|  | /******************************************************************************* | 
|  |  | 
|  | Intel PRO/1000 Linux driver | 
|  | Copyright(c) 1999 - 2006 Intel Corporation. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify it | 
|  | under the terms and conditions of the GNU General Public License, | 
|  | version 2, as published by the Free Software Foundation. | 
|  |  | 
|  | This program is distributed in the hope it will be useful, but WITHOUT | 
|  | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License along with | 
|  | this program; if not, write to the Free Software Foundation, Inc., | 
|  | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | 
|  |  | 
|  | The full GNU General Public License is included in this distribution in | 
|  | the file called "COPYING". | 
|  |  | 
|  | Contact Information: | 
|  | Linux NICS <linux.nics@intel.com> | 
|  | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | 
|  | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  |  | 
|  | *******************************************************************************/ | 
|  |  | 
|  | #include "e1000.h" | 
|  | #include <net/ip6_checksum.h> | 
|  |  | 
|  | char e1000_driver_name[] = "e1000"; | 
|  | static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; | 
|  | #ifndef CONFIG_E1000_NAPI | 
|  | #define DRIVERNAPI | 
|  | #else | 
|  | #define DRIVERNAPI "-NAPI" | 
|  | #endif | 
|  | #define DRV_VERSION "7.3.15-k2"DRIVERNAPI | 
|  | char e1000_driver_version[] = DRV_VERSION; | 
|  | static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; | 
|  |  | 
|  | /* e1000_pci_tbl - PCI Device ID Table | 
|  | * | 
|  | * Last entry must be all 0s | 
|  | * | 
|  | * Macro expands to... | 
|  | *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} | 
|  | */ | 
|  | static struct pci_device_id e1000_pci_tbl[] = { | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1000), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1001), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1004), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1008), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1009), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x100C), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x100D), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x100E), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x100F), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1010), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1011), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1012), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1013), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1014), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1015), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1016), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1017), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1018), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1019), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x101A), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x101D), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x101E), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1026), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1027), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1028), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1049), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x104A), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x104B), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x104C), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x104D), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x105E), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x105F), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1060), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1075), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1076), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1077), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1078), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1079), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x107A), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x107B), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x107C), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x107D), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x107E), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x107F), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x108A), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x108B), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x108C), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1096), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1098), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1099), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x109A), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x10A4), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x10B5), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x10B9), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x10BA), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x10BB), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x10BC), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x10C4), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x10C5), | 
|  | /* required last entry */ | 
|  | {0,} | 
|  | }; | 
|  |  | 
|  | MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); | 
|  |  | 
|  | int e1000_up(struct e1000_adapter *adapter); | 
|  | void e1000_down(struct e1000_adapter *adapter); | 
|  | void e1000_reinit_locked(struct e1000_adapter *adapter); | 
|  | void e1000_reset(struct e1000_adapter *adapter); | 
|  | int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx); | 
|  | int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); | 
|  | int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); | 
|  | void e1000_free_all_tx_resources(struct e1000_adapter *adapter); | 
|  | void e1000_free_all_rx_resources(struct e1000_adapter *adapter); | 
|  | static int e1000_setup_tx_resources(struct e1000_adapter *adapter, | 
|  | struct e1000_tx_ring *txdr); | 
|  | static int e1000_setup_rx_resources(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rxdr); | 
|  | static void e1000_free_tx_resources(struct e1000_adapter *adapter, | 
|  | struct e1000_tx_ring *tx_ring); | 
|  | static void e1000_free_rx_resources(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rx_ring); | 
|  | void e1000_update_stats(struct e1000_adapter *adapter); | 
|  |  | 
|  | static int e1000_init_module(void); | 
|  | static void e1000_exit_module(void); | 
|  | static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); | 
|  | static void __devexit e1000_remove(struct pci_dev *pdev); | 
|  | static int e1000_alloc_queues(struct e1000_adapter *adapter); | 
|  | static int e1000_sw_init(struct e1000_adapter *adapter); | 
|  | static int e1000_open(struct net_device *netdev); | 
|  | static int e1000_close(struct net_device *netdev); | 
|  | static void e1000_configure_tx(struct e1000_adapter *adapter); | 
|  | static void e1000_configure_rx(struct e1000_adapter *adapter); | 
|  | static void e1000_setup_rctl(struct e1000_adapter *adapter); | 
|  | static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); | 
|  | static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); | 
|  | static void e1000_clean_tx_ring(struct e1000_adapter *adapter, | 
|  | struct e1000_tx_ring *tx_ring); | 
|  | static void e1000_clean_rx_ring(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rx_ring); | 
|  | static void e1000_set_multi(struct net_device *netdev); | 
|  | static void e1000_update_phy_info(unsigned long data); | 
|  | static void e1000_watchdog(unsigned long data); | 
|  | static void e1000_82547_tx_fifo_stall(unsigned long data); | 
|  | static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev); | 
|  | static struct net_device_stats * e1000_get_stats(struct net_device *netdev); | 
|  | static int e1000_change_mtu(struct net_device *netdev, int new_mtu); | 
|  | static int e1000_set_mac(struct net_device *netdev, void *p); | 
|  | static irqreturn_t e1000_intr(int irq, void *data); | 
|  | #ifdef CONFIG_PCI_MSI | 
|  | static irqreturn_t e1000_intr_msi(int irq, void *data); | 
|  | #endif | 
|  | static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter, | 
|  | struct e1000_tx_ring *tx_ring); | 
|  | #ifdef CONFIG_E1000_NAPI | 
|  | static int e1000_clean(struct net_device *poll_dev, int *budget); | 
|  | static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rx_ring, | 
|  | int *work_done, int work_to_do); | 
|  | static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rx_ring, | 
|  | int *work_done, int work_to_do); | 
|  | #else | 
|  | static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rx_ring); | 
|  | static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rx_ring); | 
|  | #endif | 
|  | static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rx_ring, | 
|  | int cleaned_count); | 
|  | static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rx_ring, | 
|  | int cleaned_count); | 
|  | static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); | 
|  | static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, | 
|  | int cmd); | 
|  | void e1000_set_ethtool_ops(struct net_device *netdev); | 
|  | static void e1000_enter_82542_rst(struct e1000_adapter *adapter); | 
|  | static void e1000_leave_82542_rst(struct e1000_adapter *adapter); | 
|  | static void e1000_tx_timeout(struct net_device *dev); | 
|  | static void e1000_reset_task(struct work_struct *work); | 
|  | static void e1000_smartspeed(struct e1000_adapter *adapter); | 
|  | static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, | 
|  | struct sk_buff *skb); | 
|  |  | 
|  | static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp); | 
|  | static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid); | 
|  | static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid); | 
|  | static void e1000_restore_vlan(struct e1000_adapter *adapter); | 
|  |  | 
|  | static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); | 
|  | #ifdef CONFIG_PM | 
|  | static int e1000_resume(struct pci_dev *pdev); | 
|  | #endif | 
|  | static void e1000_shutdown(struct pci_dev *pdev); | 
|  |  | 
|  | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  | /* for netdump / net console */ | 
|  | static void e1000_netpoll (struct net_device *netdev); | 
|  | #endif | 
|  |  | 
|  | extern void e1000_check_options(struct e1000_adapter *adapter); | 
|  |  | 
|  | static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, | 
|  | pci_channel_state_t state); | 
|  | static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); | 
|  | static void e1000_io_resume(struct pci_dev *pdev); | 
|  |  | 
|  | static struct pci_error_handlers e1000_err_handler = { | 
|  | .error_detected = e1000_io_error_detected, | 
|  | .slot_reset = e1000_io_slot_reset, | 
|  | .resume = e1000_io_resume, | 
|  | }; | 
|  |  | 
|  | static struct pci_driver e1000_driver = { | 
|  | .name     = e1000_driver_name, | 
|  | .id_table = e1000_pci_tbl, | 
|  | .probe    = e1000_probe, | 
|  | .remove   = __devexit_p(e1000_remove), | 
|  | #ifdef CONFIG_PM | 
|  | /* Power Managment Hooks */ | 
|  | .suspend  = e1000_suspend, | 
|  | .resume   = e1000_resume, | 
|  | #endif | 
|  | .shutdown = e1000_shutdown, | 
|  | .err_handler = &e1000_err_handler | 
|  | }; | 
|  |  | 
|  | MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); | 
|  | MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_VERSION(DRV_VERSION); | 
|  |  | 
|  | static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE; | 
|  | module_param(debug, int, 0); | 
|  | MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); | 
|  |  | 
|  | /** | 
|  | * e1000_init_module - Driver Registration Routine | 
|  | * | 
|  | * e1000_init_module is the first routine called when the driver is | 
|  | * loaded. All it does is register with the PCI subsystem. | 
|  | **/ | 
|  |  | 
|  | static int __init | 
|  | e1000_init_module(void) | 
|  | { | 
|  | int ret; | 
|  | printk(KERN_INFO "%s - version %s\n", | 
|  | e1000_driver_string, e1000_driver_version); | 
|  |  | 
|  | printk(KERN_INFO "%s\n", e1000_copyright); | 
|  |  | 
|  | ret = pci_register_driver(&e1000_driver); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | module_init(e1000_init_module); | 
|  |  | 
|  | /** | 
|  | * e1000_exit_module - Driver Exit Cleanup Routine | 
|  | * | 
|  | * e1000_exit_module is called just before the driver is removed | 
|  | * from memory. | 
|  | **/ | 
|  |  | 
|  | static void __exit | 
|  | e1000_exit_module(void) | 
|  | { | 
|  | pci_unregister_driver(&e1000_driver); | 
|  | } | 
|  |  | 
|  | module_exit(e1000_exit_module); | 
|  |  | 
|  | static int e1000_request_irq(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | int flags, err = 0; | 
|  |  | 
|  | flags = IRQF_SHARED; | 
|  | #ifdef CONFIG_PCI_MSI | 
|  | if (adapter->hw.mac_type >= e1000_82571) { | 
|  | adapter->have_msi = TRUE; | 
|  | if ((err = pci_enable_msi(adapter->pdev))) { | 
|  | DPRINTK(PROBE, ERR, | 
|  | "Unable to allocate MSI interrupt Error: %d\n", err); | 
|  | adapter->have_msi = FALSE; | 
|  | } | 
|  | } | 
|  | if (adapter->have_msi) { | 
|  | flags &= ~IRQF_SHARED; | 
|  | err = request_irq(adapter->pdev->irq, &e1000_intr_msi, flags, | 
|  | netdev->name, netdev); | 
|  | if (err) | 
|  | DPRINTK(PROBE, ERR, | 
|  | "Unable to allocate interrupt Error: %d\n", err); | 
|  | } else | 
|  | #endif | 
|  | if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags, | 
|  | netdev->name, netdev))) | 
|  | DPRINTK(PROBE, ERR, | 
|  | "Unable to allocate interrupt Error: %d\n", err); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void e1000_free_irq(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  |  | 
|  | free_irq(adapter->pdev->irq, netdev); | 
|  |  | 
|  | #ifdef CONFIG_PCI_MSI | 
|  | if (adapter->have_msi) | 
|  | pci_disable_msi(adapter->pdev); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_irq_disable - Mask off interrupt generation on the NIC | 
|  | * @adapter: board private structure | 
|  | **/ | 
|  |  | 
|  | static void | 
|  | e1000_irq_disable(struct e1000_adapter *adapter) | 
|  | { | 
|  | atomic_inc(&adapter->irq_sem); | 
|  | E1000_WRITE_REG(&adapter->hw, IMC, ~0); | 
|  | E1000_WRITE_FLUSH(&adapter->hw); | 
|  | synchronize_irq(adapter->pdev->irq); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_irq_enable - Enable default interrupt generation settings | 
|  | * @adapter: board private structure | 
|  | **/ | 
|  |  | 
|  | static void | 
|  | e1000_irq_enable(struct e1000_adapter *adapter) | 
|  | { | 
|  | if (likely(atomic_dec_and_test(&adapter->irq_sem))) { | 
|  | E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK); | 
|  | E1000_WRITE_FLUSH(&adapter->hw); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_update_mng_vlan(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | uint16_t vid = adapter->hw.mng_cookie.vlan_id; | 
|  | uint16_t old_vid = adapter->mng_vlan_id; | 
|  | if (adapter->vlgrp) { | 
|  | if (!adapter->vlgrp->vlan_devices[vid]) { | 
|  | if (adapter->hw.mng_cookie.status & | 
|  | E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { | 
|  | e1000_vlan_rx_add_vid(netdev, vid); | 
|  | adapter->mng_vlan_id = vid; | 
|  | } else | 
|  | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | 
|  |  | 
|  | if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) && | 
|  | (vid != old_vid) && | 
|  | !adapter->vlgrp->vlan_devices[old_vid]) | 
|  | e1000_vlan_rx_kill_vid(netdev, old_vid); | 
|  | } else | 
|  | adapter->mng_vlan_id = vid; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_release_hw_control - release control of the h/w to f/w | 
|  | * @adapter: address of board private structure | 
|  | * | 
|  | * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit. | 
|  | * For ASF and Pass Through versions of f/w this means that the | 
|  | * driver is no longer loaded. For AMT version (only with 82573) i | 
|  | * of the f/w this means that the network i/f is closed. | 
|  | * | 
|  | **/ | 
|  |  | 
|  | static void | 
|  | e1000_release_hw_control(struct e1000_adapter *adapter) | 
|  | { | 
|  | uint32_t ctrl_ext; | 
|  | uint32_t swsm; | 
|  | uint32_t extcnf; | 
|  |  | 
|  | /* Let firmware taken over control of h/w */ | 
|  | switch (adapter->hw.mac_type) { | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | case e1000_80003es2lan: | 
|  | ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT); | 
|  | E1000_WRITE_REG(&adapter->hw, CTRL_EXT, | 
|  | ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); | 
|  | break; | 
|  | case e1000_82573: | 
|  | swsm = E1000_READ_REG(&adapter->hw, SWSM); | 
|  | E1000_WRITE_REG(&adapter->hw, SWSM, | 
|  | swsm & ~E1000_SWSM_DRV_LOAD); | 
|  | case e1000_ich8lan: | 
|  | extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT); | 
|  | E1000_WRITE_REG(&adapter->hw, CTRL_EXT, | 
|  | extcnf & ~E1000_CTRL_EXT_DRV_LOAD); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_get_hw_control - get control of the h/w from f/w | 
|  | * @adapter: address of board private structure | 
|  | * | 
|  | * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit. | 
|  | * For ASF and Pass Through versions of f/w this means that | 
|  | * the driver is loaded. For AMT version (only with 82573) | 
|  | * of the f/w this means that the network i/f is open. | 
|  | * | 
|  | **/ | 
|  |  | 
|  | static void | 
|  | e1000_get_hw_control(struct e1000_adapter *adapter) | 
|  | { | 
|  | uint32_t ctrl_ext; | 
|  | uint32_t swsm; | 
|  | uint32_t extcnf; | 
|  |  | 
|  | /* Let firmware know the driver has taken over */ | 
|  | switch (adapter->hw.mac_type) { | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | case e1000_80003es2lan: | 
|  | ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT); | 
|  | E1000_WRITE_REG(&adapter->hw, CTRL_EXT, | 
|  | ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); | 
|  | break; | 
|  | case e1000_82573: | 
|  | swsm = E1000_READ_REG(&adapter->hw, SWSM); | 
|  | E1000_WRITE_REG(&adapter->hw, SWSM, | 
|  | swsm | E1000_SWSM_DRV_LOAD); | 
|  | break; | 
|  | case e1000_ich8lan: | 
|  | extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL); | 
|  | E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL, | 
|  | extcnf | E1000_EXTCNF_CTRL_SWFLAG); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | int | 
|  | e1000_up(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | int i; | 
|  |  | 
|  | /* hardware has been reset, we need to reload some things */ | 
|  |  | 
|  | e1000_set_multi(netdev); | 
|  |  | 
|  | e1000_restore_vlan(adapter); | 
|  |  | 
|  | e1000_configure_tx(adapter); | 
|  | e1000_setup_rctl(adapter); | 
|  | e1000_configure_rx(adapter); | 
|  | /* call E1000_DESC_UNUSED which always leaves | 
|  | * at least 1 descriptor unused to make sure | 
|  | * next_to_use != next_to_clean */ | 
|  | for (i = 0; i < adapter->num_rx_queues; i++) { | 
|  | struct e1000_rx_ring *ring = &adapter->rx_ring[i]; | 
|  | adapter->alloc_rx_buf(adapter, ring, | 
|  | E1000_DESC_UNUSED(ring)); | 
|  | } | 
|  |  | 
|  | adapter->tx_queue_len = netdev->tx_queue_len; | 
|  |  | 
|  | #ifdef CONFIG_E1000_NAPI | 
|  | netif_poll_enable(netdev); | 
|  | #endif | 
|  | e1000_irq_enable(adapter); | 
|  |  | 
|  | clear_bit(__E1000_DOWN, &adapter->flags); | 
|  |  | 
|  | mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_power_up_phy - restore link in case the phy was powered down | 
|  | * @adapter: address of board private structure | 
|  | * | 
|  | * The phy may be powered down to save power and turn off link when the | 
|  | * driver is unloaded and wake on lan is not enabled (among others) | 
|  | * *** this routine MUST be followed by a call to e1000_reset *** | 
|  | * | 
|  | **/ | 
|  |  | 
|  | void e1000_power_up_phy(struct e1000_adapter *adapter) | 
|  | { | 
|  | uint16_t mii_reg = 0; | 
|  |  | 
|  | /* Just clear the power down bit to wake the phy back up */ | 
|  | if (adapter->hw.media_type == e1000_media_type_copper) { | 
|  | /* according to the manual, the phy will retain its | 
|  | * settings across a power-down/up cycle */ | 
|  | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg); | 
|  | mii_reg &= ~MII_CR_POWER_DOWN; | 
|  | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void e1000_power_down_phy(struct e1000_adapter *adapter) | 
|  | { | 
|  | /* Power down the PHY so no link is implied when interface is down * | 
|  | * The PHY cannot be powered down if any of the following is TRUE * | 
|  | * (a) WoL is enabled | 
|  | * (b) AMT is active | 
|  | * (c) SoL/IDER session is active */ | 
|  | if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 && | 
|  | adapter->hw.media_type == e1000_media_type_copper) { | 
|  | uint16_t mii_reg = 0; | 
|  |  | 
|  | switch (adapter->hw.mac_type) { | 
|  | case e1000_82540: | 
|  | case e1000_82545: | 
|  | case e1000_82545_rev_3: | 
|  | case e1000_82546: | 
|  | case e1000_82546_rev_3: | 
|  | case e1000_82541: | 
|  | case e1000_82541_rev_2: | 
|  | case e1000_82547: | 
|  | case e1000_82547_rev_2: | 
|  | if (E1000_READ_REG(&adapter->hw, MANC) & | 
|  | E1000_MANC_SMBUS_EN) | 
|  | goto out; | 
|  | break; | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | case e1000_82573: | 
|  | case e1000_80003es2lan: | 
|  | case e1000_ich8lan: | 
|  | if (e1000_check_mng_mode(&adapter->hw) || | 
|  | e1000_check_phy_reset_block(&adapter->hw)) | 
|  | goto out; | 
|  | break; | 
|  | default: | 
|  | goto out; | 
|  | } | 
|  | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg); | 
|  | mii_reg |= MII_CR_POWER_DOWN; | 
|  | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg); | 
|  | mdelay(1); | 
|  | } | 
|  | out: | 
|  | return; | 
|  | } | 
|  |  | 
|  | void | 
|  | e1000_down(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  |  | 
|  | /* signal that we're down so the interrupt handler does not | 
|  | * reschedule our watchdog timer */ | 
|  | set_bit(__E1000_DOWN, &adapter->flags); | 
|  |  | 
|  | e1000_irq_disable(adapter); | 
|  |  | 
|  | del_timer_sync(&adapter->tx_fifo_stall_timer); | 
|  | del_timer_sync(&adapter->watchdog_timer); | 
|  | del_timer_sync(&adapter->phy_info_timer); | 
