|  | /* | 
|  | *	Driver for the Macintosh 68K onboard MACE controller with PSC | 
|  | *	driven DMA. The MACE driver code is derived from mace.c. The | 
|  | *	Mac68k theory of operation is courtesy of the MacBSD wizards. | 
|  | * | 
|  | *	This program is free software; you can redistribute it and/or | 
|  | *	modify it under the terms of the GNU General Public License | 
|  | *	as published by the Free Software Foundation; either version | 
|  | *	2 of the License, or (at your option) any later version. | 
|  | * | 
|  | *	Copyright (C) 1996 Paul Mackerras. | 
|  | *	Copyright (C) 1998 Alan Cox <alan@redhat.com> | 
|  | * | 
|  | *	Modified heavily by Joshua M. Thompson based on Dave Huang's NetBSD driver | 
|  | */ | 
|  |  | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/etherdevice.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/crc32.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/irq.h> | 
|  | #include <asm/macintosh.h> | 
|  | #include <asm/macints.h> | 
|  | #include <asm/mac_psc.h> | 
|  | #include <asm/page.h> | 
|  | #include "mace.h" | 
|  |  | 
|  | #define N_TX_RING	1 | 
|  | #define N_RX_RING	8 | 
|  | #define N_RX_PAGES	((N_RX_RING * 0x0800 + PAGE_SIZE - 1) / PAGE_SIZE) | 
|  | #define TX_TIMEOUT	HZ | 
|  |  | 
|  | /* Bits in transmit DMA status */ | 
|  | #define TX_DMA_ERR	0x80 | 
|  |  | 
|  | /* The MACE is simply wired down on a Mac68K box */ | 
|  |  | 
|  | #define MACE_BASE	(void *)(0x50F1C000) | 
|  | #define MACE_PROM	(void *)(0x50F08001) | 
|  |  | 
|  | struct mace_data { | 
|  | volatile struct mace *mace; | 
|  | volatile unsigned char *tx_ring; | 
|  | volatile unsigned char *tx_ring_phys; | 
|  | volatile unsigned char *rx_ring; | 
|  | volatile unsigned char *rx_ring_phys; | 
|  | int dma_intr; | 
|  | struct net_device_stats stats; | 
|  | int rx_slot, rx_tail; | 
|  | int tx_slot, tx_sloti, tx_count; | 
|  | }; | 
|  |  | 
|  | struct mace_frame { | 
|  | u16	len; | 
|  | u16	status; | 
|  | u16	rntpc; | 
|  | u16	rcvcc; | 
|  | u32	pad1; | 
|  | u32	pad2; | 
|  | u8	data[1]; | 
|  | /* And frame continues.. */ | 
|  | }; | 
|  |  | 
|  | #define PRIV_BYTES	sizeof(struct mace_data) | 
|  |  | 
|  | extern void psc_debug_dump(void); | 
|  |  | 
|  | static int mace_open(struct net_device *dev); | 
|  | static int mace_close(struct net_device *dev); | 
|  | static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev); | 
|  | static struct net_device_stats *mace_stats(struct net_device *dev); | 
|  | static void mace_set_multicast(struct net_device *dev); | 
|  | static int mace_set_address(struct net_device *dev, void *addr); | 
|  | static irqreturn_t mace_interrupt(int irq, void *dev_id); | 
|  | static irqreturn_t mace_dma_intr(int irq, void *dev_id); | 
|  | static void mace_tx_timeout(struct net_device *dev); | 
|  |  | 
|  | /* Bit-reverse one byte of an ethernet hardware address. */ | 
|  |  | 
|  | static int bitrev(int b) | 
|  | { | 
|  | int d = 0, i; | 
|  |  | 
|  | for (i = 0; i < 8; ++i, b >>= 1) { | 
|  | d = (d << 1) | (b & 1); | 
