| /* | 
 |  * | 
 |  * BRIEF MODULE DESCRIPTION | 
 |  *      The Descriptor Based DMA channel manager that first appeared | 
 |  *	on the Au1550.  I started with dma.c, but I think all that is | 
 |  *	left is this initial comment :-) | 
 |  * | 
 |  * Copyright 2004 Embedded Edge, LLC | 
 |  *	dan@embeddededge.com | 
 |  * | 
 |  *  This program is free software; you can redistribute  it and/or modify it | 
 |  *  under  the terms of  the GNU General  Public License as published by the | 
 |  *  Free Software Foundation;  either version 2 of the  License, or (at your | 
 |  *  option) any later version. | 
 |  * | 
 |  *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED | 
 |  *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF | 
 |  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN | 
 |  *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT, | 
 |  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
 |  *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF | 
 |  *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON | 
 |  *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT | 
 |  *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF | 
 |  *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  * | 
 |  *  You should have received a copy of the  GNU General Public License along | 
 |  *  with this program; if not, write  to the Free Software Foundation, Inc., | 
 |  *  675 Mass Ave, Cambridge, MA 02139, USA. | 
 |  * | 
 |  */ | 
 | #include <linux/config.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/string.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/interrupt.h> | 
 | #include <asm/mach-au1x00/au1000.h> | 
 | #include <asm/mach-au1x00/au1xxx_dbdma.h> | 
 | #include <asm/system.h> | 
 |  | 
 | #if defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) | 
 |  | 
 | /* | 
 |  * The Descriptor Based DMA supports up to 16 channels. | 
 |  * | 
 |  * There are 32 devices defined. We keep an internal structure | 
 |  * of devices using these channels, along with additional | 
 |  * information. | 
 |  * | 
 |  * We allocate the descriptors and allow access to them through various | 
 |  * functions.  The drivers allocate the data buffers and assign them | 
 |  * to the descriptors. | 
 |  */ | 
 | static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock); | 
 |  | 
 | /* I couldn't find a macro that did this...... | 
 | */ | 
 | #define ALIGN_ADDR(x, a)	((((u32)(x)) + (a-1)) & ~(a-1)) | 
 |  | 
 | static volatile dbdma_global_t *dbdma_gptr = (dbdma_global_t *)DDMA_GLOBAL_BASE; | 
 | static int dbdma_initialized; | 
 | static void au1xxx_dbdma_init(void); | 
 |  | 
 | typedef struct dbdma_device_table { | 
 | 	u32		dev_id; | 
 | 	u32		dev_flags; | 
 | 	u32		dev_tsize; | 
 | 	u32		dev_devwidth; | 
 | 	u32		dev_physaddr;		/* If FIFO */ | 
 | 	u32		dev_intlevel; | 
 | 	u32		dev_intpolarity; | 
 | } dbdev_tab_t; | 
 |  | 
 | typedef struct dbdma_chan_config { | 
 | 	u32			chan_flags; | 
 | 	u32			chan_index; | 
 | 	dbdev_tab_t		*chan_src; | 
 | 	dbdev_tab_t		*chan_dest; | 
 | 	au1x_dma_chan_t		*chan_ptr; | 
 | 	au1x_ddma_desc_t	*chan_desc_base; | 
 | 	au1x_ddma_desc_t	*get_ptr, *put_ptr, *cur_ptr; | 
 | 	void			*chan_callparam; | 
 | 	void (*chan_callback)(int, void *, struct pt_regs *); | 
 | } chan_tab_t; | 
 |  | 
 | #define	DEV_FLAGS_INUSE		(1 << 0) | 
