| /* cassini.c: Sun Microsystems Cassini(+) ethernet driver. | 
 |  * | 
 |  * Copyright (C) 2004 Sun Microsystems Inc. | 
 |  * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com) | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License as | 
 |  * published by the Free Software Foundation; either version 2 of the | 
 |  * License, or (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA | 
 |  * 02111-1307, USA. | 
 |  * | 
 |  * This driver uses the sungem driver (c) David Miller | 
 |  * (davem@redhat.com) as its basis. | 
 |  * | 
 |  * The cassini chip has a number of features that distinguish it from | 
 |  * the gem chip: | 
 |  *  4 transmit descriptor rings that are used for either QoS (VLAN) or | 
 |  *      load balancing (non-VLAN mode) | 
 |  *  batching of multiple packets | 
 |  *  multiple CPU dispatching | 
 |  *  page-based RX descriptor engine with separate completion rings | 
 |  *  Gigabit support (GMII and PCS interface) | 
 |  *  MIF link up/down detection works | 
 |  * | 
 |  * RX is handled by page sized buffers that are attached as fragments to | 
 |  * the skb. here's what's done: | 
 |  *  -- driver allocates pages at a time and keeps reference counts | 
 |  *     on them. | 
 |  *  -- the upper protocol layers assume that the header is in the skb | 
 |  *     itself. as a result, cassini will copy a small amount (64 bytes) | 
 |  *     to make them happy. | 
 |  *  -- driver appends the rest of the data pages as frags to skbuffs | 
 |  *     and increments the reference count | 
 |  *  -- on page reclamation, the driver swaps the page with a spare page. | 
 |  *     if that page is still in use, it frees its reference to that page, | 
 |  *     and allocates a new page for use. otherwise, it just recycles the | 
 |  *     the page. | 
 |  * | 
 |  * NOTE: cassini can parse the header. however, it's not worth it | 
 |  *       as long as the network stack requires a header copy. | 
 |  * | 
 |  * TX has 4 queues. currently these queues are used in a round-robin | 
 |  * fashion for load balancing. They can also be used for QoS. for that | 
 |  * to work, however, QoS information needs to be exposed down to the driver | 
 |  * level so that subqueues get targetted to particular transmit rings. | 
 |  * alternatively, the queues can be configured via use of the all-purpose | 
 |  * ioctl. | 
 |  * | 
 |  * RX DATA: the rx completion ring has all the info, but the rx desc | 
 |  * ring has all of the data. RX can conceivably come in under multiple | 
 |  * interrupts, but the INT# assignment needs to be set up properly by | 
 |  * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do | 
 |  * that. also, the two descriptor rings are designed to distinguish between | 
 |  * encrypted and non-encrypted packets, but we use them for buffering | 
 |  * instead. | 
 |  * | 
 |  * by default, the selective clear mask is set up to process rx packets. | 
 |  */ | 
 |  | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/types.h> | 
 | #include <linux/compiler.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/init.h> | 
 | #include <linux/ioport.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/list.h> | 
 | #include <linux/dma-mapping.h> | 
 |  | 
 | #include <linux/netdevice.h> | 
 | #include <linux/etherdevice.h> | 
 | #include <linux/skbuff.h> | 
 | #include <linux/ethtool.h> | 
 | #include <linux/crc32.h> | 
 | #include <linux/random.h> | 
 | #include <linux/mii.h> | 
 | #include <linux/ip.h> | 
 | #include <linux/tcp.h> | 
 | #include <linux/mutex.h> | 
 |  | 
 | #include <net/checksum.h> | 
 |  | 
 | #include <asm/atomic.h> | 
 | #include <asm/system.h> | 
 | #include <asm/io.h> | 
 | #include <asm/byteorder.h> | 
 | #include <asm/uaccess.h> | 
 |  | 
 | #define cas_page_map(x)      kmap_atomic((x), KM_SKB_DATA_SOFTIRQ) | 
 | #define cas_page_unmap(x)    kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ) | 
 | #define CAS_NCPUS            num_online_cpus() | 
 |  | 
 | #if defined(CONFIG_CASSINI_NAPI) && defined(HAVE_NETDEV_POLL) | 
 | #define USE_NAPI | 
 | #define cas_skb_release(x)  netif_receive_skb(x) | 
 | #else | 
 | #define cas_skb_release(x)  netif_rx(x) | 
 | #endif | 
 |  | 
 | /* select which firmware to use */ | 
 | #define USE_HP_WORKAROUND | 
 | #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */ | 
 | #define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */ | 
 |  | 
 | #include "cassini.h" | 
 |  | 
 | #define USE_TX_COMPWB      /* use completion writeback registers */ | 
 | #define USE_CSMA_CD_PROTO  /* standard CSMA/CD */ | 
 | #define USE_RX_BLANK       /* hw interrupt mitigation */ | 
 | #undef USE_ENTROPY_DEV     /* don't test for entropy device */ | 
 |  | 
 | /* NOTE: these aren't useable unless PCI interrupts can be assigned. | 
 |  * also, we need to make cp->lock finer-grained. | 
 |  */ | 
 | #undef  USE_PCI_INTB | 
 | #undef  USE_PCI_INTC | 
 | #undef  USE_PCI_INTD | 
 | #undef  USE_QOS | 
 |  | 
 | #undef  USE_VPD_DEBUG       /* debug vpd information if defined */ | 
 |  | 
 | /* rx processing options */ | 
 | #define USE_PAGE_ORDER      /* specify to allocate large rx pages */ | 
 | #define RX_DONT_BATCH  0    /* if 1, don't batch flows */ | 
 | #define RX_COPY_ALWAYS 0    /* if 0, use frags */ | 
 | #define RX_COPY_MIN    64   /* copy a little to make upper layers happy */ | 
 | #undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */ | 
 |  | 
 | #define DRV_MODULE_NAME		"cassini" | 
 | #define PFX DRV_MODULE_NAME	": " | 
 | #define DRV_MODULE_VERSION	"1.4" | 
 | #define DRV_MODULE_RELDATE	"1 July 2004" | 
 |  | 
 | #define CAS_DEF_MSG_ENABLE	  \ | 
 | 	(NETIF_MSG_DRV		| \ | 
 | 	 NETIF_MSG_PROBE	| \ | 
 | 	 NETIF_MSG_LINK		| \ | 
 | 	 NETIF_MSG_TIMER	| \ | 
 | 	 NETIF_MSG_IFDOWN	| \ | 
 | 	 NETIF_MSG_IFUP		| \ | 
 | 	 NETIF_MSG_RX_ERR	| \ | 
 | 	 NETIF_MSG_TX_ERR) | 
 |  | 
 | /* length of time before we decide the hardware is borked, | 
 |  * and dev->tx_timeout() should be called to fix the problem | 
 |  */ | 
 | #define CAS_TX_TIMEOUT			(HZ) | 
 | #define CAS_LINK_TIMEOUT                (22*HZ/10) | 
 | #define CAS_LINK_FAST_TIMEOUT           (1) | 
 |  | 
 | /* timeout values for state changing. these specify the number | 
 |  * of 10us delays to be used before giving up. | 
 |  */ | 
 | #define STOP_TRIES_PHY 1000 | 
 | #define STOP_TRIES     5000 | 
 |  | 
 | /* specify a minimum frame size to deal with some fifo issues | 
 |  * max mtu == 2 * page size - ethernet header - 64 - swivel = | 
 |  *            2 * page_size - 0x50 | 
 |  */ | 
 | #define CAS_MIN_FRAME			97 | 
 | #define CAS_1000MB_MIN_FRAME            255 | 
 | #define CAS_MIN_MTU                     60 | 
 | #define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000) | 
 |  | 
 | #if 1 | 
 | /* | 
 |  * Eliminate these and use separate atomic counters for each, to | 
 |  * avoid a race condition. | 
 |  */ | 
 | #else | 
 | #define CAS_RESET_MTU                   1 | 
 | #define CAS_RESET_ALL                   2 | 
 | #define CAS_RESET_SPARE                 3 | 
 | #endif | 
 |  | 
 | static char version[] __devinitdata = | 
 | 	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; | 
 |  | 
 | static int cassini_debug = -1;	/* -1 == use CAS_DEF_MSG_ENABLE as value */ | 
 | static int link_mode; | 
 |  | 
 | MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)"); | 
 | MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver"); | 
 | MODULE_LICENSE("GPL"); | 
 | module_param(cassini_debug, int, 0); | 
 | MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value"); | 
 | module_param(link_mode, int, 0); | 
 | MODULE_PARM_DESC(link_mode, "default link mode"); | 
 |  | 
 | /* | 
 |  * Work around for a PCS bug in which the link goes down due to the chip | 
 |  * being confused and never showing a link status of "up." | 
 |  */ | 
 | #define DEFAULT_LINKDOWN_TIMEOUT 5 | 
 | /* | 
 |  * Value in seconds, for user input. | 
 |  */ | 
 | static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT; | 
 | module_param(linkdown_timeout, int, 0); | 
 | MODULE_PARM_DESC(linkdown_timeout, | 
 | "min reset interval in sec. for PCS linkdown issue; disabled if not positive"); | 
 |  | 
 | /* | 
 |  * value in 'ticks' (units used by jiffies). Set when we init the | 
 |  * module because 'HZ' in actually a function call on some flavors of | 
 |  * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ. | 
 |  */ | 
 | static int link_transition_timeout; | 
 |  | 
 |  | 
 |  | 
 | static u16 link_modes[] __devinitdata = { | 
 | 	BMCR_ANENABLE,			 /* 0 : autoneg */ | 
 | 	0,				 /* 1 : 10bt half duplex */ | 
 | 	BMCR_SPEED100,			 /* 2 : 100bt half duplex */ | 
 | 	BMCR_FULLDPLX,			 /* 3 : 10bt full duplex */ | 
 | 	BMCR_SPEED100|BMCR_FULLDPLX,	 /* 4 : 100bt full duplex */ | 
 | 	CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */ | 
 | }; | 
 |  | 
 | static struct pci_device_id cas_pci_tbl[] __devinitdata = { | 
 | 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI, | 
 | 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, | 
 | 	{ PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN, | 
 | 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, | 
 | 	{ 0, } | 
 | }; | 
 |  | 
 | MODULE_DEVICE_TABLE(pci, cas_pci_tbl); | 
 |  | 
 | static void cas_set_link_modes(struct cas *cp); | 
 |  | 
 | static inline void cas_lock_tx(struct cas *cp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < N_TX_RINGS; i++) | 
 | 		spin_lock(&cp->tx_lock[i]); | 
 | } | 
 |  | 
 | static inline void cas_lock_all(struct cas *cp) | 
 | { | 
 | 	spin_lock_irq(&cp->lock); | 
 | 	cas_lock_tx(cp); | 
 | } | 
 |  | 
 | /* WTZ: QA was finding deadlock problems with the previous | 
 |  * versions after long test runs with multiple cards per machine. | 
 |  * See if replacing cas_lock_all with safer versions helps. The | 
 |  * symptoms QA is reporting match those we'd expect if interrupts | 
 |  * aren't being properly restored, and we fixed a previous deadlock | 
 |  * with similar symptoms by using save/restore versions in other | 
 |  * places. | 
 |  */ | 
 | #define cas_lock_all_save(cp, flags) \ | 
 | do { \ | 
 | 	struct cas *xxxcp = (cp); \ | 
 | 	spin_lock_irqsave(&xxxcp->lock, flags); \ | 
 | 	cas_lock_tx(xxxcp); \ | 
 | } while (0) | 
 |  | 
 | static inline void cas_unlock_tx(struct cas *cp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = N_TX_RINGS; i > 0; i--) | 
 | 		spin_unlock(&cp->tx_lock[i - 1]); | 
 | } | 
 |  | 
 | static inline void cas_unlock_all(struct cas *cp) | 
 | { | 
 | 	cas_unlock_tx(cp); | 
 | 	spin_unlock_irq(&cp->lock); | 
 | } | 
 |  | 
 | #define cas_unlock_all_restore(cp, flags) \ | 
 | do { \ | 
 | 	struct cas *xxxcp = (cp); \ | 
 | 	cas_unlock_tx(xxxcp); \ | 
 | 	spin_unlock_irqrestore(&xxxcp->lock, flags); \ | 
 | } while (0) | 
 |  | 
 | static void cas_disable_irq(struct cas *cp, const int ring) | 
 | { | 
 | 	/* Make sure we won't get any more interrupts */ | 
 | 	if (ring == 0) { | 
 | 		writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* disable completion interrupts and selectively mask */ | 
 | 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) { | 
 | 		switch (ring) { | 
 | #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) | 
 | #ifdef USE_PCI_INTB | 
 | 		case 1: | 
 | #endif | 
 | #ifdef USE_PCI_INTC | 
 | 		case 2: | 
 | #endif | 
 | #ifdef USE_PCI_INTD | 
 | 		case 3: | 
 | #endif | 
 | 			writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN, | 
 | 			       cp->regs + REG_PLUS_INTRN_MASK(ring)); | 
 | 			break; | 
 | #endif | 
 | 		default: | 
 | 			writel(INTRN_MASK_CLEAR_ALL, cp->regs + | 
 | 			       REG_PLUS_INTRN_MASK(ring)); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static inline void cas_mask_intr(struct cas *cp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < N_RX_COMP_RINGS; i++) | 
 | 		cas_disable_irq(cp, i); | 
 | } | 
 |  | 
 | static inline void cas_buffer_init(cas_page_t *cp) | 
 | { | 
 | 	struct page *page = cp->buffer; | 
 | 	atomic_set((atomic_t *)&page->lru.next, 1); | 
 | } | 
 |  | 
 | static inline int cas_buffer_count(cas_page_t *cp) | 
 | { | 
 | 	struct page *page = cp->buffer; | 
 | 	return atomic_read((atomic_t *)&page->lru.next); | 
 | } | 
 |  | 
 | static inline void cas_buffer_inc(cas_page_t *cp) | 
 | { | 
 | 	struct page *page = cp->buffer; | 
 | 	atomic_inc((atomic_t *)&page->lru.next); | 
 | } | 
 |  | 
 | static inline void cas_buffer_dec(cas_page_t *cp) | 
 | { | 
 | 	struct page *page = cp->buffer; | 
 | 	atomic_dec((atomic_t *)&page->lru.next); | 
 | } | 
 |  | 
 | static void cas_enable_irq(struct cas *cp, const int ring) | 
 | { | 
 | 	if (ring == 0) { /* all but TX_DONE */ | 
 | 		writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) { | 
 | 		switch (ring) { | 
 | #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) | 
 | #ifdef USE_PCI_INTB | 
 | 		case 1: | 
 | #endif | 
 | #ifdef USE_PCI_INTC | 
 | 		case 2: | 
 | #endif | 
 | #ifdef USE_PCI_INTD | 
 | 		case 3: | 
 | #endif | 
 | 			writel(INTRN_MASK_RX_EN, cp->regs + | 
 | 			       REG_PLUS_INTRN_MASK(ring)); | 
 | 			break; | 
 | #endif | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static inline void cas_unmask_intr(struct cas *cp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < N_RX_COMP_RINGS; i++) | 
 | 		cas_enable_irq(cp, i); | 
 | } | 
 |  | 
 | static inline void cas_entropy_gather(struct cas *cp) | 
 | { | 
 | #ifdef USE_ENTROPY_DEV | 
 | 	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) | 
 | 		return; | 
 |  | 
 | 	batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV), | 
 | 			    readl(cp->regs + REG_ENTROPY_IV), | 
 | 			    sizeof(uint64_t)*8); | 
 | #endif | 
 | } | 
 |  | 
 | static inline void cas_entropy_reset(struct cas *cp) | 
 | { | 
 | #ifdef USE_ENTROPY_DEV | 
 | 	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) | 
 | 		return; | 
 |  | 
 | 	writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT, | 
 | 	       cp->regs + REG_BIM_LOCAL_DEV_EN); | 
 | 	writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET); | 
 | 	writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG); | 
 |  | 
 | 	/* if we read back 0x0, we don't have an entropy device */ | 
 | 	if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0) | 
 | 		cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV; | 
 | #endif | 
 | } | 
 |  | 
 | /* access to the phy. the following assumes that we've initialized the MIF to | 
 |  * be in frame rather than bit-bang mode | 
 |  */ | 
 | static u16 cas_phy_read(struct cas *cp, int reg) | 
 | { | 
 | 	u32 cmd; | 
 | 	int limit = STOP_TRIES_PHY; | 
 |  | 
 | 	cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ; | 
 | 	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); | 
 | 	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); | 
 | 	cmd |= MIF_FRAME_TURN_AROUND_MSB; | 
 | 	writel(cmd, cp->regs + REG_MIF_FRAME); | 
 |  | 
 | 	/* poll for completion */ | 
 | 	while (limit-- > 0) { | 
 | 		udelay(10); | 
 | 		cmd = readl(cp->regs + REG_MIF_FRAME); | 
 | 		if (cmd & MIF_FRAME_TURN_AROUND_LSB) | 
 | 			return (cmd & MIF_FRAME_DATA_MASK); | 
 | 	} | 
 | 	return 0xFFFF; /* -1 */ | 
 | } | 
 |  | 
 | static int cas_phy_write(struct cas *cp, int reg, u16 val) | 
 | { | 
 | 	int limit = STOP_TRIES_PHY; | 
 | 	u32 cmd; | 
 |  | 
 | 	cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE; | 
 | 	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); | 
 | 	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); | 
 | 	cmd |= MIF_FRAME_TURN_AROUND_MSB; | 
 | 	cmd |= val & MIF_FRAME_DATA_MASK; | 
 | 	writel(cmd, cp->regs + REG_MIF_FRAME); | 
 |  | 
 | 	/* poll for completion */ | 
 | 	while (limit-- > 0) { | 
 | 		udelay(10); | 
 | 		cmd = readl(cp->regs + REG_MIF_FRAME); | 
 | 		if (cmd & MIF_FRAME_TURN_AROUND_LSB) | 
 | 			return 0; | 
 | 	} | 
 | 	return -1; | 
 | } | 
 |  | 
 | static void cas_phy_powerup(struct cas *cp) | 
 | { | 
 | 	u16 ctl = cas_phy_read(cp, MII_BMCR); | 
 |  | 
 | 	if ((ctl & BMCR_PDOWN) == 0) | 
 | 		return; | 
 | 	ctl &= ~BMCR_PDOWN; | 
 | 	cas_phy_write(cp, MII_BMCR, ctl); | 
 | } | 
 |  | 
 | static void cas_phy_powerdown(struct cas *cp) | 
 | { | 
 | 	u16 ctl = cas_phy_read(cp, MII_BMCR); | 
 |  | 
 | 	if (ctl & BMCR_PDOWN) | 
 | 		return; | 
 | 	ctl |= BMCR_PDOWN; | 
 | 	cas_phy_write(cp, MII_BMCR, ctl); | 
 | } | 
 |  | 
 | /* cp->lock held. note: the last put_page will free the buffer */ | 
 | static int cas_page_free(struct cas *cp, cas_page_t *page) | 
 | { | 
 | 	pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size, | 
 | 		       PCI_DMA_FROMDEVICE); | 
 | 	cas_buffer_dec(page); | 
 | 	__free_pages(page->buffer, cp->page_order); | 
 | 	kfree(page); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef RX_COUNT_BUFFERS | 
 | #define RX_USED_ADD(x, y)       ((x)->used += (y)) | 
 | #define RX_USED_SET(x, y)       ((x)->used  = (y)) | 
 | #else | 
 | #define RX_USED_ADD(x, y) | 
 | #define RX_USED_SET(x, y) | 
 | #endif | 
 |  | 
 | /* local page allocation routines for the receive buffers. jumbo pages | 
 |  * require at least 8K contiguous and 8K aligned buffers. | 
 |  */ | 
 | static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags) | 
 | { | 
 | 	cas_page_t *page; | 
 |  | 
 | 	page = kmalloc(sizeof(cas_page_t), flags); | 
 | 	if (!page) | 
 | 		return NULL; | 
 |  | 
 | 	INIT_LIST_HEAD(&page->list); | 
 | 	RX_USED_SET(page, 0); | 
 | 	page->buffer = alloc_pages(flags, cp->page_order); | 
 | 	if (!page->buffer) | 
 | 		goto page_err; | 
 | 	cas_buffer_init(page); | 
 | 	page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0, | 
 | 				      cp->page_size, PCI_DMA_FROMDEVICE); | 
 | 	return page; | 
 |  | 
 | page_err: | 
 | 	kfree(page); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* initialize spare pool of rx buffers, but allocate during the open */ | 
 | static void cas_spare_init(struct cas *cp) | 
 | { | 
 |   	spin_lock(&cp->rx_inuse_lock); | 
 | 	INIT_LIST_HEAD(&cp->rx_inuse_list); | 
 | 	spin_unlock(&cp->rx_inuse_lock); | 
 |  | 
 | 	spin_lock(&cp->rx_spare_lock); | 
 | 	INIT_LIST_HEAD(&cp->rx_spare_list); | 
 | 	cp->rx_spares_needed = RX_SPARE_COUNT; | 
 | 	spin_unlock(&cp->rx_spare_lock); | 
 | } | 
 |  | 
 | /* used on close. free all the spare buffers. */ | 
 | static void cas_spare_free(struct cas *cp) | 
 | { | 
 | 	struct list_head list, *elem, *tmp; | 
 |  | 
 | 	/* free spare buffers */ | 
 | 	INIT_LIST_HEAD(&list); | 
 | 	spin_lock(&cp->rx_spare_lock); | 
 | 	list_splice(&cp->rx_spare_list, &list); | 
 | 	INIT_LIST_HEAD(&cp->rx_spare_list); | 
 | 	spin_unlock(&cp->rx_spare_lock); | 
 | 	list_for_each_safe(elem, tmp, &list) { | 
 | 		cas_page_free(cp, list_entry(elem, cas_page_t, list)); | 
 | 	} | 
 |  | 
 | 	INIT_LIST_HEAD(&list); | 
 | #if 1 | 
 | 	/* | 
 | 	 * Looks like Adrian had protected this with a different | 
 | 	 * lock than used everywhere else to manipulate this list. | 
 | 	 */ | 
 | 	spin_lock(&cp->rx_inuse_lock); | 
 | 	list_splice(&cp->rx_inuse_list, &list); | 
 | 	INIT_LIST_HEAD(&cp->rx_inuse_list); | 
 | 	spin_unlock(&cp->rx_inuse_lock); | 
 | #else | 
 | 	spin_lock(&cp->rx_spare_lock); | 
 | 	list_splice(&cp->rx_inuse_list, &list); | 
 | 	INIT_LIST_HEAD(&cp->rx_inuse_list); | 
 | 	spin_unlock(&cp->rx_spare_lock); | 
 | #endif | 
 | 	list_for_each_safe(elem, tmp, &list) { | 
 | 		cas_page_free(cp, list_entry(elem, cas_page_t, list)); | 
 | 	} | 
 | } | 
 |  | 
 | /* replenish spares if needed */ | 
 | static void cas_spare_recover(struct cas *cp, const gfp_t flags) | 
 | { | 
 | 	struct list_head list, *elem, *tmp; | 
 | 	int needed, i; | 
 |  | 
 | 	/* check inuse list. if we don't need any more free buffers, | 
 | 	 * just free it | 
 | 	 */ | 
 |  | 
 | 	/* make a local copy of the list */ | 
 | 	INIT_LIST_HEAD(&list); | 
 | 	spin_lock(&cp->rx_inuse_lock); | 
 | 	list_splice(&cp->rx_inuse_list, &list); | 
 | 	INIT_LIST_HEAD(&cp->rx_inuse_list); | 
 | 	spin_unlock(&cp->rx_inuse_lock); | 
 |  | 
 | 	list_for_each_safe(elem, tmp, &list) { | 
 | 		cas_page_t *page = list_entry(elem, cas_page_t, list); | 
 |  | 
 | 		if (cas_buffer_count(page) > 1) | 
 | 			continue; | 
 |  | 
 | 		list_del(elem); | 
 | 		spin_lock(&cp->rx_spare_lock); | 
 | 		if (cp->rx_spares_needed > 0) { | 
 | 			list_add(elem, &cp->rx_spare_list); | 
 | 			cp->rx_spares_needed--; | 
 | 			spin_unlock(&cp->rx_spare_lock); | 
 | 		} else { | 
 | 			spin_unlock(&cp->rx_spare_lock); | 
 | 			cas_page_free(cp, page); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* put any inuse buffers back on the list */ | 
 | 	if (!list_empty(&list)) { | 
 | 		spin_lock(&cp->rx_inuse_lock); | 
 | 		list_splice(&list, &cp->rx_inuse_list); | 
 | 		spin_unlock(&cp->rx_inuse_lock); | 
 | 	} | 
 |  | 
 | 	spin_lock(&cp->rx_spare_lock); | 
 | 	needed = cp->rx_spares_needed; | 
 | 	spin_unlock(&cp->rx_spare_lock); | 
 | 	if (!needed) | 
 | 		return; | 
 |  | 
 | 	/* we still need spares, so try to allocate some */ | 
 | 	INIT_LIST_HEAD(&list); | 
 | 	i = 0; | 
 | 	while (i < needed) { | 
 | 		cas_page_t *spare = cas_page_alloc(cp, flags); | 
 | 		if (!spare) | 
 | 			break; | 
 | 		list_add(&spare->list, &list); | 
 | 		i++; | 
 | 	} | 
 |  | 
 | 	spin_lock(&cp->rx_spare_lock); | 
 | 	list_splice(&list, &cp->rx_spare_list); | 
 | 	cp->rx_spares_needed -= i; | 
 | 	spin_unlock(&cp->rx_spare_lock); | 
 | } | 
 |  | 
 | /* pull a page from the list. */ | 
 | static cas_page_t *cas_page_dequeue(struct cas *cp) | 
 | { | 
 | 	struct list_head *entry; | 
 | 	int recover; | 
 |  | 
 | 	spin_lock(&cp->rx_spare_lock); | 
 | 	if (list_empty(&cp->rx_spare_list)) { | 
 | 		/* try to do a quick recovery */ | 
 | 		spin_unlock(&cp->rx_spare_lock); | 
 | 		cas_spare_recover(cp, GFP_ATOMIC); | 