|  | } | 
|  |  | 
|  | return d; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Load a receive DMA channel with a base address and ring length | 
|  | */ | 
|  |  | 
|  | static void mace_load_rxdma_base(struct net_device *dev, int set) | 
|  | { | 
|  | struct mace_data *mp = (struct mace_data *) dev->priv; | 
|  |  | 
|  | psc_write_word(PSC_ENETRD_CMD + set, 0x0100); | 
|  | psc_write_long(PSC_ENETRD_ADDR + set, (u32) mp->rx_ring_phys); | 
|  | psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING); | 
|  | psc_write_word(PSC_ENETRD_CMD + set, 0x9800); | 
|  | mp->rx_tail = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reset the receive DMA subsystem | 
|  | */ | 
|  |  | 
|  | static void mace_rxdma_reset(struct net_device *dev) | 
|  | { | 
|  | struct mace_data *mp = (struct mace_data *) dev->priv; | 
|  | volatile struct mace *mace = mp->mace; | 
|  | u8 maccc = mace->maccc; | 
|  |  | 
|  | mace->maccc = maccc & ~ENRCV; | 
|  |  | 
|  | psc_write_word(PSC_ENETRD_CTL, 0x8800); | 
|  | mace_load_rxdma_base(dev, 0x00); | 
|  | psc_write_word(PSC_ENETRD_CTL, 0x0400); | 
|  |  | 
|  | psc_write_word(PSC_ENETRD_CTL, 0x8800); | 
|  | mace_load_rxdma_base(dev, 0x10); | 
|  | psc_write_word(PSC_ENETRD_CTL, 0x0400); | 
|  |  | 
|  | mace->maccc = maccc; | 
|  | mp->rx_slot = 0; | 
|  |  | 
|  | psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x9800); | 
|  | psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x9800); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reset the transmit DMA subsystem | 
|  | */ | 
|  |  | 
|  | static void mace_txdma_reset(struct net_device *dev) | 
|  | { | 
|  | struct mace_data *mp = (struct mace_data *) dev->priv; | 
|  | volatile struct mace *mace = mp->mace; | 
|  | u8 maccc; | 
|  |  | 
|  | psc_write_word(PSC_ENETWR_CTL, 0x8800); | 
|  |  | 
|  | maccc = mace->maccc; | 
|  | mace->maccc = maccc & ~ENXMT; | 
|  |  | 
|  | mp->tx_slot = mp->tx_sloti = 0; | 
|  | mp->tx_count = N_TX_RING; | 
|  |  | 
|  | psc_write_word(PSC_ENETWR_CTL, 0x0400); | 
|  | mace->maccc = maccc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Disable DMA | 
|  | */ | 
|  |  | 
|  | static void mace_dma_off(struct net_device *dev) | 
|  | { | 
|  | psc_write_word(PSC_ENETRD_CTL, 0x8800); | 
|  | psc_write_word(PSC_ENETRD_CTL, 0x1000); | 
|  | psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x1100); | 
|  | psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x1100); | 
|  |  | 
|  | psc_write_word(PSC_ENETWR_CTL, 0x8800); | 
|  | psc_write_word(PSC_ENETWR_CTL, 0x1000); | 
|  | psc_write_word(PSC_ENETWR_CMD + PSC_SET0, 0x1100); | 
|  | psc_write_word(PSC_ENETWR_CMD + PSC_SET1, 0x1100); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Not really much of a probe. The hardware table tells us if this | 
|  | * model of Macintrash has a MACE (AV macintoshes) | 
|  | */ | 
|  |  | 
|  | struct net_device *mace_probe(int unit) | 
|  | { | 
|  | int j; | 
|  | struct mace_data *mp; | 
|  | unsigned char *addr; | 
|  | struct net_device *dev; | 