|  |  | 
|  | #ifdef CONFIG_E1000_NAPI | 
|  | netif_poll_disable(netdev); | 
|  | #endif | 
|  | netdev->tx_queue_len = adapter->tx_queue_len; | 
|  | adapter->link_speed = 0; | 
|  | adapter->link_duplex = 0; | 
|  | netif_carrier_off(netdev); | 
|  | netif_stop_queue(netdev); | 
|  |  | 
|  | e1000_reset(adapter); | 
|  | e1000_clean_all_tx_rings(adapter); | 
|  | e1000_clean_all_rx_rings(adapter); | 
|  | } | 
|  |  | 
|  | void | 
|  | e1000_reinit_locked(struct e1000_adapter *adapter) | 
|  | { | 
|  | WARN_ON(in_interrupt()); | 
|  | while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) | 
|  | msleep(1); | 
|  | e1000_down(adapter); | 
|  | e1000_up(adapter); | 
|  | clear_bit(__E1000_RESETTING, &adapter->flags); | 
|  | } | 
|  |  | 
|  | void | 
|  | e1000_reset(struct e1000_adapter *adapter) | 
|  | { | 
|  | uint32_t pba, manc; | 
|  | uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF; | 
|  |  | 
|  | /* Repartition Pba for greater than 9k mtu | 
|  | * To take effect CTRL.RST is required. | 
|  | */ | 
|  |  | 
|  | switch (adapter->hw.mac_type) { | 
|  | case e1000_82547: | 
|  | case e1000_82547_rev_2: | 
|  | pba = E1000_PBA_30K; | 
|  | break; | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | case e1000_80003es2lan: | 
|  | pba = E1000_PBA_38K; | 
|  | break; | 
|  | case e1000_82573: | 
|  | pba = E1000_PBA_12K; | 
|  | break; | 
|  | case e1000_ich8lan: | 
|  | pba = E1000_PBA_8K; | 
|  | break; | 
|  | default: | 
|  | pba = E1000_PBA_48K; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if ((adapter->hw.mac_type != e1000_82573) && | 
|  | (adapter->netdev->mtu > E1000_RXBUFFER_8192)) | 
|  | pba -= 8; /* allocate more FIFO for Tx */ | 
|  |  | 
|  |  | 
|  | if (adapter->hw.mac_type == e1000_82547) { | 
|  | adapter->tx_fifo_head = 0; | 
|  | adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; | 
|  | adapter->tx_fifo_size = | 
|  | (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; | 
|  | atomic_set(&adapter->tx_fifo_stall, 0); | 
|  | } | 
|  |  | 
|  | E1000_WRITE_REG(&adapter->hw, PBA, pba); | 
|  |  | 
|  | /* flow control settings */ | 
|  | /* Set the FC high water mark to 90% of the FIFO size. | 
|  | * Required to clear last 3 LSB */ | 
|  | fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8; | 
|  | /* We can't use 90% on small FIFOs because the remainder | 
|  | * would be less than 1 full frame.  In this case, we size | 
|  | * it to allow at least a full frame above the high water | 
|  | *  mark. */ | 
|  | if (pba < E1000_PBA_16K) | 
|  | fc_high_water_mark = (pba * 1024) - 1600; | 
|  |  | 
|  | adapter->hw.fc_high_water = fc_high_water_mark; | 
|  | adapter->hw.fc_low_water = fc_high_water_mark - 8; | 
|  | if (adapter->hw.mac_type == e1000_80003es2lan) | 
|  | adapter->hw.fc_pause_time = 0xFFFF; | 
|  | else | 
|  | adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME; | 
|  | adapter->hw.fc_send_xon = 1; | 
|  | adapter->hw.fc = adapter->hw.original_fc; | 
|  |  | 
|  | /* Allow time for pending master requests to run */ | 
|  | e1000_reset_hw(&adapter->hw); | 
|  | if (adapter->hw.mac_type >= e1000_82544) | 
|  | E1000_WRITE_REG(&adapter->hw, WUC, 0); | 
|  |  | 
|  | if (e1000_init_hw(&adapter->hw)) | 
|  | DPRINTK(PROBE, ERR, "Hardware Error\n"); | 
|  | e1000_update_mng_vlan(adapter); | 
|  | /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ | 
|  | E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE); | 
|  |  | 
|  | e1000_reset_adaptive(&adapter->hw); | 
|  | e1000_phy_get_info(&adapter->hw, &adapter->phy_info); | 
|  |  | 
|  | if (!adapter->smart_power_down && | 
|  | (adapter->hw.mac_type == e1000_82571 || | 
|  | adapter->hw.mac_type == e1000_82572)) { | 
|  | uint16_t phy_data = 0; | 
|  | /* speed up time to link by disabling smart power down, ignore | 
|  | * the return value of this function because there is nothing | 
|  | * different we would do if it failed */ | 
|  | e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT, | 
|  | &phy_data); | 
|  | phy_data &= ~IGP02E1000_PM_SPD; | 
|  | e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT, | 
|  | phy_data); | 
|  | } | 
|  |  | 
|  | if ((adapter->en_mng_pt) && | 
|  | (adapter->hw.mac_type >= e1000_82540) && | 
|  | (adapter->hw.mac_type < e1000_82571) && | 
|  | (adapter->hw.media_type == e1000_media_type_copper)) { | 
|  | manc = E1000_READ_REG(&adapter->hw, MANC); | 
|  | manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST); | 
|  | E1000_WRITE_REG(&adapter->hw, MANC, manc); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_probe - Device Initialization Routine | 
|  | * @pdev: PCI device information struct | 
|  | * @ent: entry in e1000_pci_tbl | 
|  | * | 
|  | * Returns 0 on success, negative on failure | 
|  | * | 
|  | * e1000_probe initializes an adapter identified by a pci_dev structure. | 
|  | * The OS initialization, configuring of the adapter private structure, | 
|  | * and a hardware reset occur. | 
|  | **/ | 
|  |  | 
|  | static int __devinit | 
|  | e1000_probe(struct pci_dev *pdev, | 
|  | const struct pci_device_id *ent) | 
|  | { | 
|  | struct net_device *netdev; | 
|  | struct e1000_adapter *adapter; | 
|  | unsigned long mmio_start, mmio_len; | 
|  | unsigned long flash_start, flash_len; | 
|  |  | 
|  | static int cards_found = 0; | 
|  | static int global_quad_port_a = 0; /* global ksp3 port a indication */ | 
|  | int i, err, pci_using_dac; | 
|  | uint16_t eeprom_data = 0; | 
|  | uint16_t eeprom_apme_mask = E1000_EEPROM_APME; | 
|  | if ((err = pci_enable_device(pdev))) | 
|  | return err; | 
|  |  | 
|  | if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) && | 
|  | !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) { | 
|  | pci_using_dac = 1; | 
|  | } else { | 
|  | if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) && | 
|  | (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) { | 
|  | E1000_ERR("No usable DMA configuration, aborting\n"); | 
|  | goto err_dma; | 
|  | } | 
|  | pci_using_dac = 0; | 
|  | } | 
|  |  | 
|  | if ((err = pci_request_regions(pdev, e1000_driver_name))) | 
|  | goto err_pci_reg; | 
|  |  | 
|  | pci_set_master(pdev); | 
|  |  | 
|  | err = -ENOMEM; | 
|  | netdev = alloc_etherdev(sizeof(struct e1000_adapter)); | 
|  | if (!netdev) | 
|  | goto err_alloc_etherdev; | 
|  |  | 
|  | SET_MODULE_OWNER(netdev); | 
|  | SET_NETDEV_DEV(netdev, &pdev->dev); | 
|  |  | 
|  | pci_set_drvdata(pdev, netdev); | 
|  | adapter = netdev_priv(netdev); | 
|  | adapter->netdev = netdev; | 
|  | adapter->pdev = pdev; | 
|  | adapter->hw.back = adapter; | 
|  | adapter->msg_enable = (1 << debug) - 1; | 
|  |  | 
|  | mmio_start = pci_resource_start(pdev, BAR_0); | 
|  | mmio_len = pci_resource_len(pdev, BAR_0); | 
|  |  | 
|  | err = -EIO; | 
|  | adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); | 
|  | if (!adapter->hw.hw_addr) | 
|  | goto err_ioremap; | 
|  |  | 
|  | for (i = BAR_1; i <= BAR_5; i++) { | 
|  | if (pci_resource_len(pdev, i) == 0) | 
|  | continue; | 
|  | if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { | 
|  | adapter->hw.io_base = pci_resource_start(pdev, i); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | netdev->open = &e1000_open; | 
|  | netdev->stop = &e1000_close; | 
|  | netdev->hard_start_xmit = &e1000_xmit_frame; | 
|  | netdev->get_stats = &e1000_get_stats; | 
|  | netdev->set_multicast_list = &e1000_set_multi; | 
|  | netdev->set_mac_address = &e1000_set_mac; | 
|  | netdev->change_mtu = &e1000_change_mtu; | 
|  | netdev->do_ioctl = &e1000_ioctl; | 
|  | e1000_set_ethtool_ops(netdev); | 
|  | netdev->tx_timeout = &e1000_tx_timeout; | 
|  | netdev->watchdog_timeo = 5 * HZ; | 
|  | #ifdef CONFIG_E1000_NAPI | 
|  | netdev->poll = &e1000_clean; | 
|  | netdev->weight = 64; | 
|  | #endif | 
|  | netdev->vlan_rx_register = e1000_vlan_rx_register; | 
|  | netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid; | 
|  | netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid; | 
|  | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  | netdev->poll_controller = e1000_netpoll; | 
|  | #endif | 
|  | strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); | 
|  |  | 
|  | netdev->mem_start = mmio_start; | 
|  | netdev->mem_end = mmio_start + mmio_len; | 
|  | netdev->base_addr = adapter->hw.io_base; | 
|  |  | 
|  | adapter->bd_number = cards_found; | 
|  |  | 
|  | /* setup the private structure */ | 
|  |  | 
|  | if ((err = e1000_sw_init(adapter))) | 
|  | goto err_sw_init; | 
|  |  | 
|  | err = -EIO; | 
|  | /* Flash BAR mapping must happen after e1000_sw_init | 
|  | * because it depends on mac_type */ | 
|  | if ((adapter->hw.mac_type == e1000_ich8lan) && | 
|  | (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { | 
|  | flash_start = pci_resource_start(pdev, 1); | 
|  | flash_len = pci_resource_len(pdev, 1); | 
|  | adapter->hw.flash_address = ioremap(flash_start, flash_len); | 
|  | if (!adapter->hw.flash_address) | 
|  | goto err_flashmap; | 
|  | } | 
|  |  | 
|  | if (e1000_check_phy_reset_block(&adapter->hw)) | 
|  | DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n"); | 
|  |  | 
|  | if (adapter->hw.mac_type >= e1000_82543) { | 
|  | netdev->features = NETIF_F_SG | | 
|  | NETIF_F_HW_CSUM | | 
|  | NETIF_F_HW_VLAN_TX | | 
|  | NETIF_F_HW_VLAN_RX | | 
|  | NETIF_F_HW_VLAN_FILTER; | 
|  | if (adapter->hw.mac_type == e1000_ich8lan) | 
|  | netdev->features &= ~NETIF_F_HW_VLAN_FILTER; | 
|  | } | 
|  |  | 
|  | #ifdef NETIF_F_TSO | 
|  | if ((adapter->hw.mac_type >= e1000_82544) && | 
|  | (adapter->hw.mac_type != e1000_82547)) | 
|  | netdev->features |= NETIF_F_TSO; | 
|  |  | 
|  | #ifdef NETIF_F_TSO6 | 
|  | if (adapter->hw.mac_type > e1000_82547_rev_2) | 
|  | netdev->features |= NETIF_F_TSO6; | 
|  | #endif | 
|  | #endif | 
|  | if (pci_using_dac) | 
|  | netdev->features |= NETIF_F_HIGHDMA; | 
|  |  | 
|  | netdev->features |= NETIF_F_LLTX; | 
|  |  | 
|  | adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw); | 
|  |  | 
|  | /* initialize eeprom parameters */ | 
|  |  | 
|  | if (e1000_init_eeprom_params(&adapter->hw)) { | 
|  | E1000_ERR("EEPROM initialization failed\n"); | 
|  | goto err_eeprom; | 
|  | } | 
|  |  | 
|  | /* before reading the EEPROM, reset the controller to | 
|  | * put the device in a known good starting state */ | 
|  |  | 
|  | e1000_reset_hw(&adapter->hw); | 
|  |  | 
|  | /* make sure the EEPROM is good */ | 
|  |  | 
|  | if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) { | 
|  | DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n"); | 
|  | goto err_eeprom; | 
|  | } | 
|  |  | 
|  | /* copy the MAC address out of the EEPROM */ | 
|  |  | 
|  | if (e1000_read_mac_addr(&adapter->hw)) | 
|  | DPRINTK(PROBE, ERR, "EEPROM Read Error\n"); | 
|  | memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len); | 
|  | memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len); | 
|  |  | 
|  | if (!is_valid_ether_addr(netdev->perm_addr)) { | 
|  | DPRINTK(PROBE, ERR, "Invalid MAC Address\n"); | 
|  | goto err_eeprom; | 
|  | } | 
|  |  | 
|  | e1000_get_bus_info(&adapter->hw); | 
|  |  | 
|  | init_timer(&adapter->tx_fifo_stall_timer); | 
|  | adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall; | 
|  | adapter->tx_fifo_stall_timer.data = (unsigned long) adapter; | 
|  |  | 
|  | init_timer(&adapter->watchdog_timer); | 
|  | adapter->watchdog_timer.function = &e1000_watchdog; | 
|  | adapter->watchdog_timer.data = (unsigned long) adapter; | 
|  |  | 
|  | init_timer(&adapter->phy_info_timer); | 
|  | adapter->phy_info_timer.function = &e1000_update_phy_info; | 
|  | adapter->phy_info_timer.data = (unsigned long) adapter; | 
|  |  | 
|  | INIT_WORK(&adapter->reset_task, e1000_reset_task); | 
|  |  | 
|  | e1000_check_options(adapter); | 
|  |  | 
|  | /* Initial Wake on LAN setting | 
|  | * If APM wake is enabled in the EEPROM, | 
|  | * enable the ACPI Magic Packet filter | 
|  | */ | 
|  |  | 
|  | switch (adapter->hw.mac_type) { | 
|  | case e1000_82542_rev2_0: | 
|  | case e1000_82542_rev2_1: | 
|  | case e1000_82543: | 
|  | break; | 
|  | case e1000_82544: | 
|  | e1000_read_eeprom(&adapter->hw, | 
|  | EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); | 
|  | eeprom_apme_mask = E1000_EEPROM_82544_APM; | 
|  | break; | 
|  | case e1000_ich8lan: | 
|  | e1000_read_eeprom(&adapter->hw, | 
|  | EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data); | 
|  | eeprom_apme_mask = E1000_EEPROM_ICH8_APME; | 
|  | break; | 
|  | case e1000_82546: | 
|  | case e1000_82546_rev_3: | 
|  | case e1000_82571: | 
|  | case e1000_80003es2lan: | 
|  | if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){ | 
|  | e1000_read_eeprom(&adapter->hw, | 
|  | EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); | 
|  | break; | 
|  | } | 
|  | /* Fall Through */ | 
|  | default: | 
|  | e1000_read_eeprom(&adapter->hw, | 
|  | EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); | 
|  | break; | 
|  | } | 
|  | if (eeprom_data & eeprom_apme_mask) | 
|  | adapter->eeprom_wol |= E1000_WUFC_MAG; | 
|  |  | 
|  | /* now that we have the eeprom settings, apply the special cases | 
|  | * where the eeprom may be wrong or the board simply won't support | 
|  | * wake on lan on a particular port */ | 
|  | switch (pdev->device) { | 
|  | case E1000_DEV_ID_82546GB_PCIE: | 
|  | adapter->eeprom_wol = 0; | 
|  | break; | 
|  | case E1000_DEV_ID_82546EB_FIBER: | 
|  | case E1000_DEV_ID_82546GB_FIBER: | 
|  | case E1000_DEV_ID_82571EB_FIBER: | 
|  | /* Wake events only supported on port A for dual fiber | 
|  | * regardless of eeprom setting */ | 
|  | if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1) | 
|  | adapter->eeprom_wol = 0; | 
|  | break; | 
|  | case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: | 
|  | case E1000_DEV_ID_82571EB_QUAD_COPPER: | 
|  | case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE: | 
|  | /* if quad port adapter, disable WoL on all but port A */ | 
|  | if (global_quad_port_a != 0) | 
|  | adapter->eeprom_wol = 0; | 
|  | else | 
|  | adapter->quad_port_a = 1; | 
|  | /* Reset for multiple quad port adapters */ | 
|  | if (++global_quad_port_a == 4) | 
|  | global_quad_port_a = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* initialize the wol settings based on the eeprom settings */ | 
|  | adapter->wol = adapter->eeprom_wol; | 
|  |  | 
|  | /* print bus type/speed/width info */ | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ", | 
|  | ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : | 
|  | (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")), | 
|  | ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" : | 
|  | (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" : | 
|  | (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" : | 
|  | (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" : | 
|  | (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"), | 
|  | ((hw->bus_width == e1000_bus_width_64) ? "64-bit" : | 
|  | (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" : | 
|  | (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" : | 
|  | "32-bit")); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 6; i++) | 
|  | printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':'); | 
|  |  | 
|  | /* reset the hardware with the new settings */ | 
|  | e1000_reset(adapter); | 
|  |  | 
|  | /* If the controller is 82573 and f/w is AMT, do not set | 
|  | * DRV_LOAD until the interface is up.  For all other cases, | 
|  | * let the f/w know that the h/w is now under the control | 
|  | * of the driver. */ | 
|  | if (adapter->hw.mac_type != e1000_82573 || | 
|  | !e1000_check_mng_mode(&adapter->hw)) | 
|  | e1000_get_hw_control(adapter); | 
|  |  | 
|  | strcpy(netdev->name, "eth%d"); | 
|  | if ((err = register_netdev(netdev))) | 
|  | goto err_register; | 
|  |  | 
|  | /* tell the stack to leave us alone until e1000_open() is called */ | 
|  | netif_carrier_off(netdev); | 
|  | netif_stop_queue(netdev); | 
|  |  | 
|  | DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n"); | 
|  |  | 
|  | cards_found++; | 
|  | return 0; | 
|  |  | 
|  | err_register: | 
|  | e1000_release_hw_control(adapter); | 
|  | err_eeprom: | 
|  | if (!e1000_check_phy_reset_block(&adapter->hw)) | 
|  | e1000_phy_hw_reset(&adapter->hw); | 
|  |  | 
|  | if (adapter->hw.flash_address) | 
|  | iounmap(adapter->hw.flash_address); | 
|  | err_flashmap: | 
|  | #ifdef CONFIG_E1000_NAPI | 
|  | for (i = 0; i < adapter->num_rx_queues; i++) | 
|  | dev_put(&adapter->polling_netdev[i]); | 
|  | #endif | 
|  |  | 
|  | kfree(adapter->tx_ring); | 
|  | kfree(adapter->rx_ring); | 
|  | #ifdef CONFIG_E1000_NAPI | 
|  | kfree(adapter->polling_netdev); | 
|  | #endif | 
|  | err_sw_init: | 
|  | iounmap(adapter->hw.hw_addr); | 
|  | err_ioremap: | 
|  | free_netdev(netdev); | 
|  | err_alloc_etherdev: | 
|  | pci_release_regions(pdev); | 
|  | err_pci_reg: | 
|  | err_dma: | 
|  | pci_disable_device(pdev); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_remove - Device Removal Routine | 
|  | * @pdev: PCI device information struct | 
|  | * | 
|  | * e1000_remove is called by the PCI subsystem to alert the driver | 
|  | * that it should release a PCI device.  The could be caused by a | 
|  | * Hot-Plug event, or because the driver is going to be removed from | 
|  | * memory. | 
|  | **/ | 
|  |  | 
|  | static void __devexit | 
|  | e1000_remove(struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | uint32_t manc; | 
|  | #ifdef CONFIG_E1000_NAPI | 
|  | int i; | 
|  | #endif | 
|  |  | 
|  | flush_scheduled_work(); | 
|  |  | 
|  | if (adapter->hw.mac_type >= e1000_82540 && | 
|  | adapter->hw.mac_type < e1000_82571 && | 
|  | adapter->hw.media_type == e1000_media_type_copper) { | 
|  | manc = E1000_READ_REG(&adapter->hw, MANC); | 
|  | if (manc & E1000_MANC_SMBUS_EN) { | 
|  | manc |= E1000_MANC_ARP_EN; | 
|  | E1000_WRITE_REG(&adapter->hw, MANC, manc); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Release control of h/w to f/w.  If f/w is AMT enabled, this | 
|  | * would have already happened in close and is redundant. */ | 
|  | e1000_release_hw_control(adapter); | 
|  |  | 
|  | unregister_netdev(netdev); | 
|  | #ifdef CONFIG_E1000_NAPI | 
|  | for (i = 0; i < adapter->num_rx_queues; i++) | 
|  | dev_put(&adapter->polling_netdev[i]); | 
|  | #endif | 
|  |  | 
|  | if (!e1000_check_phy_reset_block(&adapter->hw)) | 
|  | e1000_phy_hw_reset(&adapter->hw); | 
|  |  | 
|  | kfree(adapter->tx_ring); | 
|  | kfree(adapter->rx_ring); | 
|  | #ifdef CONFIG_E1000_NAPI | 
|  | kfree(adapter->polling_netdev); | 
|  | #endif | 
|  |  | 
|  | iounmap(adapter->hw.hw_addr); | 
|  | if (adapter->hw.flash_address) | 
|  | iounmap(adapter->hw.flash_address); | 
|  | pci_release_regions(pdev); | 
|  |  | 
|  | free_netdev(netdev); | 
|  |  | 
|  | pci_disable_device(pdev); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_sw_init - Initialize general software structures (struct e1000_adapter) | 
|  | * @adapter: board private structure to initialize | 
|  | * | 
|  | * e1000_sw_init initializes the Adapter private data structure. | 
|  | * Fields are initialized based on PCI device information and | 
|  | * OS network device settings (MTU size). | 
|  | **/ | 
|  |  | 
|  | static int __devinit | 
|  | e1000_sw_init(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | #ifdef CONFIG_E1000_NAPI | 
|  | int i; | 
|  | #endif | 
|  |  | 
|  | /* PCI config space info */ | 
|  |  | 
|  | hw->vendor_id = pdev->vendor; | 
|  | hw->device_id = pdev->device; | 
|  | hw->subsystem_vendor_id = pdev->subsystem_vendor; | 
|  | hw->subsystem_id = pdev->subsystem_device; | 
|  |  | 
|  | pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); | 
|  |  | 
|  | pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); | 
|  |  | 
|  | adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; | 
|  | adapter->rx_ps_bsize0 = E1000_RXBUFFER_128; | 
|  | hw->max_frame_size = netdev->mtu + | 
|  | ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; | 
|  | hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; | 
|  |  | 
|  | /* identify the MAC */ | 
|  |  | 
|  | if (e1000_set_mac_type(hw)) { | 
|  | DPRINTK(PROBE, ERR, "Unknown MAC Type\n"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | default: | 
|  | break; | 
|  | case e1000_82541: | 
|  | case e1000_82547: | 
|  | case e1000_82541_rev_2: | 
|  | case e1000_82547_rev_2: | 
|  | hw->phy_init_script = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | e1000_set_media_type(hw); | 
|  |  | 
|  | hw->wait_autoneg_complete = FALSE; | 
|  | hw->tbi_compatibility_en = TRUE; | 
|  | hw->adaptive_ifs = TRUE; | 
|  |  | 
|  | /* Copper options */ | 
|  |  | 
|  | if (hw->media_type == e1000_media_type_copper) { | 
|  | hw->mdix = AUTO_ALL_MODES; | 
|  | hw->disable_polarity_correction = FALSE; | 
|  | hw->master_slave = E1000_MASTER_SLAVE; | 
|  | } | 
|  |  | 
|  | adapter->num_tx_queues = 1; | 
|  | adapter->num_rx_queues = 1; | 
|  |  | 
|  | if (e1000_alloc_queues(adapter)) { | 
|  | DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_E1000_NAPI | 
|  | for (i = 0; i < adapter->num_rx_queues; i++) { | 
|  | adapter->polling_netdev[i].priv = adapter; | 
|  | adapter->polling_netdev[i].poll = &e1000_clean; | 
|  | adapter->polling_netdev[i].weight = 64; | 
|  | dev_hold(&adapter->polling_netdev[i]); | 
|  | set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state); | 
|  | } | 
|  | spin_lock_init(&adapter->tx_queue_lock); | 
|  | #endif | 
|  |  | 
|  | atomic_set(&adapter->irq_sem, 1); | 
|  | spin_lock_init(&adapter->stats_lock); | 
|  |  | 
|  | set_bit(__E1000_DOWN, &adapter->flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_alloc_queues - Allocate memory for all rings | 
|  | * @adapter: board private structure to initialize | 
|  | * | 
|  | * We allocate one ring per queue at run-time since we don't know the | 
|  | * number of queues at compile-time.  The polling_netdev array is | 
|  | * intended for Multiqueue, but should work fine with a single queue. | 
|  | **/ | 
|  |  | 
|  | static int __devinit | 
|  | e1000_alloc_queues(struct e1000_adapter *adapter) | 
|  | { | 
|  | int size; | 
|  |  | 
|  | size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues; | 
|  | adapter->tx_ring = kmalloc(size, GFP_KERNEL); | 
|  | if (!adapter->tx_ring) | 