 | 		spin_lock(&cp->rx_spare_lock); | 
 | 		if (list_empty(&cp->rx_spare_list)) { | 
 | 			if (netif_msg_rx_err(cp)) | 
 | 				printk(KERN_ERR "%s: no spare buffers " | 
 | 				       "available.\n", cp->dev->name); | 
 | 			spin_unlock(&cp->rx_spare_lock); | 
 | 			return NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	entry = cp->rx_spare_list.next; | 
 | 	list_del(entry); | 
 | 	recover = ++cp->rx_spares_needed; | 
 | 	spin_unlock(&cp->rx_spare_lock); | 
 |  | 
 | 	/* trigger the timer to do the recovery */ | 
 | 	if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) { | 
 | #if 1 | 
 | 		atomic_inc(&cp->reset_task_pending); | 
 | 		atomic_inc(&cp->reset_task_pending_spare); | 
 | 		schedule_work(&cp->reset_task); | 
 | #else | 
 | 		atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE); | 
 | 		schedule_work(&cp->reset_task); | 
 | #endif | 
 | 	} | 
 | 	return list_entry(entry, cas_page_t, list); | 
 | } | 
 |  | 
 |  | 
 | static void cas_mif_poll(struct cas *cp, const int enable) | 
 | { | 
 | 	u32 cfg; | 
 |  | 
 | 	cfg  = readl(cp->regs + REG_MIF_CFG); | 
 | 	cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1); | 
 |  | 
 | 	if (cp->phy_type & CAS_PHY_MII_MDIO1) | 
 | 		cfg |= MIF_CFG_PHY_SELECT; | 
 |  | 
 | 	/* poll and interrupt on link status change. */ | 
 | 	if (enable) { | 
 | 		cfg |= MIF_CFG_POLL_EN; | 
 | 		cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR); | 
 | 		cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr); | 
 | 	} | 
 | 	writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF, | 
 | 	       cp->regs + REG_MIF_MASK); | 
 | 	writel(cfg, cp->regs + REG_MIF_CFG); | 
 | } | 
 |  | 
 | /* Must be invoked under cp->lock */ | 
 | static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep) | 
 | { | 
 | 	u16 ctl; | 
 | #if 1 | 
 | 	int lcntl; | 
 | 	int changed = 0; | 
 | 	int oldstate = cp->lstate; | 
 | 	int link_was_not_down = !(oldstate == link_down); | 
 | #endif | 
 | 	/* Setup link parameters */ | 
 | 	if (!ep) | 
 | 		goto start_aneg; | 
 | 	lcntl = cp->link_cntl; | 
 | 	if (ep->autoneg == AUTONEG_ENABLE) | 
 | 		cp->link_cntl = BMCR_ANENABLE; | 
 | 	else { | 
 | 		cp->link_cntl = 0; | 
 | 		if (ep->speed == SPEED_100) | 
 | 			cp->link_cntl |= BMCR_SPEED100; | 
 | 		else if (ep->speed == SPEED_1000) | 
 | 			cp->link_cntl |= CAS_BMCR_SPEED1000; | 
 | 		if (ep->duplex == DUPLEX_FULL) | 
 | 			cp->link_cntl |= BMCR_FULLDPLX; | 
 | 	} | 
 | #if 1 | 
 | 	changed = (lcntl != cp->link_cntl); | 
 | #endif | 
 | start_aneg: | 
 | 	if (cp->lstate == link_up) { | 
 | 		printk(KERN_INFO "%s: PCS link down.\n", | 
 | 		       cp->dev->name); | 
 | 	} else { | 
 | 		if (changed) { | 
 | 			printk(KERN_INFO "%s: link configuration changed\n", | 
 | 			       cp->dev->name); | 
 | 		} | 
 | 	} | 
 | 	cp->lstate = link_down; | 
 | 	cp->link_transition = LINK_TRANSITION_LINK_DOWN; | 
 | 	if (!cp->hw_running) | 
 | 		return; | 
 | #if 1 | 
 | 	/* | 
 | 	 * WTZ: If the old state was link_up, we turn off the carrier | 
 | 	 * to replicate everything we do elsewhere on a link-down | 
 | 	 * event when we were already in a link-up state.. | 
 | 	 */ | 
 | 	if (oldstate == link_up) | 
 | 		netif_carrier_off(cp->dev); | 
 | 	if (changed  && link_was_not_down) { | 
 | 		/* | 
 | 		 * WTZ: This branch will simply schedule a full reset after | 
 | 		 * we explicitly changed link modes in an ioctl. See if this | 
 | 		 * fixes the link-problems we were having for forced mode. | 
 | 		 */ | 
 | 		atomic_inc(&cp->reset_task_pending); | 
 | 		atomic_inc(&cp->reset_task_pending_all); | 
 | 		schedule_work(&cp->reset_task); | 
 | 		cp->timer_ticks = 0; | 
 | 		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); | 
 | 		return; | 
 | 	} | 
 | #endif | 
 | 	if (cp->phy_type & CAS_PHY_SERDES) { | 
 | 		u32 val = readl(cp->regs + REG_PCS_MII_CTRL); | 
 |  | 
 | 		if (cp->link_cntl & BMCR_ANENABLE) { | 
 | 			val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN); | 
 | 			cp->lstate = link_aneg; | 
 | 		} else { | 
 | 			if (cp->link_cntl & BMCR_FULLDPLX) | 
 | 				val |= PCS_MII_CTRL_DUPLEX; | 
 | 			val &= ~PCS_MII_AUTONEG_EN; | 
 | 			cp->lstate = link_force_ok; | 
 | 		} | 
 | 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG; | 
 | 		writel(val, cp->regs + REG_PCS_MII_CTRL); | 
 |  | 
 | 	} else { | 
 | 		cas_mif_poll(cp, 0); | 
 | 		ctl = cas_phy_read(cp, MII_BMCR); | 
 | 		ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 | | 
 | 			 CAS_BMCR_SPEED1000 | BMCR_ANENABLE); | 
 | 		ctl |= cp->link_cntl; | 
 | 		if (ctl & BMCR_ANENABLE) { | 
 | 			ctl |= BMCR_ANRESTART; | 
 | 			cp->lstate = link_aneg; | 
 | 		} else { | 
 | 			cp->lstate = link_force_ok; | 
 | 		} | 
 | 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG; | 
 | 		cas_phy_write(cp, MII_BMCR, ctl); | 
 | 		cas_mif_poll(cp, 1); | 
 | 	} | 
 |  | 
 | 	cp->timer_ticks = 0; | 
 | 	mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); | 
 | } | 
 |  | 
 | /* Must be invoked under cp->lock. */ | 
 | static int cas_reset_mii_phy(struct cas *cp) | 
 | { | 
 | 	int limit = STOP_TRIES_PHY; | 
 | 	u16 val; | 
 |  | 
 | 	cas_phy_write(cp, MII_BMCR, BMCR_RESET); | 
 | 	udelay(100); | 
 | 	while (limit--) { | 
 | 		val = cas_phy_read(cp, MII_BMCR); | 
 | 		if ((val & BMCR_RESET) == 0) | 
 | 			break; | 
 | 		udelay(10); | 
 | 	} | 
 | 	return (limit <= 0); | 
 | } | 
 |  | 
 | static void cas_saturn_firmware_load(struct cas *cp) | 
 | { | 
 | 	cas_saturn_patch_t *patch = cas_saturn_patch; | 
 |  | 
 | 	cas_phy_powerdown(cp); | 
 |  | 
 | 	/* expanded memory access mode */ | 
 | 	cas_phy_write(cp, DP83065_MII_MEM, 0x0); | 
 |  | 
 | 	/* pointer configuration for new firmware */ | 
 | 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9); | 
 | 	cas_phy_write(cp, DP83065_MII_REGD, 0xbd); | 
 | 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa); | 
 | 	cas_phy_write(cp, DP83065_MII_REGD, 0x82); | 
 | 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb); | 
 | 	cas_phy_write(cp, DP83065_MII_REGD, 0x0); | 
 | 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc); | 
 | 	cas_phy_write(cp, DP83065_MII_REGD, 0x39); | 
 |  | 
 | 	/* download new firmware */ | 
 | 	cas_phy_write(cp, DP83065_MII_MEM, 0x1); | 
 | 	cas_phy_write(cp, DP83065_MII_REGE, patch->addr); | 
 | 	while (patch->addr) { | 
 | 		cas_phy_write(cp, DP83065_MII_REGD, patch->val); | 
 | 		patch++; | 
 | 	} | 
 |  | 
 | 	/* enable firmware */ | 
 | 	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8); | 
 | 	cas_phy_write(cp, DP83065_MII_REGD, 0x1); | 
 | } | 
 |  | 
 |  | 
 | /* phy initialization */ | 
 | static void cas_phy_init(struct cas *cp) | 
 | { | 
 | 	u16 val; | 
 |  | 
 | 	/* if we're in MII/GMII mode, set up phy */ | 
 | 	if (CAS_PHY_MII(cp->phy_type)) { | 
 | 		writel(PCS_DATAPATH_MODE_MII, | 
 | 		       cp->regs + REG_PCS_DATAPATH_MODE); | 
 |  | 
 | 		cas_mif_poll(cp, 0); | 
 | 		cas_reset_mii_phy(cp); /* take out of isolate mode */ | 
 |  | 
 | 		if (PHY_LUCENT_B0 == cp->phy_id) { | 
 | 			/* workaround link up/down issue with lucent */ | 
 | 			cas_phy_write(cp, LUCENT_MII_REG, 0x8000); | 
 | 			cas_phy_write(cp, MII_BMCR, 0x00f1); | 
 | 			cas_phy_write(cp, LUCENT_MII_REG, 0x0); | 
 |  | 
 | 		} else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) { | 
 | 			/* workarounds for broadcom phy */ | 
 | 			cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20); | 
 | 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012); | 
 | 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804); | 
 | 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013); | 
 | 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204); | 
 | 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); | 
 | 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132); | 
 | 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); | 
 | 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232); | 
 | 			cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F); | 
 | 			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20); | 
 |  | 
 | 		} else if (PHY_BROADCOM_5411 == cp->phy_id) { | 
 | 			val = cas_phy_read(cp, BROADCOM_MII_REG4); | 
 | 			val = cas_phy_read(cp, BROADCOM_MII_REG4); | 
 | 			if (val & 0x0080) { | 
 | 				/* link workaround */ | 
 | 				cas_phy_write(cp, BROADCOM_MII_REG4, | 
 | 					      val & ~0x0080); | 
 | 			} | 
 |  | 
 | 		} else if (cp->cas_flags & CAS_FLAG_SATURN) { | 
 | 			writel((cp->phy_type & CAS_PHY_MII_MDIO0) ? | 
 | 			       SATURN_PCFG_FSI : 0x0, | 
 | 			       cp->regs + REG_SATURN_PCFG); | 
 |  | 
 | 			/* load firmware to address 10Mbps auto-negotiation | 
 | 			 * issue. NOTE: this will need to be changed if the | 
 | 			 * default firmware gets fixed. | 
 | 			 */ | 
 | 			if (PHY_NS_DP83065 == cp->phy_id) { | 
 | 				cas_saturn_firmware_load(cp); | 
 | 			} | 
 | 			cas_phy_powerup(cp); | 
 | 		} | 
 |  | 
 | 		/* advertise capabilities */ | 
 | 		val = cas_phy_read(cp, MII_BMCR); | 
 | 		val &= ~BMCR_ANENABLE; | 
 | 		cas_phy_write(cp, MII_BMCR, val); | 
 | 		udelay(10); | 
 |  | 
 | 		cas_phy_write(cp, MII_ADVERTISE, | 
 | 			      cas_phy_read(cp, MII_ADVERTISE) | | 
 | 			      (ADVERTISE_10HALF | ADVERTISE_10FULL | | 
 | 			       ADVERTISE_100HALF | ADVERTISE_100FULL | | 
 | 			       CAS_ADVERTISE_PAUSE | | 
 | 			       CAS_ADVERTISE_ASYM_PAUSE)); | 
 |  | 
 | 		if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { | 
 | 			/* make sure that we don't advertise half | 
 | 			 * duplex to avoid a chip issue | 
 | 			 */ | 
 | 			val  = cas_phy_read(cp, CAS_MII_1000_CTRL); | 
 | 			val &= ~CAS_ADVERTISE_1000HALF; | 
 | 			val |= CAS_ADVERTISE_1000FULL; | 
 | 			cas_phy_write(cp, CAS_MII_1000_CTRL, val); | 
 | 		} | 
 |  | 
 | 	} else { | 
 | 		/* reset pcs for serdes */ | 
 | 		u32 val; | 
 | 		int limit; | 
 |  | 
 | 		writel(PCS_DATAPATH_MODE_SERDES, | 
 | 		       cp->regs + REG_PCS_DATAPATH_MODE); | 
 |  | 
 | 		/* enable serdes pins on saturn */ | 
 | 		if (cp->cas_flags & CAS_FLAG_SATURN) | 
 | 			writel(0, cp->regs + REG_SATURN_PCFG); | 
 |  | 
 | 		/* Reset PCS unit. */ | 
 | 		val = readl(cp->regs + REG_PCS_MII_CTRL); | 
 | 		val |= PCS_MII_RESET; | 
 | 		writel(val, cp->regs + REG_PCS_MII_CTRL); | 
 |  | 
 | 		limit = STOP_TRIES; | 
 | 		while (limit-- > 0) { | 
 | 			udelay(10); | 
 | 			if ((readl(cp->regs + REG_PCS_MII_CTRL) & | 
 | 			     PCS_MII_RESET) == 0) | 
 | 				break; | 
 | 		} | 
 | 		if (limit <= 0) | 
 | 			printk(KERN_WARNING "%s: PCS reset bit would not " | 
 | 			       "clear [%08x].\n", cp->dev->name, | 
 | 			       readl(cp->regs + REG_PCS_STATE_MACHINE)); | 
 |  | 
 | 		/* Make sure PCS is disabled while changing advertisement | 
 | 		 * configuration. | 
 | 		 */ | 
 | 		writel(0x0, cp->regs + REG_PCS_CFG); | 
 |  | 
 | 		/* Advertise all capabilities except half-duplex. */ | 
 | 		val  = readl(cp->regs + REG_PCS_MII_ADVERT); | 
 | 		val &= ~PCS_MII_ADVERT_HD; | 
 | 		val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE | | 
 | 			PCS_MII_ADVERT_ASYM_PAUSE); | 
 | 		writel(val, cp->regs + REG_PCS_MII_ADVERT); | 
 |  | 
 | 		/* enable PCS */ | 
 | 		writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG); | 
 |  | 
 | 		/* pcs workaround: enable sync detect */ | 
 | 		writel(PCS_SERDES_CTRL_SYNCD_EN, | 
 | 		       cp->regs + REG_PCS_SERDES_CTRL); | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static int cas_pcs_link_check(struct cas *cp) | 
 | { | 
 | 	u32 stat, state_machine; | 
 | 	int retval = 0; | 
 |  | 
 | 	/* The link status bit latches on zero, so you must | 
 | 	 * read it twice in such a case to see a transition | 
 | 	 * to the link being up. | 
 | 	 */ | 
 | 	stat = readl(cp->regs + REG_PCS_MII_STATUS); | 
 | 	if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0) | 
 | 		stat = readl(cp->regs + REG_PCS_MII_STATUS); | 
 |  | 
 | 	/* The remote-fault indication is only valid | 
 | 	 * when autoneg has completed. | 
 | 	 */ | 
 | 	if ((stat & (PCS_MII_STATUS_AUTONEG_COMP | | 
 | 		     PCS_MII_STATUS_REMOTE_FAULT)) == | 
 | 	    (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) { | 
 | 		if (netif_msg_link(cp)) | 
 | 			printk(KERN_INFO "%s: PCS RemoteFault\n", | 
 | 			       cp->dev->name); | 
 | 	} | 
 |  | 
 | 	/* work around link detection issue by querying the PCS state | 
 | 	 * machine directly. | 
 | 	 */ | 
 | 	state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE); | 
 | 	if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) { | 
 | 		stat &= ~PCS_MII_STATUS_LINK_STATUS; | 
 | 	} else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) { | 
 | 		stat |= PCS_MII_STATUS_LINK_STATUS; | 
 | 	} | 
 |  | 
 | 	if (stat & PCS_MII_STATUS_LINK_STATUS) { | 
 | 		if (cp->lstate != link_up) { | 
 | 			if (cp->opened) { | 
 | 				cp->lstate = link_up; | 
 | 				cp->link_transition = LINK_TRANSITION_LINK_UP; | 
 |  | 
 | 				cas_set_link_modes(cp); | 
 | 				netif_carrier_on(cp->dev); | 
 | 			} | 
 | 		} | 
 | 	} else if (cp->lstate == link_up) { | 
 | 		cp->lstate = link_down; | 
 | 		if (link_transition_timeout != 0 && | 
 | 		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && | 
 | 		    !cp->link_transition_jiffies_valid) { | 
 | 			/* | 
 | 			 * force a reset, as a workaround for the | 
 | 			 * link-failure problem. May want to move this to a | 
 | 			 * point a bit earlier in the sequence. If we had | 
 | 			 * generated a reset a short time ago, we'll wait for | 
 | 			 * the link timer to check the status until a | 
 | 			 * timer expires (link_transistion_jiffies_valid is | 
 | 			 * true when the timer is running.)  Instead of using | 
 | 			 * a system timer, we just do a check whenever the | 
 | 			 * link timer is running - this clears the flag after | 
 | 			 * a suitable delay. | 
 | 			 */ | 
 | 			retval = 1; | 
 | 			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; | 
 | 			cp->link_transition_jiffies = jiffies; | 
 | 			cp->link_transition_jiffies_valid = 1; | 
 | 		} else { | 
 | 			cp->link_transition = LINK_TRANSITION_ON_FAILURE; | 
 | 		} | 
 | 		netif_carrier_off(cp->dev); | 
 | 		if (cp->opened && netif_msg_link(cp)) { | 
 | 			printk(KERN_INFO "%s: PCS link down.\n", | 
 | 			       cp->dev->name); | 
 | 		} | 
 |  | 
 | 		/* Cassini only: if you force a mode, there can be | 
 | 		 * sync problems on link down. to fix that, the following | 
 | 		 * things need to be checked: | 
 | 		 * 1) read serialink state register | 
 | 		 * 2) read pcs status register to verify link down. | 
 | 		 * 3) if link down and serial link == 0x03, then you need | 
 | 		 *    to global reset the chip. | 
 | 		 */ | 
 | 		if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) { | 
 | 			/* should check to see if we're in a forced mode */ | 
 | 			stat = readl(cp->regs + REG_PCS_SERDES_STATE); | 
 | 			if (stat == 0x03) | 
 | 				return 1; | 
 | 		} | 
 | 	} else if (cp->lstate == link_down) { | 
 | 		if (link_transition_timeout != 0 && | 
 | 		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && | 
 | 		    !cp->link_transition_jiffies_valid) { | 
 | 			/* force a reset, as a workaround for the | 
 | 			 * link-failure problem.  May want to move | 
 | 			 * this to a point a bit earlier in the | 
 | 			 * sequence. | 
 | 			 */ | 
 | 			retval = 1; | 
 | 			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; | 
 | 			cp->link_transition_jiffies = jiffies; | 
 | 			cp->link_transition_jiffies_valid = 1; | 
 | 		} else { | 
 | 			cp->link_transition = LINK_TRANSITION_STILL_FAILED; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | static int cas_pcs_interrupt(struct net_device *dev, | 
 | 			     struct cas *cp, u32 status) | 
 | { | 
 | 	u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS); | 
 |  | 
 | 	if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0) | 
 | 		return 0; | 
 | 	return cas_pcs_link_check(cp); | 
 | } | 
 |  | 
 | static int cas_txmac_interrupt(struct net_device *dev, | 
 | 			       struct cas *cp, u32 status) | 
 | { | 
 | 	u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS); | 
 |  | 
 | 	if (!txmac_stat) | 
 | 		return 0; | 
 |  | 
 | 	if (netif_msg_intr(cp)) | 
 | 		printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n", | 
 | 			cp->dev->name, txmac_stat); | 
 |  | 
 | 	/* Defer timer expiration is quite normal, | 
 | 	 * don't even log the event. | 
 | 	 */ | 
 | 	if ((txmac_stat & MAC_TX_DEFER_TIMER) && | 
 | 	    !(txmac_stat & ~MAC_TX_DEFER_TIMER)) | 
 | 		return 0; | 
 |  | 
 | 	spin_lock(&cp->stat_lock[0]); | 
 | 	if (txmac_stat & MAC_TX_UNDERRUN) { | 
 | 		printk(KERN_ERR "%s: TX MAC xmit underrun.\n", | 
 | 		       dev->name); | 
 | 		cp->net_stats[0].tx_fifo_errors++; | 
 | 	} | 
 |  | 
 | 	if (txmac_stat & MAC_TX_MAX_PACKET_ERR) { | 
 | 		printk(KERN_ERR "%s: TX MAC max packet size error.\n", | 
 | 		       dev->name); | 
 | 		cp->net_stats[0].tx_errors++; | 
 | 	} | 
 |  | 
 | 	/* The rest are all cases of one of the 16-bit TX | 
 | 	 * counters expiring. | 
 | 	 */ | 
 | 	if (txmac_stat & MAC_TX_COLL_NORMAL) | 
 | 		cp->net_stats[0].collisions += 0x10000; | 
 |  | 
 | 	if (txmac_stat & MAC_TX_COLL_EXCESS) { | 
 | 		cp->net_stats[0].tx_aborted_errors += 0x10000; | 
 | 		cp->net_stats[0].collisions += 0x10000; | 
 | 	} | 
 |  | 
 | 	if (txmac_stat & MAC_TX_COLL_LATE) { | 
 | 		cp->net_stats[0].tx_aborted_errors += 0x10000; | 
 | 		cp->net_stats[0].collisions += 0x10000; | 
 | 	} | 
 | 	spin_unlock(&cp->stat_lock[0]); | 
 |  | 
 | 	/* We do not keep track of MAC_TX_COLL_FIRST and | 
 | 	 * MAC_TX_PEAK_ATTEMPTS events. | 
 | 	 */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware) | 
 | { | 
 | 	cas_hp_inst_t *inst; | 
 | 	u32 val; | 
 | 	int i; | 
 |  | 
 | 	i = 0; | 
 | 	while ((inst = firmware) && inst->note) { | 
 | 		writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR); | 
 |  | 
 | 		val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val); | 
 | 		val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask); | 
 | 		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI); | 
 |  | 
 | 		val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10); | 
 | 		val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop); | 
 | 		val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext); | 
 | 		val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff); | 
 | 		val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext); | 
 | 		val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff); | 
 | 		val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op); | 
 | 		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID); | 
 |  | 
 | 		val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask); | 
 | 		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift); | 
 | 		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab); | 
 | 		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg); | 
 | 		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW); | 
 | 		++firmware; | 
 | 		++i; | 
 | 	} | 
 | } | 
 |  | 
 | static void cas_init_rx_dma(struct cas *cp) | 
 | { | 
 | 	u64 desc_dma = cp->block_dvma; | 
 | 	u32 val; | 
 | 	int i, size; | 
 |  | 
 | 	/* rx free descriptors */ | 
 | 	val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL); | 
 | 	val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0)); | 
 | 	val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0)); | 
 | 	if ((N_RX_DESC_RINGS > 1) && | 
 | 	    (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */ | 
 | 		val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1)); | 
 | 	writel(val, cp->regs + REG_RX_CFG); | 
 |  | 
 | 	val = (unsigned long) cp->init_rxds[0] - | 
 | 		(unsigned long) cp->init_block; | 
 | 	writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI); | 
 | 	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW); | 
 | 	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK); | 
 |  | 
 | 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) { | 
 | 		/* rx desc 2 is for IPSEC packets. however, | 
 | 		 * we don't it that for that purpose. | 
 | 		 */ | 
 | 		val = (unsigned long) cp->init_rxds[1] - | 
 | 			(unsigned long) cp->init_block; | 
 | 		writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI); | 
 | 		writel((desc_dma + val) & 0xffffffff, cp->regs + | 
 | 		       REG_PLUS_RX_DB1_LOW); | 
 | 		writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs + | 
 | 		       REG_PLUS_RX_KICK1); | 
 | 	} | 
 |  | 
 | 	/* rx completion registers */ | 
 | 	val = (unsigned long) cp->init_rxcs[0] - | 
 | 		(unsigned long) cp->init_block; | 
 | 	writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI); | 
 | 	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW); | 
 |  | 
 | 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) { | 
 | 		/* rx comp 2-4 */ | 
 | 		for (i = 1; i < MAX_RX_COMP_RINGS; i++) { | 
 | 			val = (unsigned long) cp->init_rxcs[i] - | 
 | 				(unsigned long) cp->init_block; | 
 | 			writel((desc_dma + val) >> 32, cp->regs + | 
 | 			       REG_PLUS_RX_CBN_HI(i)); | 
 | 			writel((desc_dma + val) & 0xffffffff, cp->regs + | 
 | 			       REG_PLUS_RX_CBN_LOW(i)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* read selective clear regs to prevent spurious interrupts | 
 | 	 * on reset because complete == kick. | 
 | 	 * selective clear set up to prevent interrupts on resets | 
 | 	 */ | 
 | 	readl(cp->regs + REG_INTR_STATUS_ALIAS); | 
 | 	writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR); | 
 | 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) { | 
 | 		for (i = 1; i < N_RX_COMP_RINGS; i++) | 
 | 			readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i)); | 
 |  | 
 | 		/* 2 is different from 3 and 4 */ | 
 | 		if (N_RX_COMP_RINGS > 1) | 
 | 			writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1, | 