|  | unsigned char checksum = 0; | 
|  | static int found = 0; | 
|  | int err; | 
|  |  | 
|  | if (found || macintosh_config->ether_type != MAC_ETHER_MACE) | 
|  | return ERR_PTR(-ENODEV); | 
|  |  | 
|  | found = 1;	/* prevent 'finding' one on every device probe */ | 
|  |  | 
|  | dev = alloc_etherdev(PRIV_BYTES); | 
|  | if (!dev) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | if (unit >= 0) | 
|  | sprintf(dev->name, "eth%d", unit); | 
|  |  | 
|  | mp = (struct mace_data *) dev->priv; | 
|  | dev->base_addr = (u32)MACE_BASE; | 
|  | mp->mace = (volatile struct mace *) MACE_BASE; | 
|  |  | 
|  | dev->irq = IRQ_MAC_MACE; | 
|  | mp->dma_intr = IRQ_MAC_MACE_DMA; | 
|  |  | 
|  | /* | 
|  | * The PROM contains 8 bytes which total 0xFF when XOR'd | 
|  | * together. Due to the usual peculiar apple brain damage | 
|  | * the bytes are spaced out in a strange boundary and the | 
|  | * bits are reversed. | 
|  | */ | 
|  |  | 
|  | addr = (void *)MACE_PROM; | 
|  |  | 
|  | for (j = 0; j < 6; ++j) { | 
|  | u8 v=bitrev(addr[j<<4]); | 
|  | checksum ^= v; | 
|  | dev->dev_addr[j] = v; | 
|  | } | 
|  | for (; j < 8; ++j) { | 
|  | checksum ^= bitrev(addr[j<<4]); | 
|  | } | 
|  |  | 
|  | if (checksum != 0xFF) { | 
|  | free_netdev(dev); | 
|  | return ERR_PTR(-ENODEV); | 
|  | } | 
|  |  | 
|  | memset(&mp->stats, 0, sizeof(mp->stats)); | 
|  |  | 
|  | dev->open		= mace_open; | 
|  | dev->stop		= mace_close; | 
|  | dev->hard_start_xmit	= mace_xmit_start; | 
|  | dev->tx_timeout		= mace_tx_timeout; | 
|  | dev->watchdog_timeo	= TX_TIMEOUT; | 
|  | dev->get_stats		= mace_stats; | 
|  | dev->set_multicast_list	= mace_set_multicast; | 
|  | dev->set_mac_address	= mace_set_address; | 
|  |  | 
|  | printk(KERN_INFO "%s: 68K MACE, hardware address %.2X", dev->name, dev->dev_addr[0]); | 
|  | for (j = 1 ; j < 6 ; j++) printk(":%.2X", dev->dev_addr[j]); | 
|  | printk("\n"); | 
|  |  | 
|  | err = register_netdev(dev); | 
|  | if (!err) | 
|  | return dev; | 
|  |  | 
|  | free_netdev(dev); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Load the address on a mace controller. | 
|  | */ | 
|  |  | 
|  | static int mace_set_address(struct net_device *dev, void *addr) | 
|  | { | 
|  | unsigned char *p = addr; | 
|  | struct mace_data *mp = (struct mace_data *) dev->priv; | 
|  | volatile struct mace *mb = mp->mace; | 
|  | int i; | 
|  | unsigned long flags; | 
|  | u8 maccc; | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | maccc = mb->maccc; | 
|  |  | 
|  | /* load up the hardware address */ | 
|  | mb->iac = ADDRCHG | PHYADDR; | 
|  | while ((mb->iac & ADDRCHG) != 0); | 
|  |  | 
|  | for (i = 0; i < 6; ++i) { | 
|  | mb->padr = dev->dev_addr[i] = p[i]; | 
|  | } | 
|  |  | 
|  | mb->maccc = maccc; | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Open the Macintosh MACE. Most of this is playing with the DMA | 
|  | * engine. The ethernet chip is quite friendly. | 
|  | */ | 
|  |  | 
|  | static int mace_open(struct net_device *dev) | 
|  | { | 
|  | struct mace_data *mp = (struct mace_data *) dev->priv; | 