|  | return -ENOMEM; | 
|  | memset(adapter->tx_ring, 0, size); | 
|  |  | 
|  | size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues; | 
|  | adapter->rx_ring = kmalloc(size, GFP_KERNEL); | 
|  | if (!adapter->rx_ring) { | 
|  | kfree(adapter->tx_ring); | 
|  | return -ENOMEM; | 
|  | } | 
|  | memset(adapter->rx_ring, 0, size); | 
|  |  | 
|  | #ifdef CONFIG_E1000_NAPI | 
|  | size = sizeof(struct net_device) * adapter->num_rx_queues; | 
|  | adapter->polling_netdev = kmalloc(size, GFP_KERNEL); | 
|  | if (!adapter->polling_netdev) { | 
|  | kfree(adapter->tx_ring); | 
|  | kfree(adapter->rx_ring); | 
|  | return -ENOMEM; | 
|  | } | 
|  | memset(adapter->polling_netdev, 0, size); | 
|  | #endif | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_open - Called when a network interface is made active | 
|  | * @netdev: network interface device structure | 
|  | * | 
|  | * Returns 0 on success, negative value on failure | 
|  | * | 
|  | * The open entry point is called when a network interface is made | 
|  | * active by the system (IFF_UP).  At this point all resources needed | 
|  | * for transmit and receive operations are allocated, the interrupt | 
|  | * handler is registered with the OS, the watchdog timer is started, | 
|  | * and the stack is notified that the interface is ready. | 
|  | **/ | 
|  |  | 
|  | static int | 
|  | e1000_open(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | int err; | 
|  |  | 
|  | /* disallow open during test */ | 
|  | if (test_bit(__E1000_TESTING, &adapter->flags)) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* allocate transmit descriptors */ | 
|  | if ((err = e1000_setup_all_tx_resources(adapter))) | 
|  | goto err_setup_tx; | 
|  |  | 
|  | /* allocate receive descriptors */ | 
|  | if ((err = e1000_setup_all_rx_resources(adapter))) | 
|  | goto err_setup_rx; | 
|  |  | 
|  | err = e1000_request_irq(adapter); | 
|  | if (err) | 
|  | goto err_req_irq; | 
|  |  | 
|  | e1000_power_up_phy(adapter); | 
|  |  | 
|  | if ((err = e1000_up(adapter))) | 
|  | goto err_up; | 
|  | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | 
|  | if ((adapter->hw.mng_cookie.status & | 
|  | E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { | 
|  | e1000_update_mng_vlan(adapter); | 
|  | } | 
|  |  | 
|  | /* If AMT is enabled, let the firmware know that the network | 
|  | * interface is now open */ | 
|  | if (adapter->hw.mac_type == e1000_82573 && | 
|  | e1000_check_mng_mode(&adapter->hw)) | 
|  | e1000_get_hw_control(adapter); | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  |  | 
|  | err_up: | 
|  | e1000_power_down_phy(adapter); | 
|  | e1000_free_irq(adapter); | 
|  | err_req_irq: | 
|  | e1000_free_all_rx_resources(adapter); | 
|  | err_setup_rx: | 
|  | e1000_free_all_tx_resources(adapter); | 
|  | err_setup_tx: | 
|  | e1000_reset(adapter); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_close - Disables a network interface | 
|  | * @netdev: network interface device structure | 
|  | * | 
|  | * Returns 0, this is not allowed to fail | 
|  | * | 
|  | * The close entry point is called when an interface is de-activated | 
|  | * by the OS.  The hardware is still under the drivers control, but | 
|  | * needs to be disabled.  A global MAC reset is issued to stop the | 
|  | * hardware, and all transmit and receive resources are freed. | 
|  | **/ | 
|  |  | 
|  | static int | 
|  | e1000_close(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); | 
|  | e1000_down(adapter); | 
|  | e1000_power_down_phy(adapter); | 
|  | e1000_free_irq(adapter); | 
|  |  | 
|  | e1000_free_all_tx_resources(adapter); | 
|  | e1000_free_all_rx_resources(adapter); | 
|  |  | 
|  | /* kill manageability vlan ID if supported, but not if a vlan with | 
|  | * the same ID is registered on the host OS (let 8021q kill it) */ | 
|  | if ((adapter->hw.mng_cookie.status & | 
|  | E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && | 
|  | !(adapter->vlgrp && | 
|  | adapter->vlgrp->vlan_devices[adapter->mng_vlan_id])) { | 
|  | e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); | 
|  | } | 
|  |  | 
|  | /* If AMT is enabled, let the firmware know that the network | 
|  | * interface is now closed */ | 
|  | if (adapter->hw.mac_type == e1000_82573 && | 
|  | e1000_check_mng_mode(&adapter->hw)) | 
|  | e1000_release_hw_control(adapter); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary | 
|  | * @adapter: address of board private structure | 
|  | * @start: address of beginning of memory | 
|  | * @len: length of memory | 
|  | **/ | 
|  | static boolean_t | 
|  | e1000_check_64k_bound(struct e1000_adapter *adapter, | 
|  | void *start, unsigned long len) | 
|  | { | 
|  | unsigned long begin = (unsigned long) start; | 
|  | unsigned long end = begin + len; | 
|  |  | 
|  | /* First rev 82545 and 82546 need to not allow any memory | 
|  | * write location to cross 64k boundary due to errata 23 */ | 
|  | if (adapter->hw.mac_type == e1000_82545 || | 
|  | adapter->hw.mac_type == e1000_82546) { | 
|  | return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE; | 
|  | } | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_setup_tx_resources - allocate Tx resources (Descriptors) | 
|  | * @adapter: board private structure | 
|  | * @txdr:    tx descriptor ring (for a specific queue) to setup | 
|  | * | 
|  | * Return 0 on success, negative on failure | 
|  | **/ | 
|  |  | 
|  | static int | 
|  | e1000_setup_tx_resources(struct e1000_adapter *adapter, | 
|  | struct e1000_tx_ring *txdr) | 
|  | { | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | int size; | 
|  |  | 
|  | size = sizeof(struct e1000_buffer) * txdr->count; | 
|  | txdr->buffer_info = vmalloc(size); | 
|  | if (!txdr->buffer_info) { | 
|  | DPRINTK(PROBE, ERR, | 
|  | "Unable to allocate memory for the transmit descriptor ring\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | memset(txdr->buffer_info, 0, size); | 
|  |  | 
|  | /* round up to nearest 4K */ | 
|  |  | 
|  | txdr->size = txdr->count * sizeof(struct e1000_tx_desc); | 
|  | E1000_ROUNDUP(txdr->size, 4096); | 
|  |  | 
|  | txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); | 
|  | if (!txdr->desc) { | 
|  | setup_tx_desc_die: | 
|  | vfree(txdr->buffer_info); | 
|  | DPRINTK(PROBE, ERR, | 
|  | "Unable to allocate memory for the transmit descriptor ring\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Fix for errata 23, can't cross 64kB boundary */ | 
|  | if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { | 
|  | void *olddesc = txdr->desc; | 
|  | dma_addr_t olddma = txdr->dma; | 
|  | DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes " | 
|  | "at %p\n", txdr->size, txdr->desc); | 
|  | /* Try again, without freeing the previous */ | 
|  | txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); | 
|  | /* Failed allocation, critical failure */ | 
|  | if (!txdr->desc) { | 
|  | pci_free_consistent(pdev, txdr->size, olddesc, olddma); | 
|  | goto setup_tx_desc_die; | 
|  | } | 
|  |  | 
|  | if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { | 
|  | /* give up */ | 
|  | pci_free_consistent(pdev, txdr->size, txdr->desc, | 
|  | txdr->dma); | 
|  | pci_free_consistent(pdev, txdr->size, olddesc, olddma); | 
|  | DPRINTK(PROBE, ERR, | 
|  | "Unable to allocate aligned memory " | 
|  | "for the transmit descriptor ring\n"); | 
|  | vfree(txdr->buffer_info); | 
|  | return -ENOMEM; | 
|  | } else { | 
|  | /* Free old allocation, new allocation was successful */ | 
|  | pci_free_consistent(pdev, txdr->size, olddesc, olddma); | 
|  | } | 
|  | } | 
|  | memset(txdr->desc, 0, txdr->size); | 
|  |  | 
|  | txdr->next_to_use = 0; | 
|  | txdr->next_to_clean = 0; | 
|  | spin_lock_init(&txdr->tx_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_setup_all_tx_resources - wrapper to allocate Tx resources | 
|  | * 				  (Descriptors) for all queues | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * Return 0 on success, negative on failure | 
|  | **/ | 
|  |  | 
|  | int | 
|  | e1000_setup_all_tx_resources(struct e1000_adapter *adapter) | 
|  | { | 
|  | int i, err = 0; | 
|  |  | 
|  | for (i = 0; i < adapter->num_tx_queues; i++) { | 
|  | err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); | 
|  | if (err) { | 
|  | DPRINTK(PROBE, ERR, | 
|  | "Allocation for Tx Queue %u failed\n", i); | 
|  | for (i-- ; i >= 0; i--) | 
|  | e1000_free_tx_resources(adapter, | 
|  | &adapter->tx_ring[i]); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_configure_tx - Configure 8254x Transmit Unit after Reset | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * Configure the Tx unit of the MAC after a reset. | 
|  | **/ | 
|  |  | 
|  | static void | 
|  | e1000_configure_tx(struct e1000_adapter *adapter) | 
|  | { | 
|  | uint64_t tdba; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | uint32_t tdlen, tctl, tipg, tarc; | 
|  | uint32_t ipgr1, ipgr2; | 
|  |  | 
|  | /* Setup the HW Tx Head and Tail descriptor pointers */ | 
|  |  | 
|  | switch (adapter->num_tx_queues) { | 
|  | case 1: | 
|  | default: | 
|  | tdba = adapter->tx_ring[0].dma; | 
|  | tdlen = adapter->tx_ring[0].count * | 
|  | sizeof(struct e1000_tx_desc); | 
|  | E1000_WRITE_REG(hw, TDLEN, tdlen); | 
|  | E1000_WRITE_REG(hw, TDBAH, (tdba >> 32)); | 
|  | E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL)); | 
|  | E1000_WRITE_REG(hw, TDT, 0); | 
|  | E1000_WRITE_REG(hw, TDH, 0); | 
|  | adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH); | 
|  | adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Set the default values for the Tx Inter Packet Gap timer */ | 
|  |  | 
|  | if (hw->media_type == e1000_media_type_fiber || | 
|  | hw->media_type == e1000_media_type_internal_serdes) | 
|  | tipg = DEFAULT_82543_TIPG_IPGT_FIBER; | 
|  | else | 
|  | tipg = DEFAULT_82543_TIPG_IPGT_COPPER; | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82542_rev2_0: | 
|  | case e1000_82542_rev2_1: | 
|  | tipg = DEFAULT_82542_TIPG_IPGT; | 
|  | ipgr1 = DEFAULT_82542_TIPG_IPGR1; | 
|  | ipgr2 = DEFAULT_82542_TIPG_IPGR2; | 
|  | break; | 
|  | case e1000_80003es2lan: | 
|  | ipgr1 = DEFAULT_82543_TIPG_IPGR1; | 
|  | ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; | 
|  | break; | 
|  | default: | 
|  | ipgr1 = DEFAULT_82543_TIPG_IPGR1; | 
|  | ipgr2 = DEFAULT_82543_TIPG_IPGR2; | 
|  | break; | 
|  | } | 
|  | tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; | 
|  | tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; | 
|  | E1000_WRITE_REG(hw, TIPG, tipg); | 
|  |  | 
|  | /* Set the Tx Interrupt Delay register */ | 
|  |  | 
|  | E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay); | 
|  | if (hw->mac_type >= e1000_82540) | 
|  | E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay); | 
|  |  | 
|  | /* Program the Transmit Control Register */ | 
|  |  | 
|  | tctl = E1000_READ_REG(hw, TCTL); | 
|  | tctl &= ~E1000_TCTL_CT; | 
|  | tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | | 
|  | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); | 
|  |  | 
|  | if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) { | 
|  | tarc = E1000_READ_REG(hw, TARC0); | 
|  | /* set the speed mode bit, we'll clear it if we're not at | 
|  | * gigabit link later */ | 
|  | tarc |= (1 << 21); | 
|  | E1000_WRITE_REG(hw, TARC0, tarc); | 
|  | } else if (hw->mac_type == e1000_80003es2lan) { | 
|  | tarc = E1000_READ_REG(hw, TARC0); | 
|  | tarc |= 1; | 
|  | E1000_WRITE_REG(hw, TARC0, tarc); | 
|  | tarc = E1000_READ_REG(hw, TARC1); | 
|  | tarc |= 1; | 
|  | E1000_WRITE_REG(hw, TARC1, tarc); | 
|  | } | 
|  |  | 
|  | e1000_config_collision_dist(hw); | 
|  |  | 
|  | /* Setup Transmit Descriptor Settings for eop descriptor */ | 
|  | adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; | 
|  |  | 
|  | /* only set IDE if we are delaying interrupts using the timers */ | 
|  | if (adapter->tx_int_delay) | 
|  | adapter->txd_cmd |= E1000_TXD_CMD_IDE; | 
|  |  | 
|  | if (hw->mac_type < e1000_82543) | 
|  | adapter->txd_cmd |= E1000_TXD_CMD_RPS; | 
|  | else | 
|  | adapter->txd_cmd |= E1000_TXD_CMD_RS; | 
|  |  | 
|  | /* Cache if we're 82544 running in PCI-X because we'll | 
|  | * need this to apply a workaround later in the send path. */ | 
|  | if (hw->mac_type == e1000_82544 && | 
|  | hw->bus_type == e1000_bus_type_pcix) | 
|  | adapter->pcix_82544 = 1; | 
|  |  | 
|  | E1000_WRITE_REG(hw, TCTL, tctl); | 
|  |  | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_setup_rx_resources - allocate Rx resources (Descriptors) | 
|  | * @adapter: board private structure | 
|  | * @rxdr:    rx descriptor ring (for a specific queue) to setup | 
|  | * | 
|  | * Returns 0 on success, negative on failure | 
|  | **/ | 
|  |  | 
|  | static int | 
|  | e1000_setup_rx_resources(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rxdr) | 
|  | { | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | int size, desc_len; | 
|  |  | 
|  | size = sizeof(struct e1000_buffer) * rxdr->count; | 
|  | rxdr->buffer_info = vmalloc(size); | 
|  | if (!rxdr->buffer_info) { | 
|  | DPRINTK(PROBE, ERR, | 
|  | "Unable to allocate memory for the receive descriptor ring\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | memset(rxdr->buffer_info, 0, size); | 
|  |  | 
|  | size = sizeof(struct e1000_ps_page) * rxdr->count; | 
|  | rxdr->ps_page = kmalloc(size, GFP_KERNEL); | 
|  | if (!rxdr->ps_page) { | 
|  | vfree(rxdr->buffer_info); | 
|  | DPRINTK(PROBE, ERR, | 
|  | "Unable to allocate memory for the receive descriptor ring\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | memset(rxdr->ps_page, 0, size); | 
|  |  | 
|  | size = sizeof(struct e1000_ps_page_dma) * rxdr->count; | 
|  | rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL); | 
|  | if (!rxdr->ps_page_dma) { | 
|  | vfree(rxdr->buffer_info); | 
|  | kfree(rxdr->ps_page); | 
|  | DPRINTK(PROBE, ERR, | 
|  | "Unable to allocate memory for the receive descriptor ring\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | memset(rxdr->ps_page_dma, 0, size); | 
|  |  | 
|  | if (adapter->hw.mac_type <= e1000_82547_rev_2) | 
|  | desc_len = sizeof(struct e1000_rx_desc); | 
|  | else | 
|  | desc_len = sizeof(union e1000_rx_desc_packet_split); | 
|  |  | 
|  | /* Round up to nearest 4K */ | 
|  |  | 
|  | rxdr->size = rxdr->count * desc_len; | 
|  | E1000_ROUNDUP(rxdr->size, 4096); | 
|  |  | 
|  | rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); | 
|  |  | 
|  | if (!rxdr->desc) { | 
|  | DPRINTK(PROBE, ERR, | 
|  | "Unable to allocate memory for the receive descriptor ring\n"); | 
|  | setup_rx_desc_die: | 
|  | vfree(rxdr->buffer_info); | 
|  | kfree(rxdr->ps_page); | 
|  | kfree(rxdr->ps_page_dma); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Fix for errata 23, can't cross 64kB boundary */ | 
|  | if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { | 
|  | void *olddesc = rxdr->desc; | 
|  | dma_addr_t olddma = rxdr->dma; | 
|  | DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes " | 
|  | "at %p\n", rxdr->size, rxdr->desc); | 
|  | /* Try again, without freeing the previous */ | 
|  | rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); | 
|  | /* Failed allocation, critical failure */ | 
|  | if (!rxdr->desc) { | 
|  | pci_free_consistent(pdev, rxdr->size, olddesc, olddma); | 
|  | DPRINTK(PROBE, ERR, | 
|  | "Unable to allocate memory " | 
|  | "for the receive descriptor ring\n"); | 
|  | goto setup_rx_desc_die; | 
|  | } | 
|  |  | 
|  | if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { | 
|  | /* give up */ | 
|  | pci_free_consistent(pdev, rxdr->size, rxdr->desc, | 
|  | rxdr->dma); | 
|  | pci_free_consistent(pdev, rxdr->size, olddesc, olddma); | 
|  | DPRINTK(PROBE, ERR, | 
|  | "Unable to allocate aligned memory " | 
|  | "for the receive descriptor ring\n"); | 
|  | goto setup_rx_desc_die; | 
|  | } else { | 
|  | /* Free old allocation, new allocation was successful */ | 
|  | pci_free_consistent(pdev, rxdr->size, olddesc, olddma); | 
|  | } | 
|  | } | 
|  | memset(rxdr->desc, 0, rxdr->size); | 
|  |  | 
|  | rxdr->next_to_clean = 0; | 
|  | rxdr->next_to_use = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_setup_all_rx_resources - wrapper to allocate Rx resources | 
|  | * 				  (Descriptors) for all queues | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * Return 0 on success, negative on failure | 
|  | **/ | 
|  |  | 
|  | int | 
|  | e1000_setup_all_rx_resources(struct e1000_adapter *adapter) | 
|  | { | 
|  | int i, err = 0; | 
|  |  | 
|  | for (i = 0; i < adapter->num_rx_queues; i++) { | 
|  | err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); | 
|  | if (err) { | 
|  | DPRINTK(PROBE, ERR, | 
|  | "Allocation for Rx Queue %u failed\n", i); | 
|  | for (i-- ; i >= 0; i--) | 
|  | e1000_free_rx_resources(adapter, | 
|  | &adapter->rx_ring[i]); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_setup_rctl - configure the receive control registers | 
|  | * @adapter: Board private structure | 
|  | **/ | 
|  | #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ | 
|  | (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) | 
|  | static void | 
|  | e1000_setup_rctl(struct e1000_adapter *adapter) | 
|  | { | 
|  | uint32_t rctl, rfctl; | 
|  | uint32_t psrctl = 0; | 
|  | #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT | 
|  | uint32_t pages = 0; | 
|  | #endif | 
|  |  | 
|  | rctl = E1000_READ_REG(&adapter->hw, RCTL); | 
|  |  | 
|  | rctl &= ~(3 << E1000_RCTL_MO_SHIFT); | 
|  |  | 
|  | rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | | 
|  | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | | 
|  | (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT); | 
|  |  | 
|  | if (adapter->hw.tbi_compatibility_on == 1) | 
|  | rctl |= E1000_RCTL_SBP; | 
|  | else | 
|  | rctl &= ~E1000_RCTL_SBP; | 
|  |  | 
|  | if (adapter->netdev->mtu <= ETH_DATA_LEN) | 
|  | rctl &= ~E1000_RCTL_LPE; | 
|  | else | 
|  | rctl |= E1000_RCTL_LPE; | 
|  |  | 
|  | /* Setup buffer sizes */ | 
|  | rctl &= ~E1000_RCTL_SZ_4096; | 
|  | rctl |= E1000_RCTL_BSEX; | 
|  | switch (adapter->rx_buffer_len) { | 
|  | case E1000_RXBUFFER_256: | 
|  | rctl |= E1000_RCTL_SZ_256; | 
|  | rctl &= ~E1000_RCTL_BSEX; | 
|  | break; | 
|  | case E1000_RXBUFFER_512: | 
|  | rctl |= E1000_RCTL_SZ_512; | 
|  | rctl &= ~E1000_RCTL_BSEX; | 
|  | break; | 
|  | case E1000_RXBUFFER_1024: | 
|  | rctl |= E1000_RCTL_SZ_1024; | 
|  | rctl &= ~E1000_RCTL_BSEX; | 
|  | break; | 
|  | case E1000_RXBUFFER_2048: | 
|  | default: | 
|  | rctl |= E1000_RCTL_SZ_2048; | 
|  | rctl &= ~E1000_RCTL_BSEX; | 
|  | break; | 
|  | case E1000_RXBUFFER_4096: | 
|  | rctl |= E1000_RCTL_SZ_4096; | 
|  | break; | 
|  | case E1000_RXBUFFER_8192: | 
|  | rctl |= E1000_RCTL_SZ_8192; | 
|  | break; | 
|  | case E1000_RXBUFFER_16384: | 
|  | rctl |= E1000_RCTL_SZ_16384; | 
|  | break; | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT | 
|  | /* 82571 and greater support packet-split where the protocol | 
|  | * header is placed in skb->data and the packet data is | 
|  | * placed in pages hanging off of skb_shinfo(skb)->nr_frags. | 
|  | * In the case of a non-split, skb->data is linearly filled, | 
|  | * followed by the page buffers.  Therefore, skb->data is | 
|  | * sized to hold the largest protocol header. | 
|  | */ | 
|  | /* allocations using alloc_page take too long for regular MTU | 
|  | * so only enable packet split for jumbo frames */ | 
|  | pages = PAGE_USE_COUNT(adapter->netdev->mtu); | 
|  | if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) && | 
|  | PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE)) | 
|  | adapter->rx_ps_pages = pages; | 
|  | else | 
|  | adapter->rx_ps_pages = 0; | 
|  | #endif | 
|  | if (adapter->rx_ps_pages) { | 
|  | /* Configure extra packet-split registers */ | 
|  | rfctl = E1000_READ_REG(&adapter->hw, RFCTL); | 
|  | rfctl |= E1000_RFCTL_EXTEN; | 
|  | /* disable packet split support for IPv6 extension headers, | 
|  | * because some malformed IPv6 headers can hang the RX */ | 
|  | rfctl |= (E1000_RFCTL_IPV6_EX_DIS | | 
|  | E1000_RFCTL_NEW_IPV6_EXT_DIS); | 
|  |  | 
|  | E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl); | 
|  |  | 
|  | rctl |= E1000_RCTL_DTYP_PS; | 
|  |  | 
|  | psrctl |= adapter->rx_ps_bsize0 >> | 
|  | E1000_PSRCTL_BSIZE0_SHIFT; | 
|  |  | 
|  | switch (adapter->rx_ps_pages) { | 
|  | case 3: | 
|  | psrctl |= PAGE_SIZE << | 
|  | E1000_PSRCTL_BSIZE3_SHIFT; | 
|  | case 2: | 
|  | psrctl |= PAGE_SIZE << | 
|  | E1000_PSRCTL_BSIZE2_SHIFT; | 
|  | case 1: | 
|  | psrctl |= PAGE_SIZE >> | 
|  | E1000_PSRCTL_BSIZE1_SHIFT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl); | 
|  | } | 
|  |  | 
|  | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_configure_rx - Configure 8254x Receive Unit after Reset | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * Configure the Rx unit of the MAC after a reset. | 
|  | **/ | 
|  |  | 
|  | static void | 
|  | e1000_configure_rx(struct e1000_adapter *adapter) | 
|  | { | 
|  | uint64_t rdba; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | uint32_t rdlen, rctl, rxcsum, ctrl_ext; | 
|  |  | 
|  | if (adapter->rx_ps_pages) { | 
|  | /* this is a 32 byte descriptor */ | 
|  | rdlen = adapter->rx_ring[0].count * | 
|  | sizeof(union e1000_rx_desc_packet_split); | 
|  | adapter->clean_rx = e1000_clean_rx_irq_ps; | 
|  | adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; | 
|  | } else { | 
|  | rdlen = adapter->rx_ring[0].count * | 
|  | sizeof(struct e1000_rx_desc); | 
|  | adapter->clean_rx = e1000_clean_rx_irq; | 
|  | adapter->alloc_rx_buf = e1000_alloc_rx_buffers; | 
|  | } | 
|  |  | 
|  | /* disable receives while setting up the descriptors */ | 
|  | rctl = E1000_READ_REG(hw, RCTL); | 
|  | E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN); | 
|  |  | 
|  | /* set the Receive Delay Timer Register */ | 
|  | E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay); | 
|  |  | 
|  | if (hw->mac_type >= e1000_82540) { | 
|  | E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay); | 
|  | if (adapter->itr_setting != 0) | 
|  | E1000_WRITE_REG(hw, ITR, | 
|  | 1000000000 / (adapter->itr * 256)); | 
|  | } | 
|  |  | 
|  | if (hw->mac_type >= e1000_82571) { | 
|  | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); | 
|  | /* Reset delay timers after every interrupt */ | 