 | #define	DEV_FLAGS_ANYUSE	(1 << 1) | 
 | #define DEV_FLAGS_OUT		(1 << 2) | 
 | #define DEV_FLAGS_IN		(1 << 3) | 
 |  | 
 | static dbdev_tab_t dbdev_tab[] = { | 
 | #ifdef CONFIG_SOC_AU1550 | 
 | 	/* UARTS */ | 
 | 	{ DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 }, | 
 | 	{ DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 }, | 
 | 	{ DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 }, | 
 | 	{ DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 }, | 
 |  | 
 | 	/* EXT DMA */ | 
 | 	{ DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 }, | 
 | 	{ DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 }, | 
 | 	{ DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 }, | 
 | 	{ DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 }, | 
 |  | 
 | 	/* USB DEV */ | 
 | 	{ DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 }, | 
 | 	{ DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 }, | 
 | 	{ DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 }, | 
 | 	{ DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 }, | 
 | 	{ DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 }, | 
 | 	{ DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 }, | 
 |  | 
 | 	/* PSC 0 */ | 
 | 	{ DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 }, | 
 | 	{ DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 }, | 
 |  | 
 | 	/* PSC 1 */ | 
 | 	{ DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 }, | 
 | 	{ DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 }, | 
 |  | 
 | 	/* PSC 2 */ | 
 | 	{ DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 }, | 
 | 	{ DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 }, | 
 |  | 
 | 	/* PSC 3 */ | 
 | 	{ DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 }, | 
 | 	{ DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 }, | 
 |  | 
 | 	{ DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 },	/* PCI */ | 
 | 	{ DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 },	/* NAND */ | 
 |  | 
 | 	/* MAC 0 */ | 
 | 	{ DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, | 
 | 	{ DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 }, | 
 |  | 
 | 	/* MAC 1 */ | 
 | 	{ DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, | 
 | 	{ DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 }, | 
 |  | 
 | #endif /* CONFIG_SOC_AU1550 */ | 
 |  | 
 | #ifdef CONFIG_SOC_AU1200 | 
 | 	{ DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 }, | 
 | 	{ DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 }, | 
 | 	{ DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 }, | 
 | 	{ DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 }, | 
 |  | 
 | 	{ DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 }, | 
 | 	{ DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 }, | 
 |  | 
 | 	{ DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | 
 | 	{ DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | 
 | 	{ DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | 
 | 	{ DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | 
 |  | 
 | 	{ DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 }, | 
 | 	{ DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, | 
 | 	{ DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 }, | 
 | 	{ DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, | 
 |  | 