 | 			       cp->regs + REG_PLUS_ALIASN_CLEAR(1)); | 
 |  | 
 | 		for (i = 2; i < N_RX_COMP_RINGS; i++) | 
 | 			writel(INTR_RX_DONE_ALT, | 
 | 			       cp->regs + REG_PLUS_ALIASN_CLEAR(i)); | 
 | 	} | 
 |  | 
 | 	/* set up pause thresholds */ | 
 | 	val  = CAS_BASE(RX_PAUSE_THRESH_OFF, | 
 | 			cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM); | 
 | 	val |= CAS_BASE(RX_PAUSE_THRESH_ON, | 
 | 			cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM); | 
 | 	writel(val, cp->regs + REG_RX_PAUSE_THRESH); | 
 |  | 
 | 	/* zero out dma reassembly buffers */ | 
 | 	for (i = 0; i < 64; i++) { | 
 | 		writel(i, cp->regs + REG_RX_TABLE_ADDR); | 
 | 		writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW); | 
 | 		writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID); | 
 | 		writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI); | 
 | 	} | 
 |  | 
 | 	/* make sure address register is 0 for normal operation */ | 
 | 	writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR); | 
 | 	writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR); | 
 |  | 
 | 	/* interrupt mitigation */ | 
 | #ifdef USE_RX_BLANK | 
 | 	val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL); | 
 | 	val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL); | 
 | 	writel(val, cp->regs + REG_RX_BLANK); | 
 | #else | 
 | 	writel(0x0, cp->regs + REG_RX_BLANK); | 
 | #endif | 
 |  | 
 | 	/* interrupt generation as a function of low water marks for | 
 | 	 * free desc and completion entries. these are used to trigger | 
 | 	 * housekeeping for rx descs. we don't use the free interrupt | 
 | 	 * as it's not very useful | 
 | 	 */ | 
 | 	/* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */ | 
 | 	val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL); | 
 | 	writel(val, cp->regs + REG_RX_AE_THRESH); | 
 | 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) { | 
 | 		val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1)); | 
 | 		writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH); | 
 | 	} | 
 |  | 
 | 	/* Random early detect registers. useful for congestion avoidance. | 
 | 	 * this should be tunable. | 
 | 	 */ | 
 | 	writel(0x0, cp->regs + REG_RX_RED); | 
 |  | 
 | 	/* receive page sizes. default == 2K (0x800) */ | 
 | 	val = 0; | 
 | 	if (cp->page_size == 0x1000) | 
 | 		val = 0x1; | 
 | 	else if (cp->page_size == 0x2000) | 
 | 		val = 0x2; | 
 | 	else if (cp->page_size == 0x4000) | 
 | 		val = 0x3; | 
 |  | 
 | 	/* round mtu + offset. constrain to page size. */ | 
 | 	size = cp->dev->mtu + 64; | 
 | 	if (size > cp->page_size) | 
 | 		size = cp->page_size; | 
 |  | 
 | 	if (size <= 0x400) | 
 | 		i = 0x0; | 
 | 	else if (size <= 0x800) | 
 | 		i = 0x1; | 
 | 	else if (size <= 0x1000) | 
 | 		i = 0x2; | 
 | 	else | 
 | 		i = 0x3; | 
 |  | 
 | 	cp->mtu_stride = 1 << (i + 10); | 
 | 	val  = CAS_BASE(RX_PAGE_SIZE, val); | 
 | 	val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i); | 
 | 	val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10)); | 
 | 	val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1); | 
 | 	writel(val, cp->regs + REG_RX_PAGE_SIZE); | 
 |  | 
 | 	/* enable the header parser if desired */ | 
 | 	if (CAS_HP_FIRMWARE == cas_prog_null) | 
 | 		return; | 
 |  | 
 | 	val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS); | 
 | 	val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK; | 
 | 	val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL); | 
 | 	writel(val, cp->regs + REG_HP_CFG); | 
 | } | 
 |  | 
 | static inline void cas_rxc_init(struct cas_rx_comp *rxc) | 
 | { | 
 | 	memset(rxc, 0, sizeof(*rxc)); | 
 | 	rxc->word4 = cpu_to_le64(RX_COMP4_ZERO); | 
 | } | 
 |  | 
 | /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1] | 
 |  * flipping is protected by the fact that the chip will not | 
 |  * hand back the same page index while it's being processed. | 
 |  */ | 
 | static inline cas_page_t *cas_page_spare(struct cas *cp, const int index) | 
 | { | 
 | 	cas_page_t *page = cp->rx_pages[1][index]; | 
 | 	cas_page_t *new; | 
 |  | 
 | 	if (cas_buffer_count(page) == 1) | 
 | 		return page; | 
 |  | 
 | 	new = cas_page_dequeue(cp); | 
 | 	if (new) { | 
 | 		spin_lock(&cp->rx_inuse_lock); | 
 | 		list_add(&page->list, &cp->rx_inuse_list); | 
 | 		spin_unlock(&cp->rx_inuse_lock); | 
 | 	} | 
 | 	return new; | 
 | } | 
 |  | 
 | /* this needs to be changed if we actually use the ENC RX DESC ring */ | 
 | static cas_page_t *cas_page_swap(struct cas *cp, const int ring, | 
 | 				 const int index) | 
 | { | 
 | 	cas_page_t **page0 = cp->rx_pages[0]; | 
 | 	cas_page_t **page1 = cp->rx_pages[1]; | 
 |  | 
 | 	/* swap if buffer is in use */ | 
 | 	if (cas_buffer_count(page0[index]) > 1) { | 
 | 		cas_page_t *new = cas_page_spare(cp, index); | 
 | 		if (new) { | 
 | 			page1[index] = page0[index]; | 
 | 			page0[index] = new; | 
 | 		} | 
 | 	} | 
 | 	RX_USED_SET(page0[index], 0); | 
 | 	return page0[index]; | 
 | } | 
 |  | 
 | static void cas_clean_rxds(struct cas *cp) | 
 | { | 
 | 	/* only clean ring 0 as ring 1 is used for spare buffers */ | 
 |         struct cas_rx_desc *rxd = cp->init_rxds[0]; | 
 | 	int i, size; | 
 |  | 
 | 	/* release all rx flows */ | 
 | 	for (i = 0; i < N_RX_FLOWS; i++) { | 
 | 		struct sk_buff *skb; | 
 | 		while ((skb = __skb_dequeue(&cp->rx_flows[i]))) { | 
 | 			cas_skb_release(skb); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* initialize descriptors */ | 
 | 	size = RX_DESC_RINGN_SIZE(0); | 
 | 	for (i = 0; i < size; i++) { | 
 | 		cas_page_t *page = cas_page_swap(cp, 0, i); | 
 | 		rxd[i].buffer = cpu_to_le64(page->dma_addr); | 
 | 		rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) | | 
 | 					    CAS_BASE(RX_INDEX_RING, 0)); | 
 | 	} | 
 |  | 
 | 	cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4; | 
 | 	cp->rx_last[0] = 0; | 
 | 	cp->cas_flags &= ~CAS_FLAG_RXD_POST(0); | 
 | } | 
 |  | 
 | static void cas_clean_rxcs(struct cas *cp) | 
 | { | 
 | 	int i, j; | 
 |  | 
 | 	/* take ownership of rx comp descriptors */ | 
 | 	memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS); | 
 | 	memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS); | 
 | 	for (i = 0; i < N_RX_COMP_RINGS; i++) { | 
 | 		struct cas_rx_comp *rxc = cp->init_rxcs[i]; | 
 | 		for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) { | 
 | 			cas_rxc_init(rxc + j); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | #if 0 | 
 | /* When we get a RX fifo overflow, the RX unit is probably hung | 
 |  * so we do the following. | 
 |  * | 
 |  * If any part of the reset goes wrong, we return 1 and that causes the | 
 |  * whole chip to be reset. | 
 |  */ | 
 | static int cas_rxmac_reset(struct cas *cp) | 
 | { | 
 | 	struct net_device *dev = cp->dev; | 
 | 	int limit; | 
 | 	u32 val; | 
 |  | 
 | 	/* First, reset MAC RX. */ | 
 | 	writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); | 
 | 	for (limit = 0; limit < STOP_TRIES; limit++) { | 
 | 		if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN)) | 
 | 			break; | 
 | 		udelay(10); | 
 | 	} | 
 | 	if (limit == STOP_TRIES) { | 
 | 		printk(KERN_ERR "%s: RX MAC will not disable, resetting whole " | 
 | 		       "chip.\n", dev->name); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	/* Second, disable RX DMA. */ | 
 | 	writel(0, cp->regs + REG_RX_CFG); | 
 | 	for (limit = 0; limit < STOP_TRIES; limit++) { | 
 | 		if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN)) | 
 | 			break; | 
 | 		udelay(10); | 
 | 	} | 
 | 	if (limit == STOP_TRIES) { | 
 | 		printk(KERN_ERR "%s: RX DMA will not disable, resetting whole " | 
 | 		       "chip.\n", dev->name); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	mdelay(5); | 
 |  | 
 | 	/* Execute RX reset command. */ | 
 | 	writel(SW_RESET_RX, cp->regs + REG_SW_RESET); | 
 | 	for (limit = 0; limit < STOP_TRIES; limit++) { | 
 | 		if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX)) | 
 | 			break; | 
 | 		udelay(10); | 
 | 	} | 
 | 	if (limit == STOP_TRIES) { | 
 | 		printk(KERN_ERR "%s: RX reset command will not execute, " | 
 | 		       "resetting whole chip.\n", dev->name); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	/* reset driver rx state */ | 
 | 	cas_clean_rxds(cp); | 
 | 	cas_clean_rxcs(cp); | 
 |  | 
 | 	/* Now, reprogram the rest of RX unit. */ | 
 | 	cas_init_rx_dma(cp); | 
 |  | 
 | 	/* re-enable */ | 
 | 	val = readl(cp->regs + REG_RX_CFG); | 
 | 	writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG); | 
 | 	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK); | 
 | 	val = readl(cp->regs + REG_MAC_RX_CFG); | 
 | 	writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp, | 
 | 			       u32 status) | 
 | { | 
 | 	u32 stat = readl(cp->regs + REG_MAC_RX_STATUS); | 
 |  | 
 | 	if (!stat) | 
 | 		return 0; | 
 |  | 
 | 	if (netif_msg_intr(cp)) | 
 | 		printk(KERN_DEBUG "%s: rxmac interrupt, stat: 0x%x\n", | 
 | 			cp->dev->name, stat); | 
 |  | 
 | 	/* these are all rollovers */ | 
 | 	spin_lock(&cp->stat_lock[0]); | 
 | 	if (stat & MAC_RX_ALIGN_ERR) | 
 | 		cp->net_stats[0].rx_frame_errors += 0x10000; | 
 |  | 
 | 	if (stat & MAC_RX_CRC_ERR) | 
 | 		cp->net_stats[0].rx_crc_errors += 0x10000; | 
 |  | 
 | 	if (stat & MAC_RX_LEN_ERR) | 
 | 		cp->net_stats[0].rx_length_errors += 0x10000; | 
 |  | 
 | 	if (stat & MAC_RX_OVERFLOW) { | 
 | 		cp->net_stats[0].rx_over_errors++; | 
 | 		cp->net_stats[0].rx_fifo_errors++; | 
 | 	} | 
 |  | 
 | 	/* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR | 
 | 	 * events. | 
 | 	 */ | 
 | 	spin_unlock(&cp->stat_lock[0]); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int cas_mac_interrupt(struct net_device *dev, struct cas *cp, | 
 | 			     u32 status) | 
 | { | 
 | 	u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS); | 
 |  | 
 | 	if (!stat) | 
 | 		return 0; | 
 |  | 
 | 	if (netif_msg_intr(cp)) | 
 | 		printk(KERN_DEBUG "%s: mac interrupt, stat: 0x%x\n", | 
 | 			cp->dev->name, stat); | 
 |  | 
 | 	/* This interrupt is just for pause frame and pause | 
 | 	 * tracking.  It is useful for diagnostics and debug | 
 | 	 * but probably by default we will mask these events. | 
 | 	 */ | 
 | 	if (stat & MAC_CTRL_PAUSE_STATE) | 
 | 		cp->pause_entered++; | 
 |  | 
 | 	if (stat & MAC_CTRL_PAUSE_RECEIVED) | 
 | 		cp->pause_last_time_recvd = (stat >> 16); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* Must be invoked under cp->lock. */ | 
 | static inline int cas_mdio_link_not_up(struct cas *cp) | 
 | { | 
 | 	u16 val; | 
 |  | 
 | 	switch (cp->lstate) { | 
 | 	case link_force_ret: | 
 | 		if (netif_msg_link(cp)) | 
 | 			printk(KERN_INFO "%s: Autoneg failed again, keeping" | 
 | 				" forced mode\n", cp->dev->name); | 
 | 		cas_phy_write(cp, MII_BMCR, cp->link_fcntl); | 
 | 		cp->timer_ticks = 5; | 
 | 		cp->lstate = link_force_ok; | 
 | 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG; | 
 | 		break; | 
 |  | 
 | 	case link_aneg: | 
 | 		val = cas_phy_read(cp, MII_BMCR); | 
 |  | 
 | 		/* Try forced modes. we try things in the following order: | 
 | 		 * 1000 full -> 100 full/half -> 10 half | 
 | 		 */ | 
 | 		val &= ~(BMCR_ANRESTART | BMCR_ANENABLE); | 
 | 		val |= BMCR_FULLDPLX; | 
 | 		val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? | 
 | 			CAS_BMCR_SPEED1000 : BMCR_SPEED100; | 
 | 		cas_phy_write(cp, MII_BMCR, val); | 
 | 		cp->timer_ticks = 5; | 
 | 		cp->lstate = link_force_try; | 
 | 		cp->link_transition = LINK_TRANSITION_LINK_CONFIG; | 
 | 		break; | 
 |  | 
 | 	case link_force_try: | 
 | 		/* Downgrade from 1000 to 100 to 10 Mbps if necessary. */ | 
 | 		val = cas_phy_read(cp, MII_BMCR); | 
 | 		cp->timer_ticks = 5; | 
 | 		if (val & CAS_BMCR_SPEED1000) { /* gigabit */ | 
 | 			val &= ~CAS_BMCR_SPEED1000; | 
 | 			val |= (BMCR_SPEED100 | BMCR_FULLDPLX); | 
 | 			cas_phy_write(cp, MII_BMCR, val); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (val & BMCR_SPEED100) { | 
 | 			if (val & BMCR_FULLDPLX) /* fd failed */ | 
 | 				val &= ~BMCR_FULLDPLX; | 
 | 			else { /* 100Mbps failed */ | 
 | 				val &= ~BMCR_SPEED100; | 
 | 			} | 
 | 			cas_phy_write(cp, MII_BMCR, val); | 
 | 			break; | 
 | 		} | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* must be invoked with cp->lock held */ | 
 | static int cas_mii_link_check(struct cas *cp, const u16 bmsr) | 
 | { | 
 | 	int restart; | 
 |  | 
 | 	if (bmsr & BMSR_LSTATUS) { | 
 | 		/* Ok, here we got a link. If we had it due to a forced | 
 | 		 * fallback, and we were configured for autoneg, we | 
 | 		 * retry a short autoneg pass. If you know your hub is | 
 | 		 * broken, use ethtool ;) | 
 | 		 */ | 
 | 		if ((cp->lstate == link_force_try) && | 
 | 		    (cp->link_cntl & BMCR_ANENABLE)) { | 
 | 			cp->lstate = link_force_ret; | 
 | 			cp->link_transition = LINK_TRANSITION_LINK_CONFIG; | 
 | 			cas_mif_poll(cp, 0); | 
 | 			cp->link_fcntl = cas_phy_read(cp, MII_BMCR); | 
 | 			cp->timer_ticks = 5; | 
 | 			if (cp->opened && netif_msg_link(cp)) | 
 | 				printk(KERN_INFO "%s: Got link after fallback, retrying" | 
 | 				       " autoneg once...\n", cp->dev->name); | 
 | 			cas_phy_write(cp, MII_BMCR, | 
 | 				      cp->link_fcntl | BMCR_ANENABLE | | 
 | 				      BMCR_ANRESTART); | 
 | 			cas_mif_poll(cp, 1); | 
 |  | 
 | 		} else if (cp->lstate != link_up) { | 
 | 			cp->lstate = link_up; | 
 | 			cp->link_transition = LINK_TRANSITION_LINK_UP; | 
 |  | 
 | 			if (cp->opened) { | 
 | 				cas_set_link_modes(cp); | 
 | 				netif_carrier_on(cp->dev); | 
 | 			} | 
 | 		} | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* link not up. if the link was previously up, we restart the | 
 | 	 * whole process | 
 | 	 */ | 
 | 	restart = 0; | 
 | 	if (cp->lstate == link_up) { | 
 | 		cp->lstate = link_down; | 
 | 		cp->link_transition = LINK_TRANSITION_LINK_DOWN; | 
 |  | 
 | 		netif_carrier_off(cp->dev); | 
 | 		if (cp->opened && netif_msg_link(cp)) | 
 | 			printk(KERN_INFO "%s: Link down\n", | 
 | 			       cp->dev->name); | 
 | 		restart = 1; | 
 |  | 
 | 	} else if (++cp->timer_ticks > 10) | 
 | 		cas_mdio_link_not_up(cp); | 
 |  | 
 | 	return restart; | 
 | } | 
 |  | 
 | static int cas_mif_interrupt(struct net_device *dev, struct cas *cp, | 
 | 			     u32 status) | 
 | { | 
 | 	u32 stat = readl(cp->regs + REG_MIF_STATUS); | 
 | 	u16 bmsr; | 
 |  | 
 | 	/* check for a link change */ | 
 | 	if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0) | 
 | 		return 0; | 
 |  | 
 | 	bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat); | 
 | 	return cas_mii_link_check(cp, bmsr); | 
 | } | 
 |  | 
 | static int cas_pci_interrupt(struct net_device *dev, struct cas *cp, | 
 | 			     u32 status) | 
 | { | 
 | 	u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS); | 
 |  | 
 | 	if (!stat) | 
 | 		return 0; | 
 |  | 
 | 	printk(KERN_ERR "%s: PCI error [%04x:%04x] ", dev->name, stat, | 
 | 	       readl(cp->regs + REG_BIM_DIAG)); | 
 |  | 
 | 	/* cassini+ has this reserved */ | 
 | 	if ((stat & PCI_ERR_BADACK) && | 
 | 	    ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0)) | 
 | 		printk("<No ACK64# during ABS64 cycle> "); | 
 |  | 
 | 	if (stat & PCI_ERR_DTRTO) | 
 | 		printk("<Delayed transaction timeout> "); | 
 | 	if (stat & PCI_ERR_OTHER) | 
 | 		printk("<other> "); | 
 | 	if (stat & PCI_ERR_BIM_DMA_WRITE) | 
 | 		printk("<BIM DMA 0 write req> "); | 
 | 	if (stat & PCI_ERR_BIM_DMA_READ) | 
 | 		printk("<BIM DMA 0 read req> "); | 
 | 	printk("\n"); | 
 |  | 
 | 	if (stat & PCI_ERR_OTHER) { | 
 | 		u16 cfg; | 
 |  | 
 | 		/* Interrogate PCI config space for the | 
 | 		 * true cause. | 
 | 		 */ | 
 | 		pci_read_config_word(cp->pdev, PCI_STATUS, &cfg); | 
 | 		printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n", | 
 | 		       dev->name, cfg); | 
 | 		if (cfg & PCI_STATUS_PARITY) | 
 | 			printk(KERN_ERR "%s: PCI parity error detected.\n", | 
 | 			       dev->name); | 
 | 		if (cfg & PCI_STATUS_SIG_TARGET_ABORT) | 
 | 			printk(KERN_ERR "%s: PCI target abort.\n", | 
 | 			       dev->name); | 
 | 		if (cfg & PCI_STATUS_REC_TARGET_ABORT) | 
 | 			printk(KERN_ERR "%s: PCI master acks target abort.\n", | 
 | 			       dev->name); | 
 | 		if (cfg & PCI_STATUS_REC_MASTER_ABORT) | 
 | 			printk(KERN_ERR "%s: PCI master abort.\n", dev->name); | 
 | 		if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR) | 
 | 			printk(KERN_ERR "%s: PCI system error SERR#.\n", | 
 | 			       dev->name); | 
 | 		if (cfg & PCI_STATUS_DETECTED_PARITY) | 
 | 			printk(KERN_ERR "%s: PCI parity error.\n", | 
 | 			       dev->name); | 
 |  | 
 | 		/* Write the error bits back to clear them. */ | 
 | 		cfg &= (PCI_STATUS_PARITY | | 
 | 			PCI_STATUS_SIG_TARGET_ABORT | | 
 | 			PCI_STATUS_REC_TARGET_ABORT | | 
 | 			PCI_STATUS_REC_MASTER_ABORT | | 
 | 			PCI_STATUS_SIG_SYSTEM_ERROR | | 
 | 			PCI_STATUS_DETECTED_PARITY); | 
 | 		pci_write_config_word(cp->pdev, PCI_STATUS, cfg); | 
 | 	} | 
 |  | 
 | 	/* For all PCI errors, we should reset the chip. */ | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* All non-normal interrupt conditions get serviced here. | 
 |  * Returns non-zero if we should just exit the interrupt | 
 |  * handler right now (ie. if we reset the card which invalidates | 
 |  * all of the other original irq status bits). | 
 |  */ | 
 | static int cas_abnormal_irq(struct net_device *dev, struct cas *cp, | 
 | 			    u32 status) | 
 | { | 
 | 	if (status & INTR_RX_TAG_ERROR) { | 
 | 		/* corrupt RX tag framing */ | 
 | 		if (netif_msg_rx_err(cp)) | 
 | 			printk(KERN_DEBUG "%s: corrupt rx tag framing\n", | 
 | 				cp->dev->name); | 
 | 		spin_lock(&cp->stat_lock[0]); | 
 | 		cp->net_stats[0].rx_errors++; | 
 | 		spin_unlock(&cp->stat_lock[0]); | 
 | 		goto do_reset; | 
 | 	} | 
 |  | 
 | 	if (status & INTR_RX_LEN_MISMATCH) { | 
 | 		/* length mismatch. */ | 
 | 		if (netif_msg_rx_err(cp)) | 
 | 			printk(KERN_DEBUG "%s: length mismatch for rx frame\n", | 
 | 				cp->dev->name); | 
 | 		spin_lock(&cp->stat_lock[0]); | 
 | 		cp->net_stats[0].rx_errors++; | 
 | 		spin_unlock(&cp->stat_lock[0]); | 
 | 		goto do_reset; | 
 | 	} | 
 |  | 
 | 	if (status & INTR_PCS_STATUS) { | 
 | 		if (cas_pcs_interrupt(dev, cp, status)) | 
 | 			goto do_reset; | 
 | 	} | 
 |  | 
 | 	if (status & INTR_TX_MAC_STATUS) { | 
 | 		if (cas_txmac_interrupt(dev, cp, status)) | 
 | 			goto do_reset; | 
 | 	} | 
 |  | 
 | 	if (status & INTR_RX_MAC_STATUS) { | 
 | 		if (cas_rxmac_interrupt(dev, cp, status)) | 
 | 			goto do_reset; | 
 | 	} | 
 |  | 
 | 	if (status & INTR_MAC_CTRL_STATUS) { | 
 | 		if (cas_mac_interrupt(dev, cp, status)) | 
 | 			goto do_reset; | 
 | 	} | 
 |  | 
 | 	if (status & INTR_MIF_STATUS) { | 
 | 		if (cas_mif_interrupt(dev, cp, status)) | 
 | 			goto do_reset; | 
 | 	} | 
 |  | 
 | 	if (status & INTR_PCI_ERROR_STATUS) { | 
 | 		if (cas_pci_interrupt(dev, cp, status)) | 
 | 			goto do_reset; | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | do_reset: | 
 | #if 1 | 
 | 	atomic_inc(&cp->reset_task_pending); | 
 | 	atomic_inc(&cp->reset_task_pending_all); | 
 | 	printk(KERN_ERR "%s:reset called in cas_abnormal_irq [0x%x]\n", | 
 | 	       dev->name, status); | 
 | 	schedule_work(&cp->reset_task); | 
 | #else | 
 | 	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); | 
 | 	printk(KERN_ERR "reset called in cas_abnormal_irq\n"); | 
 | 	schedule_work(&cp->reset_task); | 
 | #endif | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when | 
 |  *       determining whether to do a netif_stop/wakeup | 
 |  */ | 
 | #define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1) | 
 | #define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK) | 
 | static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr, | 
 | 				  const int len) | 
 | { | 
 | 	unsigned long off = addr + len; | 
 |  | 
 | 	if (CAS_TABORT(cp) == 1) | 
 | 		return 0; | 
 | 	if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN) | 
 | 		return 0; | 
 | 	return TX_TARGET_ABORT_LEN; | 
 | } | 
 |  | 
 | static inline void cas_tx_ringN(struct cas *cp, int ring, int limit) | 
 | { | 
 | 	struct cas_tx_desc *txds; | 
 | 	struct sk_buff **skbs; | 
 | 	struct net_device *dev = cp->dev; | 
 | 	int entry, count; | 
 |  | 
 | 	spin_lock(&cp->tx_lock[ring]); | 
 | 	txds = cp->init_txds[ring]; | 
 | 	skbs = cp->tx_skbs[ring]; | 
 | 	entry = cp->tx_old[ring]; | 
 |  | 
 | 	count = TX_BUFF_COUNT(ring, entry, limit); | 
 | 	while (entry != limit) { | 
 | 		struct sk_buff *skb = skbs[entry]; | 
 | 		dma_addr_t daddr; | 
 | 		u32 dlen; | 
 | 		int frag; | 
 |  | 
 | 		if (!skb) { | 
 | 			/* this should never occur */ | 
 | 			entry = TX_DESC_NEXT(ring, entry); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* however, we might get only a partial skb release. */ | 
 | 		count -= skb_shinfo(skb)->nr_frags + | 
 | 			+ cp->tx_tiny_use[ring][entry].nbufs + 1; | 
 | 		if (count < 0) | 
 | 			break; | 
 |  | 
 | 		if (netif_msg_tx_done(cp)) | 
 | 			printk(KERN_DEBUG "%s: tx[%d] done, slot %d\n", | 
 | 			       cp->dev->name, ring, entry); | 
 |  | 
 | 		skbs[entry] = NULL; | 
 | 		cp->tx_tiny_use[ring][entry].nbufs = 0; | 
 |  | 
 | 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { | 
 | 			struct cas_tx_desc *txd = txds + entry; | 
 |  | 
 | 			daddr = le64_to_cpu(txd->buffer); | 
 | 			dlen = CAS_VAL(TX_DESC_BUFLEN, | 
 | 				       le64_to_cpu(txd->control)); | 
 | 			pci_unmap_page(cp->pdev, daddr, dlen, | 
 | 				       PCI_DMA_TODEVICE); | 
 | 			entry = TX_DESC_NEXT(ring, entry); | 
 |  | 
 | 			/* tiny buffer may follow */ | 
 | 			if (cp->tx_tiny_use[ring][entry].used) { | 
 | 				cp->tx_tiny_use[ring][entry].used = 0; | 
 | 				entry = TX_DESC_NEXT(ring, entry); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		spin_lock(&cp->stat_lock[ring]); | 
 | 		cp->net_stats[ring].tx_packets++; | 