|  | ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR; | 
|  | #ifdef CONFIG_E1000_NAPI | 
|  | /* Auto-Mask interrupts upon ICR access */ | 
|  | ctrl_ext |= E1000_CTRL_EXT_IAME; | 
|  | E1000_WRITE_REG(hw, IAM, 0xffffffff); | 
|  | #endif | 
|  | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  | } | 
|  |  | 
|  | /* Setup the HW Rx Head and Tail Descriptor Pointers and | 
|  | * the Base and Length of the Rx Descriptor Ring */ | 
|  | switch (adapter->num_rx_queues) { | 
|  | case 1: | 
|  | default: | 
|  | rdba = adapter->rx_ring[0].dma; | 
|  | E1000_WRITE_REG(hw, RDLEN, rdlen); | 
|  | E1000_WRITE_REG(hw, RDBAH, (rdba >> 32)); | 
|  | E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL)); | 
|  | E1000_WRITE_REG(hw, RDT, 0); | 
|  | E1000_WRITE_REG(hw, RDH, 0); | 
|  | adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH); | 
|  | adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Enable 82543 Receive Checksum Offload for TCP and UDP */ | 
|  | if (hw->mac_type >= e1000_82543) { | 
|  | rxcsum = E1000_READ_REG(hw, RXCSUM); | 
|  | if (adapter->rx_csum == TRUE) { | 
|  | rxcsum |= E1000_RXCSUM_TUOFL; | 
|  |  | 
|  | /* Enable 82571 IPv4 payload checksum for UDP fragments | 
|  | * Must be used in conjunction with packet-split. */ | 
|  | if ((hw->mac_type >= e1000_82571) && | 
|  | (adapter->rx_ps_pages)) { | 
|  | rxcsum |= E1000_RXCSUM_IPPCSE; | 
|  | } | 
|  | } else { | 
|  | rxcsum &= ~E1000_RXCSUM_TUOFL; | 
|  | /* don't need to clear IPPCSE as it defaults to 0 */ | 
|  | } | 
|  | E1000_WRITE_REG(hw, RXCSUM, rxcsum); | 
|  | } | 
|  |  | 
|  | /* enable early receives on 82573, only takes effect if using > 2048 | 
|  | * byte total frame size.  for example only for jumbo frames */ | 
|  | #define E1000_ERT_2048 0x100 | 
|  | if (hw->mac_type == e1000_82573) | 
|  | E1000_WRITE_REG(hw, ERT, E1000_ERT_2048); | 
|  |  | 
|  | /* Enable Receives */ | 
|  | E1000_WRITE_REG(hw, RCTL, rctl); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_free_tx_resources - Free Tx Resources per Queue | 
|  | * @adapter: board private structure | 
|  | * @tx_ring: Tx descriptor ring for a specific queue | 
|  | * | 
|  | * Free all transmit software resources | 
|  | **/ | 
|  |  | 
|  | static void | 
|  | e1000_free_tx_resources(struct e1000_adapter *adapter, | 
|  | struct e1000_tx_ring *tx_ring) | 
|  | { | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  |  | 
|  | e1000_clean_tx_ring(adapter, tx_ring); | 
|  |  | 
|  | vfree(tx_ring->buffer_info); | 
|  | tx_ring->buffer_info = NULL; | 
|  |  | 
|  | pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma); | 
|  |  | 
|  | tx_ring->desc = NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_free_all_tx_resources - Free Tx Resources for All Queues | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * Free all transmit software resources | 
|  | **/ | 
|  |  | 
|  | void | 
|  | e1000_free_all_tx_resources(struct e1000_adapter *adapter) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < adapter->num_tx_queues; i++) | 
|  | e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, | 
|  | struct e1000_buffer *buffer_info) | 
|  | { | 
|  | if (buffer_info->dma) { | 
|  | pci_unmap_page(adapter->pdev, | 
|  | buffer_info->dma, | 
|  | buffer_info->length, | 
|  | PCI_DMA_TODEVICE); | 
|  | buffer_info->dma = 0; | 
|  | } | 
|  | if (buffer_info->skb) { | 
|  | dev_kfree_skb_any(buffer_info->skb); | 
|  | buffer_info->skb = NULL; | 
|  | } | 
|  | /* buffer_info must be completely set up in the transmit path */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_clean_tx_ring - Free Tx Buffers | 
|  | * @adapter: board private structure | 
|  | * @tx_ring: ring to be cleaned | 
|  | **/ | 
|  |  | 
|  | static void | 
|  | e1000_clean_tx_ring(struct e1000_adapter *adapter, | 
|  | struct e1000_tx_ring *tx_ring) | 
|  | { | 
|  | struct e1000_buffer *buffer_info; | 
|  | unsigned long size; | 
|  | unsigned int i; | 
|  |  | 
|  | /* Free all the Tx ring sk_buffs */ | 
|  |  | 
|  | for (i = 0; i < tx_ring->count; i++) { | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | e1000_unmap_and_free_tx_resource(adapter, buffer_info); | 
|  | } | 
|  |  | 
|  | size = sizeof(struct e1000_buffer) * tx_ring->count; | 
|  | memset(tx_ring->buffer_info, 0, size); | 
|  |  | 
|  | /* Zero out the descriptor ring */ | 
|  |  | 
|  | memset(tx_ring->desc, 0, tx_ring->size); | 
|  |  | 
|  | tx_ring->next_to_use = 0; | 
|  | tx_ring->next_to_clean = 0; | 
|  | tx_ring->last_tx_tso = 0; | 
|  |  | 
|  | writel(0, adapter->hw.hw_addr + tx_ring->tdh); | 
|  | writel(0, adapter->hw.hw_addr + tx_ring->tdt); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_clean_all_tx_rings - Free Tx Buffers for all queues | 
|  | * @adapter: board private structure | 
|  | **/ | 
|  |  | 
|  | static void | 
|  | e1000_clean_all_tx_rings(struct e1000_adapter *adapter) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < adapter->num_tx_queues; i++) | 
|  | e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_free_rx_resources - Free Rx Resources | 
|  | * @adapter: board private structure | 
|  | * @rx_ring: ring to clean the resources from | 
|  | * | 
|  | * Free all receive software resources | 
|  | **/ | 
|  |  | 
|  | static void | 
|  | e1000_free_rx_resources(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rx_ring) | 
|  | { | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  |  | 
|  | e1000_clean_rx_ring(adapter, rx_ring); | 
|  |  | 
|  | vfree(rx_ring->buffer_info); | 
|  | rx_ring->buffer_info = NULL; | 
|  | kfree(rx_ring->ps_page); | 
|  | rx_ring->ps_page = NULL; | 
|  | kfree(rx_ring->ps_page_dma); | 
|  | rx_ring->ps_page_dma = NULL; | 
|  |  | 
|  | pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma); | 
|  |  | 
|  | rx_ring->desc = NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_free_all_rx_resources - Free Rx Resources for All Queues | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * Free all receive software resources | 
|  | **/ | 
|  |  | 
|  | void | 
|  | e1000_free_all_rx_resources(struct e1000_adapter *adapter) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < adapter->num_rx_queues; i++) | 
|  | e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_clean_rx_ring - Free Rx Buffers per Queue | 
|  | * @adapter: board private structure | 
|  | * @rx_ring: ring to free buffers from | 
|  | **/ | 
|  |  | 
|  | static void | 
|  | e1000_clean_rx_ring(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rx_ring) | 
|  | { | 
|  | struct e1000_buffer *buffer_info; | 
|  | struct e1000_ps_page *ps_page; | 
|  | struct e1000_ps_page_dma *ps_page_dma; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | unsigned long size; | 
|  | unsigned int i, j; | 
|  |  | 
|  | /* Free all the Rx ring sk_buffs */ | 
|  | for (i = 0; i < rx_ring->count; i++) { | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  | if (buffer_info->skb) { | 
|  | pci_unmap_single(pdev, | 
|  | buffer_info->dma, | 
|  | buffer_info->length, | 
|  | PCI_DMA_FROMDEVICE); | 
|  |  | 
|  | dev_kfree_skb(buffer_info->skb); | 
|  | buffer_info->skb = NULL; | 
|  | } | 
|  | ps_page = &rx_ring->ps_page[i]; | 
|  | ps_page_dma = &rx_ring->ps_page_dma[i]; | 
|  | for (j = 0; j < adapter->rx_ps_pages; j++) { | 
|  | if (!ps_page->ps_page[j]) break; | 
|  | pci_unmap_page(pdev, | 
|  | ps_page_dma->ps_page_dma[j], | 
|  | PAGE_SIZE, PCI_DMA_FROMDEVICE); | 
|  | ps_page_dma->ps_page_dma[j] = 0; | 
|  | put_page(ps_page->ps_page[j]); | 
|  | ps_page->ps_page[j] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | size = sizeof(struct e1000_buffer) * rx_ring->count; | 
|  | memset(rx_ring->buffer_info, 0, size); | 
|  | size = sizeof(struct e1000_ps_page) * rx_ring->count; | 
|  | memset(rx_ring->ps_page, 0, size); | 
|  | size = sizeof(struct e1000_ps_page_dma) * rx_ring->count; | 
|  | memset(rx_ring->ps_page_dma, 0, size); | 
|  |  | 
|  | /* Zero out the descriptor ring */ | 
|  |  | 
|  | memset(rx_ring->desc, 0, rx_ring->size); | 
|  |  | 
|  | rx_ring->next_to_clean = 0; | 
|  | rx_ring->next_to_use = 0; | 
|  |  | 
|  | writel(0, adapter->hw.hw_addr + rx_ring->rdh); | 
|  | writel(0, adapter->hw.hw_addr + rx_ring->rdt); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_clean_all_rx_rings - Free Rx Buffers for all queues | 
|  | * @adapter: board private structure | 
|  | **/ | 
|  |  | 
|  | static void | 
|  | e1000_clean_all_rx_rings(struct e1000_adapter *adapter) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < adapter->num_rx_queues; i++) | 
|  | e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); | 
|  | } | 
|  |  | 
|  | /* The 82542 2.0 (revision 2) needs to have the receive unit in reset | 
|  | * and memory write and invalidate disabled for certain operations | 
|  | */ | 
|  | static void | 
|  | e1000_enter_82542_rst(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | uint32_t rctl; | 
|  |  | 
|  | e1000_pci_clear_mwi(&adapter->hw); | 
|  |  | 
|  | rctl = E1000_READ_REG(&adapter->hw, RCTL); | 
|  | rctl |= E1000_RCTL_RST; | 
|  | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | 
|  | E1000_WRITE_FLUSH(&adapter->hw); | 
|  | mdelay(5); | 
|  |  | 
|  | if (netif_running(netdev)) | 
|  | e1000_clean_all_rx_rings(adapter); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_leave_82542_rst(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | uint32_t rctl; | 
|  |  | 
|  | rctl = E1000_READ_REG(&adapter->hw, RCTL); | 
|  | rctl &= ~E1000_RCTL_RST; | 
|  | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | 
|  | E1000_WRITE_FLUSH(&adapter->hw); | 
|  | mdelay(5); | 
|  |  | 
|  | if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE) | 
|  | e1000_pci_set_mwi(&adapter->hw); | 
|  |  | 
|  | if (netif_running(netdev)) { | 
|  | /* No need to loop, because 82542 supports only 1 queue */ | 
|  | struct e1000_rx_ring *ring = &adapter->rx_ring[0]; | 
|  | e1000_configure_rx(adapter); | 
|  | adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_set_mac - Change the Ethernet Address of the NIC | 
|  | * @netdev: network interface device structure | 
|  | * @p: pointer to an address structure | 
|  | * | 
|  | * Returns 0 on success, negative on failure | 
|  | **/ | 
|  |  | 
|  | static int | 
|  | e1000_set_mac(struct net_device *netdev, void *p) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct sockaddr *addr = p; | 
|  |  | 
|  | if (!is_valid_ether_addr(addr->sa_data)) | 
|  | return -EADDRNOTAVAIL; | 
|  |  | 
|  | /* 82542 2.0 needs to be in reset to write receive address registers */ | 
|  |  | 
|  | if (adapter->hw.mac_type == e1000_82542_rev2_0) | 
|  | e1000_enter_82542_rst(adapter); | 
|  |  | 
|  | memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); | 
|  | memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len); | 
|  |  | 
|  | e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0); | 
|  |  | 
|  | /* With 82571 controllers, LAA may be overwritten (with the default) | 
|  | * due to controller reset from the other port. */ | 
|  | if (adapter->hw.mac_type == e1000_82571) { | 
|  | /* activate the work around */ | 
|  | adapter->hw.laa_is_present = 1; | 
|  |  | 
|  | /* Hold a copy of the LAA in RAR[14] This is done so that | 
|  | * between the time RAR[0] gets clobbered  and the time it | 
|  | * gets fixed (in e1000_watchdog), the actual LAA is in one | 
|  | * of the RARs and no incoming packets directed to this port | 
|  | * are dropped. Eventaully the LAA will be in RAR[0] and | 
|  | * RAR[14] */ | 
|  | e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, | 
|  | E1000_RAR_ENTRIES - 1); | 
|  | } | 
|  |  | 
|  | if (adapter->hw.mac_type == e1000_82542_rev2_0) | 
|  | e1000_leave_82542_rst(adapter); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_set_multi - Multicast and Promiscuous mode set | 
|  | * @netdev: network interface device structure | 
|  | * | 
|  | * The set_multi entry point is called whenever the multicast address | 
|  | * list or the network interface flags are updated.  This routine is | 
|  | * responsible for configuring the hardware for proper multicast, | 
|  | * promiscuous mode, and all-multi behavior. | 
|  | **/ | 
|  |  | 
|  | static void | 
|  | e1000_set_multi(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct dev_mc_list *mc_ptr; | 
|  | uint32_t rctl; | 
|  | uint32_t hash_value; | 
|  | int i, rar_entries = E1000_RAR_ENTRIES; | 
|  | int mta_reg_count = (hw->mac_type == e1000_ich8lan) ? | 
|  | E1000_NUM_MTA_REGISTERS_ICH8LAN : | 
|  | E1000_NUM_MTA_REGISTERS; | 
|  |  | 
|  | if (adapter->hw.mac_type == e1000_ich8lan) | 
|  | rar_entries = E1000_RAR_ENTRIES_ICH8LAN; | 
|  |  | 
|  | /* reserve RAR[14] for LAA over-write work-around */ | 
|  | if (adapter->hw.mac_type == e1000_82571) | 
|  | rar_entries--; | 
|  |  | 
|  | /* Check for Promiscuous and All Multicast modes */ | 
|  |  | 
|  | rctl = E1000_READ_REG(hw, RCTL); | 
|  |  | 
|  | if (netdev->flags & IFF_PROMISC) { | 
|  | rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); | 
|  | } else if (netdev->flags & IFF_ALLMULTI) { | 
|  | rctl |= E1000_RCTL_MPE; | 
|  | rctl &= ~E1000_RCTL_UPE; | 
|  | } else { | 
|  | rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); | 
|  | } | 
|  |  | 
|  | E1000_WRITE_REG(hw, RCTL, rctl); | 
|  |  | 
|  | /* 82542 2.0 needs to be in reset to write receive address registers */ | 
|  |  | 
|  | if (hw->mac_type == e1000_82542_rev2_0) | 
|  | e1000_enter_82542_rst(adapter); | 
|  |  | 
|  | /* load the first 14 multicast address into the exact filters 1-14 | 
|  | * RAR 0 is used for the station MAC adddress | 
|  | * if there are not 14 addresses, go ahead and clear the filters | 
|  | * -- with 82571 controllers only 0-13 entries are filled here | 
|  | */ | 
|  | mc_ptr = netdev->mc_list; | 
|  |  | 
|  | for (i = 1; i < rar_entries; i++) { | 
|  | if (mc_ptr) { | 
|  | e1000_rar_set(hw, mc_ptr->dmi_addr, i); | 
|  | mc_ptr = mc_ptr->next; | 
|  | } else { | 
|  | E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* clear the old settings from the multicast hash table */ | 
|  |  | 
|  | for (i = 0; i < mta_reg_count; i++) { | 
|  | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  | } | 
|  |  | 
|  | /* load any remaining addresses into the hash table */ | 
|  |  | 
|  | for (; mc_ptr; mc_ptr = mc_ptr->next) { | 
|  | hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr); | 
|  | e1000_mta_set(hw, hash_value); | 
|  | } | 
|  |  | 
|  | if (hw->mac_type == e1000_82542_rev2_0) | 
|  | e1000_leave_82542_rst(adapter); | 
|  | } | 
|  |  | 
|  | /* Need to wait a few seconds after link up to get diagnostic information from | 
|  | * the phy */ | 
|  |  | 
|  | static void | 
|  | e1000_update_phy_info(unsigned long data) | 
|  | { | 
|  | struct e1000_adapter *adapter = (struct e1000_adapter *) data; | 
|  | e1000_phy_get_info(&adapter->hw, &adapter->phy_info); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_82547_tx_fifo_stall - Timer Call-back | 
|  | * @data: pointer to adapter cast into an unsigned long | 
|  | **/ | 
|  |  | 
|  | static void | 
|  | e1000_82547_tx_fifo_stall(unsigned long data) | 
|  | { | 
|  | struct e1000_adapter *adapter = (struct e1000_adapter *) data; | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | uint32_t tctl; | 
|  |  | 
|  | if (atomic_read(&adapter->tx_fifo_stall)) { | 
|  | if ((E1000_READ_REG(&adapter->hw, TDT) == | 
|  | E1000_READ_REG(&adapter->hw, TDH)) && | 
|  | (E1000_READ_REG(&adapter->hw, TDFT) == | 
|  | E1000_READ_REG(&adapter->hw, TDFH)) && | 
|  | (E1000_READ_REG(&adapter->hw, TDFTS) == | 
|  | E1000_READ_REG(&adapter->hw, TDFHS))) { | 
|  | tctl = E1000_READ_REG(&adapter->hw, TCTL); | 
|  | E1000_WRITE_REG(&adapter->hw, TCTL, | 
|  | tctl & ~E1000_TCTL_EN); | 
|  | E1000_WRITE_REG(&adapter->hw, TDFT, | 
|  | adapter->tx_head_addr); | 
|  | E1000_WRITE_REG(&adapter->hw, TDFH, | 
|  | adapter->tx_head_addr); | 
|  | E1000_WRITE_REG(&adapter->hw, TDFTS, | 
|  | adapter->tx_head_addr); | 
|  | E1000_WRITE_REG(&adapter->hw, TDFHS, | 
|  | adapter->tx_head_addr); | 
|  | E1000_WRITE_REG(&adapter->hw, TCTL, tctl); | 
|  | E1000_WRITE_FLUSH(&adapter->hw); | 
|  |  | 
|  | adapter->tx_fifo_head = 0; | 
|  | atomic_set(&adapter->tx_fifo_stall, 0); | 
|  | netif_wake_queue(netdev); | 
|  | } else { | 
|  | mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_watchdog - Timer Call-back | 
|  | * @data: pointer to adapter cast into an unsigned long | 
|  | **/ | 
|  | static void | 
|  | e1000_watchdog(unsigned long data) | 
|  | { | 
|  | struct e1000_adapter *adapter = (struct e1000_adapter *) data; | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct e1000_tx_ring *txdr = adapter->tx_ring; | 
|  | uint32_t link, tctl; | 
|  | int32_t ret_val; | 
|  |  | 
|  | ret_val = e1000_check_for_link(&adapter->hw); | 
|  | if ((ret_val == E1000_ERR_PHY) && | 
|  | (adapter->hw.phy_type == e1000_phy_igp_3) && | 
|  | (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { | 
|  | /* See e1000_kumeran_lock_loss_workaround() */ | 
|  | DPRINTK(LINK, INFO, | 
|  | "Gigabit has been disabled, downgrading speed\n"); | 
|  | } | 
|  |  | 
|  | if (adapter->hw.mac_type == e1000_82573) { | 
|  | e1000_enable_tx_pkt_filtering(&adapter->hw); | 
|  | if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id) | 
|  | e1000_update_mng_vlan(adapter); | 
|  | } | 
|  |  | 
|  | if ((adapter->hw.media_type == e1000_media_type_internal_serdes) && | 
|  | !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE)) | 
|  | link = !adapter->hw.serdes_link_down; | 
|  | else | 
|  | link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU; | 
|  |  | 
|  | if (link) { | 
|  | if (!netif_carrier_ok(netdev)) { | 
|  | boolean_t txb2b = 1; | 
|  | e1000_get_speed_and_duplex(&adapter->hw, | 
|  | &adapter->link_speed, | 
|  | &adapter->link_duplex); | 
|  |  | 
|  | DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n", | 
|  | adapter->link_speed, | 
|  | adapter->link_duplex == FULL_DUPLEX ? | 
|  | "Full Duplex" : "Half Duplex"); | 
|  |  | 
|  | /* tweak tx_queue_len according to speed/duplex | 
|  | * and adjust the timeout factor */ | 
|  | netdev->tx_queue_len = adapter->tx_queue_len; | 
|  | adapter->tx_timeout_factor = 1; | 
|  | switch (adapter->link_speed) { | 
|  | case SPEED_10: | 
|  | txb2b = 0; | 
|  | netdev->tx_queue_len = 10; | 
|  | adapter->tx_timeout_factor = 8; | 
|  | break; | 
|  | case SPEED_100: | 
|  | txb2b = 0; | 
|  | netdev->tx_queue_len = 100; | 
|  | /* maybe add some timeout factor ? */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | if ((adapter->hw.mac_type == e1000_82571 || | 
|  | adapter->hw.mac_type == e1000_82572) && | 
|  | txb2b == 0) { | 
|  | uint32_t tarc0; | 
|  | tarc0 = E1000_READ_REG(&adapter->hw, TARC0); | 
|  | tarc0 &= ~(1 << 21); | 
|  | E1000_WRITE_REG(&adapter->hw, TARC0, tarc0); | 
|  | } | 
|  |  | 
|  | #ifdef NETIF_F_TSO | 
|  | /* disable TSO for pcie and 10/100 speeds, to avoid | 
|  | * some hardware issues */ | 
|  | if (!adapter->tso_force && | 
|  | adapter->hw.bus_type == e1000_bus_type_pci_express){ | 
|  | switch (adapter->link_speed) { | 
|  | case SPEED_10: | 
|  | case SPEED_100: | 
|  | DPRINTK(PROBE,INFO, | 
|  | "10/100 speed: disabling TSO\n"); | 
|  | netdev->features &= ~NETIF_F_TSO; | 
|  | #ifdef NETIF_F_TSO6 | 
|  | netdev->features &= ~NETIF_F_TSO6; | 
|  | #endif | 
|  | break; | 
|  | case SPEED_1000: | 
|  | netdev->features |= NETIF_F_TSO; | 
|  | #ifdef NETIF_F_TSO6 | 
|  | netdev->features |= NETIF_F_TSO6; | 
|  | #endif | 
|  | break; | 
|  | default: | 
|  | /* oops */ | 
|  | break; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* enable transmits in the hardware, need to do this | 
|  | * after setting TARC0 */ | 
|  | tctl = E1000_READ_REG(&adapter->hw, TCTL); | 
|  | tctl |= E1000_TCTL_EN; | 
|  | E1000_WRITE_REG(&adapter->hw, TCTL, tctl); | 
|  |  | 
|  | netif_carrier_on(netdev); | 
|  | netif_wake_queue(netdev); | 
|  | mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ); | 
|  | adapter->smartspeed = 0; | 
|  | } | 
|  | } else { | 
|  | if (netif_carrier_ok(netdev)) { | 
|  | adapter->link_speed = 0; | 
|  | adapter->link_duplex = 0; | 
|  | DPRINTK(LINK, INFO, "NIC Link is Down\n"); | 
|  | netif_carrier_off(netdev); | 
|  | netif_stop_queue(netdev); | 
|  | mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ); | 
|  |  | 
|  | /* 80003ES2LAN workaround-- | 
|  | * For packet buffer work-around on link down event; | 
|  | * disable receives in the ISR and | 
|  | * reset device here in the watchdog | 
|  | */ | 
|  | if (adapter->hw.mac_type == e1000_80003es2lan) | 
|  | /* reset device */ | 
|  | schedule_work(&adapter->reset_task); | 
|  | } | 
|  |  | 
|  | e1000_smartspeed(adapter); | 
|  | } | 
|  |  | 
|  | e1000_update_stats(adapter); | 
|  |  | 
|  | adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; | 
|  | adapter->tpt_old = adapter->stats.tpt; | 
|  | adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old; | 
|  | adapter->colc_old = adapter->stats.colc; | 
|  |  | 
|  | adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; | 
|  | adapter->gorcl_old = adapter->stats.gorcl; | 
|  | adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; | 
|  | adapter->gotcl_old = adapter->stats.gotcl; | 
|  |  | 
|  | e1000_update_adaptive(&adapter->hw); | 
|  |  | 
|  | if (!netif_carrier_ok(netdev)) { | 
|  | if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { | 
|  | /* We've lost link, so the controller stops DMA, | 
|  | * but we've got queued Tx work that's never going | 
|  | * to get done, so reset controller to flush Tx. | 
|  | * (Do the reset outside of interrupt context). */ | 
|  | adapter->tx_timeout_count++; | 
|  | schedule_work(&adapter->reset_task); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Cause software interrupt to ensure rx ring is cleaned */ | 
|  | E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0); | 
|  |  | 
|  | /* Force detection of hung controller every watchdog period */ | 
|  | adapter->detect_tx_hung = TRUE; | 
|  |  | 
|  | /* With 82571 controllers, LAA may be overwritten due to controller | 
|  | * reset from the other port. Set the appropriate LAA in RAR[0] */ | 
|  | if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present) | 
|  | e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0); | 
|  |  | 
|  | /* Reset the timer */ | 