 | 	{ DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 }, | 
 | 	{ DSCR_CMD0_AES_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, | 
 |  | 
 | 	{ DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 }, | 
 | 	{ DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 }, | 
 | 	{ DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | 
 |  | 
 | 	{ DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 }, | 
 | 	{ DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 }, | 
 | 	{ DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | 
 |  | 
 | 	{ DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, | 
 | 	{ DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, | 
 | 	{ DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, | 
 | 	{ DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | 
 |  | 
 | 	{ DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, | 
 |  | 
 | #endif // CONFIG_SOC_AU1200 | 
 |  | 
 | 	{ DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | 
 | 	{ DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | 
 | }; | 
 |  | 
 | #define DBDEV_TAB_SIZE (sizeof(dbdev_tab) / sizeof(dbdev_tab_t)) | 
 |  | 
 | static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS]; | 
 |  | 
 | static dbdev_tab_t * | 
 | find_dbdev_id (u32 id) | 
 | { | 
 | 	int i; | 
 | 	dbdev_tab_t *p; | 
 | 	for (i = 0; i < DBDEV_TAB_SIZE; ++i) { | 
 | 		p = &dbdev_tab[i]; | 
 | 		if (p->dev_id == id) | 
 | 			return p; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* Allocate a channel and return a non-zero descriptor if successful. | 
 | */ | 
 | u32 | 
 | au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid, | 
 |        void (*callback)(int, void *, struct pt_regs *), void *callparam) | 
 | { | 
 | 	unsigned long   flags; | 
 | 	u32		used, chan, rv; | 
 | 	u32		dcp; | 
 | 	int		i; | 
 | 	dbdev_tab_t	*stp, *dtp; | 
 | 	chan_tab_t	*ctp; | 
 | 	volatile au1x_dma_chan_t *cp; | 
 |  | 
 | 	/* We do the intialization on the first channel allocation. | 
 | 	 * We have to wait because of the interrupt handler initialization | 
 | 	 * which can't be done successfully during board set up. | 
 | 	 */ | 
 | 	if (!dbdma_initialized) | 
 | 		au1xxx_dbdma_init(); | 
 | 	dbdma_initialized = 1; | 
 |  | 
 | 	if ((srcid > DSCR_NDEV_IDS) || (destid > DSCR_NDEV_IDS)) | 
 | 		return 0; | 
 |  | 
 | 	if ((stp = find_dbdev_id(srcid)) == NULL) return 0; | 
 | 	if ((dtp = find_dbdev_id(destid)) == NULL) return 0; | 
 |  | 
 | 	used = 0; | 
 | 	rv = 0; | 
 |  | 
 | 	/* Check to see if we can get both channels. | 
 | 	*/ | 
 | 	spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags); | 
 | 	if (!(stp->dev_flags & DEV_FLAGS_INUSE) || | 
 | 	     (stp->dev_flags & DEV_FLAGS_ANYUSE)) { | 
 | 	     	/* Got source */ | 
 | 		stp->dev_flags |= DEV_FLAGS_INUSE; | 
 | 		if (!(dtp->dev_flags & DEV_FLAGS_INUSE) || | 
 | 		     (dtp->dev_flags & DEV_FLAGS_ANYUSE)) { | 
 | 			/* Got destination */ | 
 | 			dtp->dev_flags |= DEV_FLAGS_INUSE; | 
 | 		} | 
 | 		else { | 
 | 			/* Can't get dest.  Release src. | 
 | 			*/ | 
 | 			stp->dev_flags &= ~DEV_FLAGS_INUSE; | 
 | 			used++; | 
 | 		} | 
 | 	} | 
 | 	else { | 
 | 		used++; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags); | 
 |  | 
 | 	if (!used) { | 
 | 		/* Let's see if we can allocate a channel for it. | 
 | 		*/ | 
 | 		ctp = NULL; | 
 | 		chan = 0; | 