|  | volatile struct mace *mb = mp->mace; | 
|  | #if 0 | 
|  | int i; | 
|  |  | 
|  | i = 200; | 
|  | while (--i) { | 
|  | mb->biucc = SWRST; | 
|  | if (mb->biucc & SWRST) { | 
|  | udelay(10); | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  | if (!i) { | 
|  | printk(KERN_ERR "%s: software reset failed!!\n", dev->name); | 
|  | return -EAGAIN; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | mb->biucc = XMTSP_64; | 
|  | mb->fifocc = XMTFW_16 | RCVFW_64 | XMTFWU | RCVFWU | XMTBRST | RCVBRST; | 
|  | mb->xmtfc = AUTO_PAD_XMIT; | 
|  | mb->plscc = PORTSEL_AUI; | 
|  | /* mb->utr = RTRD; */ | 
|  |  | 
|  | if (request_irq(dev->irq, mace_interrupt, 0, dev->name, dev)) { | 
|  | printk(KERN_ERR "%s: can't get irq %d\n", dev->name, dev->irq); | 
|  | return -EAGAIN; | 
|  | } | 
|  | if (request_irq(mp->dma_intr, mace_dma_intr, 0, dev->name, dev)) { | 
|  | printk(KERN_ERR "%s: can't get irq %d\n", dev->name, mp->dma_intr); | 
|  | free_irq(dev->irq, dev); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* Allocate the DMA ring buffers */ | 
|  |  | 
|  | mp->rx_ring = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, N_RX_PAGES); | 
|  | mp->tx_ring = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, 0); | 
|  |  | 
|  | if (mp->tx_ring==NULL || mp->rx_ring==NULL) { | 
|  | if (mp->rx_ring) free_pages((u32) mp->rx_ring, N_RX_PAGES); | 
|  | if (mp->tx_ring) free_pages((u32) mp->tx_ring, 0); | 
|  | free_irq(dev->irq, dev); | 
|  | free_irq(mp->dma_intr, dev); | 
|  | printk(KERN_ERR "%s: unable to allocate DMA buffers\n", dev->name); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | mp->rx_ring_phys = (unsigned char *) virt_to_bus((void *)mp->rx_ring); | 
|  | mp->tx_ring_phys = (unsigned char *) virt_to_bus((void *)mp->tx_ring); | 
|  |  | 
|  | /* We want the Rx buffer to be uncached and the Tx buffer to be writethrough */ | 
|  |  | 
|  | kernel_set_cachemode((void *)mp->rx_ring, N_RX_PAGES * PAGE_SIZE, IOMAP_NOCACHE_NONSER); | 
|  | kernel_set_cachemode((void *)mp->tx_ring, PAGE_SIZE, IOMAP_WRITETHROUGH); | 
|  |  | 
|  | mace_dma_off(dev); | 
|  |  | 
|  | /* Not sure what these do */ | 
|  |  | 
|  | psc_write_word(PSC_ENETWR_CTL, 0x9000); | 
|  | psc_write_word(PSC_ENETRD_CTL, 0x9000); | 
|  | psc_write_word(PSC_ENETWR_CTL, 0x0400); | 
|  | psc_write_word(PSC_ENETRD_CTL, 0x0400); | 
|  |  | 
|  | #if 0 | 
|  | /* load up the hardware address */ | 
|  |  | 
|  | mb->iac = ADDRCHG | PHYADDR; | 
|  |  | 
|  | while ((mb->iac & ADDRCHG) != 0); | 
|  |  | 
|  | for (i = 0; i < 6; ++i) | 
|  | mb->padr = dev->dev_addr[i]; | 
|  |  | 
|  | /* clear the multicast filter */ | 
|  | mb->iac = ADDRCHG | LOGADDR; | 
|  |  | 
|  | while ((mb->iac & ADDRCHG) != 0); | 
|  |  | 
|  | for (i = 0; i < 8; ++i) | 
|  | mb->ladrf = 0; | 
|  |  | 
|  | mb->plscc = PORTSEL_GPSI + ENPLSIO; | 
|  |  | 
|  | mb->maccc = ENXMT | ENRCV; | 
|  | mb->imr = RCVINT; | 
|  | #endif | 
|  |  | 
|  | mace_rxdma_reset(dev); | 