|  | mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ); | 
|  | } | 
|  |  | 
|  | enum latency_range { | 
|  | lowest_latency = 0, | 
|  | low_latency = 1, | 
|  | bulk_latency = 2, | 
|  | latency_invalid = 255 | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * e1000_update_itr - update the dynamic ITR value based on statistics | 
|  | *      Stores a new ITR value based on packets and byte | 
|  | *      counts during the last interrupt.  The advantage of per interrupt | 
|  | *      computation is faster updates and more accurate ITR for the current | 
|  | *      traffic pattern.  Constants in this function were computed | 
|  | *      based on theoretical maximum wire speed and thresholds were set based | 
|  | *      on testing data as well as attempting to minimize response time | 
|  | *      while increasing bulk throughput. | 
|  | *      this functionality is controlled by the InterruptThrottleRate module | 
|  | *      parameter (see e1000_param.c) | 
|  | * @adapter: pointer to adapter | 
|  | * @itr_setting: current adapter->itr | 
|  | * @packets: the number of packets during this measurement interval | 
|  | * @bytes: the number of bytes during this measurement interval | 
|  | **/ | 
|  | static unsigned int e1000_update_itr(struct e1000_adapter *adapter, | 
|  | uint16_t itr_setting, | 
|  | int packets, | 
|  | int bytes) | 
|  | { | 
|  | unsigned int retval = itr_setting; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | if (unlikely(hw->mac_type < e1000_82540)) | 
|  | goto update_itr_done; | 
|  |  | 
|  | if (packets == 0) | 
|  | goto update_itr_done; | 
|  |  | 
|  |  | 
|  | switch (itr_setting) { | 
|  | case lowest_latency: | 
|  | if ((packets < 5) && (bytes > 512)) | 
|  | retval = low_latency; | 
|  | break; | 
|  | case low_latency:  /* 50 usec aka 20000 ints/s */ | 
|  | if (bytes > 10000) { | 
|  | if ((packets < 10) || | 
|  | ((bytes/packets) > 1200)) | 
|  | retval = bulk_latency; | 
|  | else if ((packets > 35)) | 
|  | retval = lowest_latency; | 
|  | } else if (packets <= 2 && bytes < 512) | 
|  | retval = lowest_latency; | 
|  | break; | 
|  | case bulk_latency: /* 250 usec aka 4000 ints/s */ | 
|  | if (bytes > 25000) { | 
|  | if (packets > 35) | 
|  | retval = low_latency; | 
|  | } else { | 
|  | if (bytes < 6000) | 
|  | retval = low_latency; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | update_itr_done: | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static void e1000_set_itr(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | uint16_t current_itr; | 
|  | uint32_t new_itr = adapter->itr; | 
|  |  | 
|  | if (unlikely(hw->mac_type < e1000_82540)) | 
|  | return; | 
|  |  | 
|  | /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ | 
|  | if (unlikely(adapter->link_speed != SPEED_1000)) { | 
|  | current_itr = 0; | 
|  | new_itr = 4000; | 
|  | goto set_itr_now; | 
|  | } | 
|  |  | 
|  | adapter->tx_itr = e1000_update_itr(adapter, | 
|  | adapter->tx_itr, | 
|  | adapter->total_tx_packets, | 
|  | adapter->total_tx_bytes); | 
|  | adapter->rx_itr = e1000_update_itr(adapter, | 
|  | adapter->rx_itr, | 
|  | adapter->total_rx_packets, | 
|  | adapter->total_rx_bytes); | 
|  |  | 
|  | current_itr = max(adapter->rx_itr, adapter->tx_itr); | 
|  |  | 
|  | /* conservative mode eliminates the lowest_latency setting */ | 
|  | if (current_itr == lowest_latency && (adapter->itr_setting == 3)) | 
|  | current_itr = low_latency; | 
|  |  | 
|  | switch (current_itr) { | 
|  | /* counts and packets in update_itr are dependent on these numbers */ | 
|  | case lowest_latency: | 
|  | new_itr = 70000; | 
|  | break; | 
|  | case low_latency: | 
|  | new_itr = 20000; /* aka hwitr = ~200 */ | 
|  | break; | 
|  | case bulk_latency: | 
|  | new_itr = 4000; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | set_itr_now: | 
|  | if (new_itr != adapter->itr) { | 
|  | /* this attempts to bias the interrupt rate towards Bulk | 
|  | * by adding intermediate steps when interrupt rate is | 
|  | * increasing */ | 
|  | new_itr = new_itr > adapter->itr ? | 
|  | min(adapter->itr + (new_itr >> 2), new_itr) : | 
|  | new_itr; | 
|  | adapter->itr = new_itr; | 
|  | E1000_WRITE_REG(hw, ITR, 1000000000 / (new_itr * 256)); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | #define E1000_TX_FLAGS_CSUM		0x00000001 | 
|  | #define E1000_TX_FLAGS_VLAN		0x00000002 | 
|  | #define E1000_TX_FLAGS_TSO		0x00000004 | 
|  | #define E1000_TX_FLAGS_IPV4		0x00000008 | 
|  | #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000 | 
|  | #define E1000_TX_FLAGS_VLAN_SHIFT	16 | 
|  |  | 
|  | static int | 
|  | e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | #ifdef NETIF_F_TSO | 
|  | struct e1000_context_desc *context_desc; | 
|  | struct e1000_buffer *buffer_info; | 
|  | unsigned int i; | 
|  | uint32_t cmd_length = 0; | 
|  | uint16_t ipcse = 0, tucse, mss; | 
|  | uint8_t ipcss, ipcso, tucss, tucso, hdr_len; | 
|  | int err; | 
|  |  | 
|  | if (skb_is_gso(skb)) { | 
|  | if (skb_header_cloned(skb)) { | 
|  | err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2)); | 
|  | mss = skb_shinfo(skb)->gso_size; | 
|  | if (skb->protocol == htons(ETH_P_IP)) { | 
|  | skb->nh.iph->tot_len = 0; | 
|  | skb->nh.iph->check = 0; | 
|  | skb->h.th->check = | 
|  | ~csum_tcpudp_magic(skb->nh.iph->saddr, | 
|  | skb->nh.iph->daddr, | 
|  | 0, | 
|  | IPPROTO_TCP, | 
|  | 0); | 
|  | cmd_length = E1000_TXD_CMD_IP; | 
|  | ipcse = skb->h.raw - skb->data - 1; | 
|  | #ifdef NETIF_F_TSO6 | 
|  | } else if (skb->protocol == htons(ETH_P_IPV6)) { | 
|  | skb->nh.ipv6h->payload_len = 0; | 
|  | skb->h.th->check = | 
|  | ~csum_ipv6_magic(&skb->nh.ipv6h->saddr, | 
|  | &skb->nh.ipv6h->daddr, | 
|  | 0, | 
|  | IPPROTO_TCP, | 
|  | 0); | 
|  | ipcse = 0; | 
|  | #endif | 
|  | } | 
|  | ipcss = skb->nh.raw - skb->data; | 
|  | ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data; | 
|  | tucss = skb->h.raw - skb->data; | 
|  | tucso = (void *)&(skb->h.th->check) - (void *)skb->data; | 
|  | tucse = 0; | 
|  |  | 
|  | cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | | 
|  | E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); | 
|  |  | 
|  | i = tx_ring->next_to_use; | 
|  | context_desc = E1000_CONTEXT_DESC(*tx_ring, i); | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  |  | 
|  | context_desc->lower_setup.ip_fields.ipcss  = ipcss; | 
|  | context_desc->lower_setup.ip_fields.ipcso  = ipcso; | 
|  | context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse); | 
|  | context_desc->upper_setup.tcp_fields.tucss = tucss; | 
|  | context_desc->upper_setup.tcp_fields.tucso = tucso; | 
|  | context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); | 
|  | context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss); | 
|  | context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; | 
|  | context_desc->cmd_and_length = cpu_to_le32(cmd_length); | 
|  |  | 
|  | buffer_info->time_stamp = jiffies; | 
|  | buffer_info->next_to_watch = i; | 
|  |  | 
|  | if (++i == tx_ring->count) i = 0; | 
|  | tx_ring->next_to_use = i; | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  | static boolean_t | 
|  | e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | struct e1000_context_desc *context_desc; | 
|  | struct e1000_buffer *buffer_info; | 
|  | unsigned int i; | 
|  | uint8_t css; | 
|  |  | 
|  | if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) { | 
|  | css = skb->h.raw - skb->data; | 
|  |  | 
|  | i = tx_ring->next_to_use; | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | context_desc = E1000_CONTEXT_DESC(*tx_ring, i); | 
|  |  | 
|  | context_desc->upper_setup.tcp_fields.tucss = css; | 
|  | context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset; | 
|  | context_desc->upper_setup.tcp_fields.tucse = 0; | 
|  | context_desc->tcp_seg_setup.data = 0; | 
|  | context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT); | 
|  |  | 
|  | buffer_info->time_stamp = jiffies; | 
|  | buffer_info->next_to_watch = i; | 
|  |  | 
|  | if (unlikely(++i == tx_ring->count)) i = 0; | 
|  | tx_ring->next_to_use = i; | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  | #define E1000_MAX_TXD_PWR	12 | 
|  | #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR) | 
|  |  | 
|  | static int | 
|  | e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring, | 
|  | struct sk_buff *skb, unsigned int first, unsigned int max_per_txd, | 
|  | unsigned int nr_frags, unsigned int mss) | 
|  | { | 
|  | struct e1000_buffer *buffer_info; | 
|  | unsigned int len = skb->len; | 
|  | unsigned int offset = 0, size, count = 0, i; | 
|  | unsigned int f; | 
|  | len -= skb->data_len; | 
|  |  | 
|  | i = tx_ring->next_to_use; | 
|  |  | 
|  | while (len) { | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | size = min(len, max_per_txd); | 
|  | #ifdef NETIF_F_TSO | 
|  | /* Workaround for Controller erratum -- | 
|  | * descriptor for non-tso packet in a linear SKB that follows a | 
|  | * tso gets written back prematurely before the data is fully | 
|  | * DMA'd to the controller */ | 
|  | if (!skb->data_len && tx_ring->last_tx_tso && | 
|  | !skb_is_gso(skb)) { | 
|  | tx_ring->last_tx_tso = 0; | 
|  | size -= 4; | 
|  | } | 
|  |  | 
|  | /* Workaround for premature desc write-backs | 
|  | * in TSO mode.  Append 4-byte sentinel desc */ | 
|  | if (unlikely(mss && !nr_frags && size == len && size > 8)) | 
|  | size -= 4; | 
|  | #endif | 
|  | /* work-around for errata 10 and it applies | 
|  | * to all controllers in PCI-X mode | 
|  | * The fix is to make sure that the first descriptor of a | 
|  | * packet is smaller than 2048 - 16 - 16 (or 2016) bytes | 
|  | */ | 
|  | if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) && | 
|  | (size > 2015) && count == 0)) | 
|  | size = 2015; | 
|  |  | 
|  | /* Workaround for potential 82544 hang in PCI-X.  Avoid | 
|  | * terminating buffers within evenly-aligned dwords. */ | 
|  | if (unlikely(adapter->pcix_82544 && | 
|  | !((unsigned long)(skb->data + offset + size - 1) & 4) && | 
|  | size > 4)) | 
|  | size -= 4; | 
|  |  | 
|  | buffer_info->length = size; | 
|  | buffer_info->dma = | 
|  | pci_map_single(adapter->pdev, | 
|  | skb->data + offset, | 
|  | size, | 
|  | PCI_DMA_TODEVICE); | 
|  | buffer_info->time_stamp = jiffies; | 
|  | buffer_info->next_to_watch = i; | 
|  |  | 
|  | len -= size; | 
|  | offset += size; | 
|  | count++; | 
|  | if (unlikely(++i == tx_ring->count)) i = 0; | 
|  | } | 
|  |  | 
|  | for (f = 0; f < nr_frags; f++) { | 
|  | struct skb_frag_struct *frag; | 
|  |  | 
|  | frag = &skb_shinfo(skb)->frags[f]; | 
|  | len = frag->size; | 
|  | offset = frag->page_offset; | 
|  |  | 
|  | while (len) { | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | size = min(len, max_per_txd); | 
|  | #ifdef NETIF_F_TSO | 
|  | /* Workaround for premature desc write-backs | 
|  | * in TSO mode.  Append 4-byte sentinel desc */ | 
|  | if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8)) | 
|  | size -= 4; | 
|  | #endif | 
|  | /* Workaround for potential 82544 hang in PCI-X. | 
|  | * Avoid terminating buffers within evenly-aligned | 
|  | * dwords. */ | 
|  | if (unlikely(adapter->pcix_82544 && | 
|  | !((unsigned long)(frag->page+offset+size-1) & 4) && | 
|  | size > 4)) | 
|  | size -= 4; | 
|  |  | 
|  | buffer_info->length = size; | 
|  | buffer_info->dma = | 
|  | pci_map_page(adapter->pdev, | 
|  | frag->page, | 
|  | offset, | 
|  | size, | 
|  | PCI_DMA_TODEVICE); | 
|  | buffer_info->time_stamp = jiffies; | 
|  | buffer_info->next_to_watch = i; | 
|  |  | 
|  | len -= size; | 
|  | offset += size; | 
|  | count++; | 
|  | if (unlikely(++i == tx_ring->count)) i = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | i = (i == 0) ? tx_ring->count - 1 : i - 1; | 
|  | tx_ring->buffer_info[i].skb = skb; | 
|  | tx_ring->buffer_info[first].next_to_watch = i; | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring, | 
|  | int tx_flags, int count) | 
|  | { | 
|  | struct e1000_tx_desc *tx_desc = NULL; | 
|  | struct e1000_buffer *buffer_info; | 
|  | uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; | 
|  | unsigned int i; | 
|  |  | 
|  | if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { | 
|  | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | | 
|  | E1000_TXD_CMD_TSE; | 
|  | txd_upper |= E1000_TXD_POPTS_TXSM << 8; | 
|  |  | 
|  | if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) | 
|  | txd_upper |= E1000_TXD_POPTS_IXSM << 8; | 
|  | } | 
|  |  | 
|  | if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { | 
|  | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; | 
|  | txd_upper |= E1000_TXD_POPTS_TXSM << 8; | 
|  | } | 
|  |  | 
|  | if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { | 
|  | txd_lower |= E1000_TXD_CMD_VLE; | 
|  | txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); | 
|  | } | 
|  |  | 
|  | i = tx_ring->next_to_use; | 
|  |  | 
|  | while (count--) { | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | tx_desc = E1000_TX_DESC(*tx_ring, i); | 
|  | tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | 
|  | tx_desc->lower.data = | 
|  | cpu_to_le32(txd_lower | buffer_info->length); | 
|  | tx_desc->upper.data = cpu_to_le32(txd_upper); | 
|  | if (unlikely(++i == tx_ring->count)) i = 0; | 
|  | } | 
|  |  | 
|  | tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); | 
|  |  | 
|  | /* Force memory writes to complete before letting h/w | 
|  | * know there are new descriptors to fetch.  (Only | 
|  | * applicable for weak-ordered memory model archs, | 
|  | * such as IA-64). */ | 
|  | wmb(); | 
|  |  | 
|  | tx_ring->next_to_use = i; | 
|  | writel(i, adapter->hw.hw_addr + tx_ring->tdt); | 
|  | /* we need this if more than one processor can write to our tail | 
|  | * at a time, it syncronizes IO on IA64/Altix systems */ | 
|  | mmiowb(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * 82547 workaround to avoid controller hang in half-duplex environment. | 
|  | * The workaround is to avoid queuing a large packet that would span | 
|  | * the internal Tx FIFO ring boundary by notifying the stack to resend | 
|  | * the packet at a later time.  This gives the Tx FIFO an opportunity to | 
|  | * flush all packets.  When that occurs, we reset the Tx FIFO pointers | 
|  | * to the beginning of the Tx FIFO. | 
|  | **/ | 
|  |  | 
|  | #define E1000_FIFO_HDR			0x10 | 
|  | #define E1000_82547_PAD_LEN		0x3E0 | 
|  |  | 
|  | static int | 
|  | e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb) | 
|  | { | 
|  | uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; | 
|  | uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR; | 
|  |  | 
|  | E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR); | 
|  |  | 
|  | if (adapter->link_duplex != HALF_DUPLEX) | 
|  | goto no_fifo_stall_required; | 
|  |  | 
|  | if (atomic_read(&adapter->tx_fifo_stall)) | 
|  | return 1; | 
|  |  | 
|  | if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { | 
|  | atomic_set(&adapter->tx_fifo_stall, 1); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | no_fifo_stall_required: | 
|  | adapter->tx_fifo_head += skb_fifo_len; | 
|  | if (adapter->tx_fifo_head >= adapter->tx_fifo_size) | 
|  | adapter->tx_fifo_head -= adapter->tx_fifo_size; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define MINIMUM_DHCP_PACKET_SIZE 282 | 
|  | static int | 
|  | e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb) | 
|  | { | 
|  | struct e1000_hw *hw =  &adapter->hw; | 
|  | uint16_t length, offset; | 
|  | if (vlan_tx_tag_present(skb)) { | 
|  | if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) && | 
|  | ( adapter->hw.mng_cookie.status & | 
|  | E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) ) | 
|  | return 0; | 
|  | } | 
|  | if (skb->len > MINIMUM_DHCP_PACKET_SIZE) { | 
|  | struct ethhdr *eth = (struct ethhdr *) skb->data; | 
|  | if ((htons(ETH_P_IP) == eth->h_proto)) { | 
|  | const struct iphdr *ip = | 
|  | (struct iphdr *)((uint8_t *)skb->data+14); | 
|  | if (IPPROTO_UDP == ip->protocol) { | 
|  | struct udphdr *udp = | 
|  | (struct udphdr *)((uint8_t *)ip + | 
|  | (ip->ihl << 2)); | 
|  | if (ntohs(udp->dest) == 67) { | 
|  | offset = (uint8_t *)udp + 8 - skb->data; | 
|  | length = skb->len - offset; | 
|  |  | 
|  | return e1000_mng_write_dhcp_info(hw, | 
|  | (uint8_t *)udp + 8, | 
|  | length); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_tx_ring *tx_ring = adapter->tx_ring; | 
|  |  | 
|  | netif_stop_queue(netdev); | 
|  | /* Herbert's original patch had: | 
|  | *  smp_mb__after_netif_stop_queue(); | 
|  | * but since that doesn't exist yet, just open code it. */ | 
|  | smp_mb(); | 
|  |  | 
|  | /* We need to check again in a case another CPU has just | 
|  | * made room available. */ | 
|  | if (likely(E1000_DESC_UNUSED(tx_ring) < size)) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* A reprieve! */ | 
|  | netif_start_queue(netdev); | 
|  | ++adapter->restart_queue; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int e1000_maybe_stop_tx(struct net_device *netdev, | 
|  | struct e1000_tx_ring *tx_ring, int size) | 
|  | { | 
|  | if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) | 
|  | return 0; | 
|  | return __e1000_maybe_stop_tx(netdev, size); | 
|  | } | 
|  |  | 
|  | #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) | 
|  | static int | 
|  | e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_tx_ring *tx_ring; | 
|  | unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; | 
|  | unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; | 
|  | unsigned int tx_flags = 0; | 
|  | unsigned int len = skb->len; | 
|  | unsigned long flags; | 
|  | unsigned int nr_frags = 0; | 
|  | unsigned int mss = 0; | 
|  | int count = 0; | 
|  | int tso; | 
|  | unsigned int f; | 
|  | len -= skb->data_len; | 
|  |  | 
|  | /* This goes back to the question of how to logically map a tx queue | 
|  | * to a flow.  Right now, performance is impacted slightly negatively | 
|  | * if using multiple tx queues.  If the stack breaks away from a | 
|  | * single qdisc implementation, we can look at this again. */ | 
|  | tx_ring = adapter->tx_ring; | 
|  |  | 
|  | if (unlikely(skb->len <= 0)) { | 
|  | dev_kfree_skb_any(skb); | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | /* 82571 and newer doesn't need the workaround that limited descriptor | 
|  | * length to 4kB */ | 
|  | if (adapter->hw.mac_type >= e1000_82571) | 
|  | max_per_txd = 8192; | 
|  |  | 
|  | #ifdef NETIF_F_TSO | 
|  | mss = skb_shinfo(skb)->gso_size; | 
|  | /* The controller does a simple calculation to | 
|  | * make sure there is enough room in the FIFO before | 
|  | * initiating the DMA for each buffer.  The calc is: | 
|  | * 4 = ceil(buffer len/mss).  To make sure we don't | 
|  | * overrun the FIFO, adjust the max buffer len if mss | 
|  | * drops. */ | 
|  | if (mss) { | 
|  | uint8_t hdr_len; | 
|  | max_per_txd = min(mss << 2, max_per_txd); | 
|  | max_txd_pwr = fls(max_per_txd) - 1; | 
|  |  | 
|  | /* TSO Workaround for 82571/2/3 Controllers -- if skb->data | 
|  | * points to just header, pull a few bytes of payload from | 
|  | * frags into skb->data */ | 
|  | hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2)); | 
|  | if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) { | 
|  | switch (adapter->hw.mac_type) { | 
|  | unsigned int pull_size; | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | case e1000_82573: | 
|  | case e1000_ich8lan: | 
|  | pull_size = min((unsigned int)4, skb->data_len); | 
|  | if (!__pskb_pull_tail(skb, pull_size)) { | 
|  | DPRINTK(DRV, ERR, | 
|  | "__pskb_pull_tail failed.\n"); | 
|  | dev_kfree_skb_any(skb); | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  | len = skb->len - skb->data_len; | 
|  | break; | 
|  | default: | 
|  | /* do nothing */ | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* reserve a descriptor for the offload context */ | 
|  | if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) | 
|  | count++; | 
|  | count++; | 
|  | #else | 
|  | if (skb->ip_summed == CHECKSUM_PARTIAL) | 
|  | count++; | 
|  | #endif | 
|  |  | 
|  | #ifdef NETIF_F_TSO | 
|  | /* Controller Erratum workaround */ | 
|  | if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) | 
|  | count++; | 
|  | #endif | 
|  |  | 
|  | count += TXD_USE_COUNT(len, max_txd_pwr); | 
|  |  | 
|  | if (adapter->pcix_82544) | 
|  | count++; | 
|  |  | 
|  | /* work-around for errata 10 and it applies to all controllers | 
|  | * in PCI-X mode, so add one more descriptor to the count | 
|  | */ | 
|  | if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) && | 
|  | (len > 2015))) | 
|  | count++; | 
|  |  | 
|  | nr_frags = skb_shinfo(skb)->nr_frags; | 
|  | for (f = 0; f < nr_frags; f++) | 
|  | count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, | 
|  | max_txd_pwr); | 
|  | if (adapter->pcix_82544) | 
|  | count += nr_frags; | 
|  |  | 
|  |  | 
|  | if (adapter->hw.tx_pkt_filtering && | 
|  | (adapter->hw.mac_type == e1000_82573)) | 
|  | e1000_transfer_dhcp_info(adapter, skb); | 
|  |  | 
|  | local_irq_save(flags); | 
|  | if (!spin_trylock(&tx_ring->tx_lock)) { | 
|  | /* Collision - tell upper layer to requeue */ | 
|  | local_irq_restore(flags); | 
|  | return NETDEV_TX_LOCKED; | 
|  | } | 
|  |  | 
|  | /* need: count + 2 desc gap to keep tail from touching | 
|  | * head, otherwise try next time */ | 
|  | if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) { | 
|  | spin_unlock_irqrestore(&tx_ring->tx_lock, flags); | 
|  | return NETDEV_TX_BUSY; | 
|  | } | 
|  |  | 
|  | if (unlikely(adapter->hw.mac_type == e1000_82547)) { | 
|  | if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) { | 
|  | netif_stop_queue(netdev); | 
|  | mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1); | 
|  | spin_unlock_irqrestore(&tx_ring->tx_lock, flags); | 
|  | return NETDEV_TX_BUSY; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) { | 
|  | tx_flags |= E1000_TX_FLAGS_VLAN; | 
|  | tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); | 
|  | } | 
|  |  | 
|  | first = tx_ring->next_to_use; | 
|  |  | 
|  | tso = e1000_tso(adapter, tx_ring, skb); | 
|  | if (tso < 0) { | 
|  | dev_kfree_skb_any(skb); | 
|  | spin_unlock_irqrestore(&tx_ring->tx_lock, flags); | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | if (likely(tso)) { | 
