| /* | 
 |  * mm/page-writeback.c | 
 |  * | 
 |  * Copyright (C) 2002, Linus Torvalds. | 
 |  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | 
 |  * | 
 |  * Contains functions related to writing back dirty pages at the | 
 |  * address_space level. | 
 |  * | 
 |  * 10Apr2002	Andrew Morton | 
 |  *		Initial version | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/init.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/task_io_accounting_ops.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/mpage.h> | 
 | #include <linux/rmap.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/notifier.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/sysctl.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/buffer_head.h> | 
 | #include <linux/pagevec.h> | 
 |  | 
 | /* | 
 |  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited | 
 |  * will look to see if it needs to force writeback or throttling. | 
 |  */ | 
 | static long ratelimit_pages = 32; | 
 |  | 
 | /* | 
 |  * When balance_dirty_pages decides that the caller needs to perform some | 
 |  * non-background writeback, this is how many pages it will attempt to write. | 
 |  * It should be somewhat larger than dirtied pages to ensure that reasonably | 
 |  * large amounts of I/O are submitted. | 
 |  */ | 
 | static inline long sync_writeback_pages(unsigned long dirtied) | 
 | { | 
 | 	if (dirtied < ratelimit_pages) | 
 | 		dirtied = ratelimit_pages; | 
 |  | 
 | 	return dirtied + dirtied / 2; | 
 | } | 
 |  | 
 | /* The following parameters are exported via /proc/sys/vm */ | 
 |  | 
 | /* | 
 |  * Start background writeback (via writeback threads) at this percentage | 
 |  */ | 
 | int dirty_background_ratio = 10; | 
 |  | 
 | /* | 
 |  * dirty_background_bytes starts at 0 (disabled) so that it is a function of | 
 |  * dirty_background_ratio * the amount of dirtyable memory | 
 |  */ | 
 | unsigned long dirty_background_bytes; | 
 |  | 
 | /* | 
 |  * free highmem will not be subtracted from the total free memory | 
 |  * for calculating free ratios if vm_highmem_is_dirtyable is true | 
 |  */ | 
 | int vm_highmem_is_dirtyable; | 
 |  | 
 | /* | 
 |  * The generator of dirty data starts writeback at this percentage | 
 |  */ | 
 | int vm_dirty_ratio = 20; | 
 |  | 
 | /* | 
 |  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of | 
 |  * vm_dirty_ratio * the amount of dirtyable memory | 
 |  */ | 
 | unsigned long vm_dirty_bytes; | 
 |  | 
 | /* | 
 |  * The interval between `kupdate'-style writebacks | 
 |  */ | 
 | unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ | 
 |  | 
 | /* | 
 |  * The longest time for which data is allowed to remain dirty | 
 |  */ | 
 | unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ | 
 |  | 
 | /* | 
 |  * Flag that makes the machine dump writes/reads and block dirtyings. | 
 |  */ | 
 | int block_dump; | 
 |  | 
 | /* | 
 |  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: | 
 |  * a full sync is triggered after this time elapses without any disk activity. | 
 |  */ | 
 | int laptop_mode; | 
 |  | 
 | EXPORT_SYMBOL(laptop_mode); | 
 |  | 
 | /* End of sysctl-exported parameters */ | 
 |  | 
 |  | 
 | /* | 
 |  * Scale the writeback cache size proportional to the relative writeout speeds. | 
 |  * | 
 |  * We do this by keeping a floating proportion between BDIs, based on page | 
 |  * writeback completions [end_page_writeback()]. Those devices that write out | 
 |  * pages fastest will get the larger share, while the slower will get a smaller | 
 |  * share. | 
 |  * | 
 |  * We use page writeout completions because we are interested in getting rid of | 
 |  * dirty pages. Having them written out is the primary goal. | 
 |  * | 
 |  * We introduce a concept of time, a period over which we measure these events, | 
 |  * because demand can/will vary over time. The length of this period itself is | 
 |  * measured in page writeback completions. | 
 |  * | 
 |  */ | 
 | static struct prop_descriptor vm_completions; | 
 | static struct prop_descriptor vm_dirties; | 
 |  | 
 | /* | 
 |  * couple the period to the dirty_ratio: | 
 |  * | 
 |  *   period/2 ~ roundup_pow_of_two(dirty limit) | 
 |  */ | 
 | static int calc_period_shift(void) | 
 | { | 
 | 	unsigned long dirty_total; | 
 |  | 
 | 	if (vm_dirty_bytes) | 
 | 		dirty_total = vm_dirty_bytes / PAGE_SIZE; | 
 | 	else | 
 | 		dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / | 
 | 				100; | 
 | 	return 2 + ilog2(dirty_total - 1); | 
 | } | 
 |  | 