 | 		spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags); | 
 | 		for (i=0; i<NUM_DBDMA_CHANS; i++) { | 
 | 			if (chan_tab_ptr[i] == NULL) { | 
 | 				/* If kmalloc fails, it is caught below same | 
 | 				 * as a channel not available. | 
 | 				 */ | 
 | 				ctp = kmalloc(sizeof(chan_tab_t), GFP_KERNEL); | 
 | 				chan_tab_ptr[i] = ctp; | 
 | 				ctp->chan_index = chan = i; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags); | 
 |  | 
 | 		if (ctp != NULL) { | 
 | 			memset(ctp, 0, sizeof(chan_tab_t)); | 
 | 			dcp = DDMA_CHANNEL_BASE; | 
 | 			dcp += (0x0100 * chan); | 
 | 			ctp->chan_ptr = (au1x_dma_chan_t *)dcp; | 
 | 			cp = (volatile au1x_dma_chan_t *)dcp; | 
 | 			ctp->chan_src = stp; | 
 | 			ctp->chan_dest = dtp; | 
 | 			ctp->chan_callback = callback; | 
 | 			ctp->chan_callparam = callparam; | 
 |  | 
 | 			/* Initialize channel configuration. | 
 | 			*/ | 
 | 			i = 0; | 
 | 			if (stp->dev_intlevel) | 
 | 				i |= DDMA_CFG_SED; | 
 | 			if (stp->dev_intpolarity) | 
 | 				i |= DDMA_CFG_SP; | 
 | 			if (dtp->dev_intlevel) | 
 | 				i |= DDMA_CFG_DED; | 
 | 			if (dtp->dev_intpolarity) | 
 | 				i |= DDMA_CFG_DP; | 
 | 			cp->ddma_cfg = i; | 
 | 			au_sync(); | 
 |  | 
 | 			/* Return a non-zero value that can be used to | 
 | 			 * find the channel information in subsequent | 
 | 			 * operations. | 
 | 			 */ | 
 | 			rv = (u32)(&chan_tab_ptr[chan]); | 
 | 		} | 
 | 		else { | 
 | 			/* Release devices. | 
 | 			*/ | 
 | 			stp->dev_flags &= ~DEV_FLAGS_INUSE; | 
 | 			dtp->dev_flags &= ~DEV_FLAGS_INUSE; | 
 | 		} | 
 | 	} | 
 | 	return rv; | 
 | } | 
 |  | 
 | /* Set the device width if source or destination is a FIFO. | 
 |  * Should be 8, 16, or 32 bits. | 
 |  */ | 
 | u32 | 
 | au1xxx_dbdma_set_devwidth(u32 chanid, int bits) | 
 | { | 
 | 	u32		rv; | 
 | 	chan_tab_t	*ctp; | 
 | 	dbdev_tab_t	*stp, *dtp; | 
 |  | 
 | 	ctp = *((chan_tab_t **)chanid); | 
 | 	stp = ctp->chan_src; | 
 | 	dtp = ctp->chan_dest; | 
 | 	rv = 0; | 
 |  | 
 | 	if (stp->dev_flags & DEV_FLAGS_IN) {	/* Source in fifo */ | 
 | 		rv = stp->dev_devwidth; | 
 | 		stp->dev_devwidth = bits; | 
 | 	} | 
 | 	if (dtp->dev_flags & DEV_FLAGS_OUT) {	/* Destination out fifo */ | 
 | 		rv = dtp->dev_devwidth; | 
 | 		dtp->dev_devwidth = bits; | 
 | 	} | 
 |  | 
 | 	return rv; | 
 | } | 
 |  | 
 | /* Allocate a descriptor ring, initializing as much as possible. | 
 | */ | 
 | u32 | 
 | au1xxx_dbdma_ring_alloc(u32 chanid, int entries) | 
 | { | 
 | 	int			i; | 
 | 	u32			desc_base, srcid, destid; | 
 | 	u32			cmd0, cmd1, src1, dest1; | 
 | 	u32			src0, dest0; | 
 | 	chan_tab_t		*ctp; | 
 | 	dbdev_tab_t		*stp, *dtp; | 
 | 	au1x_ddma_desc_t	*dp; | 
 |  | 
 | 	/* I guess we could check this to be within the | 
 | 	 * range of the table...... | 
 | 	 */ | 
 | 	ctp = *((chan_tab_t **)chanid); | 
 | 	stp = ctp->chan_src; | 
 | 	dtp = ctp->chan_dest; | 
 |  | 
 | 	/* The descriptors must be 32-byte aligned.  There is a | 
 | 	 * possibility the allocation will give us such an address, | 
 | 	 * and if we try that first we are likely to not waste larger | 
 | 	 * slabs of memory. | 
 | 	 */ | 
 | 	desc_base = (u32)kmalloc(entries * sizeof(au1x_ddma_desc_t), GFP_KERNEL); | 
 | 	if (desc_base == 0) | 
 | 		return 0; | 
 |  | 
 | 	if (desc_base & 0x1f) { | 
 | 		/* Lost....do it again, allocate extra, and round | 
 | 		 * the address base. | 
 | 		 */ | 