|  | tx_ring->last_tx_tso = 1; | 
|  | tx_flags |= E1000_TX_FLAGS_TSO; | 
|  | } else if (likely(e1000_tx_csum(adapter, tx_ring, skb))) | 
|  | tx_flags |= E1000_TX_FLAGS_CSUM; | 
|  |  | 
|  | /* Old method was to assume IPv4 packet by default if TSO was enabled. | 
|  | * 82571 hardware supports TSO capabilities for IPv6 as well... | 
|  | * no longer assume, we must. */ | 
|  | if (likely(skb->protocol == htons(ETH_P_IP))) | 
|  | tx_flags |= E1000_TX_FLAGS_IPV4; | 
|  |  | 
|  | e1000_tx_queue(adapter, tx_ring, tx_flags, | 
|  | e1000_tx_map(adapter, tx_ring, skb, first, | 
|  | max_per_txd, nr_frags, mss)); | 
|  |  | 
|  | netdev->trans_start = jiffies; | 
|  |  | 
|  | /* Make sure there is space in the ring for the next send. */ | 
|  | e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2); | 
|  |  | 
|  | spin_unlock_irqrestore(&tx_ring->tx_lock, flags); | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_tx_timeout - Respond to a Tx Hang | 
|  | * @netdev: network interface device structure | 
|  | **/ | 
|  |  | 
|  | static void | 
|  | e1000_tx_timeout(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | /* Do the reset outside of interrupt context */ | 
|  | adapter->tx_timeout_count++; | 
|  | schedule_work(&adapter->reset_task); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_reset_task(struct work_struct *work) | 
|  | { | 
|  | struct e1000_adapter *adapter = | 
|  | container_of(work, struct e1000_adapter, reset_task); | 
|  |  | 
|  | e1000_reinit_locked(adapter); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_get_stats - Get System Network Statistics | 
|  | * @netdev: network interface device structure | 
|  | * | 
|  | * Returns the address of the device statistics structure. | 
|  | * The statistics are actually updated from the timer callback. | 
|  | **/ | 
|  |  | 
|  | static struct net_device_stats * | 
|  | e1000_get_stats(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | /* only return the current stats */ | 
|  | return &adapter->net_stats; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_change_mtu - Change the Maximum Transfer Unit | 
|  | * @netdev: network interface device structure | 
|  | * @new_mtu: new value for maximum frame size | 
|  | * | 
|  | * Returns 0 on success, negative on failure | 
|  | **/ | 
|  |  | 
|  | static int | 
|  | e1000_change_mtu(struct net_device *netdev, int new_mtu) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; | 
|  | uint16_t eeprom_data = 0; | 
|  |  | 
|  | if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) || | 
|  | (max_frame > MAX_JUMBO_FRAME_SIZE)) { | 
|  | DPRINTK(PROBE, ERR, "Invalid MTU setting\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Adapter-specific max frame size limits. */ | 
|  | switch (adapter->hw.mac_type) { | 
|  | case e1000_undefined ... e1000_82542_rev2_1: | 
|  | case e1000_ich8lan: | 
|  | if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) { | 
|  | DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | break; | 
|  | case e1000_82573: | 
|  | /* Jumbo Frames not supported if: | 
|  | * - this is not an 82573L device | 
|  | * - ASPM is enabled in any way (0x1A bits 3:2) */ | 
|  | e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1, | 
|  | &eeprom_data); | 
|  | if ((adapter->hw.device_id != E1000_DEV_ID_82573L) || | 
|  | (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) { | 
|  | if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) { | 
|  | DPRINTK(PROBE, ERR, | 
|  | "Jumbo Frames not supported.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | break; | 
|  | } | 
|  | /* ERT will be enabled later to enable wire speed receives */ | 
|  |  | 
|  | /* fall through to get support */ | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | case e1000_80003es2lan: | 
|  | #define MAX_STD_JUMBO_FRAME_SIZE 9234 | 
|  | if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { | 
|  | DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN | 
|  | * means we reserve 2 more, this pushes us to allocate from the next | 
|  | * larger slab size | 
|  | * i.e. RXBUFFER_2048 --> size-4096 slab */ | 
|  |  | 
|  | if (max_frame <= E1000_RXBUFFER_256) | 
|  | adapter->rx_buffer_len = E1000_RXBUFFER_256; | 
|  | else if (max_frame <= E1000_RXBUFFER_512) | 
|  | adapter->rx_buffer_len = E1000_RXBUFFER_512; | 
|  | else if (max_frame <= E1000_RXBUFFER_1024) | 
|  | adapter->rx_buffer_len = E1000_RXBUFFER_1024; | 
|  | else if (max_frame <= E1000_RXBUFFER_2048) | 
|  | adapter->rx_buffer_len = E1000_RXBUFFER_2048; | 
|  | else if (max_frame <= E1000_RXBUFFER_4096) | 
|  | adapter->rx_buffer_len = E1000_RXBUFFER_4096; | 
|  | else if (max_frame <= E1000_RXBUFFER_8192) | 
|  | adapter->rx_buffer_len = E1000_RXBUFFER_8192; | 
|  | else if (max_frame <= E1000_RXBUFFER_16384) | 
|  | adapter->rx_buffer_len = E1000_RXBUFFER_16384; | 
|  |  | 
|  | /* adjust allocation if LPE protects us, and we aren't using SBP */ | 
|  | if (!adapter->hw.tbi_compatibility_on && | 
|  | ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) || | 
|  | (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) | 
|  | adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; | 
|  |  | 
|  | netdev->mtu = new_mtu; | 
|  |  | 
|  | if (netif_running(netdev)) | 
|  | e1000_reinit_locked(adapter); | 
|  |  | 
|  | adapter->hw.max_frame_size = max_frame; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_update_stats - Update the board statistics counters | 
|  | * @adapter: board private structure | 
|  | **/ | 
|  |  | 
|  | void | 
|  | e1000_update_stats(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | unsigned long flags; | 
|  | uint16_t phy_tmp; | 
|  |  | 
|  | #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF | 
|  |  | 
|  | /* | 
|  | * Prevent stats update while adapter is being reset, or if the pci | 
|  | * connection is down. | 
|  | */ | 
|  | if (adapter->link_speed == 0) | 
|  | return; | 
|  | if (pdev->error_state && pdev->error_state != pci_channel_io_normal) | 
|  | return; | 
|  |  | 
|  | spin_lock_irqsave(&adapter->stats_lock, flags); | 
|  |  | 
|  | /* these counters are modified from e1000_adjust_tbi_stats, | 
|  | * called from the interrupt context, so they must only | 
|  | * be written while holding adapter->stats_lock | 
|  | */ | 
|  |  | 
|  | adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS); | 
|  | adapter->stats.gprc += E1000_READ_REG(hw, GPRC); | 
|  | adapter->stats.gorcl += E1000_READ_REG(hw, GORCL); | 
|  | adapter->stats.gorch += E1000_READ_REG(hw, GORCH); | 
|  | adapter->stats.bprc += E1000_READ_REG(hw, BPRC); | 
|  | adapter->stats.mprc += E1000_READ_REG(hw, MPRC); | 
|  | adapter->stats.roc += E1000_READ_REG(hw, ROC); | 
|  |  | 
|  | if (adapter->hw.mac_type != e1000_ich8lan) { | 
|  | adapter->stats.prc64 += E1000_READ_REG(hw, PRC64); | 
|  | adapter->stats.prc127 += E1000_READ_REG(hw, PRC127); | 
|  | adapter->stats.prc255 += E1000_READ_REG(hw, PRC255); | 
|  | adapter->stats.prc511 += E1000_READ_REG(hw, PRC511); | 
|  | adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023); | 
|  | adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522); | 
|  | } | 
|  |  | 
|  | adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS); | 
|  | adapter->stats.mpc += E1000_READ_REG(hw, MPC); | 
|  | adapter->stats.scc += E1000_READ_REG(hw, SCC); | 
|  | adapter->stats.ecol += E1000_READ_REG(hw, ECOL); | 
|  | adapter->stats.mcc += E1000_READ_REG(hw, MCC); | 
|  | adapter->stats.latecol += E1000_READ_REG(hw, LATECOL); | 
|  | adapter->stats.dc += E1000_READ_REG(hw, DC); | 
|  | adapter->stats.sec += E1000_READ_REG(hw, SEC); | 
|  | adapter->stats.rlec += E1000_READ_REG(hw, RLEC); | 
|  | adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC); | 
|  | adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC); | 
|  | adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC); | 
|  | adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC); | 
|  | adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC); | 
|  | adapter->stats.gptc += E1000_READ_REG(hw, GPTC); | 
|  | adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL); | 
|  | adapter->stats.gotch += E1000_READ_REG(hw, GOTCH); | 
|  | adapter->stats.rnbc += E1000_READ_REG(hw, RNBC); | 
|  | adapter->stats.ruc += E1000_READ_REG(hw, RUC); | 
|  | adapter->stats.rfc += E1000_READ_REG(hw, RFC); | 
|  | adapter->stats.rjc += E1000_READ_REG(hw, RJC); | 
|  | adapter->stats.torl += E1000_READ_REG(hw, TORL); | 
|  | adapter->stats.torh += E1000_READ_REG(hw, TORH); | 
|  | adapter->stats.totl += E1000_READ_REG(hw, TOTL); | 
|  | adapter->stats.toth += E1000_READ_REG(hw, TOTH); | 
|  | adapter->stats.tpr += E1000_READ_REG(hw, TPR); | 
|  |  | 
|  | if (adapter->hw.mac_type != e1000_ich8lan) { | 
|  | adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64); | 
|  | adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127); | 
|  | adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255); | 
|  | adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511); | 
|  | adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023); | 
|  | adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522); | 
|  | } | 
|  |  | 
|  | adapter->stats.mptc += E1000_READ_REG(hw, MPTC); | 
|  | adapter->stats.bptc += E1000_READ_REG(hw, BPTC); | 
|  |  | 
|  | /* used for adaptive IFS */ | 
|  |  | 
|  | hw->tx_packet_delta = E1000_READ_REG(hw, TPT); | 
|  | adapter->stats.tpt += hw->tx_packet_delta; | 
|  | hw->collision_delta = E1000_READ_REG(hw, COLC); | 
|  | adapter->stats.colc += hw->collision_delta; | 
|  |  | 
|  | if (hw->mac_type >= e1000_82543) { | 
|  | adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC); | 
|  | adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC); | 
|  | adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS); | 
|  | adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR); | 
|  | adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC); | 
|  | adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC); | 
|  | } | 
|  | if (hw->mac_type > e1000_82547_rev_2) { | 
|  | adapter->stats.iac += E1000_READ_REG(hw, IAC); | 
|  | adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC); | 
|  |  | 
|  | if (adapter->hw.mac_type != e1000_ich8lan) { | 
|  | adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC); | 
|  | adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC); | 
|  | adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC); | 
|  | adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC); | 
|  | adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC); | 
|  | adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC); | 
|  | adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Fill out the OS statistics structure */ | 
|  | adapter->net_stats.rx_packets = adapter->stats.gprc; | 
|  | adapter->net_stats.tx_packets = adapter->stats.gptc; | 
|  | adapter->net_stats.rx_bytes = adapter->stats.gorcl; | 
|  | adapter->net_stats.tx_bytes = adapter->stats.gotcl; | 
|  | adapter->net_stats.multicast = adapter->stats.mprc; | 
|  | adapter->net_stats.collisions = adapter->stats.colc; | 
|  |  | 
|  | /* Rx Errors */ | 
|  |  | 
|  | /* RLEC on some newer hardware can be incorrect so build | 
|  | * our own version based on RUC and ROC */ | 
|  | adapter->net_stats.rx_errors = adapter->stats.rxerrc + | 
|  | adapter->stats.crcerrs + adapter->stats.algnerrc + | 
|  | adapter->stats.ruc + adapter->stats.roc + | 
|  | adapter->stats.cexterr; | 
|  | adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; | 
|  | adapter->net_stats.rx_length_errors = adapter->stats.rlerrc; | 
|  | adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs; | 
|  | adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc; | 
|  | adapter->net_stats.rx_missed_errors = adapter->stats.mpc; | 
|  |  | 
|  | /* Tx Errors */ | 
|  | adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; | 
|  | adapter->net_stats.tx_errors = adapter->stats.txerrc; | 
|  | adapter->net_stats.tx_aborted_errors = adapter->stats.ecol; | 
|  | adapter->net_stats.tx_window_errors = adapter->stats.latecol; | 
|  | adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs; | 
|  |  | 
|  | /* Tx Dropped needs to be maintained elsewhere */ | 
|  |  | 
|  | /* Phy Stats */ | 
|  | if (hw->media_type == e1000_media_type_copper) { | 
|  | if ((adapter->link_speed == SPEED_1000) && | 
|  | (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { | 
|  | phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; | 
|  | adapter->phy_stats.idle_errors += phy_tmp; | 
|  | } | 
|  |  | 
|  | if ((hw->mac_type <= e1000_82546) && | 
|  | (hw->phy_type == e1000_phy_m88) && | 
|  | !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) | 
|  | adapter->phy_stats.receive_errors += phy_tmp; | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&adapter->stats_lock, flags); | 
|  | } | 
|  | #ifdef CONFIG_PCI_MSI | 
|  |  | 
|  | /** | 
|  | * e1000_intr_msi - Interrupt Handler | 
|  | * @irq: interrupt number | 
|  | * @data: pointer to a network interface device structure | 
|  | **/ | 
|  |  | 
|  | static | 
|  | irqreturn_t e1000_intr_msi(int irq, void *data) | 
|  | { | 
|  | struct net_device *netdev = data; | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | #ifndef CONFIG_E1000_NAPI | 
|  | int i; | 
|  | #endif | 
|  |  | 
|  | /* this code avoids the read of ICR but has to get 1000 interrupts | 
|  | * at every link change event before it will notice the change */ | 
|  | if (++adapter->detect_link >= 1000) { | 
|  | uint32_t icr = E1000_READ_REG(hw, ICR); | 
|  | #ifdef CONFIG_E1000_NAPI | 
|  | /* read ICR disables interrupts using IAM, so keep up with our | 
|  | * enable/disable accounting */ | 
|  | atomic_inc(&adapter->irq_sem); | 
|  | #endif | 
|  | adapter->detect_link = 0; | 
|  | if ((icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) && | 
|  | (icr & E1000_ICR_INT_ASSERTED)) { | 
|  | hw->get_link_status = 1; | 
|  | /* 80003ES2LAN workaround-- | 
|  | * For packet buffer work-around on link down event; | 
|  | * disable receives here in the ISR and | 
|  | * reset adapter in watchdog | 
|  | */ | 
|  | if (netif_carrier_ok(netdev) && | 
|  | (adapter->hw.mac_type == e1000_80003es2lan)) { | 
|  | /* disable receives */ | 
|  | uint32_t rctl = E1000_READ_REG(hw, RCTL); | 
|  | E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN); | 
|  | } | 
|  | /* guard against interrupt when we're going down */ | 
|  | if (!test_bit(__E1000_DOWN, &adapter->flags)) | 
|  | mod_timer(&adapter->watchdog_timer, | 
|  | jiffies + 1); | 
|  | } | 
|  | } else { | 
|  | E1000_WRITE_REG(hw, ICR, (0xffffffff & ~(E1000_ICR_RXSEQ | | 
|  | E1000_ICR_LSC))); | 
|  | /* bummer we have to flush here, but things break otherwise as | 
|  | * some event appears to be lost or delayed and throughput | 
|  | * drops.  In almost all tests this flush is un-necessary */ | 
|  | E1000_WRITE_FLUSH(hw); | 
|  | #ifdef CONFIG_E1000_NAPI | 
|  | /* Interrupt Auto-Mask (IAM)...upon writing ICR, interrupts are | 
|  | * masked.  No need for the IMC write, but it does mean we | 
|  | * should account for it ASAP. */ | 
|  | atomic_inc(&adapter->irq_sem); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_E1000_NAPI | 
|  | if (likely(netif_rx_schedule_prep(netdev))) { | 
|  | adapter->total_tx_bytes = 0; | 
|  | adapter->total_tx_packets = 0; | 
|  | adapter->total_rx_bytes = 0; | 
|  | adapter->total_rx_packets = 0; | 
|  | __netif_rx_schedule(netdev); | 
|  | } else | 
|  | e1000_irq_enable(adapter); | 
|  | #else | 
|  | adapter->total_tx_bytes = 0; | 
|  | adapter->total_rx_bytes = 0; | 
|  | adapter->total_tx_packets = 0; | 
|  | adapter->total_rx_packets = 0; | 
|  |  | 
|  | for (i = 0; i < E1000_MAX_INTR; i++) | 
|  | if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) & | 
|  | !e1000_clean_tx_irq(adapter, adapter->tx_ring))) | 
|  | break; | 
|  |  | 
|  | if (likely(adapter->itr_setting & 3)) | 
|  | e1000_set_itr(adapter); | 
|  | #endif | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * e1000_intr - Interrupt Handler | 
|  | * @irq: interrupt number | 
|  | * @data: pointer to a network interface device structure | 
|  | **/ | 
|  |  | 
|  | static irqreturn_t | 
|  | e1000_intr(int irq, void *data) | 
|  | { | 
|  | struct net_device *netdev = data; | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | uint32_t rctl, icr = E1000_READ_REG(hw, ICR); | 
|  | #ifndef CONFIG_E1000_NAPI | 
|  | int i; | 
|  | #endif | 
|  | if (unlikely(!icr)) | 
|  | return IRQ_NONE;  /* Not our interrupt */ | 
|  |  | 
|  | #ifdef CONFIG_E1000_NAPI | 
|  | /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is | 
|  | * not set, then the adapter didn't send an interrupt */ | 
|  | if (unlikely(hw->mac_type >= e1000_82571 && | 
|  | !(icr & E1000_ICR_INT_ASSERTED))) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | /* Interrupt Auto-Mask...upon reading ICR, | 
|  | * interrupts are masked.  No need for the | 
|  | * IMC write, but it does mean we should | 
|  | * account for it ASAP. */ | 
|  | if (likely(hw->mac_type >= e1000_82571)) | 
|  | atomic_inc(&adapter->irq_sem); | 
|  | #endif | 
|  |  | 
|  | if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { | 
|  | hw->get_link_status = 1; | 
|  | /* 80003ES2LAN workaround-- | 
|  | * For packet buffer work-around on link down event; | 
|  | * disable receives here in the ISR and | 
|  | * reset adapter in watchdog | 
|  | */ | 
|  | if (netif_carrier_ok(netdev) && | 
|  | (adapter->hw.mac_type == e1000_80003es2lan)) { | 
|  | /* disable receives */ | 
|  | rctl = E1000_READ_REG(hw, RCTL); | 
|  | E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN); | 
|  | } | 
|  | /* guard against interrupt when we're going down */ | 
|  | if (!test_bit(__E1000_DOWN, &adapter->flags)) | 
|  | mod_timer(&adapter->watchdog_timer, jiffies + 1); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_E1000_NAPI | 
|  | if (unlikely(hw->mac_type < e1000_82571)) { | 
|  | /* disable interrupts, without the synchronize_irq bit */ | 
|  | atomic_inc(&adapter->irq_sem); | 
|  | E1000_WRITE_REG(hw, IMC, ~0); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  | } | 
|  | if (likely(netif_rx_schedule_prep(netdev))) { | 
|  | adapter->total_tx_bytes = 0; | 
|  | adapter->total_tx_packets = 0; | 
|  | adapter->total_rx_bytes = 0; | 
|  | adapter->total_rx_packets = 0; | 
|  | __netif_rx_schedule(netdev); | 
|  | } else | 
|  | /* this really should not happen! if it does it is basically a | 
|  | * bug, but not a hard error, so enable ints and continue */ | 
|  | e1000_irq_enable(adapter); | 
|  | #else | 
|  | /* Writing IMC and IMS is needed for 82547. | 
|  | * Due to Hub Link bus being occupied, an interrupt | 
|  | * de-assertion message is not able to be sent. | 
|  | * When an interrupt assertion message is generated later, | 
|  | * two messages are re-ordered and sent out. | 
|  | * That causes APIC to think 82547 is in de-assertion | 
|  | * state, while 82547 is in assertion state, resulting | 
|  | * in dead lock. Writing IMC forces 82547 into | 
|  | * de-assertion state. | 
|  | */ | 
|  | if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) { | 
|  | atomic_inc(&adapter->irq_sem); | 
|  | E1000_WRITE_REG(hw, IMC, ~0); | 
|  | } | 
|  |  | 
|  | adapter->total_tx_bytes = 0; | 
|  | adapter->total_rx_bytes = 0; | 
|  | adapter->total_tx_packets = 0; | 
|  | adapter->total_rx_packets = 0; | 
|  |  | 
|  | for (i = 0; i < E1000_MAX_INTR; i++) | 
|  | if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) & | 
|  | !e1000_clean_tx_irq(adapter, adapter->tx_ring))) | 
|  | break; | 
|  |  | 
|  | if (likely(adapter->itr_setting & 3)) | 
|  | e1000_set_itr(adapter); | 
|  |  | 
|  | if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) | 
|  | e1000_irq_enable(adapter); | 
|  |  | 
|  | #endif | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_E1000_NAPI | 
|  | /** | 
|  | * e1000_clean - NAPI Rx polling callback | 
|  | * @adapter: board private structure | 
|  | **/ | 
|  |  | 
|  | static int | 
|  | e1000_clean(struct net_device *poll_dev, int *budget) | 
|  | { | 
|  | struct e1000_adapter *adapter; | 
|  | int work_to_do = min(*budget, poll_dev->quota); | 
|  | int tx_cleaned = 0, work_done = 0; | 
|  |  | 
|  | /* Must NOT use netdev_priv macro here. */ | 
|  | adapter = poll_dev->priv; | 
|  |  | 
|  | /* Keep link state information with original netdev */ | 
|  | if (!netif_carrier_ok(poll_dev)) | 
|  | goto quit_polling; | 
|  |  | 
|  | /* e1000_clean is called per-cpu.  This lock protects | 
|  | * tx_ring[0] from being cleaned by multiple cpus | 
|  | * simultaneously.  A failure obtaining the lock means | 
|  | * tx_ring[0] is currently being cleaned anyway. */ | 
|  | if (spin_trylock(&adapter->tx_queue_lock)) { | 
|  | tx_cleaned = e1000_clean_tx_irq(adapter, | 
|  | &adapter->tx_ring[0]); | 
|  | spin_unlock(&adapter->tx_queue_lock); | 
|  | } | 
|  |  | 
|  | adapter->clean_rx(adapter, &adapter->rx_ring[0], | 
|  | &work_done, work_to_do); | 
|  |  | 
|  | *budget -= work_done; | 
|  | poll_dev->quota -= work_done; | 
|  |  | 
|  | /* If no Tx and not enough Rx work done, exit the polling mode */ | 
|  | if ((!tx_cleaned && (work_done == 0)) || | 
|  | !netif_running(poll_dev)) { | 
|  | quit_polling: | 
|  | if (likely(adapter->itr_setting & 3)) | 
|  | e1000_set_itr(adapter); | 
|  | netif_rx_complete(poll_dev); | 
|  | e1000_irq_enable(adapter); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #endif | 
|  | /** | 
|  | * e1000_clean_tx_irq - Reclaim resources after transmit completes | 
|  | * @adapter: board private structure | 
|  | **/ | 
|  |  | 
|  | static boolean_t | 
|  | e1000_clean_tx_irq(struct e1000_adapter *adapter, | 
|  | struct e1000_tx_ring *tx_ring) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct e1000_tx_desc *tx_desc, *eop_desc; | 
|  | struct e1000_buffer *buffer_info; | 
|  | unsigned int i, eop; | 
|  | #ifdef CONFIG_E1000_NAPI | 
|  | unsigned int count = 0; | 
|  | #endif | 
|  | boolean_t cleaned = FALSE; | 
|  | unsigned int total_tx_bytes=0, total_tx_packets=0; | 
|  |  | 
|  | i = tx_ring->next_to_clean; | 
|  | eop = tx_ring->buffer_info[i].next_to_watch; | 
|  | eop_desc = E1000_TX_DESC(*tx_ring, eop); | 
|  |  | 
|  | while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) { | 
|  | for (cleaned = FALSE; !cleaned; ) { | 
