| /* | 
 |  * machine_kexec.c - handle transition of Linux booting another kernel | 
 |  * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com> | 
 |  * | 
 |  * This source code is licensed under the GNU General Public License, | 
 |  * Version 2.  See the file COPYING for more details. | 
 |  */ | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/kexec.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/init.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/io.h> | 
 | #include <asm/apic.h> | 
 | #include <asm/cpufeature.h> | 
 | #include <asm/desc.h> | 
 | #include <asm/system.h> | 
 |  | 
 | #define PAGE_ALIGNED __attribute__ ((__aligned__(PAGE_SIZE))) | 
 | static u32 kexec_pgd[1024] PAGE_ALIGNED; | 
 | #ifdef CONFIG_X86_PAE | 
 | static u32 kexec_pmd0[1024] PAGE_ALIGNED; | 
 | static u32 kexec_pmd1[1024] PAGE_ALIGNED; | 
 | #endif | 
 | static u32 kexec_pte0[1024] PAGE_ALIGNED; | 
 | static u32 kexec_pte1[1024] PAGE_ALIGNED; | 
 |  | 
 | static void set_idt(void *newidt, __u16 limit) | 
 | { | 
 | 	struct Xgt_desc_struct curidt; | 
 |  | 
 | 	/* ia32 supports unaliged loads & stores */ | 
 | 	curidt.size    = limit; | 
 | 	curidt.address = (unsigned long)newidt; | 
 |  | 
 | 	load_idt(&curidt); | 
 | }; | 
 |  | 
 |  | 
 | static void set_gdt(void *newgdt, __u16 limit) | 
 | { | 
 | 	struct Xgt_desc_struct curgdt; | 
 |  | 
 | 	/* ia32 supports unaligned loads & stores */ | 
 | 	curgdt.size    = limit; | 
 | 	curgdt.address = (unsigned long)newgdt; | 
 |  | 
 | 	load_gdt(&curgdt); | 
 | }; | 
 |  | 
 | static void load_segments(void) | 
 | { | 
 | #define __STR(X) #X | 
 | #define STR(X) __STR(X) | 
 |  | 
 | 	__asm__ __volatile__ ( | 
 | 		"\tljmp $"STR(__KERNEL_CS)",$1f\n" | 
 | 		"\t1:\n" | 
 | 		"\tmovl $"STR(__KERNEL_DS)",%%eax\n" | 
 | 		"\tmovl %%eax,%%ds\n" | 
 | 		"\tmovl %%eax,%%es\n" | 
 | 		"\tmovl %%eax,%%fs\n" | 
 | 		"\tmovl %%eax,%%gs\n" | 
 | 		"\tmovl %%eax,%%ss\n" | 
 | 		::: "eax", "memory"); | 
 | #undef STR | 
 | #undef __STR | 
 | } | 
 |  | 
 | /* | 
 |  * A architecture hook called to validate the | 
 |  * proposed image and prepare the control pages | 
 |  * as needed.  The pages for KEXEC_CONTROL_CODE_SIZE | 
 |  * have been allocated, but the segments have yet | 
 |  * been copied into the kernel. | 
 |  * | 
 |  * Do what every setup is needed on image and the | 
 |  * reboot code buffer to allow us to avoid allocations | 
 |  * later. | 
 |  * | 
 |  * Currently nothing. | 
 |  */ | 
 | int machine_kexec_prepare(struct kimage *image) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Undo anything leftover by machine_kexec_prepare | 
 |  * when an image is freed. | 
 |  */ | 
 | void machine_kexec_cleanup(struct kimage *image) | 
 | { | 
 | } | 
 |  | 
 | /* | 
 |  * Do not allocate memory (or fail in any way) in machine_kexec(). | 
 |  * We are past the point of no return, committed to rebooting now. | 
 |  */ | 
 | NORET_TYPE void machine_kexec(struct kimage *image) | 
 | { | 
 | 	unsigned long page_list[PAGES_NR]; | 
 | 	void *control_page; | 
 |  | 
 | 	/* Interrupts aren't acceptable while we reboot */ | 
 | 	local_irq_disable(); | 
 |  | 
 | 	control_page = page_address(image->control_code_page); | 
 | 	memcpy(control_page, relocate_kernel, PAGE_SIZE); | 
 |  | 
 | 	page_list[PA_CONTROL_PAGE] = __pa(control_page); | 
 | 	page_list[VA_CONTROL_PAGE] = (unsigned long)relocate_kernel; | 
 | 	page_list[PA_PGD] = __pa(kexec_pgd); | 
 | 	page_list[VA_PGD] = (unsigned long)kexec_pgd; | 
 | #ifdef CONFIG_X86_PAE | 
 | 	page_list[PA_PMD_0] = __pa(kexec_pmd0); | 
 | 	page_list[VA_PMD_0] = (unsigned long)kexec_pmd0; | 
 | 	page_list[PA_PMD_1] = __pa(kexec_pmd1); | 
 | 	page_list[VA_PMD_1] = (unsigned long)kexec_pmd1; | 
 | #endif | 
 | 	page_list[PA_PTE_0] = __pa(kexec_pte0); | 
 | 	page_list[VA_PTE_0] = (unsigned long)kexec_pte0; | 
 | 	page_list[PA_PTE_1] = __pa(kexec_pte1); | 
 | 	page_list[VA_PTE_1] = (unsigned long)kexec_pte1; | 
 |  | 
 | 	/* The segment registers are funny things, they have both a | 
 | 	 * visible and an invisible part.  Whenever the visible part is | 
 | 	 * set to a specific selector, the invisible part is loaded | 
 | 	 * with from a table in memory.  At no other time is the | 
 | 	 * descriptor table in memory accessed. | 
 | 	 * | 
 | 	 * I take advantage of this here by force loading the | 
 | 	 * segments, before I zap the gdt with an invalid value. | 
 | 	 */ | 
 | 	load_segments(); | 
 | 	/* The gdt & idt are now invalid. | 
 | 	 * If you want to load them you must set up your own idt & gdt. | 
 | 	 */ | 
 | 	set_gdt(phys_to_virt(0),0); | 
 | 	set_idt(phys_to_virt(0),0); | 
 |  | 
 | 	/* now call it */ | 
 | 	relocate_kernel((unsigned long)image->head, (unsigned long)page_list, | 
 | 			image->start, cpu_has_pae); | 
 | } | 
 |  | 
 | /* crashkernel=size@addr specifies the location to reserve for | 
 |  * a crash kernel.  By reserving this memory we guarantee | 
 |  * that linux never sets it up as a DMA target. | 
 |  * Useful for holding code to do something appropriate | 
 |  * after a kernel panic. | 
 |  */ | 
 | static int __init parse_crashkernel(char *arg) | 
 | { | 
 | 	unsigned long size, base; | 
 | 	size = memparse(arg, &arg); | 
 | 	if (*arg == '@') { | 
 | 		base = memparse(arg+1, &arg); | 
 | 		/* FIXME: Do I want a sanity check | 
 | 		 * to validate the memory range? | 
 | 		 */ | 
 | 		crashk_res.start = base; | 
 | 		crashk_res.end   = base + size - 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | early_param("crashkernel", parse_crashkernel); |