, 0x000c203e, 0x00000101, 0 }, | 
|  | { 7,  0x00002050, 0x000c2052, 0x00000101, 0 }, | 
|  | { 8,  0x00002050, 0x000c2066, 0x00000101, 0 }, | 
|  | { 9,  0x00002050, 0x000c207a, 0x00000101, 0 }, | 
|  | { 10, 0x00002050, 0x000c208e, 0x00000101, 0 }, | 
|  | { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 }, | 
|  | { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 }, | 
|  | { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 }, | 
|  | { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * RF value list for RF2523 | 
|  | * Supports: 2.4 GHz | 
|  | */ | 
|  | static const struct rf_channel rf_vals_bg_2523[] = { | 
|  | { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b }, | 
|  | { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b }, | 
|  | { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b }, | 
|  | { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b }, | 
|  | { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b }, | 
|  | { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b }, | 
|  | { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b }, | 
|  | { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b }, | 
|  | { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b }, | 
|  | { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b }, | 
|  | { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b }, | 
|  | { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b }, | 
|  | { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b }, | 
|  | { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * RF value list for RF2524 | 
|  | * Supports: 2.4 GHz | 
|  | */ | 
|  | static const struct rf_channel rf_vals_bg_2524[] = { | 
|  | { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b }, | 
|  | { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b }, | 
|  | { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b }, | 
|  | { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b }, | 
|  | { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b }, | 
|  | { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b }, | 
|  | { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b }, | 
|  | { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b }, | 
|  | { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b }, | 
|  | { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b }, | 
|  | { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b }, | 
|  | { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b }, | 
|  | { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b }, | 
|  | { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * RF value list for RF2525 | 
|  | * Supports: 2.4 GHz | 
|  | */ | 
|  | static const struct rf_channel rf_vals_bg_2525[] = { | 
|  | { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b }, | 
|  | { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b }, | 
|  | { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b }, | 
|  | { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b }, | 
|  | { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b }, | 
|  | { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b }, | 
|  | { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b }, | 
|  | { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b }, | 
|  | { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b }, | 
|  | { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b }, | 
|  | { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b }, | 
|  | { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b }, | 
|  | { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b }, | 
|  | { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * RF value list for RF2525e | 
|  | * Supports: 2.4 GHz | 
|  | */ | 
|  | static const struct rf_channel rf_vals_bg_2525e[] = { | 
|  | { 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b }, | 
|  | { 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b }, | 
|  | { 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b }, | 
|  | { 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b }, | 
|  | { 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b }, | 
|  | { 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b }, | 
|  | { 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b }, | 
|  | { 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b }, | 
|  | { 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b }, | 
|  | { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b }, | 
|  | { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b }, | 
|  | { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b }, | 
|  | { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b }, | 
|  | { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * RF value list for RF5222 | 
|  | * Supports: 2.4 GHz & 5.2 GHz | 
|  | */ | 
|  | static const struct rf_channel rf_vals_5222[] = { | 
|  | { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b }, | 
|  | { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b }, | 
|  | { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b }, | 
|  | { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b }, | 
|  | { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b }, | 
|  | { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b }, | 
|  | { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b }, | 
|  | { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b }, | 