|  | tx_desc = E1000_TX_DESC(*tx_ring, i); | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | cleaned = (i == eop); | 
|  |  | 
|  | if (cleaned) { | 
|  | /* this packet count is wrong for TSO but has a | 
|  | * tendency to make dynamic ITR change more | 
|  | * towards bulk */ | 
|  | total_tx_packets++; | 
|  | total_tx_bytes += buffer_info->skb->len; | 
|  | } | 
|  | e1000_unmap_and_free_tx_resource(adapter, buffer_info); | 
|  | tx_desc->upper.data = 0; | 
|  |  | 
|  | if (unlikely(++i == tx_ring->count)) i = 0; | 
|  | } | 
|  |  | 
|  | eop = tx_ring->buffer_info[i].next_to_watch; | 
|  | eop_desc = E1000_TX_DESC(*tx_ring, eop); | 
|  | #ifdef CONFIG_E1000_NAPI | 
|  | #define E1000_TX_WEIGHT 64 | 
|  | /* weight of a sort for tx, to avoid endless transmit cleanup */ | 
|  | if (count++ == E1000_TX_WEIGHT) break; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | tx_ring->next_to_clean = i; | 
|  |  | 
|  | #define TX_WAKE_THRESHOLD 32 | 
|  | if (unlikely(cleaned && netif_carrier_ok(netdev) && | 
|  | E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) { | 
|  | /* Make sure that anybody stopping the queue after this | 
|  | * sees the new next_to_clean. | 
|  | */ | 
|  | smp_mb(); | 
|  | if (netif_queue_stopped(netdev)) { | 
|  | netif_wake_queue(netdev); | 
|  | ++adapter->restart_queue; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (adapter->detect_tx_hung) { | 
|  | /* Detect a transmit hang in hardware, this serializes the | 
|  | * check with the clearing of time_stamp and movement of i */ | 
|  | adapter->detect_tx_hung = FALSE; | 
|  | if (tx_ring->buffer_info[eop].dma && | 
|  | time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + | 
|  | (adapter->tx_timeout_factor * HZ)) | 
|  | && !(E1000_READ_REG(&adapter->hw, STATUS) & | 
|  | E1000_STATUS_TXOFF)) { | 
|  |  | 
|  | /* detected Tx unit hang */ | 
|  | DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n" | 
|  | "  Tx Queue             <%lu>\n" | 
|  | "  TDH                  <%x>\n" | 
|  | "  TDT                  <%x>\n" | 
|  | "  next_to_use          <%x>\n" | 
|  | "  next_to_clean        <%x>\n" | 
|  | "buffer_info[next_to_clean]\n" | 
|  | "  time_stamp           <%lx>\n" | 
|  | "  next_to_watch        <%x>\n" | 
|  | "  jiffies              <%lx>\n" | 
|  | "  next_to_watch.status <%x>\n", | 
|  | (unsigned long)((tx_ring - adapter->tx_ring) / | 
|  | sizeof(struct e1000_tx_ring)), | 
|  | readl(adapter->hw.hw_addr + tx_ring->tdh), | 
|  | readl(adapter->hw.hw_addr + tx_ring->tdt), | 
|  | tx_ring->next_to_use, | 
|  | tx_ring->next_to_clean, | 
|  | tx_ring->buffer_info[eop].time_stamp, | 
|  | eop, | 
|  | jiffies, | 
|  | eop_desc->upper.fields.status); | 
|  | netif_stop_queue(netdev); | 
|  | } | 
|  | } | 
|  | adapter->total_tx_bytes += total_tx_bytes; | 
|  | adapter->total_tx_packets += total_tx_packets; | 
|  | return cleaned; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_rx_checksum - Receive Checksum Offload for 82543 | 
|  | * @adapter:     board private structure | 
|  | * @status_err:  receive descriptor status and error fields | 
|  | * @csum:        receive descriptor csum field | 
|  | * @sk_buff:     socket buffer with received data | 
|  | **/ | 
|  |  | 
|  | static void | 
|  | e1000_rx_checksum(struct e1000_adapter *adapter, | 
|  | uint32_t status_err, uint32_t csum, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | uint16_t status = (uint16_t)status_err; | 
|  | uint8_t errors = (uint8_t)(status_err >> 24); | 
|  | skb->ip_summed = CHECKSUM_NONE; | 
|  |  | 
|  | /* 82543 or newer only */ | 
|  | if (unlikely(adapter->hw.mac_type < e1000_82543)) return; | 
|  | /* Ignore Checksum bit is set */ | 
|  | if (unlikely(status & E1000_RXD_STAT_IXSM)) return; | 
|  | /* TCP/UDP checksum error bit is set */ | 
|  | if (unlikely(errors & E1000_RXD_ERR_TCPE)) { | 
|  | /* let the stack verify checksum errors */ | 
|  | adapter->hw_csum_err++; | 
|  | return; | 
|  | } | 
|  | /* TCP/UDP Checksum has not been calculated */ | 
|  | if (adapter->hw.mac_type <= e1000_82547_rev_2) { | 
|  | if (!(status & E1000_RXD_STAT_TCPCS)) | 
|  | return; | 
|  | } else { | 
|  | if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) | 
|  | return; | 
|  | } | 
|  | /* It must be a TCP or UDP packet with a valid checksum */ | 
|  | if (likely(status & E1000_RXD_STAT_TCPCS)) { | 
|  | /* TCP checksum is good */ | 
|  | skb->ip_summed = CHECKSUM_UNNECESSARY; | 
|  | } else if (adapter->hw.mac_type > e1000_82547_rev_2) { | 
|  | /* IP fragment with UDP payload */ | 
|  | /* Hardware complements the payload checksum, so we undo it | 
|  | * and then put the value in host order for further stack use. | 
|  | */ | 
|  | csum = ntohl(csum ^ 0xFFFF); | 
|  | skb->csum = csum; | 
|  | skb->ip_summed = CHECKSUM_COMPLETE; | 
|  | } | 
|  | adapter->hw_csum_good++; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_clean_rx_irq - Send received data up the network stack; legacy | 
|  | * @adapter: board private structure | 
|  | **/ | 
|  |  | 
|  | static boolean_t | 
|  | #ifdef CONFIG_E1000_NAPI | 
|  | e1000_clean_rx_irq(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rx_ring, | 
|  | int *work_done, int work_to_do) | 
|  | #else | 
|  | e1000_clean_rx_irq(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rx_ring) | 
|  | #endif | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | struct e1000_rx_desc *rx_desc, *next_rxd; | 
|  | struct e1000_buffer *buffer_info, *next_buffer; | 
|  | unsigned long flags; | 
|  | uint32_t length; | 
|  | uint8_t last_byte; | 
|  | unsigned int i; | 
|  | int cleaned_count = 0; | 
|  | boolean_t cleaned = FALSE; | 
|  | unsigned int total_rx_bytes=0, total_rx_packets=0; | 
|  |  | 
|  | i = rx_ring->next_to_clean; | 
|  | rx_desc = E1000_RX_DESC(*rx_ring, i); | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  |  | 
|  | while (rx_desc->status & E1000_RXD_STAT_DD) { | 
|  | struct sk_buff *skb; | 
|  | u8 status; | 
|  |  | 
|  | #ifdef CONFIG_E1000_NAPI | 
|  | if (*work_done >= work_to_do) | 
|  | break; | 
|  | (*work_done)++; | 
|  | #endif | 
|  | status = rx_desc->status; | 
|  | skb = buffer_info->skb; | 
|  | buffer_info->skb = NULL; | 
|  |  | 
|  | prefetch(skb->data - NET_IP_ALIGN); | 
|  |  | 
|  | if (++i == rx_ring->count) i = 0; | 
|  | next_rxd = E1000_RX_DESC(*rx_ring, i); | 
|  | prefetch(next_rxd); | 
|  |  | 
|  | next_buffer = &rx_ring->buffer_info[i]; | 
|  |  | 
|  | cleaned = TRUE; | 
|  | cleaned_count++; | 
|  | pci_unmap_single(pdev, | 
|  | buffer_info->dma, | 
|  | buffer_info->length, | 
|  | PCI_DMA_FROMDEVICE); | 
|  |  | 
|  | length = le16_to_cpu(rx_desc->length); | 
|  |  | 
|  | if (unlikely(!(status & E1000_RXD_STAT_EOP))) { | 
|  | /* All receives must fit into a single buffer */ | 
|  | E1000_DBG("%s: Receive packet consumed multiple" | 
|  | " buffers\n", netdev->name); | 
|  | /* recycle */ | 
|  | buffer_info->skb = skb; | 
|  | goto next_desc; | 
|  | } | 
|  |  | 
|  | if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { | 
|  | last_byte = *(skb->data + length - 1); | 
|  | if (TBI_ACCEPT(&adapter->hw, status, | 
|  | rx_desc->errors, length, last_byte)) { | 
|  | spin_lock_irqsave(&adapter->stats_lock, flags); | 
|  | e1000_tbi_adjust_stats(&adapter->hw, | 
|  | &adapter->stats, | 
|  | length, skb->data); | 
|  | spin_unlock_irqrestore(&adapter->stats_lock, | 
|  | flags); | 
|  | length--; | 
|  | } else { | 
|  | /* recycle */ | 
|  | buffer_info->skb = skb; | 
|  | goto next_desc; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* adjust length to remove Ethernet CRC, this must be | 
|  | * done after the TBI_ACCEPT workaround above */ | 
|  | length -= 4; | 
|  |  | 
|  | /* probably a little skewed due to removing CRC */ | 
|  | total_rx_bytes += length; | 
|  | total_rx_packets++; | 
|  |  | 
|  | /* code added for copybreak, this should improve | 
|  | * performance for small packets with large amounts | 
|  | * of reassembly being done in the stack */ | 
|  | #define E1000_CB_LENGTH 256 | 
|  | if (length < E1000_CB_LENGTH) { | 
|  | struct sk_buff *new_skb = | 
|  | netdev_alloc_skb(netdev, length + NET_IP_ALIGN); | 
|  | if (new_skb) { | 
|  | skb_reserve(new_skb, NET_IP_ALIGN); | 
|  | memcpy(new_skb->data - NET_IP_ALIGN, | 
|  | skb->data - NET_IP_ALIGN, | 
|  | length + NET_IP_ALIGN); | 
|  | /* save the skb in buffer_info as good */ | 
|  | buffer_info->skb = skb; | 
|  | skb = new_skb; | 
|  | } | 
|  | /* else just continue with the old one */ | 
|  | } | 
|  | /* end copybreak code */ | 
|  | skb_put(skb, length); | 
|  |  | 
|  | /* Receive Checksum Offload */ | 
|  | e1000_rx_checksum(adapter, | 
|  | (uint32_t)(status) | | 
|  | ((uint32_t)(rx_desc->errors) << 24), | 
|  | le16_to_cpu(rx_desc->csum), skb); | 
|  |  | 
|  | skb->protocol = eth_type_trans(skb, netdev); | 
|  | #ifdef CONFIG_E1000_NAPI | 
|  | if (unlikely(adapter->vlgrp && | 
|  | (status & E1000_RXD_STAT_VP))) { | 
|  | vlan_hwaccel_receive_skb(skb, adapter->vlgrp, | 
|  | le16_to_cpu(rx_desc->special) & | 
|  | E1000_RXD_SPC_VLAN_MASK); | 
|  | } else { | 
|  | netif_receive_skb(skb); | 
|  | } | 
|  | #else /* CONFIG_E1000_NAPI */ | 
|  | if (unlikely(adapter->vlgrp && | 
|  | (status & E1000_RXD_STAT_VP))) { | 
|  | vlan_hwaccel_rx(skb, adapter->vlgrp, | 
|  | le16_to_cpu(rx_desc->special) & | 
|  | E1000_RXD_SPC_VLAN_MASK); | 
|  | } else { | 
|  | netif_rx(skb); | 
|  | } | 
|  | #endif /* CONFIG_E1000_NAPI */ | 
|  | netdev->last_rx = jiffies; | 
|  |  | 
|  | next_desc: | 
|  | rx_desc->status = 0; | 
|  |  | 
|  | /* return some buffers to hardware, one at a time is too slow */ | 
|  | if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { | 
|  | adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); | 
|  | cleaned_count = 0; | 
|  | } | 
|  |  | 
|  | /* use prefetched values */ | 
|  | rx_desc = next_rxd; | 
|  | buffer_info = next_buffer; | 
|  | } | 
|  | rx_ring->next_to_clean = i; | 
|  |  | 
|  | cleaned_count = E1000_DESC_UNUSED(rx_ring); | 
|  | if (cleaned_count) | 
|  | adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); | 
|  |  | 
|  | adapter->total_rx_packets += total_rx_packets; | 
|  | adapter->total_rx_bytes += total_rx_bytes; | 
|  | return cleaned; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split | 
|  | * @adapter: board private structure | 
|  | **/ | 
|  |  | 
|  | static boolean_t | 
|  | #ifdef CONFIG_E1000_NAPI | 
|  | e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rx_ring, | 
|  | int *work_done, int work_to_do) | 
|  | #else | 
|  | e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rx_ring) | 
|  | #endif | 
|  | { | 
|  | union e1000_rx_desc_packet_split *rx_desc, *next_rxd; | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | struct e1000_buffer *buffer_info, *next_buffer; | 
|  | struct e1000_ps_page *ps_page; | 
|  | struct e1000_ps_page_dma *ps_page_dma; | 
|  | struct sk_buff *skb; | 
|  | unsigned int i, j; | 
|  | uint32_t length, staterr; | 
|  | int cleaned_count = 0; | 
|  | boolean_t cleaned = FALSE; | 
|  | unsigned int total_rx_bytes=0, total_rx_packets=0; | 
|  |  | 
|  | i = rx_ring->next_to_clean; | 
|  | rx_desc = E1000_RX_DESC_PS(*rx_ring, i); | 
|  | staterr = le32_to_cpu(rx_desc->wb.middle.status_error); | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  |  | 
|  | while (staterr & E1000_RXD_STAT_DD) { | 
|  | ps_page = &rx_ring->ps_page[i]; | 
|  | ps_page_dma = &rx_ring->ps_page_dma[i]; | 
|  | #ifdef CONFIG_E1000_NAPI | 
|  | if (unlikely(*work_done >= work_to_do)) | 
|  | break; | 
|  | (*work_done)++; | 
|  | #endif | 
|  | skb = buffer_info->skb; | 
|  |  | 
|  | /* in the packet split case this is header only */ | 
|  | prefetch(skb->data - NET_IP_ALIGN); | 
|  |  | 
|  | if (++i == rx_ring->count) i = 0; | 
|  | next_rxd = E1000_RX_DESC_PS(*rx_ring, i); | 
|  | prefetch(next_rxd); | 
|  |  | 
|  | next_buffer = &rx_ring->buffer_info[i]; | 
|  |  | 
|  | cleaned = TRUE; | 
|  | cleaned_count++; | 
|  | pci_unmap_single(pdev, buffer_info->dma, | 
|  | buffer_info->length, | 
|  | PCI_DMA_FROMDEVICE); | 
|  |  | 
|  | if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) { | 
|  | E1000_DBG("%s: Packet Split buffers didn't pick up" | 
|  | " the full packet\n", netdev->name); | 
|  | dev_kfree_skb_irq(skb); | 
|  | goto next_desc; | 
|  | } | 
|  |  | 
|  | if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) { | 
|  | dev_kfree_skb_irq(skb); | 
|  | goto next_desc; | 
|  | } | 
|  |  | 
|  | length = le16_to_cpu(rx_desc->wb.middle.length0); | 
|  |  | 
|  | if (unlikely(!length)) { | 
|  | E1000_DBG("%s: Last part of the packet spanning" | 
|  | " multiple descriptors\n", netdev->name); | 
|  | dev_kfree_skb_irq(skb); | 
|  | goto next_desc; | 
|  | } | 
|  |  | 
|  | /* Good Receive */ | 
|  | skb_put(skb, length); | 
|  |  | 
|  | { | 
|  | /* this looks ugly, but it seems compiler issues make it | 
|  | more efficient than reusing j */ | 
|  | int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); | 
|  |  | 
|  | /* page alloc/put takes too long and effects small packet | 
|  | * throughput, so unsplit small packets and save the alloc/put*/ | 
|  | if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) { | 
|  | u8 *vaddr; | 
|  | /* there is no documentation about how to call | 
|  | * kmap_atomic, so we can't hold the mapping | 
|  | * very long */ | 
|  | pci_dma_sync_single_for_cpu(pdev, | 
|  | ps_page_dma->ps_page_dma[0], | 
|  | PAGE_SIZE, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | vaddr = kmap_atomic(ps_page->ps_page[0], | 
|  | KM_SKB_DATA_SOFTIRQ); | 
|  | memcpy(skb->tail, vaddr, l1); | 
|  | kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ); | 
|  | pci_dma_sync_single_for_device(pdev, | 
|  | ps_page_dma->ps_page_dma[0], | 
|  | PAGE_SIZE, PCI_DMA_FROMDEVICE); | 
|  | /* remove the CRC */ | 
|  | l1 -= 4; | 
|  | skb_put(skb, l1); | 
|  | goto copydone; | 
|  | } /* if */ | 
|  | } | 
|  |  | 
|  | for (j = 0; j < adapter->rx_ps_pages; j++) { | 
|  | if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j]))) | 
|  | break; | 
|  | pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j], | 
|  | PAGE_SIZE, PCI_DMA_FROMDEVICE); | 
|  | ps_page_dma->ps_page_dma[j] = 0; | 
|  | skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0, | 
|  | length); | 
|  | ps_page->ps_page[j] = NULL; | 
|  | skb->len += length; | 
|  | skb->data_len += length; | 
|  | skb->truesize += length; | 
|  | } | 
|  |  | 
|  | /* strip the ethernet crc, problem is we're using pages now so | 
|  | * this whole operation can get a little cpu intensive */ | 
|  | pskb_trim(skb, skb->len - 4); | 
|  |  | 
|  | copydone: | 
|  | total_rx_bytes += skb->len; | 
|  | total_rx_packets++; | 
|  |  | 
|  | e1000_rx_checksum(adapter, staterr, | 
|  | le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb); | 
|  | skb->protocol = eth_type_trans(skb, netdev); | 
|  |  | 
|  | if (likely(rx_desc->wb.upper.header_status & | 
|  | cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))) | 
|  | adapter->rx_hdr_split++; | 
|  | #ifdef CONFIG_E1000_NAPI | 
|  | if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) { | 
|  | vlan_hwaccel_receive_skb(skb, adapter->vlgrp, | 
|  | le16_to_cpu(rx_desc->wb.middle.vlan) & | 
|  | E1000_RXD_SPC_VLAN_MASK); | 
|  | } else { | 
|  | netif_receive_skb(skb); | 
|  | } | 
|  | #else /* CONFIG_E1000_NAPI */ | 
|  | if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) { | 
|  | vlan_hwaccel_rx(skb, adapter->vlgrp, | 
|  | le16_to_cpu(rx_desc->wb.middle.vlan) & | 
|  | E1000_RXD_SPC_VLAN_MASK); | 
|  | } else { | 
|  | netif_rx(skb); | 
|  | } | 
|  | #endif /* CONFIG_E1000_NAPI */ | 
|  | netdev->last_rx = jiffies; | 
|  |  | 
|  | next_desc: | 
|  | rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); | 
|  | buffer_info->skb = NULL; | 
|  |  | 
|  | /* return some buffers to hardware, one at a time is too slow */ | 
|  | if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { | 
|  | adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); | 
|  | cleaned_count = 0; | 
|  | } | 
|  |  | 
|  | /* use prefetched values */ | 
|  | rx_desc = next_rxd; | 
|  | buffer_info = next_buffer; | 
|  |  | 
|  | staterr = le32_to_cpu(rx_desc->wb.middle.status_error); | 
|  | } | 
|  | rx_ring->next_to_clean = i; | 
|  |  | 
|  | cleaned_count = E1000_DESC_UNUSED(rx_ring); | 
|  | if (cleaned_count) | 
|  | adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); | 
|  |  | 
|  | adapter->total_rx_packets += total_rx_packets; | 
|  | adapter->total_rx_bytes += total_rx_bytes; | 
|  | return cleaned; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended | 
|  | * @adapter: address of board private structure | 
|  | **/ | 
|  |  | 
|  | static void | 
|  | e1000_alloc_rx_buffers(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rx_ring, | 
|  | int cleaned_count) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | struct e1000_rx_desc *rx_desc; | 
|  | struct e1000_buffer *buffer_info; | 
|  | struct sk_buff *skb; | 
|  | unsigned int i; | 
|  | unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN; | 
|  |  | 
|  | i = rx_ring->next_to_use; | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  |  | 
|  | while (cleaned_count--) { | 
|  | skb = buffer_info->skb; | 
|  | if (skb) { | 
|  | skb_trim(skb, 0); | 
|  | goto map_skb; | 
|  | } | 
|  |  | 
|  | skb = netdev_alloc_skb(netdev, bufsz); | 
|  | if (unlikely(!skb)) { | 
|  | /* Better luck next round */ | 
|  | adapter->alloc_rx_buff_failed++; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Fix for errata 23, can't cross 64kB boundary */ | 
|  | if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { | 
|  | struct sk_buff *oldskb = skb; | 
|  | DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes " | 
|  | "at %p\n", bufsz, skb->data); | 
|  | /* Try again, without freeing the previous */ | 
|  | skb = netdev_alloc_skb(netdev, bufsz); | 
|  | /* Failed allocation, critical failure */ | 
|  | if (!skb) { | 
|  | dev_kfree_skb(oldskb); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { | 
|  | /* give up */ | 
|  | dev_kfree_skb(skb); | 
|  | dev_kfree_skb(oldskb); | 
|  | break; /* while !buffer_info->skb */ | 
|  | } | 
|  |  | 
|  | /* Use new allocation */ | 
|  | dev_kfree_skb(oldskb); | 
|  | } | 
|  | /* Make buffer alignment 2 beyond a 16 byte boundary | 
|  | * this will result in a 16 byte aligned IP header after | 
|  | * the 14 byte MAC header is removed | 
|  | */ | 
|  | skb_reserve(skb, NET_IP_ALIGN); | 
|  |  | 
|  | buffer_info->skb = skb; | 
|  | buffer_info->length = adapter->rx_buffer_len; | 
|  | map_skb: | 
|  | buffer_info->dma = pci_map_single(pdev, | 
|  | skb->data, | 
|  | adapter->rx_buffer_len, | 
|  | PCI_DMA_FROMDEVICE); | 
|  |  | 
|  | /* Fix for errata 23, can't cross 64kB boundary */ | 
|  | if (!e1000_check_64k_bound(adapter, | 
|  | (void *)(unsigned long)buffer_info->dma, | 
|  | adapter->rx_buffer_len)) { | 
|  | DPRINTK(RX_ERR, ERR, | 
|  | "dma align check failed: %u bytes at %p\n", | 
|  | adapter->rx_buffer_len, | 
|  | (void *)(unsigned long)buffer_info->dma); | 
|  | dev_kfree_skb(skb); | 
|  | buffer_info->skb = NULL; | 
|  |  | 
|  | pci_unmap_single(pdev, buffer_info->dma, | 
|  | adapter->rx_buffer_len, | 
|  | PCI_DMA_FROMDEVICE); | 
|  |  | 
|  | break; /* while !buffer_info->skb */ | 
|  | } | 
|  | rx_desc = E1000_RX_DESC(*rx_ring, i); | 
|  | rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | 
|  |  | 
|  | if (unlikely(++i == rx_ring->count)) | 
|  | i = 0; | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  | } | 
|  |  | 
|  | if (likely(rx_ring->next_to_use != i)) { | 
|  | rx_ring->next_to_use = i; | 
|  | if (unlikely(i-- == 0)) | 
|  | i = (rx_ring->count - 1); | 
|  |  | 
|  | /* Force memory writes to complete before letting h/w | 
|  | * know there are new descriptors to fetch.  (Only | 
|  | * applicable for weak-ordered memory model archs, | 
|  | * such as IA-64). */ | 
|  | wmb(); | 
|  | writel(i, adapter->hw.hw_addr + rx_ring->rdt); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split | 
|  | * @adapter: address of board private structure | 
|  | **/ | 
|  |  | 
|  | static void | 
|  | e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rx_ring, | 
|  | int cleaned_count) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | union e1000_rx_desc_packet_split *rx_desc; | 
|  | struct e1000_buffer *buffer_info; | 
|  | struct e1000_ps_page *ps_page; | 
|  | struct e1000_ps_page_dma *ps_page_dma; | 
|  | struct sk_buff *skb; | 
|  | unsigned int i, j; | 
|  |  | 
|  | i = rx_ring->next_to_use; | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  | ps_page = &rx_ring->ps_page[i]; | 
|  | ps_page_dma = &rx_ring->ps_page_dma[i]; | 
|  |  | 
|  | while (cleaned_count--) { | 
|  | rx_desc = E1000_RX_DESC_PS(*rx_ring, i); | 
|  |  | 
|  | for (j = 0; j < PS_PAGE_BUFFERS; j++) { | 
|  | if (j < adapter->rx_ps_pages) { | 
|  | if (likely(!ps_page->ps_page[j])) { | 
|  | ps_page->ps_page[j] = | 
|  | alloc_page(GFP_ATOMIC); | 
|  | if (unlikely(!ps_page->ps_page[j])) { | 
|  | adapter->alloc_rx_buff_failed++; | 
|  | goto no_buffers; | 
|  | } | 
|  | ps_page_dma->ps_page_dma[j] = | 
|  | pci_map_page(pdev, | 
|  | ps_page->ps_page[j], | 
|  | 0, PAGE_SIZE, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | } | 
|  | /* Refresh the desc even if buffer_addrs didn't | 
|  | * change because each write-back erases | 
|  | * this info. | 
|  | */ | 
|  | rx_desc->read.buffer_addr[j+1] = | 
|  | cpu_to_le64(ps_page_dma->ps_page_dma[j]); | 
|  | } else | 
|  | rx_desc->read.buffer_addr[j+1] = ~0; | 
|  | } | 
|  |  | 
|  | skb = netdev_alloc_skb(netdev, | 
|  | adapter->rx_ps_bsize0 + NET_IP_ALIGN); | 
|  |  | 
|  | if (unlikely(!skb)) { | 
|  | adapter->alloc_rx_buff_failed++; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Make buffer alignment 2 beyond a 16 byte boundary | 
|  | * this will result in a 16 byte aligned IP header after | 
|  | * the 14 byte MAC header is removed | 
|  | */ | 
|  | skb_reserve(skb, NET_IP_ALIGN); | 
|  |  | 
|  | buffer_info->skb = skb; | 
|  | buffer_info->length = adapter->rx_ps_bsize0; | 
|  | buffer_info->dma = pci_map_single(pdev, skb->data, | 
|  | adapter->rx_ps_bsize0, | 
|  | PCI_DMA_FROMDEVICE); | 
|  |  | 
|  | rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); | 
|  |  | 