|  | mace_txdma_reset(dev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Shut down the mace and its interrupt channel | 
|  | */ | 
|  |  | 
|  | static int mace_close(struct net_device *dev) | 
|  | { | 
|  | struct mace_data *mp = (struct mace_data *) dev->priv; | 
|  | volatile struct mace *mb = mp->mace; | 
|  |  | 
|  | mb->maccc = 0;		/* disable rx and tx	 */ | 
|  | mb->imr = 0xFF;		/* disable all irqs	 */ | 
|  | mace_dma_off(dev);	/* disable rx and tx dma */ | 
|  |  | 
|  | free_irq(dev->irq, dev); | 
|  | free_irq(IRQ_MAC_MACE_DMA, dev); | 
|  |  | 
|  | free_pages((u32) mp->rx_ring, N_RX_PAGES); | 
|  | free_pages((u32) mp->tx_ring, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Transmit a frame | 
|  | */ | 
|  |  | 
|  | static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev) | 
|  | { | 
|  | struct mace_data *mp = (struct mace_data *) dev->priv; | 
|  |  | 
|  | /* Stop the queue if the buffer is full */ | 
|  |  | 
|  | if (!mp->tx_count) { | 
|  | netif_stop_queue(dev); | 
|  | return 1; | 
|  | } | 
|  | mp->tx_count--; | 
|  |  | 
|  | mp->stats.tx_packets++; | 
|  | mp->stats.tx_bytes += skb->len; | 
|  |  | 
|  | /* We need to copy into our xmit buffer to take care of alignment and caching issues */ | 
|  |  | 
|  | memcpy((void *) mp->tx_ring, skb->data, skb->len); | 
|  |  | 
|  | /* load the Tx DMA and fire it off */ | 
|  |  | 
|  | psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, (u32)  mp->tx_ring_phys); | 
|  | psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len); | 
|  | psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800); | 
|  |  | 
|  | mp->tx_slot ^= 0x10; | 
|  |  | 
|  | dev_kfree_skb(skb); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct net_device_stats *mace_stats(struct net_device *dev) | 
|  | { | 
|  | struct mace_data *p = (struct mace_data *) dev->priv; | 
|  | return &p->stats; | 
|  | } | 
|  |  | 
|  | static void mace_set_multicast(struct net_device *dev) | 
|  | { | 
|  | struct mace_data *mp = (struct mace_data *) dev->priv; | 
|  | volatile struct mace *mb = mp->mace; | 
|  | int i, j; | 
|  | u32 crc; | 
|  | u8 maccc; | 
|  |  | 
|  | maccc = mb->maccc; | 
|  | mb->maccc &= ~PROM; | 
|  |  | 
|  | if (dev->flags & IFF_PROMISC) { | 
|  | mb->maccc |= PROM; | 
|  | } else { | 
|  | unsigned char multicast_filter[8]; | 
|  | struct dev_mc_list *dmi = dev->mc_list; | 
|  |  | 
|  | if (dev->flags & IFF_ALLMULTI) { | 
|  | for (i = 0; i < 8; i++) { | 
|  | multicast_filter[i] = 0xFF; | 
|  | } | 
|  | } else { | 
|  | for (i = 0; i < 8; i++) | 
|  | multicast_filter[i] = 0; | 
|  | for (i = 0; i < dev->mc_count; i++) { | 
|  | crc = ether_crc_le(6, dmi->dmi_addr); | 
|  | j = crc >> 26;	/* bit number in multicast_filter */ | 
|  | multicast_filter[j >> 3] |= 1 << (j & 7); | 
|  | dmi = dmi->next; | 
|  | } | 
|  | } | 
|  |  | 
|  | mb->iac = ADDRCHG | LOGADDR; | 
|  | while (mb->iac & ADDRCHG); | 
|  |  | 
|  | for (i = 0; i < 8; ++i) { | 
|  | mb->ladrf = multicast_filter[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | mb->maccc = maccc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Miscellaneous interrupts are handled here. We may end up | 