 | 		cp->net_stats[ring].tx_bytes += skb->len; | 
 | 		spin_unlock(&cp->stat_lock[ring]); | 
 | 		dev_kfree_skb_irq(skb); | 
 | 	} | 
 | 	cp->tx_old[ring] = entry; | 
 |  | 
 | 	/* this is wrong for multiple tx rings. the net device needs | 
 | 	 * multiple queues for this to do the right thing.  we wait | 
 | 	 * for 2*packets to be available when using tiny buffers | 
 | 	 */ | 
 | 	if (netif_queue_stopped(dev) && | 
 | 	    (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))) | 
 | 		netif_wake_queue(dev); | 
 | 	spin_unlock(&cp->tx_lock[ring]); | 
 | } | 
 |  | 
 | static void cas_tx(struct net_device *dev, struct cas *cp, | 
 | 		   u32 status) | 
 | { | 
 |         int limit, ring; | 
 | #ifdef USE_TX_COMPWB | 
 | 	u64 compwb = le64_to_cpu(cp->init_block->tx_compwb); | 
 | #endif | 
 | 	if (netif_msg_intr(cp)) | 
 | 		printk(KERN_DEBUG "%s: tx interrupt, status: 0x%x, %llx\n", | 
 | 			cp->dev->name, status, (unsigned long long)compwb); | 
 | 	/* process all the rings */ | 
 | 	for (ring = 0; ring < N_TX_RINGS; ring++) { | 
 | #ifdef USE_TX_COMPWB | 
 | 		/* use the completion writeback registers */ | 
 | 		limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) | | 
 | 			CAS_VAL(TX_COMPWB_LSB, compwb); | 
 | 		compwb = TX_COMPWB_NEXT(compwb); | 
 | #else | 
 | 		limit = readl(cp->regs + REG_TX_COMPN(ring)); | 
 | #endif | 
 | 		if (cp->tx_old[ring] != limit) | 
 | 			cas_tx_ringN(cp, ring, limit); | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc, | 
 | 			      int entry, const u64 *words, | 
 | 			      struct sk_buff **skbref) | 
 | { | 
 | 	int dlen, hlen, len, i, alloclen; | 
 | 	int off, swivel = RX_SWIVEL_OFF_VAL; | 
 | 	struct cas_page *page; | 
 | 	struct sk_buff *skb; | 
 | 	void *addr, *crcaddr; | 
 | 	char *p; | 
 |  | 
 | 	hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]); | 
 | 	dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]); | 
 | 	len  = hlen + dlen; | 
 |  | 
 | 	if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT)) | 
 | 		alloclen = len; | 
 | 	else | 
 | 		alloclen = max(hlen, RX_COPY_MIN); | 
 |  | 
 | 	skb = dev_alloc_skb(alloclen + swivel + cp->crc_size); | 
 | 	if (skb == NULL) | 
 | 		return -1; | 
 |  | 
 | 	*skbref = skb; | 
 | 	skb_reserve(skb, swivel); | 
 |  | 
 | 	p = skb->data; | 
 | 	addr = crcaddr = NULL; | 
 | 	if (hlen) { /* always copy header pages */ | 
 | 		i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); | 
 | 		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; | 
 | 		off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 + | 
 | 			swivel; | 
 |  | 
 | 		i = hlen; | 
 | 		if (!dlen) /* attach FCS */ | 
 | 			i += cp->crc_size; | 
 | 		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, | 
 | 				    PCI_DMA_FROMDEVICE); | 
 | 		addr = cas_page_map(page->buffer); | 
 | 		memcpy(p, addr + off, i); | 
 | 		pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, | 
 | 				    PCI_DMA_FROMDEVICE); | 
 | 		cas_page_unmap(addr); | 
 | 		RX_USED_ADD(page, 0x100); | 
 | 		p += hlen; | 
 | 		swivel = 0; | 
 | 	} | 
 |  | 
 |  | 
 | 	if (alloclen < (hlen + dlen)) { | 
 | 		skb_frag_t *frag = skb_shinfo(skb)->frags; | 
 |  | 
 | 		/* normal or jumbo packets. we use frags */ | 
 | 		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); | 
 | 		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; | 
 | 		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; | 
 |  | 
 | 		hlen = min(cp->page_size - off, dlen); | 
 | 		if (hlen < 0) { | 
 | 			if (netif_msg_rx_err(cp)) { | 
 | 				printk(KERN_DEBUG "%s: rx page overflow: " | 
 | 				       "%d\n", cp->dev->name, hlen); | 
 | 			} | 
 | 			dev_kfree_skb_irq(skb); | 
 | 			return -1; | 
 | 		} | 
 | 		i = hlen; | 
 | 		if (i == dlen)  /* attach FCS */ | 
 | 			i += cp->crc_size; | 
 | 		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, | 
 | 				    PCI_DMA_FROMDEVICE); | 
 |  | 
 | 		/* make sure we always copy a header */ | 
 | 		swivel = 0; | 
 | 		if (p == (char *) skb->data) { /* not split */ | 
 | 			addr = cas_page_map(page->buffer); | 
 | 			memcpy(p, addr + off, RX_COPY_MIN); | 
 | 			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, | 
 | 					PCI_DMA_FROMDEVICE); | 
 | 			cas_page_unmap(addr); | 
 | 			off += RX_COPY_MIN; | 
 | 			swivel = RX_COPY_MIN; | 
 | 			RX_USED_ADD(page, cp->mtu_stride); | 
 | 		} else { | 
 | 			RX_USED_ADD(page, hlen); | 
 | 		} | 
 | 		skb_put(skb, alloclen); | 
 |  | 
 | 		skb_shinfo(skb)->nr_frags++; | 
 | 		skb->data_len += hlen - swivel; | 
 | 		skb->len      += hlen - swivel; | 
 |  | 
 | 		get_page(page->buffer); | 
 | 		cas_buffer_inc(page); | 
 | 		frag->page = page->buffer; | 
 | 		frag->page_offset = off; | 
 | 		frag->size = hlen - swivel; | 
 |  | 
 | 		/* any more data? */ | 
 | 		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { | 
 | 			hlen = dlen; | 
 | 			off = 0; | 
 |  | 
 | 			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); | 
 | 			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; | 
 | 			pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, | 
 | 					    hlen + cp->crc_size, | 
 | 					    PCI_DMA_FROMDEVICE); | 
 | 			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr, | 
 | 					    hlen + cp->crc_size, | 
 | 					    PCI_DMA_FROMDEVICE); | 
 |  | 
 | 			skb_shinfo(skb)->nr_frags++; | 
 | 			skb->data_len += hlen; | 
 | 			skb->len      += hlen; | 
 | 			frag++; | 
 |  | 
 | 			get_page(page->buffer); | 
 | 			cas_buffer_inc(page); | 
 | 			frag->page = page->buffer; | 
 | 			frag->page_offset = 0; | 
 | 			frag->size = hlen; | 
 | 			RX_USED_ADD(page, hlen + cp->crc_size); | 
 | 		} | 
 |  | 
 | 		if (cp->crc_size) { | 
 | 			addr = cas_page_map(page->buffer); | 
 | 			crcaddr  = addr + off + hlen; | 
 | 		} | 
 |  | 
 | 	} else { | 
 | 		/* copying packet */ | 
 | 		if (!dlen) | 
 | 			goto end_copy_pkt; | 
 |  | 
 | 		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); | 
 | 		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; | 
 | 		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; | 
 | 		hlen = min(cp->page_size - off, dlen); | 
 | 		if (hlen < 0) { | 
 | 			if (netif_msg_rx_err(cp)) { | 
 | 				printk(KERN_DEBUG "%s: rx page overflow: " | 
 | 				       "%d\n", cp->dev->name, hlen); | 
 | 			} | 
 | 			dev_kfree_skb_irq(skb); | 
 | 			return -1; | 
 | 		} | 
 | 		i = hlen; | 
 | 		if (i == dlen) /* attach FCS */ | 
 | 			i += cp->crc_size; | 
 | 		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, | 
 | 				    PCI_DMA_FROMDEVICE); | 
 | 		addr = cas_page_map(page->buffer); | 
 | 		memcpy(p, addr + off, i); | 
 | 		pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, | 
 | 				    PCI_DMA_FROMDEVICE); | 
 | 		cas_page_unmap(addr); | 
 | 		if (p == (char *) skb->data) /* not split */ | 
 | 			RX_USED_ADD(page, cp->mtu_stride); | 
 | 		else | 
 | 			RX_USED_ADD(page, i); | 
 |  | 
 | 		/* any more data? */ | 
 | 		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { | 
 | 			p += hlen; | 
 | 			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); | 
 | 			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; | 
 | 			pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, | 
 | 					    dlen + cp->crc_size, | 
 | 					    PCI_DMA_FROMDEVICE); | 
 | 			addr = cas_page_map(page->buffer); | 
 | 			memcpy(p, addr, dlen + cp->crc_size); | 
 | 			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr, | 
 | 					    dlen + cp->crc_size, | 
 | 					    PCI_DMA_FROMDEVICE); | 
 | 			cas_page_unmap(addr); | 
 | 			RX_USED_ADD(page, dlen + cp->crc_size); | 
 | 		} | 
 | end_copy_pkt: | 
 | 		if (cp->crc_size) { | 
 | 			addr    = NULL; | 
 | 			crcaddr = skb->data + alloclen; | 
 | 		} | 
 | 		skb_put(skb, alloclen); | 
 | 	} | 
 |  | 
 | 	i = CAS_VAL(RX_COMP4_TCP_CSUM, words[3]); | 
 | 	if (cp->crc_size) { | 
 | 		/* checksum includes FCS. strip it out. */ | 
 | 		i = csum_fold(csum_partial(crcaddr, cp->crc_size, i)); | 
 | 		if (addr) | 
 | 			cas_page_unmap(addr); | 
 | 	} | 
 | 	skb->csum = ntohs(i ^ 0xffff); | 
 | 	skb->ip_summed = CHECKSUM_COMPLETE; | 
 | 	skb->protocol = eth_type_trans(skb, cp->dev); | 
 | 	return len; | 
 | } | 
 |  | 
 |  | 
 | /* we can handle up to 64 rx flows at a time. we do the same thing | 
 |  * as nonreassm except that we batch up the buffers. | 
 |  * NOTE: we currently just treat each flow as a bunch of packets that | 
 |  *       we pass up. a better way would be to coalesce the packets | 
 |  *       into a jumbo packet. to do that, we need to do the following: | 
 |  *       1) the first packet will have a clean split between header and | 
 |  *          data. save both. | 
 |  *       2) each time the next flow packet comes in, extend the | 
 |  *          data length and merge the checksums. | 
 |  *       3) on flow release, fix up the header. | 
 |  *       4) make sure the higher layer doesn't care. | 
 |  * because packets get coalesced, we shouldn't run into fragment count | 
 |  * issues. | 
 |  */ | 
 | static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words, | 
 | 				   struct sk_buff *skb) | 
 | { | 
 | 	int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1); | 
 | 	struct sk_buff_head *flow = &cp->rx_flows[flowid]; | 
 |  | 
 | 	/* this is protected at a higher layer, so no need to | 
 | 	 * do any additional locking here. stick the buffer | 
 | 	 * at the end. | 
 | 	 */ | 
 | 	__skb_insert(skb, flow->prev, (struct sk_buff *) flow, flow); | 
 | 	if (words[0] & RX_COMP1_RELEASE_FLOW) { | 
 | 		while ((skb = __skb_dequeue(flow))) { | 
 | 			cas_skb_release(skb); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* put rx descriptor back on ring. if a buffer is in use by a higher | 
 |  * layer, this will need to put in a replacement. | 
 |  */ | 
 | static void cas_post_page(struct cas *cp, const int ring, const int index) | 
 | { | 
 | 	cas_page_t *new; | 
 | 	int entry; | 
 |  | 
 | 	entry = cp->rx_old[ring]; | 
 |  | 
 | 	new = cas_page_swap(cp, ring, index); | 
 | 	cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr); | 
 | 	cp->init_rxds[ring][entry].index  = | 
 | 		cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) | | 
 | 			    CAS_BASE(RX_INDEX_RING, ring)); | 
 |  | 
 | 	entry = RX_DESC_ENTRY(ring, entry + 1); | 
 | 	cp->rx_old[ring] = entry; | 
 |  | 
 | 	if (entry % 4) | 
 | 		return; | 
 |  | 
 | 	if (ring == 0) | 
 | 		writel(entry, cp->regs + REG_RX_KICK); | 
 | 	else if ((N_RX_DESC_RINGS > 1) && | 
 | 		 (cp->cas_flags & CAS_FLAG_REG_PLUS)) | 
 | 		writel(entry, cp->regs + REG_PLUS_RX_KICK1); | 
 | } | 
 |  | 
 |  | 
 | /* only when things are bad */ | 
 | static int cas_post_rxds_ringN(struct cas *cp, int ring, int num) | 
 | { | 
 | 	unsigned int entry, last, count, released; | 
 | 	int cluster; | 
 | 	cas_page_t **page = cp->rx_pages[ring]; | 
 |  | 
 | 	entry = cp->rx_old[ring]; | 
 |  | 
 | 	if (netif_msg_intr(cp)) | 
 | 		printk(KERN_DEBUG "%s: rxd[%d] interrupt, done: %d\n", | 
 | 		       cp->dev->name, ring, entry); | 
 |  | 
 | 	cluster = -1; | 
 | 	count = entry & 0x3; | 
 | 	last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4); | 
 | 	released = 0; | 
 | 	while (entry != last) { | 
 | 		/* make a new buffer if it's still in use */ | 
 | 		if (cas_buffer_count(page[entry]) > 1) { | 
 | 			cas_page_t *new = cas_page_dequeue(cp); | 
 | 			if (!new) { | 
 | 				/* let the timer know that we need to | 
 | 				 * do this again | 
 | 				 */ | 
 | 				cp->cas_flags |= CAS_FLAG_RXD_POST(ring); | 
 | 				if (!timer_pending(&cp->link_timer)) | 
 | 					mod_timer(&cp->link_timer, jiffies + | 
 | 						  CAS_LINK_FAST_TIMEOUT); | 
 | 				cp->rx_old[ring]  = entry; | 
 | 				cp->rx_last[ring] = num ? num - released : 0; | 
 | 				return -ENOMEM; | 
 | 			} | 
 | 			spin_lock(&cp->rx_inuse_lock); | 
 | 			list_add(&page[entry]->list, &cp->rx_inuse_list); | 
 | 			spin_unlock(&cp->rx_inuse_lock); | 
 | 			cp->init_rxds[ring][entry].buffer = | 
 | 				cpu_to_le64(new->dma_addr); | 
 | 			page[entry] = new; | 
 |  | 
 | 		} | 
 |  | 
 | 		if (++count == 4) { | 
 | 			cluster = entry; | 
 | 			count = 0; | 
 | 		} | 
 | 		released++; | 
 | 		entry = RX_DESC_ENTRY(ring, entry + 1); | 
 | 	} | 
 | 	cp->rx_old[ring] = entry; | 
 |  | 
 | 	if (cluster < 0) | 
 | 		return 0; | 
 |  | 
 | 	if (ring == 0) | 
 | 		writel(cluster, cp->regs + REG_RX_KICK); | 
 | 	else if ((N_RX_DESC_RINGS > 1) && | 
 | 		 (cp->cas_flags & CAS_FLAG_REG_PLUS)) | 
 | 		writel(cluster, cp->regs + REG_PLUS_RX_KICK1); | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* process a completion ring. packets are set up in three basic ways: | 
 |  * small packets: should be copied header + data in single buffer. | 
 |  * large packets: header and data in a single buffer. | 
 |  * split packets: header in a separate buffer from data. | 
 |  *                data may be in multiple pages. data may be > 256 | 
 |  *                bytes but in a single page. | 
 |  * | 
 |  * NOTE: RX page posting is done in this routine as well. while there's | 
 |  *       the capability of using multiple RX completion rings, it isn't | 
 |  *       really worthwhile due to the fact that the page posting will | 
 |  *       force serialization on the single descriptor ring. | 
 |  */ | 
 | static int cas_rx_ringN(struct cas *cp, int ring, int budget) | 
 | { | 
 | 	struct cas_rx_comp *rxcs = cp->init_rxcs[ring]; | 
 | 	int entry, drops; | 
 | 	int npackets = 0; | 
 |  | 
 | 	if (netif_msg_intr(cp)) | 
 | 		printk(KERN_DEBUG "%s: rx[%d] interrupt, done: %d/%d\n", | 
 | 		       cp->dev->name, ring, | 
 | 		       readl(cp->regs + REG_RX_COMP_HEAD), | 
 | 		       cp->rx_new[ring]); | 
 |  | 
 | 	entry = cp->rx_new[ring]; | 
 | 	drops = 0; | 
 | 	while (1) { | 
 | 		struct cas_rx_comp *rxc = rxcs + entry; | 
 | 		struct sk_buff *skb; | 
 | 		int type, len; | 
 | 		u64 words[4]; | 
 | 		int i, dring; | 
 |  | 
 | 		words[0] = le64_to_cpu(rxc->word1); | 
 | 		words[1] = le64_to_cpu(rxc->word2); | 
 | 		words[2] = le64_to_cpu(rxc->word3); | 
 | 		words[3] = le64_to_cpu(rxc->word4); | 
 |  | 
 | 		/* don't touch if still owned by hw */ | 
 | 		type = CAS_VAL(RX_COMP1_TYPE, words[0]); | 
 | 		if (type == 0) | 
 | 			break; | 
 |  | 
 | 		/* hw hasn't cleared the zero bit yet */ | 
 | 		if (words[3] & RX_COMP4_ZERO) { | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* get info on the packet */ | 
 | 		if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) { | 
 | 			spin_lock(&cp->stat_lock[ring]); | 
 | 			cp->net_stats[ring].rx_errors++; | 
 | 			if (words[3] & RX_COMP4_LEN_MISMATCH) | 
 | 				cp->net_stats[ring].rx_length_errors++; | 
 | 			if (words[3] & RX_COMP4_BAD) | 
 | 				cp->net_stats[ring].rx_crc_errors++; | 
 | 			spin_unlock(&cp->stat_lock[ring]); | 
 |  | 
 | 			/* We'll just return it to Cassini. */ | 
 | 		drop_it: | 
 | 			spin_lock(&cp->stat_lock[ring]); | 
 | 			++cp->net_stats[ring].rx_dropped; | 
 | 			spin_unlock(&cp->stat_lock[ring]); | 
 | 			goto next; | 
 | 		} | 
 |  | 
 | 		len = cas_rx_process_pkt(cp, rxc, entry, words, &skb); | 
 | 		if (len < 0) { | 
 | 			++drops; | 
 | 			goto drop_it; | 
 | 		} | 
 |  | 
 | 		/* see if it's a flow re-assembly or not. the driver | 
 | 		 * itself handles release back up. | 
 | 		 */ | 
 | 		if (RX_DONT_BATCH || (type == 0x2)) { | 
 | 			/* non-reassm: these always get released */ | 
 | 			cas_skb_release(skb); | 
 | 		} else { | 
 | 			cas_rx_flow_pkt(cp, words, skb); | 
 | 		} | 
 |  | 
 | 		spin_lock(&cp->stat_lock[ring]); | 
 | 		cp->net_stats[ring].rx_packets++; | 
 | 		cp->net_stats[ring].rx_bytes += len; | 
 | 		spin_unlock(&cp->stat_lock[ring]); | 
 | 		cp->dev->last_rx = jiffies; | 
 |  | 
 | 	next: | 
 | 		npackets++; | 
 |  | 
 | 		/* should it be released? */ | 
 | 		if (words[0] & RX_COMP1_RELEASE_HDR) { | 
 | 			i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); | 
 | 			dring = CAS_VAL(RX_INDEX_RING, i); | 
 | 			i = CAS_VAL(RX_INDEX_NUM, i); | 
 | 			cas_post_page(cp, dring, i); | 
 | 		} | 
 |  | 
 | 		if (words[0] & RX_COMP1_RELEASE_DATA) { | 
 | 			i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); | 
 | 			dring = CAS_VAL(RX_INDEX_RING, i); | 
 | 			i = CAS_VAL(RX_INDEX_NUM, i); | 
 | 			cas_post_page(cp, dring, i); | 
 | 		} | 
 |  | 
 | 		if (words[0] & RX_COMP1_RELEASE_NEXT) { | 
 | 			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); | 
 | 			dring = CAS_VAL(RX_INDEX_RING, i); | 
 | 			i = CAS_VAL(RX_INDEX_NUM, i); | 
 | 			cas_post_page(cp, dring, i); | 
 | 		} | 
 |  | 
 | 		/* skip to the next entry */ | 
 | 		entry = RX_COMP_ENTRY(ring, entry + 1 + | 
 | 				      CAS_VAL(RX_COMP1_SKIP, words[0])); | 
 | #ifdef USE_NAPI | 
 | 		if (budget && (npackets >= budget)) | 
 | 			break; | 
 | #endif | 
 | 	} | 
 | 	cp->rx_new[ring] = entry; | 
 |  | 
 | 	if (drops) | 
 | 		printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", | 
 | 		       cp->dev->name); | 
 | 	return npackets; | 
 | } | 
 |  | 
 |  | 
 | /* put completion entries back on the ring */ | 
 | static void cas_post_rxcs_ringN(struct net_device *dev, | 
 | 				struct cas *cp, int ring) | 
 | { | 
 | 	struct cas_rx_comp *rxc = cp->init_rxcs[ring]; | 
 | 	int last, entry; | 
 |  | 
 | 	last = cp->rx_cur[ring]; | 
 | 	entry = cp->rx_new[ring]; | 
 | 	if (netif_msg_intr(cp)) | 
 | 		printk(KERN_DEBUG "%s: rxc[%d] interrupt, done: %d/%d\n", | 
 | 		       dev->name, ring, readl(cp->regs + REG_RX_COMP_HEAD), | 
 | 		       entry); | 
 |  | 
 | 	/* zero and re-mark descriptors */ | 
 | 	while (last != entry) { | 
 | 		cas_rxc_init(rxc + last); | 
 | 		last = RX_COMP_ENTRY(ring, last + 1); | 
 | 	} | 
 | 	cp->rx_cur[ring] = last; | 
 |  | 
 | 	if (ring == 0) | 
 | 		writel(last, cp->regs + REG_RX_COMP_TAIL); | 
 | 	else if (cp->cas_flags & CAS_FLAG_REG_PLUS) | 
 | 		writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring)); | 
 | } | 
 |  | 
 |  | 
 |  | 
 | /* cassini can use all four PCI interrupts for the completion ring. | 
 |  * rings 3 and 4 are identical | 
 |  */ | 
 | #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD) | 
 | static inline void cas_handle_irqN(struct net_device *dev, | 
 | 				   struct cas *cp, const u32 status, | 
 | 				   const int ring) | 
 | { | 
 | 	if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT)) | 
 | 		cas_post_rxcs_ringN(dev, cp, ring); | 
 | } | 
 |  | 
 | static irqreturn_t cas_interruptN(int irq, void *dev_id) | 
 | { | 
 | 	struct net_device *dev = dev_id; | 
 | 	struct cas *cp = netdev_priv(dev); | 
 | 	unsigned long flags; | 
 | 	int ring; | 
 | 	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring)); | 
 |  | 
 | 	/* check for shared irq */ | 
 | 	if (status == 0) | 
 | 		return IRQ_NONE; | 
 |  | 
 | 	ring = (irq == cp->pci_irq_INTC) ? 2 : 3; | 
 | 	spin_lock_irqsave(&cp->lock, flags); | 
 | 	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ | 
 | #ifdef USE_NAPI | 
 | 		cas_mask_intr(cp); | 
 | 		netif_rx_schedule(dev); | 
 | #else | 
 | 		cas_rx_ringN(cp, ring, 0); | 
 | #endif | 
 | 		status &= ~INTR_RX_DONE_ALT; | 
 | 	} | 
 |  | 
 | 	if (status) | 
 | 		cas_handle_irqN(dev, cp, status, ring); | 
 | 	spin_unlock_irqrestore(&cp->lock, flags); | 
 | 	return IRQ_HANDLED; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef USE_PCI_INTB | 
 | /* everything but rx packets */ | 
 | static inline void cas_handle_irq1(struct cas *cp, const u32 status) | 
 | { | 
 | 	if (status & INTR_RX_BUF_UNAVAIL_1) { | 
 | 		/* Frame arrived, no free RX buffers available. | 
 | 		 * NOTE: we can get this on a link transition. */ | 
 | 		cas_post_rxds_ringN(cp, 1, 0); | 
 | 		spin_lock(&cp->stat_lock[1]); | 
 | 		cp->net_stats[1].rx_dropped++; | 
 | 		spin_unlock(&cp->stat_lock[1]); | 
 | 	} | 
 |  | 
 | 	if (status & INTR_RX_BUF_AE_1) | 
 | 		cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) - | 
 | 				    RX_AE_FREEN_VAL(1)); | 
 |  | 
 | 	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) | 
 | 		cas_post_rxcs_ringN(cp, 1); | 
 | } | 
 |  | 
 | /* ring 2 handles a few more events than 3 and 4 */ | 
 | static irqreturn_t cas_interrupt1(int irq, void *dev_id) | 
 | { | 
 | 	struct net_device *dev = dev_id; | 
 | 	struct cas *cp = netdev_priv(dev); | 
 | 	unsigned long flags; | 
 | 	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); | 
 |  | 
 | 	/* check for shared interrupt */ | 
 | 	if (status == 0) | 
 | 		return IRQ_NONE; | 
 |  | 
 | 	spin_lock_irqsave(&cp->lock, flags); | 
 | 	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ | 
 | #ifdef USE_NAPI | 
 | 		cas_mask_intr(cp); | 
 | 		netif_rx_schedule(dev); | 
 | #else | 
 | 		cas_rx_ringN(cp, 1, 0); | 
 | #endif | 
 | 		status &= ~INTR_RX_DONE_ALT; | 
 | 	} | 
 | 	if (status) | 
 | 		cas_handle_irq1(cp, status); | 
 | 	spin_unlock_irqrestore(&cp->lock, flags); | 
 | 	return IRQ_HANDLED; | 
 | } | 
 | #endif | 
 |  | 
 | static inline void cas_handle_irq(struct net_device *dev, | 
 | 				  struct cas *cp, const u32 status) | 
 | { | 
 | 	/* housekeeping interrupts */ | 
 | 	if (status & INTR_ERROR_MASK) | 
 | 		cas_abnormal_irq(dev, cp, status); | 
 |  | 
 | 	if (status & INTR_RX_BUF_UNAVAIL) { | 
 | 		/* Frame arrived, no free RX buffers available. | 
 | 		 * NOTE: we can get this on a link transition. | 
 | 		 */ | 
 | 		cas_post_rxds_ringN(cp, 0, 0); | 
 | 		spin_lock(&cp->stat_lock[0]); | 
 | 		cp->net_stats[0].rx_dropped++; | 
 | 		spin_unlock(&cp->stat_lock[0]); | 
 | 	} else if (status & INTR_RX_BUF_AE) { | 
 | 		cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) - | 
 | 				    RX_AE_FREEN_VAL(0)); | 
 | 	} | 
 |  | 
 | 	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) | 
 | 		cas_post_rxcs_ringN(dev, cp, 0); | 
 | } | 
 |  | 
 | static irqreturn_t cas_interrupt(int irq, void *dev_id) | 
 | { | 
 | 	struct net_device *dev = dev_id; | 
 | 	struct cas *cp = netdev_priv(dev); | 