|  | if (unlikely(++i == rx_ring->count)) i = 0; | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  | ps_page = &rx_ring->ps_page[i]; | 
|  | ps_page_dma = &rx_ring->ps_page_dma[i]; | 
|  | } | 
|  |  | 
|  | no_buffers: | 
|  | if (likely(rx_ring->next_to_use != i)) { | 
|  | rx_ring->next_to_use = i; | 
|  | if (unlikely(i-- == 0)) i = (rx_ring->count - 1); | 
|  |  | 
|  | /* Force memory writes to complete before letting h/w | 
|  | * know there are new descriptors to fetch.  (Only | 
|  | * applicable for weak-ordered memory model archs, | 
|  | * such as IA-64). */ | 
|  | wmb(); | 
|  | /* Hardware increments by 16 bytes, but packet split | 
|  | * descriptors are 32 bytes...so we increment tail | 
|  | * twice as much. | 
|  | */ | 
|  | writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. | 
|  | * @adapter: | 
|  | **/ | 
|  |  | 
|  | static void | 
|  | e1000_smartspeed(struct e1000_adapter *adapter) | 
|  | { | 
|  | uint16_t phy_status; | 
|  | uint16_t phy_ctrl; | 
|  |  | 
|  | if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg || | 
|  | !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL)) | 
|  | return; | 
|  |  | 
|  | if (adapter->smartspeed == 0) { | 
|  | /* If Master/Slave config fault is asserted twice, | 
|  | * we assume back-to-back */ | 
|  | e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status); | 
|  | if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; | 
|  | e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status); | 
|  | if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; | 
|  | e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl); | 
|  | if (phy_ctrl & CR_1000T_MS_ENABLE) { | 
|  | phy_ctrl &= ~CR_1000T_MS_ENABLE; | 
|  | e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, | 
|  | phy_ctrl); | 
|  | adapter->smartspeed++; | 
|  | if (!e1000_phy_setup_autoneg(&adapter->hw) && | 
|  | !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, | 
|  | &phy_ctrl)) { | 
|  | phy_ctrl |= (MII_CR_AUTO_NEG_EN | | 
|  | MII_CR_RESTART_AUTO_NEG); | 
|  | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, | 
|  | phy_ctrl); | 
|  | } | 
|  | } | 
|  | return; | 
|  | } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { | 
|  | /* If still no link, perhaps using 2/3 pair cable */ | 
|  | e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl); | 
|  | phy_ctrl |= CR_1000T_MS_ENABLE; | 
|  | e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl); | 
|  | if (!e1000_phy_setup_autoneg(&adapter->hw) && | 
|  | !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) { | 
|  | phy_ctrl |= (MII_CR_AUTO_NEG_EN | | 
|  | MII_CR_RESTART_AUTO_NEG); | 
|  | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl); | 
|  | } | 
|  | } | 
|  | /* Restart process after E1000_SMARTSPEED_MAX iterations */ | 
|  | if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) | 
|  | adapter->smartspeed = 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_ioctl - | 
|  | * @netdev: | 
|  | * @ifreq: | 
|  | * @cmd: | 
|  | **/ | 
|  |  | 
|  | static int | 
|  | e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | 
|  | { | 
|  | switch (cmd) { | 
|  | case SIOCGMIIPHY: | 
|  | case SIOCGMIIREG: | 
|  | case SIOCSMIIREG: | 
|  | return e1000_mii_ioctl(netdev, ifr, cmd); | 
|  | default: | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_mii_ioctl - | 
|  | * @netdev: | 
|  | * @ifreq: | 
|  | * @cmd: | 
|  | **/ | 
|  |  | 
|  | static int | 
|  | e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct mii_ioctl_data *data = if_mii(ifr); | 
|  | int retval; | 
|  | uint16_t mii_reg; | 
|  | uint16_t spddplx; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (adapter->hw.media_type != e1000_media_type_copper) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | switch (cmd) { | 
|  | case SIOCGMIIPHY: | 
|  | data->phy_id = adapter->hw.phy_addr; | 
|  | break; | 
|  | case SIOCGMIIREG: | 
|  | if (!capable(CAP_NET_ADMIN)) | 
|  | return -EPERM; | 
|  | spin_lock_irqsave(&adapter->stats_lock, flags); | 
|  | if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, | 
|  | &data->val_out)) { | 
|  | spin_unlock_irqrestore(&adapter->stats_lock, flags); | 
|  | return -EIO; | 
|  | } | 
|  | spin_unlock_irqrestore(&adapter->stats_lock, flags); | 
|  | break; | 
|  | case SIOCSMIIREG: | 
|  | if (!capable(CAP_NET_ADMIN)) | 
|  | return -EPERM; | 
|  | if (data->reg_num & ~(0x1F)) | 
|  | return -EFAULT; | 
|  | mii_reg = data->val_in; | 
|  | spin_lock_irqsave(&adapter->stats_lock, flags); | 
|  | if (e1000_write_phy_reg(&adapter->hw, data->reg_num, | 
|  | mii_reg)) { | 
|  | spin_unlock_irqrestore(&adapter->stats_lock, flags); | 
|  | return -EIO; | 
|  | } | 
|  | if (adapter->hw.media_type == e1000_media_type_copper) { | 
|  | switch (data->reg_num) { | 
|  | case PHY_CTRL: | 
|  | if (mii_reg & MII_CR_POWER_DOWN) | 
|  | break; | 
|  | if (mii_reg & MII_CR_AUTO_NEG_EN) { | 
|  | adapter->hw.autoneg = 1; | 
|  | adapter->hw.autoneg_advertised = 0x2F; | 
|  | } else { | 
|  | if (mii_reg & 0x40) | 
|  | spddplx = SPEED_1000; | 
|  | else if (mii_reg & 0x2000) | 
|  | spddplx = SPEED_100; | 
|  | else | 
|  | spddplx = SPEED_10; | 
|  | spddplx += (mii_reg & 0x100) | 
|  | ? DUPLEX_FULL : | 
|  | DUPLEX_HALF; | 
|  | retval = e1000_set_spd_dplx(adapter, | 
|  | spddplx); | 
|  | if (retval) { | 
|  | spin_unlock_irqrestore( | 
|  | &adapter->stats_lock, | 
|  | flags); | 
|  | return retval; | 
|  | } | 
|  | } | 
|  | if (netif_running(adapter->netdev)) | 
|  | e1000_reinit_locked(adapter); | 
|  | else | 
|  | e1000_reset(adapter); | 
|  | break; | 
|  | case M88E1000_PHY_SPEC_CTRL: | 
|  | case M88E1000_EXT_PHY_SPEC_CTRL: | 
|  | if (e1000_phy_reset(&adapter->hw)) { | 
|  | spin_unlock_irqrestore( | 
|  | &adapter->stats_lock, flags); | 
|  | return -EIO; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | switch (data->reg_num) { | 
|  | case PHY_CTRL: | 
|  | if (mii_reg & MII_CR_POWER_DOWN) | 
|  | break; | 
|  | if (netif_running(adapter->netdev)) | 
|  | e1000_reinit_locked(adapter); | 
|  | else | 
|  | e1000_reset(adapter); | 
|  | break; | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&adapter->stats_lock, flags); | 
|  | break; | 
|  | default: | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | void | 
|  | e1000_pci_set_mwi(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_adapter *adapter = hw->back; | 
|  | int ret_val = pci_set_mwi(adapter->pdev); | 
|  |  | 
|  | if (ret_val) | 
|  | DPRINTK(PROBE, ERR, "Error in setting MWI\n"); | 
|  | } | 
|  |  | 
|  | void | 
|  | e1000_pci_clear_mwi(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_adapter *adapter = hw->back; | 
|  |  | 
|  | pci_clear_mwi(adapter->pdev); | 
|  | } | 
|  |  | 
|  | void | 
|  | e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value) | 
|  | { | 
|  | struct e1000_adapter *adapter = hw->back; | 
|  |  | 
|  | pci_read_config_word(adapter->pdev, reg, value); | 
|  | } | 
|  |  | 
|  | void | 
|  | e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value) | 
|  | { | 
|  | struct e1000_adapter *adapter = hw->back; | 
|  |  | 
|  | pci_write_config_word(adapter->pdev, reg, *value); | 
|  | } | 
|  |  | 
|  | int32_t | 
|  | e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value) | 
|  | { | 
|  | struct e1000_adapter *adapter = hw->back; | 
|  | uint16_t cap_offset; | 
|  |  | 
|  | cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); | 
|  | if (!cap_offset) | 
|  | return -E1000_ERR_CONFIG; | 
|  |  | 
|  | pci_read_config_word(adapter->pdev, cap_offset + reg, value); | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | void | 
|  | e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value) | 
|  | { | 
|  | outl(value, port); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | uint32_t ctrl, rctl; | 
|  |  | 
|  | e1000_irq_disable(adapter); | 
|  | adapter->vlgrp = grp; | 
|  |  | 
|  | if (grp) { | 
|  | /* enable VLAN tag insert/strip */ | 
|  | ctrl = E1000_READ_REG(&adapter->hw, CTRL); | 
|  | ctrl |= E1000_CTRL_VME; | 
|  | E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); | 
|  |  | 
|  | if (adapter->hw.mac_type != e1000_ich8lan) { | 
|  | /* enable VLAN receive filtering */ | 
|  | rctl = E1000_READ_REG(&adapter->hw, RCTL); | 
|  | rctl |= E1000_RCTL_VFE; | 
|  | rctl &= ~E1000_RCTL_CFIEN; | 
|  | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | 
|  | e1000_update_mng_vlan(adapter); | 
|  | } | 
|  | } else { | 
|  | /* disable VLAN tag insert/strip */ | 
|  | ctrl = E1000_READ_REG(&adapter->hw, CTRL); | 
|  | ctrl &= ~E1000_CTRL_VME; | 
|  | E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); | 
|  |  | 
|  | if (adapter->hw.mac_type != e1000_ich8lan) { | 
|  | /* disable VLAN filtering */ | 
|  | rctl = E1000_READ_REG(&adapter->hw, RCTL); | 
|  | rctl &= ~E1000_RCTL_VFE; | 
|  | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | 
|  | if (adapter->mng_vlan_id != | 
|  | (uint16_t)E1000_MNG_VLAN_NONE) { | 
|  | e1000_vlan_rx_kill_vid(netdev, | 
|  | adapter->mng_vlan_id); | 
|  | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | e1000_irq_enable(adapter); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | uint32_t vfta, index; | 
|  |  | 
|  | if ((adapter->hw.mng_cookie.status & | 
|  | E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && | 
|  | (vid == adapter->mng_vlan_id)) | 
|  | return; | 
|  | /* add VID to filter table */ | 
|  | index = (vid >> 5) & 0x7F; | 
|  | vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index); | 
|  | vfta |= (1 << (vid & 0x1F)); | 
|  | e1000_write_vfta(&adapter->hw, index, vfta); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | uint32_t vfta, index; | 
|  |  | 
|  | e1000_irq_disable(adapter); | 
|  |  | 
|  | if (adapter->vlgrp) | 
|  | adapter->vlgrp->vlan_devices[vid] = NULL; | 
|  |  | 
|  | e1000_irq_enable(adapter); | 
|  |  | 
|  | if ((adapter->hw.mng_cookie.status & | 
|  | E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && | 
|  | (vid == adapter->mng_vlan_id)) { | 
|  | /* release control to f/w */ | 
|  | e1000_release_hw_control(adapter); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* remove VID from filter table */ | 
|  | index = (vid >> 5) & 0x7F; | 
|  | vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index); | 
|  | vfta &= ~(1 << (vid & 0x1F)); | 
|  | e1000_write_vfta(&adapter->hw, index, vfta); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_restore_vlan(struct e1000_adapter *adapter) | 
|  | { | 
|  | e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp); | 
|  |  | 
|  | if (adapter->vlgrp) { | 
|  | uint16_t vid; | 
|  | for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { | 
|  | if (!adapter->vlgrp->vlan_devices[vid]) | 
|  | continue; | 
|  | e1000_vlan_rx_add_vid(adapter->netdev, vid); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int | 
|  | e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx) | 
|  | { | 
|  | adapter->hw.autoneg = 0; | 
|  |  | 
|  | /* Fiber NICs only allow 1000 gbps Full duplex */ | 
|  | if ((adapter->hw.media_type == e1000_media_type_fiber) && | 
|  | spddplx != (SPEED_1000 + DUPLEX_FULL)) { | 
|  | DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | switch (spddplx) { | 
|  | case SPEED_10 + DUPLEX_HALF: | 
|  | adapter->hw.forced_speed_duplex = e1000_10_half; | 
|  | break; | 
|  | case SPEED_10 + DUPLEX_FULL: | 
|  | adapter->hw.forced_speed_duplex = e1000_10_full; | 
|  | break; | 
|  | case SPEED_100 + DUPLEX_HALF: | 
|  | adapter->hw.forced_speed_duplex = e1000_100_half; | 
|  | break; | 
|  | case SPEED_100 + DUPLEX_FULL: | 
|  | adapter->hw.forced_speed_duplex = e1000_100_full; | 
|  | break; | 
|  | case SPEED_1000 + DUPLEX_FULL: | 
|  | adapter->hw.autoneg = 1; | 
|  | adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL; | 
|  | break; | 
|  | case SPEED_1000 + DUPLEX_HALF: /* not supported */ | 
|  | default: | 
|  | DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | /* Save/restore 16 or 64 dwords of PCI config space depending on which | 
|  | * bus we're on (PCI(X) vs. PCI-E) | 
|  | */ | 
|  | #define PCIE_CONFIG_SPACE_LEN 256 | 
|  | #define PCI_CONFIG_SPACE_LEN 64 | 
|  | static int | 
|  | e1000_pci_save_state(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct pci_dev *dev = adapter->pdev; | 
|  | int size; | 
|  | int i; | 
|  |  | 
|  | if (adapter->hw.mac_type >= e1000_82571) | 
|  | size = PCIE_CONFIG_SPACE_LEN; | 
|  | else | 
|  | size = PCI_CONFIG_SPACE_LEN; | 
|  |  | 
|  | WARN_ON(adapter->config_space != NULL); | 
|  |  | 
|  | adapter->config_space = kmalloc(size, GFP_KERNEL); | 
|  | if (!adapter->config_space) { | 
|  | DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size); | 
|  | return -ENOMEM; | 
|  | } | 
|  | for (i = 0; i < (size / 4); i++) | 
|  | pci_read_config_dword(dev, i * 4, &adapter->config_space[i]); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_pci_restore_state(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct pci_dev *dev = adapter->pdev; | 
|  | int size; | 
|  | int i; | 
|  |  | 
|  | if (adapter->config_space == NULL) | 
|  | return; | 
|  |  | 
|  | if (adapter->hw.mac_type >= e1000_82571) | 
|  | size = PCIE_CONFIG_SPACE_LEN; | 
|  | else | 
|  | size = PCI_CONFIG_SPACE_LEN; | 
|  | for (i = 0; i < (size / 4); i++) | 
|  | pci_write_config_dword(dev, i * 4, adapter->config_space[i]); | 
|  | kfree(adapter->config_space); | 
|  | adapter->config_space = NULL; | 
|  | return; | 
|  | } | 
|  | #endif /* CONFIG_PM */ | 
|  |  | 
|  | static int | 
|  | e1000_suspend(struct pci_dev *pdev, pm_message_t state) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | uint32_t ctrl, ctrl_ext, rctl, manc, status; | 
|  | uint32_t wufc = adapter->wol; | 
|  | #ifdef CONFIG_PM | 
|  | int retval = 0; | 
|  | #endif | 
|  |  | 
|  | netif_device_detach(netdev); | 
|  |  | 
|  | if (netif_running(netdev)) { | 
|  | WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); | 
|  | e1000_down(adapter); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | /* Implement our own version of pci_save_state(pdev) because pci- | 
|  | * express adapters have 256-byte config spaces. */ | 
|  | retval = e1000_pci_save_state(adapter); | 
|  | if (retval) | 
|  | return retval; | 
|  | #endif | 
|  |  | 
|  | status = E1000_READ_REG(&adapter->hw, STATUS); | 
|  | if (status & E1000_STATUS_LU) | 
|  | wufc &= ~E1000_WUFC_LNKC; | 
|  |  | 
|  | if (wufc) { | 
|  | e1000_setup_rctl(adapter); | 
|  | e1000_set_multi(netdev); | 
|  |  | 
|  | /* turn on all-multi mode if wake on multicast is enabled */ | 
|  | if (wufc & E1000_WUFC_MC) { | 
|  | rctl = E1000_READ_REG(&adapter->hw, RCTL); | 
|  | rctl |= E1000_RCTL_MPE; | 
|  | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | 
|  | } | 
|  |  | 
|  | if (adapter->hw.mac_type >= e1000_82540) { | 
|  | ctrl = E1000_READ_REG(&adapter->hw, CTRL); | 
|  | /* advertise wake from D3Cold */ | 
|  | #define E1000_CTRL_ADVD3WUC 0x00100000 | 
|  | /* phy power management enable */ | 
|  | #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 | 
|  | ctrl |= E1000_CTRL_ADVD3WUC | | 
|  | E1000_CTRL_EN_PHY_PWR_MGMT; | 
|  | E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); | 
|  | } | 
|  |  | 
|  | if (adapter->hw.media_type == e1000_media_type_fiber || | 
|  | adapter->hw.media_type == e1000_media_type_internal_serdes) { | 
|  | /* keep the laser running in D3 */ | 
|  | ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT); | 
|  | ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; | 
|  | E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext); | 
|  | } | 
|  |  | 
|  | /* Allow time for pending master requests to run */ | 
|  | e1000_disable_pciex_master(&adapter->hw); | 
|  |  | 
|  | E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN); | 
|  | E1000_WRITE_REG(&adapter->hw, WUFC, wufc); | 
|  | pci_enable_wake(pdev, PCI_D3hot, 1); | 
|  | pci_enable_wake(pdev, PCI_D3cold, 1); | 
|  | } else { | 
|  | E1000_WRITE_REG(&adapter->hw, WUC, 0); | 
|  | E1000_WRITE_REG(&adapter->hw, WUFC, 0); | 
|  | pci_enable_wake(pdev, PCI_D3hot, 0); | 
|  | pci_enable_wake(pdev, PCI_D3cold, 0); | 
|  | } | 
|  |  | 
|  | if (adapter->hw.mac_type >= e1000_82540 && | 
|  | adapter->hw.mac_type < e1000_82571 && | 
|  | adapter->hw.media_type == e1000_media_type_copper) { | 
|  | manc = E1000_READ_REG(&adapter->hw, MANC); | 
|  | if (manc & E1000_MANC_SMBUS_EN) { | 
|  | manc |= E1000_MANC_ARP_EN; | 
|  | E1000_WRITE_REG(&adapter->hw, MANC, manc); | 
|  | pci_enable_wake(pdev, PCI_D3hot, 1); | 
|  | pci_enable_wake(pdev, PCI_D3cold, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (adapter->hw.phy_type == e1000_phy_igp_3) | 
|  | e1000_phy_powerdown_workaround(&adapter->hw); | 
|  |  | 
|  | if (netif_running(netdev)) | 
|  | e1000_free_irq(adapter); | 
|  |  | 
|  | /* Release control of h/w to f/w.  If f/w is AMT enabled, this | 
|  | * would have already happened in close and is redundant. */ | 
|  | e1000_release_hw_control(adapter); | 
|  |  | 
|  | pci_disable_device(pdev); | 
|  |  | 
|  | pci_set_power_state(pdev, pci_choose_state(pdev, state)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | static int | 
|  | e1000_resume(struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | uint32_t manc, err; | 
|  |  | 
|  | pci_set_power_state(pdev, PCI_D0); | 
|  | e1000_pci_restore_state(adapter); | 
|  | if ((err = pci_enable_device(pdev))) { | 
|  | printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n"); | 
|  | return err; | 
|  | } | 
|  | pci_set_master(pdev); | 
|  |  | 
|  | pci_enable_wake(pdev, PCI_D3hot, 0); | 
|  | pci_enable_wake(pdev, PCI_D3cold, 0); | 
|  |  | 
|  | if (netif_running(netdev) && (err = e1000_request_irq(adapter))) | 
|  | return err; | 
|  |  | 
|  | e1000_power_up_phy(adapter); | 
|  | e1000_reset(adapter); | 
|  | E1000_WRITE_REG(&adapter->hw, WUS, ~0); | 
|  |  | 
|  | if (netif_running(netdev)) | 
|  | e1000_up(adapter); | 
|  |  | 
|  | netif_device_attach(netdev); | 
|  |  | 
|  | if (adapter->hw.mac_type >= e1000_82540 && | 
|  | adapter->hw.mac_type < e1000_82571 && | 
|  | adapter->hw.media_type == e1000_media_type_copper) { | 
|  | manc = E1000_READ_REG(&adapter->hw, MANC); | 
|  | manc &= ~(E1000_MANC_ARP_EN); | 
|  | E1000_WRITE_REG(&adapter->hw, MANC, manc); | 
|  | } | 
|  |  | 
|  | /* If the controller is 82573 and f/w is AMT, do not set | 
|  | * DRV_LOAD until the interface is up.  For all other cases, | 
|  | * let the f/w know that the h/w is now under the control | 
|  | * of the driver. */ | 
|  | if (adapter->hw.mac_type != e1000_82573 || | 
|  | !e1000_check_mng_mode(&adapter->hw)) | 
|  | e1000_get_hw_control(adapter); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void e1000_shutdown(struct pci_dev *pdev) | 
|  | { | 
|  | e1000_suspend(pdev, PMSG_SUSPEND); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  | /* | 
|  | * Polling 'interrupt' - used by things like netconsole to send skbs | 
|  | * without having to re-enable interrupts. It's not called while | 
|  | * the interrupt routine is executing. | 
|  | */ | 
|  | static void | 
|  | e1000_netpoll(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | disable_irq(adapter->pdev->irq); | 
|  | e1000_intr(adapter->pdev->irq, netdev); | 
|  | e1000_clean_tx_irq(adapter, adapter->tx_ring); | 
|  | #ifndef CONFIG_E1000_NAPI | 
|  | adapter->clean_rx(adapter, adapter->rx_ring); | 
|  | #endif | 
|  | enable_irq(adapter->pdev->irq); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * e1000_io_error_detected - called when PCI error is detected | 
|  | * @pdev: Pointer to PCI device | 
|  | * @state: The current pci conneection state | 
|  | * | 
|  | * This function is called after a PCI bus error affecting | 
|  | * this device has been detected. | 
|  | */ | 
|  | static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct e1000_adapter *adapter = netdev->priv; | 
|  |  | 
|  | netif_device_detach(netdev); | 
|  |  | 
|  | if (netif_running(netdev)) | 
|  | e1000_down(adapter); | 
|  | pci_disable_device(pdev); | 
|  |  | 
|  | /* Request a slot slot reset. */ | 
|  | return PCI_ERS_RESULT_NEED_RESET; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_io_slot_reset - called after the pci bus has been reset. | 
|  | * @pdev: Pointer to PCI device | 
|  | * | 
|  | * Restart the card from scratch, as if from a cold-boot. Implementation | 
|  | * resembles the first-half of the e1000_resume routine. | 
|  | */ | 
|  | static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct e1000_adapter *adapter = netdev->priv; | 
|  |  | 
|  | if (pci_enable_device(pdev)) { | 
|  | printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n"); | 
|  | return PCI_ERS_RESULT_DISCONNECT; | 
|  | } | 
|  | pci_set_master(pdev); | 
|  |  | 
|  | pci_enable_wake(pdev, PCI_D3hot, 0); | 
|  | pci_enable_wake(pdev, PCI_D3cold, 0); | 
|  |  | 
|  | e1000_reset(adapter); | 
|  | E1000_WRITE_REG(&adapter->hw, WUS, ~0); | 
|  |  | 
|  | return PCI_ERS_RESULT_RECOVERED; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_io_resume - called when traffic can start flowing again. | 
|  | * @pdev: Pointer to PCI device | 
|  | * | 
|  | * This callback is called when the error recovery driver tells us that | 
|  | * its OK to resume normal operation. Implementation resembles the | 
|  | * second-half of the e1000_resume routine. | 
|  | */ | 
|  | static void e1000_io_resume(struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct e1000_adapter *adapter = netdev->priv; | 
|  | uint32_t manc, swsm; | 
|  |  | 
|  | if (netif_running(netdev)) { | 
|  | if (e1000_up(adapter)) { | 
|  | printk("e1000: can't bring device back up after reset\n"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | netif_device_attach(netdev); | 
|  |  | 
|  | if (adapter->hw.mac_type >= e1000_82540 && | 
|  | adapter->hw.mac_type < e1000_82571 && | 
|  | adapter->hw.media_type == e1000_media_type_copper) { | 
|  | manc = E1000_READ_REG(&adapter->hw, MANC); | 
|  | manc &= ~(E1000_MANC_ARP_EN); | 
|  | E1000_WRITE_REG(&adapter->hw, MANC, manc); | 
|  | } | 
|  |  | 
|  | switch (adapter->hw.mac_type) { | 
|  | case e1000_82573: | 
|  | swsm = E1000_READ_REG(&adapter->hw, SWSM); | 
|  | E1000_WRITE_REG(&adapter->hw, SWSM, | 
|  | swsm | E1000_SWSM_DRV_LOAD); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (netif_running(netdev)) | 
|  | mod_timer(&adapter->watchdog_timer, jiffies); | 
|  | } | 
|  |  | 
|  | /* e1000_main.c */ |