 | 		kfree((const void *)desc_base); | 
 | 		i = entries * sizeof(au1x_ddma_desc_t); | 
 | 		i += (sizeof(au1x_ddma_desc_t) - 1); | 
 | 		if ((desc_base = (u32)kmalloc(i, GFP_KERNEL)) == 0) | 
 | 			return 0; | 
 |  | 
 | 		desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t)); | 
 | 	} | 
 | 	dp = (au1x_ddma_desc_t *)desc_base; | 
 |  | 
 | 	/* Keep track of the base descriptor. | 
 | 	*/ | 
 | 	ctp->chan_desc_base = dp; | 
 |  | 
 | 	/* Initialize the rings with as much information as we know. | 
 | 	 */ | 
 | 	srcid = stp->dev_id; | 
 | 	destid = dtp->dev_id; | 
 |  | 
 | 	cmd0 = cmd1 = src1 = dest1 = 0; | 
 | 	src0 = dest0 = 0; | 
 |  | 
 | 	cmd0 |= DSCR_CMD0_SID(srcid); | 
 | 	cmd0 |= DSCR_CMD0_DID(destid); | 
 | 	cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV; | 
 | 	cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_CURRENT); | 
 |  | 
 | 	switch (stp->dev_devwidth) { | 
 | 	case 8: | 
 | 		cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE); | 
 | 		break; | 
 | 	case 16: | 
 | 		cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD); | 
 | 		break; | 
 | 	case 32: | 
 | 	default: | 
 | 		cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	switch (dtp->dev_devwidth) { | 
 | 	case 8: | 
 | 		cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE); | 
 | 		break; | 
 | 	case 16: | 
 | 		cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD); | 
 | 		break; | 
 | 	case 32: | 
 | 	default: | 
 | 		cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* If the device is marked as an in/out FIFO, ensure it is | 
 | 	 * set non-coherent. | 
 | 	 */ | 
 | 	if (stp->dev_flags & DEV_FLAGS_IN) | 
 | 		cmd0 |= DSCR_CMD0_SN;		/* Source in fifo */ | 
 | 	if (dtp->dev_flags & DEV_FLAGS_OUT) | 
 | 		cmd0 |= DSCR_CMD0_DN;		/* Destination out fifo */ | 
 |  | 
 | 	/* Set up source1.  For now, assume no stride and increment. | 
 | 	 * A channel attribute update can change this later. | 
 | 	 */ | 
 | 	switch (stp->dev_tsize) { | 
 | 	case 1: | 
 | 		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1); | 
 | 		break; | 
 | 	case 2: | 
 | 		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2); | 
 | 		break; | 
 | 	case 4: | 
 | 		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4); | 
 | 		break; | 
 | 	case 8: | 
 | 	default: | 
 | 		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* If source input is fifo, set static address. | 
 | 	*/ | 
 | 	if (stp->dev_flags & DEV_FLAGS_IN) { | 
 | 		src0 = stp->dev_physaddr; | 
 | 		src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC); | 
 | 	} | 
 |  | 
 | 	/* Set up dest1.  For now, assume no stride and increment. | 
 | 	 * A channel attribute update can change this later. | 
 | 	 */ | 
 | 	switch (dtp->dev_tsize) { | 
 | 	case 1: | 
 | 		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1); | 
 | 		break; | 
 | 	case 2: | 
 | 		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2); | 
 | 		break; | 
 | 	case 4: | 
 | 		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4); | 
 | 		break; | 
 | 	case 8: | 
 | 	default: | 
 | 		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* If destination output is fifo, set static address. | 
 | 	*/ | 
 | 	if (dtp->dev_flags & DEV_FLAGS_OUT) { | 
 | 		dest0 = dtp->dev_physaddr; | 
 | 		dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC); | 
 | 	} | 
 |  | 