|  | { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b }, | 
|  | { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b }, | 
|  | { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b }, | 
|  | { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b }, | 
|  | { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b }, | 
|  | { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b }, | 
|  |  | 
|  | /* 802.11 UNI / HyperLan 2 */ | 
|  | { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f }, | 
|  | { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f }, | 
|  | { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f }, | 
|  | { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f }, | 
|  | { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f }, | 
|  | { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f }, | 
|  | { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f }, | 
|  | { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f }, | 
|  |  | 
|  | /* 802.11 HyperLan 2 */ | 
|  | { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f }, | 
|  | { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f }, | 
|  | { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f }, | 
|  | { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f }, | 
|  | { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f }, | 
|  | { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f }, | 
|  | { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f }, | 
|  | { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f }, | 
|  | { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f }, | 
|  | { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f }, | 
|  |  | 
|  | /* 802.11 UNII */ | 
|  | { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f }, | 
|  | { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 }, | 
|  | { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 }, | 
|  | { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 }, | 
|  | { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 }, | 
|  | }; | 
|  |  | 
|  | static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | struct hw_mode_spec *spec = &rt2x00dev->spec; | 
|  | struct channel_info *info; | 
|  | char *tx_power; | 
|  | unsigned int i; | 
|  |  | 
|  | /* | 
|  | * Initialize all hw fields. | 
|  | */ | 
|  | rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | | 
|  | IEEE80211_HW_SIGNAL_DBM | | 
|  | IEEE80211_HW_SUPPORTS_PS | | 
|  | IEEE80211_HW_PS_NULLFUNC_STACK; | 
|  |  | 
|  | rt2x00dev->hw->extra_tx_headroom = 0; | 
|  |  | 
|  | SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); | 
|  | SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, | 
|  | rt2x00_eeprom_addr(rt2x00dev, | 
|  | EEPROM_MAC_ADDR_0)); | 
|  |  | 
|  | /* | 
|  | * Initialize hw_mode information. | 
|  | */ | 
|  | spec->supported_bands = SUPPORT_BAND_2GHZ; | 
|  | spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; | 
|  |  | 
|  | if (rt2x00_rf(&rt2x00dev->chip, RF2522)) { | 
|  | spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522); | 
|  | spec->channels = rf_vals_bg_2522; | 
|  | } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) { | 
|  | spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523); | 
|  | spec->channels = rf_vals_bg_2523; | 
|  | } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) { | 
|  | spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524); | 
|  | spec->channels = rf_vals_bg_2524; | 
|  | } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) { | 
|  | spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525); | 
|  | spec->channels = rf_vals_bg_2525; | 
|  | } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) { | 
|  | spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e); | 
|  | spec->channels = rf_vals_bg_2525e; | 
|  | } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) { | 
|  | spec->supported_bands |= SUPPORT_BAND_5GHZ; | 
|  | spec->num_channels = ARRAY_SIZE(rf_vals_5222); | 
|  | spec->channels = rf_vals_5222; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create channel information array | 
|  | */ | 
|  | info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL); | 
|  | if (!info) | 
|  | return -ENOMEM; | 
|  |  | 
|  | spec->channels_info = info; | 
|  |  | 
|  | tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START); | 
|  | for (i = 0; i < 14; i++) | 
|  | info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]); | 
|  |  | 
|  | if (spec->num_channels > 14) { | 
|  | for (i = 14; i < spec->num_channels; i++) | 
|  | info[i].tx_power1 = DEFAULT_TXPOWER; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | int retval; | 
|  |  | 
|  | /* | 
|  | * Allocate eeprom data. | 
|  | */ | 
|  | retval = rt2500pci_validate_eeprom(rt2x00dev); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | retval = rt2500pci_init_eeprom(rt2x00dev); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | /* | 
|  | * Initialize hw specifications. | 
|  | */ | 
|  | retval = rt2500pci_probe_hw_mode(rt2x00dev); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | /* | 
|  | * This device requires the atim queue and DMA-mapped skbs. | 
|  | */ | 
|  | __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags); | 
|  | __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags); | 
|  |  | 
|  | /* | 
|  | * Set the rssi offset. | 
|  | */ | 