|  | * having to bash the chip on the head for bad errors | 
|  | */ | 
|  |  | 
|  | static void mace_handle_misc_intrs(struct mace_data *mp, int intr) | 
|  | { | 
|  | volatile struct mace *mb = mp->mace; | 
|  | static int mace_babbles, mace_jabbers; | 
|  |  | 
|  | if (intr & MPCO) { | 
|  | mp->stats.rx_missed_errors += 256; | 
|  | } | 
|  | mp->stats.rx_missed_errors += mb->mpc;	/* reading clears it */ | 
|  |  | 
|  | if (intr & RNTPCO) { | 
|  | mp->stats.rx_length_errors += 256; | 
|  | } | 
|  | mp->stats.rx_length_errors += mb->rntpc;	/* reading clears it */ | 
|  |  | 
|  | if (intr & CERR) { | 
|  | ++mp->stats.tx_heartbeat_errors; | 
|  | } | 
|  | if (intr & BABBLE) { | 
|  | if (mace_babbles++ < 4) { | 
|  | printk(KERN_DEBUG "mace: babbling transmitter\n"); | 
|  | } | 
|  | } | 
|  | if (intr & JABBER) { | 
|  | if (mace_jabbers++ < 4) { | 
|  | printk(KERN_DEBUG "mace: jabbering transceiver\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	A transmit error has occurred. (We kick the transmit side from | 
|  | *	the DMA completion) | 
|  | */ | 
|  |  | 
|  | static void mace_xmit_error(struct net_device *dev) | 
|  | { | 
|  | struct mace_data *mp = (struct mace_data *) dev->priv; | 
|  | volatile struct mace *mb = mp->mace; | 
|  | u8 xmtfs, xmtrc; | 
|  |  | 
|  | xmtfs = mb->xmtfs; | 
|  | xmtrc = mb->xmtrc; | 
|  |  | 
|  | if (xmtfs & XMTSV) { | 
|  | if (xmtfs & UFLO) { | 
|  | printk("%s: DMA underrun.\n", dev->name); | 
|  | mp->stats.tx_errors++; | 
|  | mp->stats.tx_fifo_errors++; | 
|  | mace_txdma_reset(dev); | 
|  | } | 
|  | if (xmtfs & RTRY) { | 
|  | mp->stats.collisions++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	A receive interrupt occurred. | 
|  | */ | 
|  |  | 
|  | static void mace_recv_interrupt(struct net_device *dev) | 
|  | { | 
|  | /*	struct mace_data *mp = (struct mace_data *) dev->priv; */ | 
|  | //	volatile struct mace *mb = mp->mace; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process the chip interrupt | 
|  | */ | 
|  |  | 
|  | static irqreturn_t mace_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | struct net_device *dev = (struct net_device *) dev_id; | 
|  | struct mace_data *mp = (struct mace_data *) dev->priv; | 
|  | volatile struct mace *mb = mp->mace; | 
|  | u8 ir; | 
|  |  | 
|  | ir = mb->ir; | 
|  | mace_handle_misc_intrs(mp, ir); | 
|  |  | 
|  | if (ir & XMTINT) { | 
|  | mace_xmit_error(dev); | 
|  | } | 
|  | if (ir & RCVINT) { | 
|  | mace_recv_interrupt(dev); | 
|  | } | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static void mace_tx_timeout(struct net_device *dev) | 
|  | { | 
|  | /*	struct mace_data *mp = (struct mace_data *) dev->priv; */ | 
|  | //	volatile struct mace *mb = mp->mace; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle a newly arrived frame | 
|  | */ | 
|  |  | 
|  | static void mace_dma_rx_frame(struct net_device *dev, struct mace_frame *mf) | 
|  | { | 