 | 	for (i=0; i<entries; i++) { | 
 | 		dp->dscr_cmd0 = cmd0; | 
 | 		dp->dscr_cmd1 = cmd1; | 
 | 		dp->dscr_source0 = src0; | 
 | 		dp->dscr_source1 = src1; | 
 | 		dp->dscr_dest0 = dest0; | 
 | 		dp->dscr_dest1 = dest1; | 
 | 		dp->dscr_stat = 0; | 
 | 		dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1)); | 
 | 		dp++; | 
 | 	} | 
 |  | 
 | 	/* Make last descrptor point to the first. | 
 | 	*/ | 
 | 	dp--; | 
 | 	dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base)); | 
 | 	ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base; | 
 |  | 
 | 	return (u32)(ctp->chan_desc_base); | 
 | } | 
 |  | 
 | /* Put a source buffer into the DMA ring. | 
 |  * This updates the source pointer and byte count.  Normally used | 
 |  * for memory to fifo transfers. | 
 |  */ | 
 | u32 | 
 | au1xxx_dbdma_put_source(u32 chanid, void *buf, int nbytes) | 
 | { | 
 | 	chan_tab_t		*ctp; | 
 | 	au1x_ddma_desc_t	*dp; | 
 |  | 
 | 	/* I guess we could check this to be within the | 
 | 	 * range of the table...... | 
 | 	 */ | 
 | 	ctp = *((chan_tab_t **)chanid); | 
 |  | 
 | 	/* We should have multiple callers for a particular channel, | 
 | 	 * an interrupt doesn't affect this pointer nor the descriptor, | 
 | 	 * so no locking should be needed. | 
 | 	 */ | 
 | 	dp = ctp->put_ptr; | 
 |  | 
 | 	/* If the descriptor is valid, we are way ahead of the DMA | 
 | 	 * engine, so just return an error condition. | 
 | 	 */ | 
 | 	if (dp->dscr_cmd0 & DSCR_CMD0_V) { | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Load up buffer address and byte count. | 
 | 	*/ | 
 | 	dp->dscr_source0 = virt_to_phys(buf); | 
 | 	dp->dscr_cmd1 = nbytes; | 
 | 	dp->dscr_cmd0 |= DSCR_CMD0_V;	/* Let it rip */ | 
 | 	ctp->chan_ptr->ddma_dbell = 0xffffffff;	/* Make it go */ | 
 |  | 
 | 	/* Get next descriptor pointer. | 
 | 	*/ | 
 | 	ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); | 
 |  | 
 | 	/* return something not zero. | 
 | 	*/ | 
 | 	return nbytes; | 
 | } | 
 |  | 
 | /* Put a destination buffer into the DMA ring. | 
 |  * This updates the destination pointer and byte count.  Normally used | 
 |  * to place an empty buffer into the ring for fifo to memory transfers. | 
 |  */ | 
 | u32 | 
 | au1xxx_dbdma_put_dest(u32 chanid, void *buf, int nbytes) | 
 | { | 
 | 	chan_tab_t		*ctp; | 
 | 	au1x_ddma_desc_t	*dp; | 
 |  | 
 | 	/* I guess we could check this to be within the | 
 | 	 * range of the table...... | 
 | 	 */ | 
 | 	ctp = *((chan_tab_t **)chanid); | 
 |  | 
 | 	/* We should have multiple callers for a particular channel, | 
 | 	 * an interrupt doesn't affect this pointer nor the descriptor, | 
 | 	 * so no locking should be needed. | 
 | 	 */ | 
 | 	dp = ctp->put_ptr; | 
 |  | 
 | 	/* If the descriptor is valid, we are way ahead of the DMA | 
 | 	 * engine, so just return an error condition. | 
 | 	 */ | 
 | 	if (dp->dscr_cmd0 & DSCR_CMD0_V) | 
 | 		return 0; | 
 |  | 
 | 	/* Load up buffer address and byte count. | 
 | 	*/ | 
 | 	dp->dscr_dest0 = virt_to_phys(buf); | 
 | 	dp->dscr_cmd1 = nbytes; | 
 | 	dp->dscr_cmd0 |= DSCR_CMD0_V;	/* Let it rip */ | 
 |  | 
 | 	/* Get next descriptor pointer. | 
 | 	*/ | 
 | 	ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); | 
 |  | 
 | 	/* return something not zero. | 
 | 	*/ | 
 | 	return nbytes; | 
 | } | 
 |  | 
 | /* Get a destination buffer into the DMA ring. | 