|  | rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * IEEE80211 stack callback functions. | 
|  | */ | 
|  | static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = hw->priv; | 
|  | u64 tsf; | 
|  | u32 reg; | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, CSR17, ®); | 
|  | tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32; | 
|  | rt2x00pci_register_read(rt2x00dev, CSR16, ®); | 
|  | tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER); | 
|  |  | 
|  | return tsf; | 
|  | } | 
|  |  | 
|  | static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = hw->priv; | 
|  | u32 reg; | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, CSR15, ®); | 
|  | return rt2x00_get_field32(reg, CSR15_BEACON_SENT); | 
|  | } | 
|  |  | 
|  | static const struct ieee80211_ops rt2500pci_mac80211_ops = { | 
|  | .tx			= rt2x00mac_tx, | 
|  | .start			= rt2x00mac_start, | 
|  | .stop			= rt2x00mac_stop, | 
|  | .add_interface		= rt2x00mac_add_interface, | 
|  | .remove_interface	= rt2x00mac_remove_interface, | 
|  | .config			= rt2x00mac_config, | 
|  | .config_interface	= rt2x00mac_config_interface, | 
|  | .configure_filter	= rt2x00mac_configure_filter, | 
|  | .get_stats		= rt2x00mac_get_stats, | 
|  | .bss_info_changed	= rt2x00mac_bss_info_changed, | 
|  | .conf_tx		= rt2x00mac_conf_tx, | 
|  | .get_tx_stats		= rt2x00mac_get_tx_stats, | 
|  | .get_tsf		= rt2500pci_get_tsf, | 
|  | .tx_last_beacon		= rt2500pci_tx_last_beacon, | 
|  | }; | 
|  |  | 
|  | static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = { | 
|  | .irq_handler		= rt2500pci_interrupt, | 
|  | .probe_hw		= rt2500pci_probe_hw, | 
|  | .initialize		= rt2x00pci_initialize, | 
|  | .uninitialize		= rt2x00pci_uninitialize, | 
|  | .get_entry_state	= rt2500pci_get_entry_state, | 
|  | .clear_entry		= rt2500pci_clear_entry, | 
|  | .set_device_state	= rt2500pci_set_device_state, | 
|  | .rfkill_poll		= rt2500pci_rfkill_poll, | 
|  | .link_stats		= rt2500pci_link_stats, | 
|  | .reset_tuner		= rt2500pci_reset_tuner, | 
|  | .link_tuner		= rt2500pci_link_tuner, | 
|  | .write_tx_desc		= rt2500pci_write_tx_desc, | 
|  | .write_tx_data		= rt2x00pci_write_tx_data, | 
|  | .write_beacon		= rt2500pci_write_beacon, | 
|  | .kick_tx_queue		= rt2500pci_kick_tx_queue, | 
|  | .kill_tx_queue		= rt2500pci_kill_tx_queue, | 
|  | .fill_rxdone		= rt2500pci_fill_rxdone, | 
|  | .config_filter		= rt2500pci_config_filter, | 
|  | .config_intf		= rt2500pci_config_intf, | 
|  | .config_erp		= rt2500pci_config_erp, | 
|  | .config_ant		= rt2500pci_config_ant, | 
|  | .config			= rt2500pci_config, | 
|  | }; | 
|  |  | 
|  | static const struct data_queue_desc rt2500pci_queue_rx = { | 
|  | .entry_num		= RX_ENTRIES, | 
|  | .data_size		= DATA_FRAME_SIZE, | 
|  | .desc_size		= RXD_DESC_SIZE, | 
|  | .priv_size		= sizeof(struct queue_entry_priv_pci), | 
|  | }; | 
|  |  | 
|  | static const struct data_queue_desc rt2500pci_queue_tx = { | 
|  | .entry_num		= TX_ENTRIES, | 
|  | .data_size		= DATA_FRAME_SIZE, | 
|  | .desc_size		= TXD_DESC_SIZE, | 
|  | .priv_size		= sizeof(struct queue_entry_priv_pci), | 
|  | }; | 
|  |  | 
|  | static const struct data_queue_desc rt2500pci_queue_bcn = { | 
|  | .entry_num		= BEACON_ENTRIES, | 
|  | .data_size		= MGMT_FRAME_SIZE, | 
|  | .desc_size		= TXD_DESC_SIZE, | 
|  | .priv_size		= sizeof(struct queue_entry_priv_pci), | 
|  | }; | 
|  |  | 
|  | static const struct data_queue_desc rt2500pci_queue_atim = { | 
|  | .entry_num		= ATIM_ENTRIES, | 
|  | .data_size		= DATA_FRAME_SIZE, | 
|  | .desc_size		= TXD_DESC_SIZE, | 
|  | .priv_size		= sizeof(struct queue_entry_priv_pci), | 
|  | }; | 
|  |  | 
|  | static const struct rt2x00_ops rt2500pci_ops = { | 
|  | .name		= KBUILD_MODNAME, | 
|  | .max_sta_intf	= 1, | 
|  | .max_ap_intf	= 1, | 
|  | .eeprom_size	= EEPROM_SIZE, | 
|  | .rf_size	= RF_SIZE, | 
|  | .tx_queues	= NUM_TX_QUEUES, | 
|  | .rx		= &rt2500pci_queue_rx, | 
|  | .tx		= &rt2500pci_queue_tx, | 
|  | .bcn		= &rt2500pci_queue_bcn, | 
|  | .atim		= &rt2500pci_queue_atim, | 
|  | .lib		= &rt2500pci_rt2x00_ops, | 
|  | .hw		= &rt2500pci_mac80211_ops, | 
|  | #ifdef CONFIG_RT2X00_LIB_DEBUGFS | 
|  | .debugfs	= &rt2500pci_rt2x00debug, | 
|  | #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * RT2500pci module information. | 
|  | */ | 
|  | static struct pci_device_id rt2500pci_device_table[] = { | 
|  | { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) }, | 
|  | { 0, } | 
|  | }; | 
|  |  | 
|  | MODULE_AUTHOR(DRV_PROJECT); | 
|  | MODULE_VERSION(DRV_VERSION); | 
|  | MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver."); | 
|  | MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards"); | 
|  | MODULE_DEVICE_TABLE(pci, rt2500pci_device_table); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | static struct pci_driver rt2500pci_driver = { | 
|  | .name		= KBUILD_MODNAME, | 
|  | .id_table	= rt2500pci_device_table, | 
|  | .probe		= rt2x00pci_probe, | 
|  | .remove		= __devexit_p(rt2x00pci_remove), | 
|  | .suspend	= rt2x00pci_suspend, | 
|  | .resume		= rt2x00pci_resume, | 
|  | }; | 
|  |  | 
|  | static int __init rt2500pci_init(void) | 
|  | { | 
|  | return pci_register_driver(&rt2500pci_driver); | 
|  | } | 
|  |  | 
|  | static void __exit rt2500pci_exit(void) | 
|  | { | 
|  | pci_unregister_driver(&rt2500pci_driver); | 
|  | } | 
|  |  | 
|  | module_init(rt2500pci_init); | 
|  | module_exit(rt2500pci_exit); |