 | 	unsigned long flags; | 
 | 	u32 status = readl(cp->regs + REG_INTR_STATUS); | 
 |  | 
 | 	if (status == 0) | 
 | 		return IRQ_NONE; | 
 |  | 
 | 	spin_lock_irqsave(&cp->lock, flags); | 
 | 	if (status & (INTR_TX_ALL | INTR_TX_INTME)) { | 
 | 		cas_tx(dev, cp, status); | 
 | 		status &= ~(INTR_TX_ALL | INTR_TX_INTME); | 
 | 	} | 
 |  | 
 | 	if (status & INTR_RX_DONE) { | 
 | #ifdef USE_NAPI | 
 | 		cas_mask_intr(cp); | 
 | 		netif_rx_schedule(dev); | 
 | #else | 
 | 		cas_rx_ringN(cp, 0, 0); | 
 | #endif | 
 | 		status &= ~INTR_RX_DONE; | 
 | 	} | 
 |  | 
 | 	if (status) | 
 | 		cas_handle_irq(dev, cp, status); | 
 | 	spin_unlock_irqrestore(&cp->lock, flags); | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 |  | 
 | #ifdef USE_NAPI | 
 | static int cas_poll(struct net_device *dev, int *budget) | 
 | { | 
 | 	struct cas *cp = netdev_priv(dev); | 
 | 	int i, enable_intr, todo, credits; | 
 | 	u32 status = readl(cp->regs + REG_INTR_STATUS); | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&cp->lock, flags); | 
 | 	cas_tx(dev, cp, status); | 
 | 	spin_unlock_irqrestore(&cp->lock, flags); | 
 |  | 
 | 	/* NAPI rx packets. we spread the credits across all of the | 
 | 	 * rxc rings | 
 | 	 */ | 
 | 	todo = min(*budget, dev->quota); | 
 |  | 
 | 	/* to make sure we're fair with the work we loop through each | 
 | 	 * ring N_RX_COMP_RING times with a request of | 
 | 	 * todo / N_RX_COMP_RINGS | 
 | 	 */ | 
 | 	enable_intr = 1; | 
 | 	credits = 0; | 
 | 	for (i = 0; i < N_RX_COMP_RINGS; i++) { | 
 | 		int j; | 
 | 		for (j = 0; j < N_RX_COMP_RINGS; j++) { | 
 | 			credits += cas_rx_ringN(cp, j, todo / N_RX_COMP_RINGS); | 
 | 			if (credits >= todo) { | 
 | 				enable_intr = 0; | 
 | 				goto rx_comp; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | rx_comp: | 
 | 	*budget    -= credits; | 
 | 	dev->quota -= credits; | 
 |  | 
 | 	/* final rx completion */ | 
 | 	spin_lock_irqsave(&cp->lock, flags); | 
 | 	if (status) | 
 | 		cas_handle_irq(dev, cp, status); | 
 |  | 
 | #ifdef USE_PCI_INTB | 
 | 	if (N_RX_COMP_RINGS > 1) { | 
 | 		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); | 
 | 		if (status) | 
 | 			cas_handle_irq1(dev, cp, status); | 
 | 	} | 
 | #endif | 
 |  | 
 | #ifdef USE_PCI_INTC | 
 | 	if (N_RX_COMP_RINGS > 2) { | 
 | 		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2)); | 
 | 		if (status) | 
 | 			cas_handle_irqN(dev, cp, status, 2); | 
 | 	} | 
 | #endif | 
 |  | 
 | #ifdef USE_PCI_INTD | 
 | 	if (N_RX_COMP_RINGS > 3) { | 
 | 		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3)); | 
 | 		if (status) | 
 | 			cas_handle_irqN(dev, cp, status, 3); | 
 | 	} | 
 | #endif | 
 | 	spin_unlock_irqrestore(&cp->lock, flags); | 
 | 	if (enable_intr) { | 
 | 		netif_rx_complete(dev); | 
 | 		cas_unmask_intr(cp); | 
 | 		return 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_NET_POLL_CONTROLLER | 
 | static void cas_netpoll(struct net_device *dev) | 
 | { | 
 | 	struct cas *cp = netdev_priv(dev); | 
 |  | 
 | 	cas_disable_irq(cp, 0); | 
 | 	cas_interrupt(cp->pdev->irq, dev); | 
 | 	cas_enable_irq(cp, 0); | 
 |  | 
 | #ifdef USE_PCI_INTB | 
 | 	if (N_RX_COMP_RINGS > 1) { | 
 | 		/* cas_interrupt1(); */ | 
 | 	} | 
 | #endif | 
 | #ifdef USE_PCI_INTC | 
 | 	if (N_RX_COMP_RINGS > 2) { | 
 | 		/* cas_interruptN(); */ | 
 | 	} | 
 | #endif | 
 | #ifdef USE_PCI_INTD | 
 | 	if (N_RX_COMP_RINGS > 3) { | 
 | 		/* cas_interruptN(); */ | 
 | 	} | 
 | #endif | 
 | } | 
 | #endif | 
 |  | 
 | static void cas_tx_timeout(struct net_device *dev) | 
 | { | 
 | 	struct cas *cp = netdev_priv(dev); | 
 |  | 
 | 	printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name); | 
 | 	if (!cp->hw_running) { | 
 | 		printk("%s: hrm.. hw not running!\n", dev->name); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	printk(KERN_ERR "%s: MIF_STATE[%08x]\n", | 
 | 	       dev->name, readl(cp->regs + REG_MIF_STATE_MACHINE)); | 
 |  | 
 | 	printk(KERN_ERR "%s: MAC_STATE[%08x]\n", | 
 | 	       dev->name, readl(cp->regs + REG_MAC_STATE_MACHINE)); | 
 |  | 
 | 	printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x] " | 
 | 	       "FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n", | 
 | 	       dev->name, | 
 | 	       readl(cp->regs + REG_TX_CFG), | 
 | 	       readl(cp->regs + REG_MAC_TX_STATUS), | 
 | 	       readl(cp->regs + REG_MAC_TX_CFG), | 
 | 	       readl(cp->regs + REG_TX_FIFO_PKT_CNT), | 
 | 	       readl(cp->regs + REG_TX_FIFO_WRITE_PTR), | 
 | 	       readl(cp->regs + REG_TX_FIFO_READ_PTR), | 
 | 	       readl(cp->regs + REG_TX_SM_1), | 
 | 	       readl(cp->regs + REG_TX_SM_2)); | 
 |  | 
 | 	printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n", | 
 | 	       dev->name, | 
 | 	       readl(cp->regs + REG_RX_CFG), | 
 | 	       readl(cp->regs + REG_MAC_RX_STATUS), | 
 | 	       readl(cp->regs + REG_MAC_RX_CFG)); | 
 |  | 
 | 	printk(KERN_ERR "%s: HP_STATE[%08x:%08x:%08x:%08x]\n", | 
 | 	       dev->name, | 
 | 	       readl(cp->regs + REG_HP_STATE_MACHINE), | 
 | 	       readl(cp->regs + REG_HP_STATUS0), | 
 | 	       readl(cp->regs + REG_HP_STATUS1), | 
 | 	       readl(cp->regs + REG_HP_STATUS2)); | 
 |  | 
 | #if 1 | 
 | 	atomic_inc(&cp->reset_task_pending); | 
 | 	atomic_inc(&cp->reset_task_pending_all); | 
 | 	schedule_work(&cp->reset_task); | 
 | #else | 
 | 	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); | 
 | 	schedule_work(&cp->reset_task); | 
 | #endif | 
 | } | 
 |  | 
 | static inline int cas_intme(int ring, int entry) | 
 | { | 
 | 	/* Algorithm: IRQ every 1/2 of descriptors. */ | 
 | 	if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1))) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static void cas_write_txd(struct cas *cp, int ring, int entry, | 
 | 			  dma_addr_t mapping, int len, u64 ctrl, int last) | 
 | { | 
 | 	struct cas_tx_desc *txd = cp->init_txds[ring] + entry; | 
 |  | 
 | 	ctrl |= CAS_BASE(TX_DESC_BUFLEN, len); | 
 | 	if (cas_intme(ring, entry)) | 
 | 		ctrl |= TX_DESC_INTME; | 
 | 	if (last) | 
 | 		ctrl |= TX_DESC_EOF; | 
 | 	txd->control = cpu_to_le64(ctrl); | 
 | 	txd->buffer = cpu_to_le64(mapping); | 
 | } | 
 |  | 
 | static inline void *tx_tiny_buf(struct cas *cp, const int ring, | 
 | 				const int entry) | 
 | { | 
 | 	return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry; | 
 | } | 
 |  | 
 | static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring, | 
 | 				     const int entry, const int tentry) | 
 | { | 
 | 	cp->tx_tiny_use[ring][tentry].nbufs++; | 
 | 	cp->tx_tiny_use[ring][entry].used = 1; | 
 | 	return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry; | 
 | } | 
 |  | 
 | static inline int cas_xmit_tx_ringN(struct cas *cp, int ring, | 
 | 				    struct sk_buff *skb) | 
 | { | 
 | 	struct net_device *dev = cp->dev; | 
 | 	int entry, nr_frags, frag, tabort, tentry; | 
 | 	dma_addr_t mapping; | 
 | 	unsigned long flags; | 
 | 	u64 ctrl; | 
 | 	u32 len; | 
 |  | 
 | 	spin_lock_irqsave(&cp->tx_lock[ring], flags); | 
 |  | 
 | 	/* This is a hard error, log it. */ | 
 | 	if (TX_BUFFS_AVAIL(cp, ring) <= | 
 | 	    CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) { | 
 | 		netif_stop_queue(dev); | 
 | 		spin_unlock_irqrestore(&cp->tx_lock[ring], flags); | 
 | 		printk(KERN_ERR PFX "%s: BUG! Tx Ring full when " | 
 | 		       "queue awake!\n", dev->name); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	ctrl = 0; | 
 | 	if (skb->ip_summed == CHECKSUM_PARTIAL) { | 
 | 		const u64 csum_start_off = skb_transport_offset(skb); | 
 | 		const u64 csum_stuff_off = csum_start_off + skb->csum_offset; | 
 |  | 
 | 		ctrl =  TX_DESC_CSUM_EN | | 
 | 			CAS_BASE(TX_DESC_CSUM_START, csum_start_off) | | 
 | 			CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off); | 
 | 	} | 
 |  | 
 | 	entry = cp->tx_new[ring]; | 
 | 	cp->tx_skbs[ring][entry] = skb; | 
 |  | 
 | 	nr_frags = skb_shinfo(skb)->nr_frags; | 
 | 	len = skb_headlen(skb); | 
 | 	mapping = pci_map_page(cp->pdev, virt_to_page(skb->data), | 
 | 			       offset_in_page(skb->data), len, | 
 | 			       PCI_DMA_TODEVICE); | 
 |  | 
 | 	tentry = entry; | 
 | 	tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len); | 
 | 	if (unlikely(tabort)) { | 
 | 		/* NOTE: len is always >  tabort */ | 
 | 		cas_write_txd(cp, ring, entry, mapping, len - tabort, | 
 | 			      ctrl | TX_DESC_SOF, 0); | 
 | 		entry = TX_DESC_NEXT(ring, entry); | 
 |  | 
 | 		skb_copy_from_linear_data_offset(skb, len - tabort, | 
 | 			      tx_tiny_buf(cp, ring, entry), tabort); | 
 | 		mapping = tx_tiny_map(cp, ring, entry, tentry); | 
 | 		cas_write_txd(cp, ring, entry, mapping, tabort, ctrl, | 
 | 			      (nr_frags == 0)); | 
 | 	} else { | 
 | 		cas_write_txd(cp, ring, entry, mapping, len, ctrl | | 
 | 			      TX_DESC_SOF, (nr_frags == 0)); | 
 | 	} | 
 | 	entry = TX_DESC_NEXT(ring, entry); | 
 |  | 
 | 	for (frag = 0; frag < nr_frags; frag++) { | 
 | 		skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag]; | 
 |  | 
 | 		len = fragp->size; | 
 | 		mapping = pci_map_page(cp->pdev, fragp->page, | 
 | 				       fragp->page_offset, len, | 
 | 				       PCI_DMA_TODEVICE); | 
 |  | 
 | 		tabort = cas_calc_tabort(cp, fragp->page_offset, len); | 
 | 		if (unlikely(tabort)) { | 
 | 			void *addr; | 
 |  | 
 | 			/* NOTE: len is always > tabort */ | 
 | 			cas_write_txd(cp, ring, entry, mapping, len - tabort, | 
 | 				      ctrl, 0); | 
 | 			entry = TX_DESC_NEXT(ring, entry); | 
 |  | 
 | 			addr = cas_page_map(fragp->page); | 
 | 			memcpy(tx_tiny_buf(cp, ring, entry), | 
 | 			       addr + fragp->page_offset + len - tabort, | 
 | 			       tabort); | 
 | 			cas_page_unmap(addr); | 
 | 			mapping = tx_tiny_map(cp, ring, entry, tentry); | 
 | 			len     = tabort; | 
 | 		} | 
 |  | 
 | 		cas_write_txd(cp, ring, entry, mapping, len, ctrl, | 
 | 			      (frag + 1 == nr_frags)); | 
 | 		entry = TX_DESC_NEXT(ring, entry); | 
 | 	} | 
 |  | 
 | 	cp->tx_new[ring] = entry; | 
 | 	if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)) | 
 | 		netif_stop_queue(dev); | 
 |  | 
 | 	if (netif_msg_tx_queued(cp)) | 
 | 		printk(KERN_DEBUG "%s: tx[%d] queued, slot %d, skblen %d, " | 
 | 		       "avail %d\n", | 
 | 		       dev->name, ring, entry, skb->len, | 
 | 		       TX_BUFFS_AVAIL(cp, ring)); | 
 | 	writel(entry, cp->regs + REG_TX_KICKN(ring)); | 
 | 	spin_unlock_irqrestore(&cp->tx_lock[ring], flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int cas_start_xmit(struct sk_buff *skb, struct net_device *dev) | 
 | { | 
 | 	struct cas *cp = netdev_priv(dev); | 
 |  | 
 | 	/* this is only used as a load-balancing hint, so it doesn't | 
 | 	 * need to be SMP safe | 
 | 	 */ | 
 | 	static int ring; | 
 |  | 
 | 	if (skb_padto(skb, cp->min_frame_size)) | 
 | 		return 0; | 
 |  | 
 | 	/* XXX: we need some higher-level QoS hooks to steer packets to | 
 | 	 *      individual queues. | 
 | 	 */ | 
 | 	if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb)) | 
 | 		return 1; | 
 | 	dev->trans_start = jiffies; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void cas_init_tx_dma(struct cas *cp) | 
 | { | 
 | 	u64 desc_dma = cp->block_dvma; | 
 | 	unsigned long off; | 
 | 	u32 val; | 
 | 	int i; | 
 |  | 
 | 	/* set up tx completion writeback registers. must be 8-byte aligned */ | 
 | #ifdef USE_TX_COMPWB | 
 | 	off = offsetof(struct cas_init_block, tx_compwb); | 
 | 	writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI); | 
 | 	writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW); | 
 | #endif | 
 |  | 
 | 	/* enable completion writebacks, enable paced mode, | 
 | 	 * disable read pipe, and disable pre-interrupt compwbs | 
 | 	 */ | 
 | 	val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 | | 
 | 		TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 | | 
 | 		TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE | | 
 | 		TX_CFG_INTR_COMPWB_DIS; | 
 |  | 
 | 	/* write out tx ring info and tx desc bases */ | 
 | 	for (i = 0; i < MAX_TX_RINGS; i++) { | 
 | 		off = (unsigned long) cp->init_txds[i] - | 
 | 			(unsigned long) cp->init_block; | 
 |  | 
 | 		val |= CAS_TX_RINGN_BASE(i); | 
 | 		writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i)); | 
 | 		writel((desc_dma + off) & 0xffffffff, cp->regs + | 
 | 		       REG_TX_DBN_LOW(i)); | 
 | 		/* don't zero out the kick register here as the system | 
 | 		 * will wedge | 
 | 		 */ | 
 | 	} | 
 | 	writel(val, cp->regs + REG_TX_CFG); | 
 |  | 
 | 	/* program max burst sizes. these numbers should be different | 
 | 	 * if doing QoS. | 
 | 	 */ | 
 | #ifdef USE_QOS | 
 | 	writel(0x800, cp->regs + REG_TX_MAXBURST_0); | 
 | 	writel(0x1600, cp->regs + REG_TX_MAXBURST_1); | 
 | 	writel(0x2400, cp->regs + REG_TX_MAXBURST_2); | 
 | 	writel(0x4800, cp->regs + REG_TX_MAXBURST_3); | 
 | #else | 
 | 	writel(0x800, cp->regs + REG_TX_MAXBURST_0); | 
 | 	writel(0x800, cp->regs + REG_TX_MAXBURST_1); | 
 | 	writel(0x800, cp->regs + REG_TX_MAXBURST_2); | 
 | 	writel(0x800, cp->regs + REG_TX_MAXBURST_3); | 
 | #endif | 
 | } | 
 |  | 
 | /* Must be invoked under cp->lock. */ | 
 | static inline void cas_init_dma(struct cas *cp) | 
 | { | 
 | 	cas_init_tx_dma(cp); | 
 | 	cas_init_rx_dma(cp); | 
 | } | 
 |  | 
 | /* Must be invoked under cp->lock. */ | 
 | static u32 cas_setup_multicast(struct cas *cp) | 
 | { | 
 | 	u32 rxcfg = 0; | 
 | 	int i; | 
 |  | 
 | 	if (cp->dev->flags & IFF_PROMISC) { | 
 | 		rxcfg |= MAC_RX_CFG_PROMISC_EN; | 
 |  | 
 | 	} else if (cp->dev->flags & IFF_ALLMULTI) { | 
 | 	    	for (i=0; i < 16; i++) | 
 | 			writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i)); | 
 | 		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; | 
 |  | 
 | 	} else { | 
 | 		u16 hash_table[16]; | 
 | 		u32 crc; | 
 | 		struct dev_mc_list *dmi = cp->dev->mc_list; | 
 | 		int i; | 
 |  | 
 | 		/* use the alternate mac address registers for the | 
 | 		 * first 15 multicast addresses | 
 | 		 */ | 
 | 		for (i = 1; i <= CAS_MC_EXACT_MATCH_SIZE; i++) { | 
 | 			if (!dmi) { | 
 | 				writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 0)); | 
 | 				writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 1)); | 
 | 				writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 2)); | 
 | 				continue; | 
 | 			} | 
 | 			writel((dmi->dmi_addr[4] << 8) | dmi->dmi_addr[5], | 
 | 			       cp->regs + REG_MAC_ADDRN(i*3 + 0)); | 
 | 			writel((dmi->dmi_addr[2] << 8) | dmi->dmi_addr[3], | 
 | 			       cp->regs + REG_MAC_ADDRN(i*3 + 1)); | 
 | 			writel((dmi->dmi_addr[0] << 8) | dmi->dmi_addr[1], | 
 | 			       cp->regs + REG_MAC_ADDRN(i*3 + 2)); | 
 | 			dmi = dmi->next; | 
 | 		} | 
 |  | 
 | 		/* use hw hash table for the next series of | 
 | 		 * multicast addresses | 
 | 		 */ | 
 | 		memset(hash_table, 0, sizeof(hash_table)); | 
 | 		while (dmi) { | 
 |  			crc = ether_crc_le(ETH_ALEN, dmi->dmi_addr); | 
 | 			crc >>= 24; | 
 | 			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); | 
 | 			dmi = dmi->next; | 
 | 		} | 
 | 	    	for (i=0; i < 16; i++) | 
 | 			writel(hash_table[i], cp->regs + | 
 | 			       REG_MAC_HASH_TABLEN(i)); | 
 | 		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; | 
 | 	} | 
 |  | 
 | 	return rxcfg; | 
 | } | 
 |  | 
 | /* must be invoked under cp->stat_lock[N_TX_RINGS] */ | 
 | static void cas_clear_mac_err(struct cas *cp) | 
 | { | 
 | 	writel(0, cp->regs + REG_MAC_COLL_NORMAL); | 
 | 	writel(0, cp->regs + REG_MAC_COLL_FIRST); | 
 | 	writel(0, cp->regs + REG_MAC_COLL_EXCESS); | 
 | 	writel(0, cp->regs + REG_MAC_COLL_LATE); | 
 | 	writel(0, cp->regs + REG_MAC_TIMER_DEFER); | 
 | 	writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK); | 
 | 	writel(0, cp->regs + REG_MAC_RECV_FRAME); | 
 | 	writel(0, cp->regs + REG_MAC_LEN_ERR); | 
 | 	writel(0, cp->regs + REG_MAC_ALIGN_ERR); | 
 | 	writel(0, cp->regs + REG_MAC_FCS_ERR); | 
 | 	writel(0, cp->regs + REG_MAC_RX_CODE_ERR); | 
 | } | 
 |  | 
 |  | 
 | static void cas_mac_reset(struct cas *cp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	/* do both TX and RX reset */ | 
 | 	writel(0x1, cp->regs + REG_MAC_TX_RESET); | 
 | 	writel(0x1, cp->regs + REG_MAC_RX_RESET); | 
 |  | 
 | 	/* wait for TX */ | 
 | 	i = STOP_TRIES; | 
 | 	while (i-- > 0) { | 
 | 		if (readl(cp->regs + REG_MAC_TX_RESET) == 0) | 
 | 			break; | 
 | 		udelay(10); | 
 | 	} | 
 |  | 
 | 	/* wait for RX */ | 
 | 	i = STOP_TRIES; | 
 | 	while (i-- > 0) { | 
 | 		if (readl(cp->regs + REG_MAC_RX_RESET) == 0) | 
 | 			break; | 
 | 		udelay(10); | 
 | 	} | 
 |  | 
 | 	if (readl(cp->regs + REG_MAC_TX_RESET) | | 
 | 	    readl(cp->regs + REG_MAC_RX_RESET)) | 
 | 		printk(KERN_ERR "%s: mac tx[%d]/rx[%d] reset failed [%08x]\n", | 
 | 		       cp->dev->name, readl(cp->regs + REG_MAC_TX_RESET), | 
 | 		       readl(cp->regs + REG_MAC_RX_RESET), | 
 | 		       readl(cp->regs + REG_MAC_STATE_MACHINE)); | 
 | } | 
 |  | 
 |  | 
 | /* Must be invoked under cp->lock. */ | 
 | static void cas_init_mac(struct cas *cp) | 
 | { | 
 | 	unsigned char *e = &cp->dev->dev_addr[0]; | 
 | 	int i; | 
 | #ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE | 
 | 	u32 rxcfg; | 
 | #endif | 
 | 	cas_mac_reset(cp); | 
 |  | 
 | 	/* setup core arbitration weight register */ | 
 | 	writel(CAWR_RR_DIS, cp->regs + REG_CAWR); | 
 |  | 
 | 	/* XXX Use pci_dma_burst_advice() */ | 
 | #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA) | 
 | 	/* set the infinite burst register for chips that don't have | 
 | 	 * pci issues. | 
 | 	 */ | 
 | 	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0) | 
 | 		writel(INF_BURST_EN, cp->regs + REG_INF_BURST); | 
 | #endif | 
 |  | 
 | 	writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE); | 
 |  | 
 | 	writel(0x00, cp->regs + REG_MAC_IPG0); | 
 | 	writel(0x08, cp->regs + REG_MAC_IPG1); | 
 | 	writel(0x04, cp->regs + REG_MAC_IPG2); | 
 |  | 
 | 	/* change later for 802.3z */ | 
 | 	writel(0x40, cp->regs + REG_MAC_SLOT_TIME); | 
 |  | 
 | 	/* min frame + FCS */ | 
 | 	writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN); | 
 |  | 
 | 	/* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we | 
 | 	 * specify the maximum frame size to prevent RX tag errors on | 
 | 	 * oversized frames. | 
 | 	 */ | 
 | 	writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) | | 
 | 	       CAS_BASE(MAC_FRAMESIZE_MAX_FRAME, | 
 | 			(CAS_MAX_MTU + ETH_HLEN + 4 + 4)), | 
 | 	       cp->regs + REG_MAC_FRAMESIZE_MAX); | 
 |  | 
 | 	/* NOTE: crc_size is used as a surrogate for half-duplex. | 
 | 	 * workaround saturn half-duplex issue by increasing preamble | 
 | 	 * size to 65 bytes. | 
 | 	 */ | 
 | 	if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size) | 
 | 		writel(0x41, cp->regs + REG_MAC_PA_SIZE); | 
 | 	else | 
 | 		writel(0x07, cp->regs + REG_MAC_PA_SIZE); | 
 | 	writel(0x04, cp->regs + REG_MAC_JAM_SIZE); | 
 | 	writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT); | 
 | 	writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE); | 
 |  | 
 | 	writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED); | 
 |  | 
 | 	writel(0, cp->regs + REG_MAC_ADDR_FILTER0); | 
 | 	writel(0, cp->regs + REG_MAC_ADDR_FILTER1); | 
 | 	writel(0, cp->regs + REG_MAC_ADDR_FILTER2); | 
 | 	writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK); | 
 | 	writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK); | 
 |  | 
 | 	/* setup mac address in perfect filter array */ | 
 | 	for (i = 0; i < 45; i++) | 
 | 		writel(0x0, cp->regs + REG_MAC_ADDRN(i)); | 
 |  | 
 | 	writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0)); | 
 | 	writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1)); | 
 | 	writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2)); | 
 |  | 
 | 	writel(0x0001, cp->regs + REG_MAC_ADDRN(42)); | 
 | 	writel(0xc200, cp->regs + REG_MAC_ADDRN(43)); | 
 | 	writel(0x0180, cp->regs + REG_MAC_ADDRN(44)); | 
 |  | 
 | #ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE | 
 | 	cp->mac_rx_cfg = cas_setup_multicast(cp); | 
 | #else | 
 | 	/* WTZ: Do what Adrian did in cas_set_multicast. Doing | 
 | 	 * a writel does not seem to be necessary because Cassini | 
 | 	 * seems to preserve the configuration when we do the reset. | 
 | 	 * If the chip is in trouble, though, it is not clear if we | 
 | 	 * can really count on this behavior. cas_set_multicast uses | 
 | 	 * spin_lock_irqsave, but we are called only in cas_init_hw and | 
 | 	 * cas_init_hw is protected by cas_lock_all, which calls | 
 | 	 * spin_lock_irq (so it doesn't need to save the flags, and | 
 | 	 * we should be OK for the writel, as that is the only | 
 | 	 * difference). | 
 | 	 */ | 
 | 	cp->mac_rx_cfg = rxcfg = cas_setup_multicast(cp); | 
 | 	writel(rxcfg, cp->regs + REG_MAC_RX_CFG); | 
 | #endif | 
 | 	spin_lock(&cp->stat_lock[N_TX_RINGS]); | 
 | 	cas_clear_mac_err(cp); | 
 | 	spin_unlock(&cp->stat_lock[N_TX_RINGS]); | 
 |  | 
 | 	/* Setup MAC interrupts.  We want to get all of the interesting | 
 | 	 * counter expiration events, but we do not want to hear about | 
 | 	 * normal rx/tx as the DMA engine tells us that. | 
 | 	 */ | 
 | 	writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK); | 
 | 	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK); | 
 |  | 
 | 	/* Don't enable even the PAUSE interrupts for now, we | 
 | 	 * make no use of those events other than to record them. | 
 | 	 */ | 
 | 	writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK); | 
 | } | 
 |  | 
 | /* Must be invoked under cp->lock. */ | 
 | static void cas_init_pause_thresholds(struct cas *cp) | 
 | { | 
 | 	/* Calculate pause thresholds.  Setting the OFF threshold to the | 
 | 	 * full RX fifo size effectively disables PAUSE generation | 
 | 	 */ | 
 | 	if (cp->rx_fifo_size <= (2 * 1024)) { | 
 | 		cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size; | 
 | 	} else { | 