|  | struct mace_data *mp = (struct mace_data *) dev->priv; | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | if (mf->status & RS_OFLO) { | 
|  | printk("%s: fifo overflow.\n", dev->name); | 
|  | mp->stats.rx_errors++; | 
|  | mp->stats.rx_fifo_errors++; | 
|  | } | 
|  | if (mf->status&(RS_CLSN|RS_FRAMERR|RS_FCSERR)) | 
|  | mp->stats.rx_errors++; | 
|  |  | 
|  | if (mf->status&RS_CLSN) { | 
|  | mp->stats.collisions++; | 
|  | } | 
|  | if (mf->status&RS_FRAMERR) { | 
|  | mp->stats.rx_frame_errors++; | 
|  | } | 
|  | if (mf->status&RS_FCSERR) { | 
|  | mp->stats.rx_crc_errors++; | 
|  | } | 
|  |  | 
|  | skb = dev_alloc_skb(mf->len+2); | 
|  | if (!skb) { | 
|  | mp->stats.rx_dropped++; | 
|  | return; | 
|  | } | 
|  | skb_reserve(skb,2); | 
|  | memcpy(skb_put(skb, mf->len), mf->data, mf->len); | 
|  |  | 
|  | skb->dev = dev; | 
|  | skb->protocol = eth_type_trans(skb, dev); | 
|  | netif_rx(skb); | 
|  | dev->last_rx = jiffies; | 
|  | mp->stats.rx_packets++; | 
|  | mp->stats.rx_bytes += mf->len; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The PSC has passed us a DMA interrupt event. | 
|  | */ | 
|  |  | 
|  | static irqreturn_t mace_dma_intr(int irq, void *dev_id) | 
|  | { | 
|  | struct net_device *dev = (struct net_device *) dev_id; | 
|  | struct mace_data *mp = (struct mace_data *) dev->priv; | 
|  | int left, head; | 
|  | u16 status; | 
|  | u32 baka; | 
|  |  | 
|  | /* Not sure what this does */ | 
|  |  | 
|  | while ((baka = psc_read_long(PSC_MYSTERY)) != psc_read_long(PSC_MYSTERY)); | 
|  | if (!(baka & 0x60000000)) return IRQ_NONE; | 
|  |  | 
|  | /* | 
|  | * Process the read queue | 
|  | */ | 
|  |  | 
|  | status = psc_read_word(PSC_ENETRD_CTL); | 
|  |  | 
|  | if (status & 0x2000) { | 
|  | mace_rxdma_reset(dev); | 
|  | } else if (status & 0x0100) { | 
|  | psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x1100); | 
|  |  | 
|  | left = psc_read_long(PSC_ENETRD_LEN + mp->rx_slot); | 
|  | head = N_RX_RING - left; | 
|  |  | 
|  | /* Loop through the ring buffer and process new packages */ | 
|  |  | 
|  | while (mp->rx_tail < head) { | 
|  | mace_dma_rx_frame(dev, (struct mace_frame *) (mp->rx_ring + (mp->rx_tail * 0x0800))); | 
|  | mp->rx_tail++; | 
|  | } | 
|  |  | 
|  | /* If we're out of buffers in this ring then switch to */ | 
|  | /* the other set, otherwise just reactivate this one.  */ | 
|  |  | 
|  | if (!left) { | 
|  | mace_load_rxdma_base(dev, mp->rx_slot); | 
|  | mp->rx_slot ^= 0x10; | 
|  | } else { | 
|  | psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x9800); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process the write queue | 
|  | */ | 
|  |  | 
|  | status = psc_read_word(PSC_ENETWR_CTL); | 
|  |  | 
|  | if (status & 0x2000) { | 
|  | mace_txdma_reset(dev); | 
|  | } else if (status & 0x0100) { | 
|  | psc_write_word(PSC_ENETWR_CMD + mp->tx_sloti, 0x0100); | 
|  | mp->tx_sloti ^= 0x10; | 
|  | mp->tx_count++; | 
|  | netif_wake_queue(dev); | 
|  | } | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | MODULE_LICENSE("GPL"); |