 |  * Normally used to get a full buffer from the ring during fifo | 
 |  * to memory transfers.  This does not set the valid bit, you will | 
 |  * have to put another destination buffer to keep the DMA going. | 
 |  */ | 
 | u32 | 
 | au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes) | 
 | { | 
 | 	chan_tab_t		*ctp; | 
 | 	au1x_ddma_desc_t	*dp; | 
 | 	u32			rv; | 
 |  | 
 | 	/* I guess we could check this to be within the | 
 | 	 * range of the table...... | 
 | 	 */ | 
 | 	ctp = *((chan_tab_t **)chanid); | 
 |  | 
 | 	/* We should have multiple callers for a particular channel, | 
 | 	 * an interrupt doesn't affect this pointer nor the descriptor, | 
 | 	 * so no locking should be needed. | 
 | 	 */ | 
 | 	dp = ctp->get_ptr; | 
 |  | 
 | 	/* If the descriptor is valid, we are way ahead of the DMA | 
 | 	 * engine, so just return an error condition. | 
 | 	 */ | 
 | 	if (dp->dscr_cmd0 & DSCR_CMD0_V) | 
 | 		return 0; | 
 |  | 
 | 	/* Return buffer address and byte count. | 
 | 	*/ | 
 | 	*buf = (void *)(phys_to_virt(dp->dscr_dest0)); | 
 | 	*nbytes = dp->dscr_cmd1; | 
 | 	rv = dp->dscr_stat; | 
 |  | 
 | 	/* Get next descriptor pointer. | 
 | 	*/ | 
 | 	ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); | 
 |  | 
 | 	/* return something not zero. | 
 | 	*/ | 
 | 	return rv; | 
 | } | 
 |  | 
 | void | 
 | au1xxx_dbdma_stop(u32 chanid) | 
 | { | 
 | 	chan_tab_t	*ctp; | 
 | 	volatile au1x_dma_chan_t *cp; | 
 | 	int halt_timeout = 0; | 
 |  | 
 | 	ctp = *((chan_tab_t **)chanid); | 
 |  | 
 | 	cp = ctp->chan_ptr; | 
 | 	cp->ddma_cfg &= ~DDMA_CFG_EN;	/* Disable channel */ | 
 | 	au_sync(); | 
 | 	while (!(cp->ddma_stat & DDMA_STAT_H)) { | 
 | 		udelay(1); | 
 | 		halt_timeout++; | 
 | 		if (halt_timeout > 100) { | 
 | 			printk("warning: DMA channel won't halt\n"); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	/* clear current desc valid and doorbell */ | 
 | 	cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V); | 
 | 	au_sync(); | 
 | } | 
 |  | 
 | /* Start using the current descriptor pointer.  If the dbdma encounters | 
 |  * a not valid descriptor, it will stop.  In this case, we can just | 
 |  * continue by adding a buffer to the list and starting again. | 
 |  */ | 
 | void | 
 | au1xxx_dbdma_start(u32 chanid) | 
 | { | 
 | 	chan_tab_t	*ctp; | 
 | 	volatile au1x_dma_chan_t *cp; | 
 |  | 
 | 	ctp = *((chan_tab_t **)chanid); | 
 |  | 
 | 	cp = ctp->chan_ptr; | 
 | 	cp->ddma_desptr = virt_to_phys(ctp->cur_ptr); | 
 | 	cp->ddma_cfg |= DDMA_CFG_EN;	/* Enable channel */ | 
 | 	au_sync(); | 
 | 	cp->ddma_dbell = 0xffffffff;	/* Make it go */ | 
 | 	au_sync(); | 
 | } | 
 |  | 
 | void | 
 | au1xxx_dbdma_reset(u32 chanid) | 
 | { | 
 | 	chan_tab_t		*ctp; | 
 | 	au1x_ddma_desc_t	*dp; | 
 |  | 
 | 	au1xxx_dbdma_stop(chanid); | 
 |  | 
 | 	ctp = *((chan_tab_t **)chanid); | 
 | 	ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base; | 
 |  | 
 | 	/* Run through the descriptors and reset the valid indicator. | 
 | 	*/ | 
 | 	dp = ctp->chan_desc_base; | 
 |  | 
 | 	do { | 
 | 		dp->dscr_cmd0 &= ~DSCR_CMD0_V; | 
 | 		dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); | 
 | 	} while (dp != ctp->chan_desc_base); | 
 | } | 
 |  | 
 | u32 | 
 | au1xxx_get_dma_residue(u32 chanid) | 
 | { | 
 | 	chan_tab_t	*ctp; | 
 | 	volatile au1x_dma_chan_t *cp; | 
 | 	u32		rv; | 
 |  | 
 | 	ctp = *((chan_tab_t **)chanid); | 