 | 		int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63; | 
 | 		if (max_frame * 3 > cp->rx_fifo_size) { | 
 | 			cp->rx_pause_off = 7104; | 
 | 			cp->rx_pause_on  = 960; | 
 | 		} else { | 
 | 			int off = (cp->rx_fifo_size - (max_frame * 2)); | 
 | 			int on = off - max_frame; | 
 | 			cp->rx_pause_off = off; | 
 | 			cp->rx_pause_on = on; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int cas_vpd_match(const void __iomem *p, const char *str) | 
 | { | 
 | 	int len = strlen(str) + 1; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < len; i++) { | 
 | 		if (readb(p + i) != str[i]) | 
 | 			return 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 |  | 
 | /* get the mac address by reading the vpd information in the rom. | 
 |  * also get the phy type and determine if there's an entropy generator. | 
 |  * NOTE: this is a bit convoluted for the following reasons: | 
 |  *  1) vpd info has order-dependent mac addresses for multinic cards | 
 |  *  2) the only way to determine the nic order is to use the slot | 
 |  *     number. | 
 |  *  3) fiber cards don't have bridges, so their slot numbers don't | 
 |  *     mean anything. | 
 |  *  4) we don't actually know we have a fiber card until after | 
 |  *     the mac addresses are parsed. | 
 |  */ | 
 | static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr, | 
 | 			    const int offset) | 
 | { | 
 | 	void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START; | 
 | 	void __iomem *base, *kstart; | 
 | 	int i, len; | 
 | 	int found = 0; | 
 | #define VPD_FOUND_MAC        0x01 | 
 | #define VPD_FOUND_PHY        0x02 | 
 |  | 
 | 	int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */ | 
 | 	int mac_off  = 0; | 
 |  | 
 | 	/* give us access to the PROM */ | 
 | 	writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD, | 
 | 	       cp->regs + REG_BIM_LOCAL_DEV_EN); | 
 |  | 
 | 	/* check for an expansion rom */ | 
 | 	if (readb(p) != 0x55 || readb(p + 1) != 0xaa) | 
 | 		goto use_random_mac_addr; | 
 |  | 
 | 	/* search for beginning of vpd */ | 
 | 	base = NULL; | 
 | 	for (i = 2; i < EXPANSION_ROM_SIZE; i++) { | 
 | 		/* check for PCIR */ | 
 | 		if ((readb(p + i + 0) == 0x50) && | 
 | 		    (readb(p + i + 1) == 0x43) && | 
 | 		    (readb(p + i + 2) == 0x49) && | 
 | 		    (readb(p + i + 3) == 0x52)) { | 
 | 			base = p + (readb(p + i + 8) | | 
 | 				    (readb(p + i + 9) << 8)); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!base || (readb(base) != 0x82)) | 
 | 		goto use_random_mac_addr; | 
 |  | 
 | 	i = (readb(base + 1) | (readb(base + 2) << 8)) + 3; | 
 | 	while (i < EXPANSION_ROM_SIZE) { | 
 | 		if (readb(base + i) != 0x90) /* no vpd found */ | 
 | 			goto use_random_mac_addr; | 
 |  | 
 | 		/* found a vpd field */ | 
 | 		len = readb(base + i + 1) | (readb(base + i + 2) << 8); | 
 |  | 
 | 		/* extract keywords */ | 
 | 		kstart = base + i + 3; | 
 | 		p = kstart; | 
 | 		while ((p - kstart) < len) { | 
 | 			int klen = readb(p + 2); | 
 | 			int j; | 
 | 			char type; | 
 |  | 
 | 			p += 3; | 
 |  | 
 | 			/* look for the following things: | 
 | 			 * -- correct length == 29 | 
 | 			 * 3 (type) + 2 (size) + | 
 | 			 * 18 (strlen("local-mac-address") + 1) + | 
 | 			 * 6 (mac addr) | 
 | 			 * -- VPD Instance 'I' | 
 | 			 * -- VPD Type Bytes 'B' | 
 | 			 * -- VPD data length == 6 | 
 | 			 * -- property string == local-mac-address | 
 | 			 * | 
 | 			 * -- correct length == 24 | 
 | 			 * 3 (type) + 2 (size) + | 
 | 			 * 12 (strlen("entropy-dev") + 1) + | 
 | 			 * 7 (strlen("vms110") + 1) | 
 | 			 * -- VPD Instance 'I' | 
 | 			 * -- VPD Type String 'B' | 
 | 			 * -- VPD data length == 7 | 
 | 			 * -- property string == entropy-dev | 
 | 			 * | 
 | 			 * -- correct length == 18 | 
 | 			 * 3 (type) + 2 (size) + | 
 | 			 * 9 (strlen("phy-type") + 1) + | 
 | 			 * 4 (strlen("pcs") + 1) | 
 | 			 * -- VPD Instance 'I' | 
 | 			 * -- VPD Type String 'S' | 
 | 			 * -- VPD data length == 4 | 
 | 			 * -- property string == phy-type | 
 | 			 * | 
 | 			 * -- correct length == 23 | 
 | 			 * 3 (type) + 2 (size) + | 
 | 			 * 14 (strlen("phy-interface") + 1) + | 
 | 			 * 4 (strlen("pcs") + 1) | 
 | 			 * -- VPD Instance 'I' | 
 | 			 * -- VPD Type String 'S' | 
 | 			 * -- VPD data length == 4 | 
 | 			 * -- property string == phy-interface | 
 | 			 */ | 
 | 			if (readb(p) != 'I') | 
 | 				goto next; | 
 |  | 
 | 			/* finally, check string and length */ | 
 | 			type = readb(p + 3); | 
 | 			if (type == 'B') { | 
 | 				if ((klen == 29) && readb(p + 4) == 6 && | 
 | 				    cas_vpd_match(p + 5, | 
 | 						  "local-mac-address")) { | 
 | 					if (mac_off++ > offset) | 
 | 						goto next; | 
 |  | 
 | 					/* set mac address */ | 
 | 					for (j = 0; j < 6; j++) | 
 | 						dev_addr[j] = | 
 | 							readb(p + 23 + j); | 
 | 					goto found_mac; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			if (type != 'S') | 
 | 				goto next; | 
 |  | 
 | #ifdef USE_ENTROPY_DEV | 
 | 			if ((klen == 24) && | 
 | 			    cas_vpd_match(p + 5, "entropy-dev") && | 
 | 			    cas_vpd_match(p + 17, "vms110")) { | 
 | 				cp->cas_flags |= CAS_FLAG_ENTROPY_DEV; | 
 | 				goto next; | 
 | 			} | 
 | #endif | 
 |  | 
 | 			if (found & VPD_FOUND_PHY) | 
 | 				goto next; | 
 |  | 
 | 			if ((klen == 18) && readb(p + 4) == 4 && | 
 | 			    cas_vpd_match(p + 5, "phy-type")) { | 
 | 				if (cas_vpd_match(p + 14, "pcs")) { | 
 | 					phy_type = CAS_PHY_SERDES; | 
 | 					goto found_phy; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			if ((klen == 23) && readb(p + 4) == 4 && | 
 | 			    cas_vpd_match(p + 5, "phy-interface")) { | 
 | 				if (cas_vpd_match(p + 19, "pcs")) { | 
 | 					phy_type = CAS_PHY_SERDES; | 
 | 					goto found_phy; | 
 | 				} | 
 | 			} | 
 | found_mac: | 
 | 			found |= VPD_FOUND_MAC; | 
 | 			goto next; | 
 |  | 
 | found_phy: | 
 | 			found |= VPD_FOUND_PHY; | 
 |  | 
 | next: | 
 | 			p += klen; | 
 | 		} | 
 | 		i += len + 3; | 
 | 	} | 
 |  | 
 | use_random_mac_addr: | 
 | 	if (found & VPD_FOUND_MAC) | 
 | 		goto done; | 
 |  | 
 | 	/* Sun MAC prefix then 3 random bytes. */ | 
 | 	printk(PFX "MAC address not found in ROM VPD\n"); | 
 | 	dev_addr[0] = 0x08; | 
 | 	dev_addr[1] = 0x00; | 
 | 	dev_addr[2] = 0x20; | 
 | 	get_random_bytes(dev_addr + 3, 3); | 
 |  | 
 | done: | 
 | 	writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN); | 
 | 	return phy_type; | 
 | } | 
 |  | 
 | /* check pci invariants */ | 
 | static void cas_check_pci_invariants(struct cas *cp) | 
 | { | 
 | 	struct pci_dev *pdev = cp->pdev; | 
 | 	u8 rev; | 
 |  | 
 | 	cp->cas_flags = 0; | 
 | 	pci_read_config_byte(pdev, PCI_REVISION_ID, &rev); | 
 | 	if ((pdev->vendor == PCI_VENDOR_ID_SUN) && | 
 | 	    (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) { | 
 | 		if (rev >= CAS_ID_REVPLUS) | 
 | 			cp->cas_flags |= CAS_FLAG_REG_PLUS; | 
 | 		if (rev < CAS_ID_REVPLUS02u) | 
 | 			cp->cas_flags |= CAS_FLAG_TARGET_ABORT; | 
 |  | 
 | 		/* Original Cassini supports HW CSUM, but it's not | 
 | 		 * enabled by default as it can trigger TX hangs. | 
 | 		 */ | 
 | 		if (rev < CAS_ID_REV2) | 
 | 			cp->cas_flags |= CAS_FLAG_NO_HW_CSUM; | 
 | 	} else { | 
 | 		/* Only sun has original cassini chips.  */ | 
 | 		cp->cas_flags |= CAS_FLAG_REG_PLUS; | 
 |  | 
 | 		/* We use a flag because the same phy might be externally | 
 | 		 * connected. | 
 | 		 */ | 
 | 		if ((pdev->vendor == PCI_VENDOR_ID_NS) && | 
 | 		    (pdev->device == PCI_DEVICE_ID_NS_SATURN)) | 
 | 			cp->cas_flags |= CAS_FLAG_SATURN; | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static int cas_check_invariants(struct cas *cp) | 
 | { | 
 | 	struct pci_dev *pdev = cp->pdev; | 
 | 	u32 cfg; | 
 | 	int i; | 
 |  | 
 | 	/* get page size for rx buffers. */ | 
 | 	cp->page_order = 0; | 
 | #ifdef USE_PAGE_ORDER | 
 | 	if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) { | 
 | 		/* see if we can allocate larger pages */ | 
 | 		struct page *page = alloc_pages(GFP_ATOMIC, | 
 | 						CAS_JUMBO_PAGE_SHIFT - | 
 | 						PAGE_SHIFT); | 
 | 		if (page) { | 
 | 			__free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT); | 
 | 			cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT; | 
 | 		} else { | 
 | 			printk(PFX "MTU limited to %d bytes\n", CAS_MAX_MTU); | 
 | 		} | 
 | 	} | 
 | #endif | 
 | 	cp->page_size = (PAGE_SIZE << cp->page_order); | 
 |  | 
 | 	/* Fetch the FIFO configurations. */ | 
 | 	cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64; | 
 | 	cp->rx_fifo_size = RX_FIFO_SIZE; | 
 |  | 
 | 	/* finish phy determination. MDIO1 takes precedence over MDIO0 if | 
 | 	 * they're both connected. | 
 | 	 */ | 
 | 	cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr, | 
 | 					PCI_SLOT(pdev->devfn)); | 
 | 	if (cp->phy_type & CAS_PHY_SERDES) { | 
 | 		cp->cas_flags |= CAS_FLAG_1000MB_CAP; | 
 | 		return 0; /* no more checking needed */ | 
 | 	} | 
 |  | 
 | 	/* MII */ | 
 | 	cfg = readl(cp->regs + REG_MIF_CFG); | 
 | 	if (cfg & MIF_CFG_MDIO_1) { | 
 | 		cp->phy_type = CAS_PHY_MII_MDIO1; | 
 | 	} else if (cfg & MIF_CFG_MDIO_0) { | 
 | 		cp->phy_type = CAS_PHY_MII_MDIO0; | 
 | 	} | 
 |  | 
 | 	cas_mif_poll(cp, 0); | 
 | 	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE); | 
 |  | 
 | 	for (i = 0; i < 32; i++) { | 
 | 		u32 phy_id; | 
 | 		int j; | 
 |  | 
 | 		for (j = 0; j < 3; j++) { | 
 | 			cp->phy_addr = i; | 
 | 			phy_id = cas_phy_read(cp, MII_PHYSID1) << 16; | 
 | 			phy_id |= cas_phy_read(cp, MII_PHYSID2); | 
 | 			if (phy_id && (phy_id != 0xFFFFFFFF)) { | 
 | 				cp->phy_id = phy_id; | 
 | 				goto done; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	printk(KERN_ERR PFX "MII phy did not respond [%08x]\n", | 
 | 	       readl(cp->regs + REG_MIF_STATE_MACHINE)); | 
 | 	return -1; | 
 |  | 
 | done: | 
 | 	/* see if we can do gigabit */ | 
 | 	cfg = cas_phy_read(cp, MII_BMSR); | 
 | 	if ((cfg & CAS_BMSR_1000_EXTEND) && | 
 | 	    cas_phy_read(cp, CAS_MII_1000_EXTEND)) | 
 | 		cp->cas_flags |= CAS_FLAG_1000MB_CAP; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Must be invoked under cp->lock. */ | 
 | static inline void cas_start_dma(struct cas *cp) | 
 | { | 
 | 	int i; | 
 | 	u32 val; | 
 | 	int txfailed = 0; | 
 |  | 
 | 	/* enable dma */ | 
 | 	val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN; | 
 | 	writel(val, cp->regs + REG_TX_CFG); | 
 | 	val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN; | 
 | 	writel(val, cp->regs + REG_RX_CFG); | 
 |  | 
 | 	/* enable the mac */ | 
 | 	val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN; | 
 | 	writel(val, cp->regs + REG_MAC_TX_CFG); | 
 | 	val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN; | 
 | 	writel(val, cp->regs + REG_MAC_RX_CFG); | 
 |  | 
 | 	i = STOP_TRIES; | 
 | 	while (i-- > 0) { | 
 | 		val = readl(cp->regs + REG_MAC_TX_CFG); | 
 | 		if ((val & MAC_TX_CFG_EN)) | 
 | 			break; | 
 | 		udelay(10); | 
 | 	} | 
 | 	if (i < 0) txfailed = 1; | 
 | 	i = STOP_TRIES; | 
 | 	while (i-- > 0) { | 
 | 		val = readl(cp->regs + REG_MAC_RX_CFG); | 
 | 		if ((val & MAC_RX_CFG_EN)) { | 
 | 			if (txfailed) { | 
 | 			  printk(KERN_ERR | 
 | 				 "%s: enabling mac failed [tx:%08x:%08x].\n", | 
 | 				 cp->dev->name, | 
 | 				 readl(cp->regs + REG_MIF_STATE_MACHINE), | 
 | 				 readl(cp->regs + REG_MAC_STATE_MACHINE)); | 
 | 			} | 
 | 			goto enable_rx_done; | 
 | 		} | 
 | 		udelay(10); | 
 | 	} | 
 | 	printk(KERN_ERR "%s: enabling mac failed [%s:%08x:%08x].\n", | 
 | 	       cp->dev->name, | 
 | 	       (txfailed? "tx,rx":"rx"), | 
 | 	       readl(cp->regs + REG_MIF_STATE_MACHINE), | 
 | 	       readl(cp->regs + REG_MAC_STATE_MACHINE)); | 
 |  | 
 | enable_rx_done: | 
 | 	cas_unmask_intr(cp); /* enable interrupts */ | 
 | 	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK); | 
 | 	writel(0, cp->regs + REG_RX_COMP_TAIL); | 
 |  | 
 | 	if (cp->cas_flags & CAS_FLAG_REG_PLUS) { | 
 | 		if (N_RX_DESC_RINGS > 1) | 
 | 			writel(RX_DESC_RINGN_SIZE(1) - 4, | 
 | 			       cp->regs + REG_PLUS_RX_KICK1); | 
 |  | 
 | 		for (i = 1; i < N_RX_COMP_RINGS; i++) | 
 | 			writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i)); | 
 | 	} | 
 | } | 
 |  | 
 | /* Must be invoked under cp->lock. */ | 
 | static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd, | 
 | 				   int *pause) | 
 | { | 
 | 	u32 val = readl(cp->regs + REG_PCS_MII_LPA); | 
 | 	*fd     = (val & PCS_MII_LPA_FD) ? 1 : 0; | 
 | 	*pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00; | 
 | 	if (val & PCS_MII_LPA_ASYM_PAUSE) | 
 | 		*pause |= 0x10; | 
 | 	*spd = 1000; | 
 | } | 
 |  | 
 | /* Must be invoked under cp->lock. */ | 
 | static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd, | 
 | 				   int *pause) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	*fd = 0; | 
 | 	*spd = 10; | 
 | 	*pause = 0; | 
 |  | 
 | 	/* use GMII registers */ | 
 | 	val = cas_phy_read(cp, MII_LPA); | 
 | 	if (val & CAS_LPA_PAUSE) | 
 | 		*pause = 0x01; | 
 |  | 
 | 	if (val & CAS_LPA_ASYM_PAUSE) | 
 | 		*pause |= 0x10; | 
 |  | 
 | 	if (val & LPA_DUPLEX) | 
 | 		*fd = 1; | 
 | 	if (val & LPA_100) | 
 | 		*spd = 100; | 
 |  | 
 | 	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { | 
 | 		val = cas_phy_read(cp, CAS_MII_1000_STATUS); | 
 | 		if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF)) | 
 | 			*spd = 1000; | 
 | 		if (val & CAS_LPA_1000FULL) | 
 | 			*fd = 1; | 
 | 	} | 
 | } | 
 |  | 
 | /* A link-up condition has occurred, initialize and enable the | 
 |  * rest of the chip. | 
 |  * | 
 |  * Must be invoked under cp->lock. | 
 |  */ | 
 | static void cas_set_link_modes(struct cas *cp) | 
 | { | 
 | 	u32 val; | 
 | 	int full_duplex, speed, pause; | 
 |  | 
 | 	full_duplex = 0; | 
 | 	speed = 10; | 
 | 	pause = 0; | 
 |  | 
 | 	if (CAS_PHY_MII(cp->phy_type)) { | 
 | 		cas_mif_poll(cp, 0); | 
 | 		val = cas_phy_read(cp, MII_BMCR); | 
 | 		if (val & BMCR_ANENABLE) { | 
 | 			cas_read_mii_link_mode(cp, &full_duplex, &speed, | 
 | 					       &pause); | 
 | 		} else { | 
 | 			if (val & BMCR_FULLDPLX) | 
 | 				full_duplex = 1; | 
 |  | 
 | 			if (val & BMCR_SPEED100) | 
 | 				speed = 100; | 
 | 			else if (val & CAS_BMCR_SPEED1000) | 
 | 				speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? | 
 | 					1000 : 100; | 
 | 		} | 
 | 		cas_mif_poll(cp, 1); | 
 |  | 
 | 	} else { | 
 | 		val = readl(cp->regs + REG_PCS_MII_CTRL); | 
 | 		cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause); | 
 | 		if ((val & PCS_MII_AUTONEG_EN) == 0) { | 
 | 			if (val & PCS_MII_CTRL_DUPLEX) | 
 | 				full_duplex = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (netif_msg_link(cp)) | 
 | 		printk(KERN_INFO "%s: Link up at %d Mbps, %s-duplex.\n", | 
 | 		       cp->dev->name, speed, (full_duplex ? "full" : "half")); | 
 |  | 
 | 	val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED; | 
 | 	if (CAS_PHY_MII(cp->phy_type)) { | 
 | 		val |= MAC_XIF_MII_BUFFER_OUTPUT_EN; | 
 | 		if (!full_duplex) | 
 | 			val |= MAC_XIF_DISABLE_ECHO; | 
 | 	} | 
 | 	if (full_duplex) | 
 | 		val |= MAC_XIF_FDPLX_LED; | 
 | 	if (speed == 1000) | 
 | 		val |= MAC_XIF_GMII_MODE; | 
 | 	writel(val, cp->regs + REG_MAC_XIF_CFG); | 
 |  | 
 | 	/* deal with carrier and collision detect. */ | 
 | 	val = MAC_TX_CFG_IPG_EN; | 
 | 	if (full_duplex) { | 
 | 		val |= MAC_TX_CFG_IGNORE_CARRIER; | 
 | 		val |= MAC_TX_CFG_IGNORE_COLL; | 
 | 	} else { | 
 | #ifndef USE_CSMA_CD_PROTO | 
 | 		val |= MAC_TX_CFG_NEVER_GIVE_UP_EN; | 
 | 		val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM; | 
 | #endif | 
 | 	} | 
 | 	/* val now set up for REG_MAC_TX_CFG */ | 
 |  | 
 | 	/* If gigabit and half-duplex, enable carrier extension | 
 | 	 * mode.  increase slot time to 512 bytes as well. | 
 | 	 * else, disable it and make sure slot time is 64 bytes. | 
 | 	 * also activate checksum bug workaround | 
 | 	 */ | 
 | 	if ((speed == 1000) && !full_duplex) { | 
 | 		writel(val | MAC_TX_CFG_CARRIER_EXTEND, | 
 | 		       cp->regs + REG_MAC_TX_CFG); | 
 |  | 
 | 		val = readl(cp->regs + REG_MAC_RX_CFG); | 
 | 		val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */ | 
 | 		writel(val | MAC_RX_CFG_CARRIER_EXTEND, | 
 | 		       cp->regs + REG_MAC_RX_CFG); | 
 |  | 
 | 		writel(0x200, cp->regs + REG_MAC_SLOT_TIME); | 
 |  | 
 | 		cp->crc_size = 4; | 
 | 		/* minimum size gigabit frame at half duplex */ | 
 | 		cp->min_frame_size = CAS_1000MB_MIN_FRAME; | 
 |  | 
 | 	} else { | 
 | 		writel(val, cp->regs + REG_MAC_TX_CFG); | 
 |  | 
 | 		/* checksum bug workaround. don't strip FCS when in | 
 | 		 * half-duplex mode | 
 | 		 */ | 
 | 		val = readl(cp->regs + REG_MAC_RX_CFG); | 
 | 		if (full_duplex) { | 
 | 			val |= MAC_RX_CFG_STRIP_FCS; | 
 | 			cp->crc_size = 0; | 
 | 			cp->min_frame_size = CAS_MIN_MTU; | 
 | 		} else { | 
 | 			val &= ~MAC_RX_CFG_STRIP_FCS; | 
 | 			cp->crc_size = 4; | 
 | 			cp->min_frame_size = CAS_MIN_FRAME; | 
 | 		} | 
 | 		writel(val & ~MAC_RX_CFG_CARRIER_EXTEND, | 
 | 		       cp->regs + REG_MAC_RX_CFG); | 
 | 		writel(0x40, cp->regs + REG_MAC_SLOT_TIME); | 
 | 	} | 
 |  | 
 | 	if (netif_msg_link(cp)) { | 
 | 		if (pause & 0x01) { | 
 | 			printk(KERN_INFO "%s: Pause is enabled " | 
 | 			       "(rxfifo: %d off: %d on: %d)\n", | 
 | 			       cp->dev->name, | 
 | 			       cp->rx_fifo_size, | 
 | 			       cp->rx_pause_off, | 
 | 			       cp->rx_pause_on); | 
 | 		} else if (pause & 0x10) { | 
 | 			printk(KERN_INFO "%s: TX pause enabled\n", | 
 | 			       cp->dev->name); | 
 | 		} else { | 
 | 			printk(KERN_INFO "%s: Pause is disabled\n", | 
 | 			       cp->dev->name); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	val = readl(cp->regs + REG_MAC_CTRL_CFG); | 
 | 	val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN); | 
 | 	if (pause) { /* symmetric or asymmetric pause */ | 
 | 		val |= MAC_CTRL_CFG_SEND_PAUSE_EN; | 
 | 		if (pause & 0x01) { /* symmetric pause */ | 
 | 			val |= MAC_CTRL_CFG_RECV_PAUSE_EN; | 
 | 		} | 
 | 	} | 
 | 	writel(val, cp->regs + REG_MAC_CTRL_CFG); | 
 | 	cas_start_dma(cp); | 
 | } | 
 |  | 
 | /* Must be invoked under cp->lock. */ | 
 | static void cas_init_hw(struct cas *cp, int restart_link) | 
 | { | 
 | 	if (restart_link) | 
 | 		cas_phy_init(cp); | 
 |  | 
 | 	cas_init_pause_thresholds(cp); | 
 | 	cas_init_mac(cp); | 
 | 	cas_init_dma(cp); | 
 |  | 
 | 	if (restart_link) { | 
 | 		/* Default aneg parameters */ | 
 | 		cp->timer_ticks = 0; | 
 | 		cas_begin_auto_negotiation(cp, NULL); | 
 | 	} else if (cp->lstate == link_up) { | 
 | 		cas_set_link_modes(cp); | 
 | 		netif_carrier_on(cp->dev); | 
 | 	} | 
 | } | 
 |  | 
 | /* Must be invoked under cp->lock. on earlier cassini boards, | 
 |  * SOFT_0 is tied to PCI reset. we use this to force a pci reset, | 
 |  * let it settle out, and then restore pci state. | 
 |  */ | 
 | static void cas_hard_reset(struct cas *cp) | 
 | { | 
 | 	writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN); | 
 | 	udelay(20); | 
 | 	pci_restore_state(cp->pdev); | 
 | } | 
 |  | 
 |  | 
 | static void cas_global_reset(struct cas *cp, int blkflag) | 
 | { | 
 | 	int limit; | 
 |  | 
 | 	/* issue a global reset. don't use RSTOUT. */ | 
 | 	if (blkflag && !CAS_PHY_MII(cp->phy_type)) { | 
 | 		/* For PCS, when the blkflag is set, we should set the | 
 | 		 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of | 
 | 		 * the last autonegotiation from being cleared.  We'll | 
 | 		 * need some special handling if the chip is set into a | 
 | 		 * loopback mode. | 
 | 		 */ | 
 | 		writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK), | 
 | 		       cp->regs + REG_SW_RESET); | 
 | 	} else { | 
 | 		writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET); | 
 | 	} | 
 |  | 
 | 	/* need to wait at least 3ms before polling register */ | 
 | 	mdelay(3); | 
 |  | 
 | 	limit = STOP_TRIES; | 
 | 	while (limit-- > 0) { | 
 | 		u32 val = readl(cp->regs + REG_SW_RESET); | 
 | 		if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0) | 
 | 			goto done; | 
 | 		udelay(10); | 
 | 	} | 
 | 	printk(KERN_ERR "%s: sw reset failed.\n", cp->dev->name); | 
 |  | 
 | done: | 
 | 	/* enable various BIM interrupts */ | 
 | 	writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE | | 
 | 	       BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG); | 
 |  | 
 | 	/* clear out pci error status mask for handled errors. | 
 | 	 * we don't deal with DMA counter overflows as they happen | 
 | 	 * all the time. | 
 | 	 */ | 
 | 	writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO | | 
 | 			       PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE | | 
 | 			       PCI_ERR_BIM_DMA_READ), cp->regs + | 
 | 	       REG_PCI_ERR_STATUS_MASK); | 
 |  | 
 | 	/* set up for MII by default to address mac rx reset timeout | 
 | 	 * issue | 
 | 	 */ | 
 | 	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE); | 
 | } | 
 |  | 
 | static void cas_reset(struct cas *cp, int blkflag) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	cas_mask_intr(cp); | 
 | 	cas_global_reset(cp, blkflag); | 
 | 	cas_mac_reset(cp); | 
 | 	cas_entropy_reset(cp); | 
 |  | 
 | 	/* disable dma engines. */ | 
 | 	val = readl(cp->regs + REG_TX_CFG); | 
 | 	val &= ~TX_CFG_DMA_EN; | 
 | 	writel(val, cp->regs + REG_TX_CFG); | 
 |  | 
 | 	val = readl(cp->regs + REG_RX_CFG); | 
 | 	val &= ~RX_CFG_DMA_EN; | 
 | 	writel(val, cp->regs + REG_RX_CFG); | 
 |  | 
 | 	/* program header parser */ | 
 | 	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) || | 
 | 	    (CAS_HP_ALT_FIRMWARE == cas_prog_null)) { | 
 | 		cas_load_firmware(cp, CAS_HP_FIRMWARE); | 
 | 	} else { | 
 | 		cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE); | 
 | 	} | 
 |  | 
 | 	/* clear out error registers */ | 
 | 	spin_lock(&cp->stat_lock[N_TX_RINGS]); | 
 | 	cas_clear_mac_err(cp); | 
 | 	spin_unlock(&cp->stat_lock[N_TX_RINGS]); | 
 | } | 
 |  | 
 | /* Shut down the chip, must be called with pm_mutex held.  */ | 
 | static void cas_shutdown(struct cas *cp) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* Make us not-running to avoid timers respawning */ | 
 | 	cp->hw_running = 0; | 
 |  | 
 | 	del_timer_sync(&cp->link_timer); | 
 |  | 
 | 	/* Stop the reset task */ | 
 | #if 0 | 
 | 	while (atomic_read(&cp->reset_task_pending_mtu) || | 
 | 	       atomic_read(&cp->reset_task_pending_spare) || | 
 | 	       atomic_read(&cp->reset_task_pending_all)) | 
 | 		schedule(); | 
 |  | 
 | #else | 
 | 	while (atomic_read(&cp->reset_task_pending)) | 
 | 		schedule(); | 
 | #endif | 
 | 	/* Actually stop the chip */ | 
 | 	cas_lock_all_save(cp, flags); | 
 | 	cas_reset(cp, 0); | 
 | 	if (cp->cas_flags & CAS_FLAG_SATURN) | 
 | 		cas_phy_powerdown(cp); | 
 | 	cas_unlock_all_restore(cp, flags); | 
 | } | 
 |  | 
 | static int cas_change_mtu(struct net_device *dev, int new_mtu) | 
 | { | 
 | 	struct cas *cp = netdev_priv(dev); | 
 |  | 
 | 	if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU) | 
 | 		return -EINVAL; | 
 |  | 
 | 	dev->mtu = new_mtu; | 
 | 	if (!netif_running(dev) || !netif_device_present(dev)) | 
 | 		return 0; | 
 |  | 
 | 	/* let the reset task handle it */ | 
 | #if 1 | 
 | 	atomic_inc(&cp->reset_task_pending); | 
 | 	if ((cp->phy_type & CAS_PHY_SERDES)) { | 
 | 		atomic_inc(&cp->reset_task_pending_all); | 
 | 	} else { | 
 | 		atomic_inc(&cp->reset_task_pending_mtu); | 
 | 	} | 
 | 	schedule_work(&cp->reset_task); | 
 | #else | 
 | 	atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ? | 
 | 		   CAS_RESET_ALL : CAS_RESET_MTU); | 
 | 	printk(KERN_ERR "reset called in cas_change_mtu\n"); | 
 | 	schedule_work(&cp->reset_task); | 
 | #endif | 
 |  | 
 | 	flush_scheduled_work(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void cas_clean_txd(struct cas *cp, int ring) | 
 | { | 
 | 	struct cas_tx_desc *txd = cp->init_txds[ring]; | 
 | 	struct sk_buff *skb, **skbs = cp->tx_skbs[ring]; | 
 | 	u64 daddr, dlen; | 
 | 	int i, size; | 
 |  | 
 | 	size = TX_DESC_RINGN_SIZE(ring); | 
 | 	for (i = 0; i < size; i++) { | 
 | 		int frag; | 
 |  | 
 | 		if (skbs[i] == NULL) | 
 | 			continue; | 
 |  | 
 | 		skb = skbs[i]; | 
 | 		skbs[i] = NULL; | 
 |  | 
 | 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) { | 
 | 			int ent = i & (size - 1); | 
 |  | 
 | 			/* first buffer is never a tiny buffer and so | 
 | 			 * needs to be unmapped. | 
 | 			 */ | 
 | 			daddr = le64_to_cpu(txd[ent].buffer); | 
 | 			dlen  =  CAS_VAL(TX_DESC_BUFLEN, | 
 | 					 le64_to_cpu(txd[ent].control)); | 
 | 			pci_unmap_page(cp->pdev, daddr, dlen, | 
 | 				       PCI_DMA_TODEVICE); | 
 |  | 
 | 			if (frag != skb_shinfo(skb)->nr_frags) { | 
 | 				i++; | 
 |  | 
 | 				/* next buffer might by a tiny buffer. | 
 | 				 * skip past it. | 
 | 				 */ | 
 | 				ent = i & (size - 1); | 
 | 				if (cp->tx_tiny_use[ring][ent].used) | 
 | 					i++; | 
 | 			} | 
 | 		} | 
 | 		dev_kfree_skb_any(skb); | 
 | 	} | 
 |  | 
 | 	/* zero out tiny buf usage */ | 
 | 	memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring])); | 
 | } | 
 |  | 
 | /* freed on close */ | 
 | static inline void cas_free_rx_desc(struct cas *cp, int ring) | 
 | { | 
 | 	cas_page_t **page = cp->rx_pages[ring]; | 
 | 	int i, size; | 
 |  | 
 | 	size = RX_DESC_RINGN_SIZE(ring); | 
 | 	for (i = 0; i < size; i++) { | 
 | 		if (page[i]) { | 
 | 			cas_page_free(cp, page[i]); | 
 | 			page[i] = NULL; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void cas_free_rxds(struct cas *cp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < N_RX_DESC_RINGS; i++) | 
 | 		cas_free_rx_desc(cp, i); | 
 | } | 
 |  | 
 | /* Must be invoked under cp->lock. */ | 
 | static void cas_clean_rings(struct cas *cp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	/* need to clean all tx rings */ | 
 | 	memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS); | 
 | 	memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS); | 
 | 	for (i = 0; i < N_TX_RINGS; i++) | 
 | 		cas_clean_txd(cp, i); | 
 |  | 
 | 	/* zero out init block */ | 
 | 	memset(cp->init_block, 0, sizeof(struct cas_init_block)); | 
 | 	cas_clean_rxds(cp); | 
 | 	cas_clean_rxcs(cp); | 
 | } | 
 |  | 
 | /* allocated on open */ | 
 | static inline int cas_alloc_rx_desc(struct cas *cp, int ring) | 
 | { | 
 | 	cas_page_t **page = cp->rx_pages[ring]; | 
 | 	int size, i = 0; | 
 |  | 
 | 	size = RX_DESC_RINGN_SIZE(ring); | 
 | 	for (i = 0; i < size; i++) { | 
 | 		if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL) | 
 | 			return -1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int cas_alloc_rxds(struct cas *cp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < N_RX_DESC_RINGS; i++) { | 
 | 		if (cas_alloc_rx_desc(cp, i) < 0) { | 
 | 			cas_free_rxds(cp); | 
 | 			return -1; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void cas_reset_task(struct work_struct *work) | 
 | { | 
 | 	struct cas *cp = container_of(work, struct cas, reset_task); | 
 | #if 0 | 
 | 	int pending = atomic_read(&cp->reset_task_pending); | 
 | #else | 
 | 	int pending_all = atomic_read(&cp->reset_task_pending_all); | 
 | 	int pending_spare = atomic_read(&cp->reset_task_pending_spare); | 
 | 	int pending_mtu = atomic_read(&cp->reset_task_pending_mtu); | 
 |  | 
 | 	if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) { | 
 | 		/* We can have more tasks scheduled than actually | 
 | 		 * needed. | 
 | 		 */ | 
 | 		atomic_dec(&cp->reset_task_pending); | 
 | 		return; | 
 | 	} | 
 | #endif | 
 | 	/* The link went down, we reset the ring, but keep | 
 | 	 * DMA stopped. Use this function for reset | 
 | 	 * on error as well. | 
 | 	 */ | 
 | 	if (cp->hw_running) { | 
 | 		unsigned long flags; | 
 |  | 
 | 		/* Make sure we don't get interrupts or tx packets */ | 
 | 		netif_device_detach(cp->dev); | 
 | 		cas_lock_all_save(cp, flags); | 
 |  | 
 | 		if (cp->opened) { | 
 | 			/* We call cas_spare_recover when we call cas_open. | 
 | 			 * but we do not initialize the lists cas_spare_recover | 
 | 			 * uses until cas_open is called. | 
 | 			 */ | 
 | 			cas_spare_recover(cp, GFP_ATOMIC); | 
 | 		} | 
 | #if 1 | 
 | 		/* test => only pending_spare set */ | 
 | 		if (!pending_all && !pending_mtu) | 
 | 			goto done; | 
 | #else | 
 | 		if (pending == CAS_RESET_SPARE) | 
 | 			goto done; | 
 | #endif | 
 | 		/* when pending == CAS_RESET_ALL, the following | 
 | 		 * call to cas_init_hw will restart auto negotiation. | 
 | 		 * Setting the second argument of cas_reset to | 
 | 		 * !(pending == CAS_RESET_ALL) will set this argument | 
 | 		 * to 1 (avoiding reinitializing the PHY for the normal | 
 | 		 * PCS case) when auto negotiation is not restarted. | 
 | 		 */ | 
 | #if 1 | 
 | 		cas_reset(cp, !(pending_all > 0)); | 
 | 		if (cp->opened) | 
 | 			cas_clean_rings(cp); | 
 | 		cas_init_hw(cp, (pending_all > 0)); | 
 | #else | 
 | 		cas_reset(cp, !(pending == CAS_RESET_ALL)); | 
 | 		if (cp->opened) | 
 | 			cas_clean_rings(cp); | 
 | 		cas_init_hw(cp, pending == CAS_RESET_ALL); | 
 | #endif | 
 |  | 
 | done: | 
 | 		cas_unlock_all_restore(cp, flags); | 
 | 		netif_device_attach(cp->dev); | 
 | 	} | 
 | #if 1 | 
 | 	atomic_sub(pending_all, &cp->reset_task_pending_all); | 
 | 	atomic_sub(pending_spare, &cp->reset_task_pending_spare); | 
 | 	atomic_sub(pending_mtu, &cp->reset_task_pending_mtu); | 
 | 	atomic_dec(&cp->reset_task_pending); | 
 | #else | 
 | 	atomic_set(&cp->reset_task_pending, 0); | 
 | #endif | 
 | } | 
 |  | 
 | static void cas_link_timer(unsigned long data) | 
 | { | 
 | 	struct cas *cp = (struct cas *) data; | 
 | 	int mask, pending = 0, reset = 0; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (link_transition_timeout != 0 && | 
 | 	    cp->link_transition_jiffies_valid && | 
 | 	    ((jiffies - cp->link_transition_jiffies) > | 
 | 	      (link_transition_timeout))) { | 
 | 		/* One-second counter so link-down workaround doesn't | 
 | 		 * cause resets to occur so fast as to fool the switch | 
 | 		 * into thinking the link is down. | 
 | 		 */ | 
 | 		cp->link_transition_jiffies_valid = 0; | 
 | 	} | 
 |  | 
 | 	if (!cp->hw_running) | 
 | 		return; | 
 |  | 
 | 	spin_lock_irqsave(&cp->lock, flags); | 
 | 	cas_lock_tx(cp); | 
 | 	cas_entropy_gather(cp); | 
 |  | 
 | 	/* If the link task is still pending, we just | 
 | 	 * reschedule the link timer | 
 | 	 */ | 
 | #if 1 | 
 | 	if (atomic_read(&cp->reset_task_pending_all) || | 
 | 	    atomic_read(&cp->reset_task_pending_spare) || | 
 | 	    atomic_read(&cp->reset_task_pending_mtu)) | 
 | 		goto done; | 
 | #else | 
 | 	if (atomic_read(&cp->reset_task_pending)) | 
 | 		goto done; | 
 | #endif | 
 |  | 
 | 	/* check for rx cleaning */ | 
 | 	if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) { | 
 | 		int i, rmask; | 
 |  | 
 | 		for (i = 0; i < MAX_RX_DESC_RINGS; i++) { | 
 | 			rmask = CAS_FLAG_RXD_POST(i); | 
 | 			if ((mask & rmask) == 0) | 
 | 				continue; | 
 |  | 
 | 			/* post_rxds will do a mod_timer */ | 
 | 			if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) { | 
 | 				pending = 1; | 
 | 				continue; | 
 | 			} | 
 | 			cp->cas_flags &= ~rmask; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (CAS_PHY_MII(cp->phy_type)) { | 
 | 		u16 bmsr; | 
 | 		cas_mif_poll(cp, 0); | 
 | 		bmsr = cas_phy_read(cp, MII_BMSR); | 
 | 		/* WTZ: Solaris driver reads this twice, but that | 
 | 		 * may be due to the PCS case and the use of a | 
 | 		 * common implementation. Read it twice here to be | 
 | 		 * safe. | 
 | 		 */ | 
 | 		bmsr = cas_phy_read(cp, MII_BMSR); | 
 | 		cas_mif_poll(cp, 1); | 
 | 		readl(cp->regs + REG_MIF_STATUS); /* avoid dups */ | 
 | 		reset = cas_mii_link_check(cp, bmsr); | 
 | 	} else { | 
 | 		reset = cas_pcs_link_check(cp); | 
 | 	} | 
 |  | 
 | 	if (reset) | 
 | 		goto done; | 
 |  | 
 | 	/* check for tx state machine confusion */ | 
 | 	if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) { | 
 | 		u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE); | 
 | 		u32 wptr, rptr; | 
 | 		int tlm  = CAS_VAL(MAC_SM_TLM, val); | 
 |  | 
 | 		if (((tlm == 0x5) || (tlm == 0x3)) && | 
 | 		    (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) { | 
 | 			if (netif_msg_tx_err(cp)) | 
 | 				printk(KERN_DEBUG "%s: tx err: " | 
 | 				       "MAC_STATE[%08x]\n", | 
 | 				       cp->dev->name, val); | 
 | 			reset = 1; | 
 | 			goto done; | 
 | 		} | 
 |  | 
 | 		val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT); | 
 | 		wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR); | 
 | 		rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR); | 
 | 		if ((val == 0) && (wptr != rptr)) { | 
 | 			if (netif_msg_tx_err(cp)) | 
 | 				printk(KERN_DEBUG "%s: tx err: " | 
 | 				       "TX_FIFO[%08x:%08x:%08x]\n", | 
 | 				       cp->dev->name, val, wptr, rptr); | 
 | 			reset = 1; | 
 | 		} | 
 |  | 
 | 		if (reset) | 
 | 			cas_hard_reset(cp); | 
 | 	} | 
 |  | 
 | done: | 
 | 	if (reset) { | 
 | #if 1 | 
 | 		atomic_inc(&cp->reset_task_pending); | 
 | 		atomic_inc(&cp->reset_task_pending_all); | 
 | 		schedule_work(&cp->reset_task); | 
 | #else | 
 | 		atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); | 
 | 		printk(KERN_ERR "reset called in cas_link_timer\n"); | 
 | 		schedule_work(&cp->reset_task); | 
 | #endif | 
 | 	} | 
 |  | 
 | 	if (!pending) | 
 | 		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); | 
 | 	cas_unlock_tx(cp); | 
 | 	spin_unlock_irqrestore(&cp->lock, flags); | 
 | } | 
 |  | 
 | /* tiny buffers are used to avoid target abort issues with | 
 |  * older cassini's | 
 |  */ | 
 | static void cas_tx_tiny_free(struct cas *cp) | 
 | { | 
 | 	struct pci_dev *pdev = cp->pdev; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < N_TX_RINGS; i++) { | 
 | 		if (!cp->tx_tiny_bufs[i]) | 
 | 			continue; | 
 |  | 
 | 		pci_free_consistent(pdev, TX_TINY_BUF_BLOCK, | 
 | 				    cp->tx_tiny_bufs[i], | 
 | 				    cp->tx_tiny_dvma[i]); | 
 | 		cp->tx_tiny_bufs[i] = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static int cas_tx_tiny_alloc(struct cas *cp) | 
 | { | 
 | 	struct pci_dev *pdev = cp->pdev; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < N_TX_RINGS; i++) { | 
 | 		cp->tx_tiny_bufs[i] = | 
 | 			pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK, | 
 | 					     &cp->tx_tiny_dvma[i]); | 
 | 		if (!cp->tx_tiny_bufs[i]) { | 
 | 			cas_tx_tiny_free(cp); | 
 | 			return -1; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static int cas_open(struct net_device *dev) | 
 | { | 
 | 	struct cas *cp = netdev_priv(dev); | 
 | 	int hw_was_up, err; | 
 | 	unsigned long flags; | 
 |  | 
 | 	mutex_lock(&cp->pm_mutex); | 
 |  | 
 | 	hw_was_up = cp->hw_running; | 
 |  | 
 | 	/* The power-management mutex protects the hw_running | 
 | 	 * etc. state so it is safe to do this bit without cp->lock | 
 | 	 */ | 
 | 	if (!cp->hw_running) { | 
 | 		/* Reset the chip */ | 
 | 		cas_lock_all_save(cp, flags); | 
 | 		/* We set the second arg to cas_reset to zero | 
 | 		 * because cas_init_hw below will have its second | 
 | 		 * argument set to non-zero, which will force | 
 | 		 * autonegotiation to start. | 
 | 		 */ | 
 | 		cas_reset(cp, 0); | 
 | 		cp->hw_running = 1; | 
 | 		cas_unlock_all_restore(cp, flags); | 
 | 	} | 
 |  | 
 | 	if (cas_tx_tiny_alloc(cp) < 0) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* alloc rx descriptors */ | 
 | 	err = -ENOMEM; | 
 | 	if (cas_alloc_rxds(cp) < 0) | 
 | 		goto err_tx_tiny; | 
 |  | 
 | 	/* allocate spares */ | 
 | 	cas_spare_init(cp); | 
 | 	cas_spare_recover(cp, GFP_KERNEL); | 
 |  | 
 | 	/* We can now request the interrupt as we know it's masked | 
 | 	 * on the controller. cassini+ has up to 4 interrupts | 
 | 	 * that can be used, but you need to do explicit pci interrupt | 
 | 	 * mapping to expose them | 
 | 	 */ | 
 | 	if (request_irq(cp->pdev->irq, cas_interrupt, | 
 | 			IRQF_SHARED, dev->name, (void *) dev)) { | 
 | 		printk(KERN_ERR "%s: failed to request irq !\n", | 
 | 		       cp->dev->name); | 
 | 		err = -EAGAIN; | 
 | 		goto err_spare; | 
 | 	} | 
 |  | 
 | 	/* init hw */ | 
 | 	cas_lock_all_save(cp, flags); | 
 | 	cas_clean_rings(cp); | 
 | 	cas_init_hw(cp, !hw_was_up); | 
 | 	cp->opened = 1; | 
 | 	cas_unlock_all_restore(cp, flags); | 
 |  | 
 | 	netif_start_queue(dev); | 
 | 	mutex_unlock(&cp->pm_mutex); | 
 | 	return 0; | 
 |  | 
 | err_spare: | 
 | 	cas_spare_free(cp); | 
 | 	cas_free_rxds(cp); | 
 | err_tx_tiny: | 
 | 	cas_tx_tiny_free(cp); | 
 | 	mutex_unlock(&cp->pm_mutex); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int cas_close(struct net_device *dev) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct cas *cp = netdev_priv(dev); | 
 |  | 
 | 	/* Make sure we don't get distracted by suspend/resume */ | 
 | 	mutex_lock(&cp->pm_mutex); | 
 |  | 
 | 	netif_stop_queue(dev); | 
 |  | 
 | 	/* Stop traffic, mark us closed */ | 
 | 	cas_lock_all_save(cp, flags); | 
 | 	cp->opened = 0; | 
 | 	cas_reset(cp, 0); | 
 | 	cas_phy_init(cp); | 
 | 	cas_begin_auto_negotiation(cp, NULL); | 
 | 	cas_clean_rings(cp); | 
 | 	cas_unlock_all_restore(cp, flags); | 
 |  | 
 | 	free_irq(cp->pdev->irq, (void *) dev); | 
 | 	cas_spare_free(cp); | 
 | 	cas_free_rxds(cp); | 
 | 	cas_tx_tiny_free(cp); | 
 | 	mutex_unlock(&cp->pm_mutex); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct { | 
 | 	const char name[ETH_GSTRING_LEN]; | 
 | } ethtool_cassini_statnames[] = { | 
 | 	{"collisions"}, | 
 | 	{"rx_bytes"}, | 
 | 	{"rx_crc_errors"}, | 
 | 	{"rx_dropped"}, | 
 | 	{"rx_errors"}, | 
 | 	{"rx_fifo_errors"}, | 
 | 	{"rx_frame_errors"}, | 
 | 	{"rx_length_errors"}, | 
 | 	{"rx_over_errors"}, | 
 | 	{"rx_packets"}, | 
 | 	{"tx_aborted_errors"}, | 
 | 	{"tx_bytes"}, | 
 | 	{"tx_dropped"}, | 
 | 	{"tx_errors"}, | 
 | 	{"tx_fifo_errors"}, | 
 | 	{"tx_packets"} | 
 | }; | 
 | #define CAS_NUM_STAT_KEYS (sizeof(ethtool_cassini_statnames)/ETH_GSTRING_LEN) | 
 |  | 
 | static struct { | 
 | 	const int offsets;	/* neg. values for 2nd arg to cas_read_phy */ | 
 | } ethtool_register_table[] = { | 
 | 	{-MII_BMSR}, | 
 | 	{-MII_BMCR}, | 
 | 	{REG_CAWR}, | 
 | 	{REG_INF_BURST}, | 
 | 	{REG_BIM_CFG}, | 
 | 	{REG_RX_CFG}, | 
 | 	{REG_HP_CFG}, | 
 | 	{REG_MAC_TX_CFG}, | 
 | 	{REG_MAC_RX_CFG}, | 
 | 	{REG_MAC_CTRL_CFG}, | 
 | 	{REG_MAC_XIF_CFG}, | 
 | 	{REG_MIF_CFG}, | 
 | 	{REG_PCS_CFG}, | 
 | 	{REG_SATURN_PCFG}, | 
 | 	{REG_PCS_MII_STATUS}, | 
 | 	{REG_PCS_STATE_MACHINE}, | 
 | 	{REG_MAC_COLL_EXCESS}, | 
 | 	{REG_MAC_COLL_LATE} | 
 | }; | 
 | #define CAS_REG_LEN 	(sizeof(ethtool_register_table)/sizeof(int)) | 
 | #define CAS_MAX_REGS 	(sizeof (u32)*CAS_REG_LEN) | 
 |  | 
 | static void cas_read_regs(struct cas *cp, u8 *ptr, int len) | 
 | { | 
 | 	u8 *p; | 
 | 	int i; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&cp->lock, flags); | 
 | 	for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) { | 
 | 		u16 hval; | 
 | 		u32 val; | 
 | 		if (ethtool_register_table[i].offsets < 0) { | 
 | 			hval = cas_phy_read(cp, | 
 | 				    -ethtool_register_table[i].offsets); | 
 | 			val = hval; | 
 | 		} else { | 
 | 			val= readl(cp->regs+ethtool_register_table[i].offsets); | 
 | 		} | 
 | 		memcpy(p, (u8 *)&val, sizeof(u32)); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&cp->lock, flags); | 
 | } | 
 |  | 
 | static struct net_device_stats *cas_get_stats(struct net_device *dev) | 
 | { | 
 | 	struct cas *cp = netdev_priv(dev); | 
 | 	struct net_device_stats *stats = cp->net_stats; | 
 | 	unsigned long flags; | 
 | 	int i; | 
 | 	unsigned long tmp; | 
 |  | 
 | 	/* we collate all of the stats into net_stats[N_TX_RING] */ | 
 | 	if (!cp->hw_running) | 
 | 		return stats + N_TX_RINGS; | 
 |  | 
 | 	/* collect outstanding stats */ | 
 | 	/* WTZ: the Cassini spec gives these as 16 bit counters but | 
 | 	 * stored in 32-bit words.  Added a mask of 0xffff to be safe, | 
 | 	 * in case the chip somehow puts any garbage in the other bits. | 
 | 	 * Also, counter usage didn't seem to mach what Adrian did | 
 | 	 * in the parts of the code that set these quantities. Made | 
 | 	 * that consistent. | 
 | 	 */ | 
 | 	spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags); | 
 | 	stats[N_TX_RINGS].rx_crc_errors += | 
 | 	  readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff; | 
 | 	stats[N_TX_RINGS].rx_frame_errors += | 
 | 		readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff; | 
 | 	stats[N_TX_RINGS].rx_length_errors += | 
 | 		readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff; | 
 | #if 1 | 
 | 	tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) + | 
 | 		(readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff); | 
 | 	stats[N_TX_RINGS].tx_aborted_errors += tmp; | 
 | 	stats[N_TX_RINGS].collisions += | 
 | 	  tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff); | 
 | #else | 
 | 	stats[N_TX_RINGS].tx_aborted_errors += | 
 | 		readl(cp->regs + REG_MAC_COLL_EXCESS); | 
 | 	stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) + | 
 | 		readl(cp->regs + REG_MAC_COLL_LATE); | 
 | #endif | 
 | 	cas_clear_mac_err(cp); | 
 |  | 
 | 	/* saved bits that are unique to ring 0 */ | 
 | 	spin_lock(&cp->stat_lock[0]); | 
 | 	stats[N_TX_RINGS].collisions        += stats[0].collisions; | 
 | 	stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors; | 
 | 	stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors; | 
 | 	stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors; | 
 | 	stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors; | 
 | 	stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors; | 
 | 	spin_unlock(&cp->stat_lock[0]); | 
 |  | 
 | 	for (i = 0; i < N_TX_RINGS; i++) { | 
 | 		spin_lock(&cp->stat_lock[i]); | 
 | 		stats[N_TX_RINGS].rx_length_errors += | 
 | 			stats[i].rx_length_errors; | 
 | 		stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors; | 
 | 		stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets; | 
 | 		stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets; | 
 | 		stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes; | 
 | 		stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes; | 
 | 		stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors; | 
 | 		stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors; | 
 | 		stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped; | 
 | 		stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped; | 
 | 		memset(stats + i, 0, sizeof(struct net_device_stats)); | 
 | 		spin_unlock(&cp->stat_lock[i]); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags); | 
 | 	return stats + N_TX_RINGS; | 
 | } | 
 |  | 
 |  | 
 | static void cas_set_multicast(struct net_device *dev) | 
 | { | 
 | 	struct cas *cp = netdev_priv(dev); | 
 | 	u32 rxcfg, rxcfg_new; | 
 | 	unsigned long flags; | 
 | 	int limit = STOP_TRIES; | 
 |  | 
 | 	if (!cp->hw_running) | 
 | 		return; | 
 |  | 
 | 	spin_lock_irqsave(&cp->lock, flags); | 
 | 	rxcfg = readl(cp->regs + REG_MAC_RX_CFG); | 
 |  | 
 | 	/* disable RX MAC and wait for completion */ | 
 | 	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); | 
 | 	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) { | 
 | 		if (!limit--) | 
 | 			break; | 
 | 		udelay(10); | 
 | 	} | 
 |  | 
 | 	/* disable hash filter and wait for completion */ | 
 | 	limit = STOP_TRIES; | 
 | 	rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN); | 
 | 	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); | 
 | 	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) { | 
 | 		if (!limit--) | 
 | 			break; | 
 | 		udelay(10); | 
 | 	} | 
 |  | 
 | 	/* program hash filters */ | 
 | 	cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp); | 
 | 	rxcfg |= rxcfg_new; | 
 | 	writel(rxcfg, cp->regs + REG_MAC_RX_CFG); | 