 | 	cp = ctp->chan_ptr; | 
 |  | 
 | 	/* This is only valid if the channel is stopped. | 
 | 	*/ | 
 | 	rv = cp->ddma_bytecnt; | 
 | 	au_sync(); | 
 |  | 
 | 	return rv; | 
 | } | 
 |  | 
 | void | 
 | au1xxx_dbdma_chan_free(u32 chanid) | 
 | { | 
 | 	chan_tab_t	*ctp; | 
 | 	dbdev_tab_t	*stp, *dtp; | 
 |  | 
 | 	ctp = *((chan_tab_t **)chanid); | 
 | 	stp = ctp->chan_src; | 
 | 	dtp = ctp->chan_dest; | 
 |  | 
 | 	au1xxx_dbdma_stop(chanid); | 
 |  | 
 | 	if (ctp->chan_desc_base != NULL) | 
 | 		kfree(ctp->chan_desc_base); | 
 |  | 
 | 	stp->dev_flags &= ~DEV_FLAGS_INUSE; | 
 | 	dtp->dev_flags &= ~DEV_FLAGS_INUSE; | 
 | 	chan_tab_ptr[ctp->chan_index] = NULL; | 
 |  | 
 | 	kfree(ctp); | 
 | } | 
 |  | 
 | static irqreturn_t | 
 | dbdma_interrupt(int irq, void *dev_id, struct pt_regs *regs) | 
 | { | 
 | 	u32	intstat; | 
 | 	u32	chan_index; | 
 | 	chan_tab_t		*ctp; | 
 | 	au1x_ddma_desc_t	*dp; | 
 | 	volatile au1x_dma_chan_t *cp; | 
 |  | 
 | 	intstat = dbdma_gptr->ddma_intstat; | 
 | 	au_sync(); | 
 | 	chan_index = au_ffs(intstat) - 1; | 
 |  | 
 | 	ctp = chan_tab_ptr[chan_index]; | 
 | 	cp = ctp->chan_ptr; | 
 | 	dp = ctp->cur_ptr; | 
 |  | 
 | 	/* Reset interrupt. | 
 | 	*/ | 
 | 	cp->ddma_irq = 0; | 
 | 	au_sync(); | 
 |  | 
 | 	if (ctp->chan_callback) | 
 | 		(ctp->chan_callback)(irq, ctp->chan_callparam, regs); | 
 |  | 
 | 	ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static void | 
 | au1xxx_dbdma_init(void) | 
 | { | 
 | 	dbdma_gptr->ddma_config = 0; | 
 | 	dbdma_gptr->ddma_throttle = 0; | 
 | 	dbdma_gptr->ddma_inten = 0xffff; | 
 | 	au_sync(); | 
 |  | 
 | 	if (request_irq(AU1550_DDMA_INT, dbdma_interrupt, SA_INTERRUPT, | 
 | 			"Au1xxx dbdma", (void *)dbdma_gptr)) | 
 | 		printk("Can't get 1550 dbdma irq"); | 
 | } | 
 |  | 
 | void | 
 | au1xxx_dbdma_dump(u32 chanid) | 
 | { | 
 | 	chan_tab_t		*ctp; | 
 | 	au1x_ddma_desc_t	*dp; | 
 | 	dbdev_tab_t		*stp, *dtp; | 
 | 	volatile au1x_dma_chan_t *cp; | 
 |  | 
 | 	ctp = *((chan_tab_t **)chanid); | 
 | 	stp = ctp->chan_src; | 
 | 	dtp = ctp->chan_dest; | 
 | 	cp = ctp->chan_ptr; | 
 |  | 
 | 	printk("Chan %x, stp %x (dev %d)  dtp %x (dev %d) \n", | 
 | 		(u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp, dtp - dbdev_tab); | 
 | 	printk("desc base %x, get %x, put %x, cur %x\n", | 
 | 		(u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr), | 
 | 		(u32)(ctp->put_ptr), (u32)(ctp->cur_ptr)); | 
 |  | 
 | 	printk("dbdma chan %x\n", (u32)cp); | 
 | 	printk("cfg %08x, desptr %08x, statptr %08x\n", | 
 | 		cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr); | 
 | 	printk("dbell %08x, irq %08x, stat %08x, bytecnt %08x\n", | 
 | 		cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat, cp->ddma_bytecnt); | 
 |  | 
 |  | 
 | 	/* Run through the descriptors | 
 | 	*/ | 
 | 	dp = ctp->chan_desc_base; | 
 |  | 
 | 	do { | 
 | 		printk("dp %08x, cmd0 %08x, cmd1 %08x\n", | 
 | 			(u32)dp, dp->dscr_cmd0, dp->dscr_cmd1); | 
 | 		printk("src0 %08x, src1 %08x, dest0 %08x\n", | 
 | 			dp->dscr_source0, dp->dscr_source1, dp->dscr_dest0); | 
 | 		printk("dest1 %08x, stat %08x, nxtptr %08x\n", | 
 | 			dp->dscr_dest1, dp->dscr_stat, dp->dscr_nxtptr); | 
 | 		dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); | 
 | 	} while (dp != ctp->chan_desc_base); | 
 | } | 
 |  | 
 | #endif /* defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) */ | 
 |  |