 | 	spin_unlock_irqrestore(&cp->lock, flags); | 
 | } | 
 |  | 
 | static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) | 
 | { | 
 | 	struct cas *cp = netdev_priv(dev); | 
 | 	strncpy(info->driver, DRV_MODULE_NAME, ETHTOOL_BUSINFO_LEN); | 
 | 	strncpy(info->version, DRV_MODULE_VERSION, ETHTOOL_BUSINFO_LEN); | 
 | 	info->fw_version[0] = '\0'; | 
 | 	strncpy(info->bus_info, pci_name(cp->pdev), ETHTOOL_BUSINFO_LEN); | 
 | 	info->regdump_len = cp->casreg_len < CAS_MAX_REGS ? | 
 | 		cp->casreg_len : CAS_MAX_REGS; | 
 | 	info->n_stats = CAS_NUM_STAT_KEYS; | 
 | } | 
 |  | 
 | static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) | 
 | { | 
 | 	struct cas *cp = netdev_priv(dev); | 
 | 	u16 bmcr; | 
 | 	int full_duplex, speed, pause; | 
 | 	unsigned long flags; | 
 | 	enum link_state linkstate = link_up; | 
 |  | 
 | 	cmd->advertising = 0; | 
 | 	cmd->supported = SUPPORTED_Autoneg; | 
 | 	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { | 
 | 		cmd->supported |= SUPPORTED_1000baseT_Full; | 
 | 		cmd->advertising |= ADVERTISED_1000baseT_Full; | 
 | 	} | 
 |  | 
 | 	/* Record PHY settings if HW is on. */ | 
 | 	spin_lock_irqsave(&cp->lock, flags); | 
 | 	bmcr = 0; | 
 | 	linkstate = cp->lstate; | 
 | 	if (CAS_PHY_MII(cp->phy_type)) { | 
 | 		cmd->port = PORT_MII; | 
 | 		cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ? | 
 | 			XCVR_INTERNAL : XCVR_EXTERNAL; | 
 | 		cmd->phy_address = cp->phy_addr; | 
 | 		cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII | | 
 | 			ADVERTISED_10baseT_Half | | 
 | 			ADVERTISED_10baseT_Full | | 
 | 			ADVERTISED_100baseT_Half | | 
 | 			ADVERTISED_100baseT_Full; | 
 |  | 
 | 		cmd->supported |= | 
 | 			(SUPPORTED_10baseT_Half | | 
 | 			 SUPPORTED_10baseT_Full | | 
 | 			 SUPPORTED_100baseT_Half | | 
 | 			 SUPPORTED_100baseT_Full | | 
 | 			 SUPPORTED_TP | SUPPORTED_MII); | 
 |  | 
 | 		if (cp->hw_running) { | 
 | 			cas_mif_poll(cp, 0); | 
 | 			bmcr = cas_phy_read(cp, MII_BMCR); | 
 | 			cas_read_mii_link_mode(cp, &full_duplex, | 
 | 					       &speed, &pause); | 
 | 			cas_mif_poll(cp, 1); | 
 | 		} | 
 |  | 
 | 	} else { | 
 | 		cmd->port = PORT_FIBRE; | 
 | 		cmd->transceiver = XCVR_INTERNAL; | 
 | 		cmd->phy_address = 0; | 
 | 		cmd->supported   |= SUPPORTED_FIBRE; | 
 | 		cmd->advertising |= ADVERTISED_FIBRE; | 
 |  | 
 | 		if (cp->hw_running) { | 
 | 			/* pcs uses the same bits as mii */ | 
 | 			bmcr = readl(cp->regs + REG_PCS_MII_CTRL); | 
 | 			cas_read_pcs_link_mode(cp, &full_duplex, | 
 | 					       &speed, &pause); | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irqrestore(&cp->lock, flags); | 
 |  | 
 | 	if (bmcr & BMCR_ANENABLE) { | 
 | 		cmd->advertising |= ADVERTISED_Autoneg; | 
 | 		cmd->autoneg = AUTONEG_ENABLE; | 
 | 		cmd->speed = ((speed == 10) ? | 
 | 			      SPEED_10 : | 
 | 			      ((speed == 1000) ? | 
 | 			       SPEED_1000 : SPEED_100)); | 
 | 		cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF; | 
 | 	} else { | 
 | 		cmd->autoneg = AUTONEG_DISABLE; | 
 | 		cmd->speed = | 
 | 			(bmcr & CAS_BMCR_SPEED1000) ? | 
 | 			SPEED_1000 : | 
 | 			((bmcr & BMCR_SPEED100) ? SPEED_100: | 
 | 			 SPEED_10); | 
 | 		cmd->duplex = | 
 | 			(bmcr & BMCR_FULLDPLX) ? | 
 | 			DUPLEX_FULL : DUPLEX_HALF; | 
 | 	} | 
 | 	if (linkstate != link_up) { | 
 | 		/* Force these to "unknown" if the link is not up and | 
 | 		 * autonogotiation in enabled. We can set the link | 
 | 		 * speed to 0, but not cmd->duplex, | 
 | 		 * because its legal values are 0 and 1.  Ethtool will | 
 | 		 * print the value reported in parentheses after the | 
 | 		 * word "Unknown" for unrecognized values. | 
 | 		 * | 
 | 		 * If in forced mode, we report the speed and duplex | 
 | 		 * settings that we configured. | 
 | 		 */ | 
 | 		if (cp->link_cntl & BMCR_ANENABLE) { | 
 | 			cmd->speed = 0; | 
 | 			cmd->duplex = 0xff; | 
 | 		} else { | 
 | 			cmd->speed = SPEED_10; | 
 | 			if (cp->link_cntl & BMCR_SPEED100) { | 
 | 				cmd->speed = SPEED_100; | 
 | 			} else if (cp->link_cntl & CAS_BMCR_SPEED1000) { | 
 | 				cmd->speed = SPEED_1000; | 
 | 			} | 
 | 			cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)? | 
 | 				DUPLEX_FULL : DUPLEX_HALF; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) | 
 | { | 
 | 	struct cas *cp = netdev_priv(dev); | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* Verify the settings we care about. */ | 
 | 	if (cmd->autoneg != AUTONEG_ENABLE && | 
 | 	    cmd->autoneg != AUTONEG_DISABLE) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (cmd->autoneg == AUTONEG_DISABLE && | 
 | 	    ((cmd->speed != SPEED_1000 && | 
 | 	      cmd->speed != SPEED_100 && | 
 | 	      cmd->speed != SPEED_10) || | 
 | 	     (cmd->duplex != DUPLEX_HALF && | 
 | 	      cmd->duplex != DUPLEX_FULL))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Apply settings and restart link process. */ | 
 | 	spin_lock_irqsave(&cp->lock, flags); | 
 | 	cas_begin_auto_negotiation(cp, cmd); | 
 | 	spin_unlock_irqrestore(&cp->lock, flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int cas_nway_reset(struct net_device *dev) | 
 | { | 
 | 	struct cas *cp = netdev_priv(dev); | 
 | 	unsigned long flags; | 
 |  | 
 | 	if ((cp->link_cntl & BMCR_ANENABLE) == 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Restart link process. */ | 
 | 	spin_lock_irqsave(&cp->lock, flags); | 
 | 	cas_begin_auto_negotiation(cp, NULL); | 
 | 	spin_unlock_irqrestore(&cp->lock, flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u32 cas_get_link(struct net_device *dev) | 
 | { | 
 | 	struct cas *cp = netdev_priv(dev); | 
 | 	return cp->lstate == link_up; | 
 | } | 
 |  | 
 | static u32 cas_get_msglevel(struct net_device *dev) | 
 | { | 
 | 	struct cas *cp = netdev_priv(dev); | 
 | 	return cp->msg_enable; | 
 | } | 
 |  | 
 | static void cas_set_msglevel(struct net_device *dev, u32 value) | 
 | { | 
 | 	struct cas *cp = netdev_priv(dev); | 
 | 	cp->msg_enable = value; | 
 | } | 
 |  | 
 | static int cas_get_regs_len(struct net_device *dev) | 
 | { | 
 | 	struct cas *cp = netdev_priv(dev); | 
 | 	return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS; | 
 | } | 
 |  | 
 | static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs, | 
 | 			     void *p) | 
 | { | 
 | 	struct cas *cp = netdev_priv(dev); | 
 | 	regs->version = 0; | 
 | 	/* cas_read_regs handles locks (cp->lock).  */ | 
 | 	cas_read_regs(cp, p, regs->len / sizeof(u32)); | 
 | } | 
 |  | 
 | static int cas_get_stats_count(struct net_device *dev) | 
 | { | 
 | 	return CAS_NUM_STAT_KEYS; | 
 | } | 
 |  | 
 | static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data) | 
 | { | 
 | 	 memcpy(data, ðtool_cassini_statnames, | 
 | 					 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN); | 
 | } | 
 |  | 
 | static void cas_get_ethtool_stats(struct net_device *dev, | 
 | 				      struct ethtool_stats *estats, u64 *data) | 
 | { | 
 | 	struct cas *cp = netdev_priv(dev); | 
 | 	struct net_device_stats *stats = cas_get_stats(cp->dev); | 
 | 	int i = 0; | 
 | 	data[i++] = stats->collisions; | 
 | 	data[i++] = stats->rx_bytes; | 
 | 	data[i++] = stats->rx_crc_errors; | 
 | 	data[i++] = stats->rx_dropped; | 
 | 	data[i++] = stats->rx_errors; | 
 | 	data[i++] = stats->rx_fifo_errors; | 
 | 	data[i++] = stats->rx_frame_errors; | 
 | 	data[i++] = stats->rx_length_errors; | 
 | 	data[i++] = stats->rx_over_errors; | 
 | 	data[i++] = stats->rx_packets; | 
 | 	data[i++] = stats->tx_aborted_errors; | 
 | 	data[i++] = stats->tx_bytes; | 
 | 	data[i++] = stats->tx_dropped; | 
 | 	data[i++] = stats->tx_errors; | 
 | 	data[i++] = stats->tx_fifo_errors; | 
 | 	data[i++] = stats->tx_packets; | 
 | 	BUG_ON(i != CAS_NUM_STAT_KEYS); | 
 | } | 
 |  | 
 | static const struct ethtool_ops cas_ethtool_ops = { | 
 | 	.get_drvinfo		= cas_get_drvinfo, | 
 | 	.get_settings		= cas_get_settings, | 
 | 	.set_settings		= cas_set_settings, | 
 | 	.nway_reset		= cas_nway_reset, | 
 | 	.get_link		= cas_get_link, | 
 | 	.get_msglevel		= cas_get_msglevel, | 
 | 	.set_msglevel		= cas_set_msglevel, | 
 | 	.get_regs_len		= cas_get_regs_len, | 
 | 	.get_regs		= cas_get_regs, | 
 | 	.get_stats_count	= cas_get_stats_count, | 
 | 	.get_strings		= cas_get_strings, | 
 | 	.get_ethtool_stats	= cas_get_ethtool_stats, | 
 | }; | 
 |  | 
 | static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) | 
 | { | 
 | 	struct cas *cp = netdev_priv(dev); | 
 | 	struct mii_ioctl_data *data = if_mii(ifr); | 
 | 	unsigned long flags; | 
 | 	int rc = -EOPNOTSUPP; | 
 |  | 
 | 	/* Hold the PM mutex while doing ioctl's or we may collide | 
 | 	 * with open/close and power management and oops. | 
 | 	 */ | 
 | 	mutex_lock(&cp->pm_mutex); | 
 | 	switch (cmd) { | 
 | 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */ | 
 | 		data->phy_id = cp->phy_addr; | 
 | 		/* Fallthrough... */ | 
 |  | 
 | 	case SIOCGMIIREG:		/* Read MII PHY register. */ | 
 | 		spin_lock_irqsave(&cp->lock, flags); | 
 | 		cas_mif_poll(cp, 0); | 
 | 		data->val_out = cas_phy_read(cp, data->reg_num & 0x1f); | 
 | 		cas_mif_poll(cp, 1); | 
 | 		spin_unlock_irqrestore(&cp->lock, flags); | 
 | 		rc = 0; | 
 | 		break; | 
 |  | 
 | 	case SIOCSMIIREG:		/* Write MII PHY register. */ | 
 | 		if (!capable(CAP_NET_ADMIN)) { | 
 | 			rc = -EPERM; | 
 | 			break; | 
 | 		} | 
 | 		spin_lock_irqsave(&cp->lock, flags); | 
 | 		cas_mif_poll(cp, 0); | 
 | 		rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in); | 
 | 		cas_mif_poll(cp, 1); | 
 | 		spin_unlock_irqrestore(&cp->lock, flags); | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	}; | 
 |  | 
 | 	mutex_unlock(&cp->pm_mutex); | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int __devinit cas_init_one(struct pci_dev *pdev, | 
 | 				  const struct pci_device_id *ent) | 
 | { | 
 | 	static int cas_version_printed = 0; | 
 | 	unsigned long casreg_len; | 
 | 	struct net_device *dev; | 
 | 	struct cas *cp; | 
 | 	int i, err, pci_using_dac; | 
 | 	u16 pci_cmd; | 
 | 	u8 orig_cacheline_size = 0, cas_cacheline_size = 0; | 
 |  | 
 | 	if (cas_version_printed++ == 0) | 
 | 		printk(KERN_INFO "%s", version); | 
 |  | 
 | 	err = pci_enable_device(pdev); | 
 | 	if (err) { | 
 | 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n"); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { | 
 | 		dev_err(&pdev->dev, "Cannot find proper PCI device " | 
 | 		       "base address, aborting.\n"); | 
 | 		err = -ENODEV; | 
 | 		goto err_out_disable_pdev; | 
 | 	} | 
 |  | 
 | 	dev = alloc_etherdev(sizeof(*cp)); | 
 | 	if (!dev) { | 
 | 		dev_err(&pdev->dev, "Etherdev alloc failed, aborting.\n"); | 
 | 		err = -ENOMEM; | 
 | 		goto err_out_disable_pdev; | 
 | 	} | 
 | 	SET_MODULE_OWNER(dev); | 
 | 	SET_NETDEV_DEV(dev, &pdev->dev); | 
 |  | 
 | 	err = pci_request_regions(pdev, dev->name); | 
 | 	if (err) { | 
 | 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n"); | 
 | 		goto err_out_free_netdev; | 
 | 	} | 
 | 	pci_set_master(pdev); | 
 |  | 
 | 	/* we must always turn on parity response or else parity | 
 | 	 * doesn't get generated properly. disable SERR/PERR as well. | 
 | 	 * in addition, we want to turn MWI on. | 
 | 	 */ | 
 | 	pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); | 
 | 	pci_cmd &= ~PCI_COMMAND_SERR; | 
 | 	pci_cmd |= PCI_COMMAND_PARITY; | 
 | 	pci_write_config_word(pdev, PCI_COMMAND, pci_cmd); | 
 | 	if (pci_set_mwi(pdev)) | 
 | 		printk(KERN_WARNING PFX "Could not enable MWI for %s\n", | 
 | 		       pci_name(pdev)); | 
 |  | 
 | 	/* | 
 | 	 * On some architectures, the default cache line size set | 
 | 	 * by pci_set_mwi reduces perforamnce.  We have to increase | 
 | 	 * it for this case.  To start, we'll print some configuration | 
 | 	 * data. | 
 | 	 */ | 
 | #if 1 | 
 | 	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, | 
 | 			     &orig_cacheline_size); | 
 | 	if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) { | 
 | 		cas_cacheline_size = | 
 | 			(CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ? | 
 | 			CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES; | 
 | 		if (pci_write_config_byte(pdev, | 
 | 					  PCI_CACHE_LINE_SIZE, | 
 | 					  cas_cacheline_size)) { | 
 | 			dev_err(&pdev->dev, "Could not set PCI cache " | 
 | 			       "line size\n"); | 
 | 			goto err_write_cacheline; | 
 | 		} | 
 | 	} | 
 | #endif | 
 |  | 
 |  | 
 | 	/* Configure DMA attributes. */ | 
 | 	if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) { | 
 | 		pci_using_dac = 1; | 
 | 		err = pci_set_consistent_dma_mask(pdev, | 
 | 						  DMA_64BIT_MASK); | 
 | 		if (err < 0) { | 
 | 			dev_err(&pdev->dev, "Unable to obtain 64-bit DMA " | 
 | 			       "for consistent allocations\n"); | 
 | 			goto err_out_free_res; | 
 | 		} | 
 |  | 
 | 	} else { | 
 | 		err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); | 
 | 		if (err) { | 
 | 			dev_err(&pdev->dev, "No usable DMA configuration, " | 
 | 			       "aborting.\n"); | 
 | 			goto err_out_free_res; | 
 | 		} | 
 | 		pci_using_dac = 0; | 
 | 	} | 
 |  | 
 | 	casreg_len = pci_resource_len(pdev, 0); | 
 |  | 
 | 	cp = netdev_priv(dev); | 
 | 	cp->pdev = pdev; | 
 | #if 1 | 
 | 	/* A value of 0 indicates we never explicitly set it */ | 
 | 	cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0; | 
 | #endif | 
 | 	cp->dev = dev; | 
 | 	cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE : | 
 | 	  cassini_debug; | 
 |  | 
 | 	cp->link_transition = LINK_TRANSITION_UNKNOWN; | 
 | 	cp->link_transition_jiffies_valid = 0; | 
 |  | 
 | 	spin_lock_init(&cp->lock); | 
 | 	spin_lock_init(&cp->rx_inuse_lock); | 
 | 	spin_lock_init(&cp->rx_spare_lock); | 
 | 	for (i = 0; i < N_TX_RINGS; i++) { | 
 | 		spin_lock_init(&cp->stat_lock[i]); | 
 | 		spin_lock_init(&cp->tx_lock[i]); | 
 | 	} | 
 | 	spin_lock_init(&cp->stat_lock[N_TX_RINGS]); | 
 | 	mutex_init(&cp->pm_mutex); | 
 |  | 
 | 	init_timer(&cp->link_timer); | 
 | 	cp->link_timer.function = cas_link_timer; | 
 | 	cp->link_timer.data = (unsigned long) cp; | 
 |  | 
 | #if 1 | 
 | 	/* Just in case the implementation of atomic operations | 
 | 	 * change so that an explicit initialization is necessary. | 
 | 	 */ | 
 | 	atomic_set(&cp->reset_task_pending, 0); | 
 | 	atomic_set(&cp->reset_task_pending_all, 0); | 
 | 	atomic_set(&cp->reset_task_pending_spare, 0); | 
 | 	atomic_set(&cp->reset_task_pending_mtu, 0); | 
 | #endif | 
 | 	INIT_WORK(&cp->reset_task, cas_reset_task); | 
 |  | 
 | 	/* Default link parameters */ | 
 | 	if (link_mode >= 0 && link_mode <= 6) | 
 | 		cp->link_cntl = link_modes[link_mode]; | 
 | 	else | 
 | 		cp->link_cntl = BMCR_ANENABLE; | 
 | 	cp->lstate = link_down; | 
 | 	cp->link_transition = LINK_TRANSITION_LINK_DOWN; | 
 | 	netif_carrier_off(cp->dev); | 
 | 	cp->timer_ticks = 0; | 
 |  | 
 | 	/* give us access to cassini registers */ | 
 | 	cp->regs = pci_iomap(pdev, 0, casreg_len); | 
 | 	if (cp->regs == 0UL) { | 
 | 		dev_err(&pdev->dev, "Cannot map device registers, aborting.\n"); | 
 | 		goto err_out_free_res; | 
 | 	} | 
 | 	cp->casreg_len = casreg_len; | 
 |  | 
 | 	pci_save_state(pdev); | 
 | 	cas_check_pci_invariants(cp); | 
 | 	cas_hard_reset(cp); | 
 | 	cas_reset(cp, 0); | 
 | 	if (cas_check_invariants(cp)) | 
 | 		goto err_out_iounmap; | 
 |  | 
 | 	cp->init_block = (struct cas_init_block *) | 
 | 		pci_alloc_consistent(pdev, sizeof(struct cas_init_block), | 
 | 				     &cp->block_dvma); | 
 | 	if (!cp->init_block) { | 
 | 		dev_err(&pdev->dev, "Cannot allocate init block, aborting.\n"); | 
 | 		goto err_out_iounmap; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < N_TX_RINGS; i++) | 
 | 		cp->init_txds[i] = cp->init_block->txds[i]; | 
 |  | 
 | 	for (i = 0; i < N_RX_DESC_RINGS; i++) | 
 | 		cp->init_rxds[i] = cp->init_block->rxds[i]; | 
 |  | 
 | 	for (i = 0; i < N_RX_COMP_RINGS; i++) | 
 | 		cp->init_rxcs[i] = cp->init_block->rxcs[i]; | 
 |  | 
 | 	for (i = 0; i < N_RX_FLOWS; i++) | 
 | 		skb_queue_head_init(&cp->rx_flows[i]); | 
 |  | 
 | 	dev->open = cas_open; | 
 | 	dev->stop = cas_close; | 
 | 	dev->hard_start_xmit = cas_start_xmit; | 
 | 	dev->get_stats = cas_get_stats; | 
 | 	dev->set_multicast_list = cas_set_multicast; | 
 | 	dev->do_ioctl = cas_ioctl; | 
 | 	dev->ethtool_ops = &cas_ethtool_ops; | 
 | 	dev->tx_timeout = cas_tx_timeout; | 
 | 	dev->watchdog_timeo = CAS_TX_TIMEOUT; | 
 | 	dev->change_mtu = cas_change_mtu; | 
 | #ifdef USE_NAPI | 
 | 	dev->poll = cas_poll; | 
 | 	dev->weight = 64; | 
 | #endif | 
 | #ifdef CONFIG_NET_POLL_CONTROLLER | 
 | 	dev->poll_controller = cas_netpoll; | 
 | #endif | 
 | 	dev->irq = pdev->irq; | 
 | 	dev->dma = 0; | 
 |  | 
 | 	/* Cassini features. */ | 
 | 	if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0) | 
 | 		dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG; | 
 |  | 
 | 	if (pci_using_dac) | 
 | 		dev->features |= NETIF_F_HIGHDMA; | 
 |  | 
 | 	if (register_netdev(dev)) { | 
 | 		dev_err(&pdev->dev, "Cannot register net device, aborting.\n"); | 
 | 		goto err_out_free_consistent; | 
 | 	} | 
 |  | 
 | 	i = readl(cp->regs + REG_BIM_CFG); | 
 | 	printk(KERN_INFO "%s: Sun Cassini%s (%sbit/%sMHz PCI/%s) " | 
 | 	       "Ethernet[%d] ",  dev->name, | 
 | 	       (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "", | 
 | 	       (i & BIM_CFG_32BIT) ? "32" : "64", | 
 | 	       (i & BIM_CFG_66MHZ) ? "66" : "33", | 
 | 	       (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq); | 
 |  | 
 | 	for (i = 0; i < 6; i++) | 
 | 		printk("%2.2x%c", dev->dev_addr[i], | 
 | 		       i == 5 ? ' ' : ':'); | 
 | 	printk("\n"); | 
 |  | 
 | 	pci_set_drvdata(pdev, dev); | 
 | 	cp->hw_running = 1; | 
 | 	cas_entropy_reset(cp); | 
 | 	cas_phy_init(cp); | 
 | 	cas_begin_auto_negotiation(cp, NULL); | 
 | 	return 0; | 
 |  | 
 | err_out_free_consistent: | 
 | 	pci_free_consistent(pdev, sizeof(struct cas_init_block), | 
 | 			    cp->init_block, cp->block_dvma); | 
 |  | 
 | err_out_iounmap: | 
 | 	mutex_lock(&cp->pm_mutex); | 
 | 	if (cp->hw_running) | 
 | 		cas_shutdown(cp); | 
 | 	mutex_unlock(&cp->pm_mutex); | 
 |  | 
 | 	pci_iounmap(pdev, cp->regs); | 
 |  | 
 |  | 
 | err_out_free_res: | 
 | 	pci_release_regions(pdev); | 
 |  | 
 | err_write_cacheline: | 
 | 	/* Try to restore it in case the error occured after we | 
 | 	 * set it. | 
 | 	 */ | 
 | 	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size); | 
 |  | 
 | err_out_free_netdev: | 
 | 	free_netdev(dev); | 
 |  | 
 | err_out_disable_pdev: | 
 | 	pci_disable_device(pdev); | 
 | 	pci_set_drvdata(pdev, NULL); | 
 | 	return -ENODEV; | 
 | } | 
 |  | 
 | static void __devexit cas_remove_one(struct pci_dev *pdev) | 
 | { | 
 | 	struct net_device *dev = pci_get_drvdata(pdev); | 
 | 	struct cas *cp; | 
 | 	if (!dev) | 
 | 		return; | 
 |  | 
 | 	cp = netdev_priv(dev); | 
 | 	unregister_netdev(dev); | 
 |  | 
 | 	mutex_lock(&cp->pm_mutex); | 
 | 	flush_scheduled_work(); | 
 | 	if (cp->hw_running) | 
 | 		cas_shutdown(cp); | 
 | 	mutex_unlock(&cp->pm_mutex); | 
 |  | 
 | #if 1 | 
 | 	if (cp->orig_cacheline_size) { | 
 | 		/* Restore the cache line size if we had modified | 
 | 		 * it. | 
 | 		 */ | 
 | 		pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, | 
 | 				      cp->orig_cacheline_size); | 
 | 	} | 
 | #endif | 
 | 	pci_free_consistent(pdev, sizeof(struct cas_init_block), | 
 | 			    cp->init_block, cp->block_dvma); | 
 | 	pci_iounmap(pdev, cp->regs); | 
 | 	free_netdev(dev); | 
 | 	pci_release_regions(pdev); | 
 | 	pci_disable_device(pdev); | 
 | 	pci_set_drvdata(pdev, NULL); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PM | 
 | static int cas_suspend(struct pci_dev *pdev, pm_message_t state) | 
 | { | 
 | 	struct net_device *dev = pci_get_drvdata(pdev); | 
 | 	struct cas *cp = netdev_priv(dev); | 
 | 	unsigned long flags; | 
 |  | 
 | 	mutex_lock(&cp->pm_mutex); | 
 |  | 
 | 	/* If the driver is opened, we stop the DMA */ | 
 | 	if (cp->opened) { | 
 | 		netif_device_detach(dev); | 
 |  | 
 | 		cas_lock_all_save(cp, flags); | 
 |  | 
 | 		/* We can set the second arg of cas_reset to 0 | 
 | 		 * because on resume, we'll call cas_init_hw with | 
 | 		 * its second arg set so that autonegotiation is | 
 | 		 * restarted. | 
 | 		 */ | 
 | 		cas_reset(cp, 0); | 
 | 		cas_clean_rings(cp); | 
 | 		cas_unlock_all_restore(cp, flags); | 
 | 	} | 
 |  | 
 | 	if (cp->hw_running) | 
 | 		cas_shutdown(cp); | 
 | 	mutex_unlock(&cp->pm_mutex); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int cas_resume(struct pci_dev *pdev) | 
 | { | 
 | 	struct net_device *dev = pci_get_drvdata(pdev); | 
 | 	struct cas *cp = netdev_priv(dev); | 
 |  | 
 | 	printk(KERN_INFO "%s: resuming\n", dev->name); | 
 |  | 
 | 	mutex_lock(&cp->pm_mutex); | 
 | 	cas_hard_reset(cp); | 
 | 	if (cp->opened) { | 
 | 		unsigned long flags; | 
 | 		cas_lock_all_save(cp, flags); | 
 | 		cas_reset(cp, 0); | 
 | 		cp->hw_running = 1; | 
 | 		cas_clean_rings(cp); | 
 | 		cas_init_hw(cp, 1); | 
 | 		cas_unlock_all_restore(cp, flags); | 
 |  | 
 | 		netif_device_attach(dev); | 
 | 	} | 
 | 	mutex_unlock(&cp->pm_mutex); | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_PM */ | 
 |  | 
 | static struct pci_driver cas_driver = { | 
 | 	.name		= DRV_MODULE_NAME, | 
 | 	.id_table	= cas_pci_tbl, | 
 | 	.probe		= cas_init_one, | 
 | 	.remove		= __devexit_p(cas_remove_one), | 
 | #ifdef CONFIG_PM | 
 | 	.suspend	= cas_suspend, | 
 | 	.resume		= cas_resume | 
 | #endif | 
 | }; | 
 |  | 
 | static int __init cas_init(void) | 
 | { | 
 | 	if (linkdown_timeout > 0) | 
 | 		link_transition_timeout = linkdown_timeout * HZ; | 
 | 	else | 
 | 		link_transition_timeout = 0; | 
 |  | 
 | 	return pci_register_driver(&cas_driver); | 
 | } | 
 |  | 
 | static void __exit cas_cleanup(void) | 
 | { | 
 | 	pci_unregister_driver(&cas_driver); | 
 | } | 
 |  | 
 | module_init(cas_init); | 
 | module_exit(cas_cleanup); |