 | /* | 
 |  * update the period when the dirty threshold changes. | 
 |  */ | 
 | static void update_completion_period(void) | 
 | { | 
 | 	int shift = calc_period_shift(); | 
 | 	prop_change_shift(&vm_completions, shift); | 
 | 	prop_change_shift(&vm_dirties, shift); | 
 | } | 
 |  | 
 | int dirty_background_ratio_handler(struct ctl_table *table, int write, | 
 | 		void __user *buffer, size_t *lenp, | 
 | 		loff_t *ppos) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); | 
 | 	if (ret == 0 && write) | 
 | 		dirty_background_bytes = 0; | 
 | 	return ret; | 
 | } | 
 |  | 
 | int dirty_background_bytes_handler(struct ctl_table *table, int write, | 
 | 		void __user *buffer, size_t *lenp, | 
 | 		loff_t *ppos) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); | 
 | 	if (ret == 0 && write) | 
 | 		dirty_background_ratio = 0; | 
 | 	return ret; | 
 | } | 
 |  | 
 | int dirty_ratio_handler(struct ctl_table *table, int write, | 
 | 		void __user *buffer, size_t *lenp, | 
 | 		loff_t *ppos) | 
 | { | 
 | 	int old_ratio = vm_dirty_ratio; | 
 | 	int ret; | 
 |  | 
 | 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); | 
 | 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) { | 
 | 		update_completion_period(); | 
 | 		vm_dirty_bytes = 0; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 |  | 
 | int dirty_bytes_handler(struct ctl_table *table, int write, | 
 | 		void __user *buffer, size_t *lenp, | 
 | 		loff_t *ppos) | 
 | { | 
 | 	unsigned long old_bytes = vm_dirty_bytes; | 
 | 	int ret; | 
 |  | 
 | 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); | 
 | 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) { | 
 | 		update_completion_period(); | 
 | 		vm_dirty_ratio = 0; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Increment the BDI's writeout completion count and the global writeout | 
 |  * completion count. Called from test_clear_page_writeback(). | 
 |  */ | 
 | static inline void __bdi_writeout_inc(struct backing_dev_info *bdi) | 
 | { | 
 | 	__prop_inc_percpu_max(&vm_completions, &bdi->completions, | 
 | 			      bdi->max_prop_frac); | 
 | } | 
 |  | 
 | void bdi_writeout_inc(struct backing_dev_info *bdi) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	__bdi_writeout_inc(bdi); | 
 | 	local_irq_restore(flags); | 
 | } | 
 | EXPORT_SYMBOL_GPL(bdi_writeout_inc); | 
 |  | 
 | void task_dirty_inc(struct task_struct *tsk) | 
 | { | 
 | 	prop_inc_single(&vm_dirties, &tsk->dirties); | 
 | } | 
 |  | 
 | /* | 
 |  * Obtain an accurate fraction of the BDI's portion. | 
 |  */ | 
 | static void bdi_writeout_fraction(struct backing_dev_info *bdi, | 
 | 		long *numerator, long *denominator) | 
 | { | 
 | 	if (bdi_cap_writeback_dirty(bdi)) { | 
 | 		prop_fraction_percpu(&vm_completions, &bdi->completions, | 
 | 				numerator, denominator); | 
 | 	} else { | 
 | 		*numerator = 0; | 
 | 		*denominator = 1; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Clip the earned share of dirty pages to that which is actually available. | 
 |  * This avoids exceeding the total dirty_limit when the floating averages | 
 |  * fluctuate too quickly. | 
 |  */ | 
 | static void clip_bdi_dirty_limit(struct backing_dev_info *bdi, | 
 | 		unsigned long dirty, unsigned long *pbdi_dirty) | 
 | { | 
 | 	unsigned long avail_dirty; | 
 |  | 
 | 	avail_dirty = global_page_state(NR_FILE_DIRTY) + | 
 | 		 global_page_state(NR_WRITEBACK) + | 
 | 		 global_page_state(NR_UNSTABLE_NFS) + | 
 | 		 global_page_state(NR_WRITEBACK_TEMP); | 
 |  | 
 | 	if (avail_dirty < dirty) | 
 | 		avail_dirty = dirty - avail_dirty; | 
 | 	else | 
 | 		avail_dirty = 0; | 
 |  | 
 | 	avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) + | 
 | 		bdi_stat(bdi, BDI_WRITEBACK); | 
 |  | 
 | 	*pbdi_dirty = min(*pbdi_dirty, avail_dirty); | 
 | } | 
 |  | 
 | static inline void task_dirties_fraction(struct task_struct *tsk, | 
 | 		long *numerator, long *denominator) | 
 | { | 
 | 	prop_fraction_single(&vm_dirties, &tsk->dirties, | 
 | 				numerator, denominator); | 
 | } | 
 |  | 
 | /* | 
 |  * scale the dirty limit | 
 |  * | 
 |  * task specific dirty limit: | 
 |  * | 
 |  *   dirty -= (dirty/8) * p_{t} | 
 |  */ | 
 | static void task_dirty_limit(struct task_struct *tsk, unsigned long *pdirty) | 
 | { | 
 | 	long numerator, denominator; | 
 | 	unsigned long dirty = *pdirty; | 
 | 	u64 inv = dirty >> 3; | 
 |  | 
 | 	task_dirties_fraction(tsk, &numerator, &denominator); | 
 | 	inv *= numerator; | 
 | 	do_div(inv, denominator); | 
 |  | 
 | 	dirty -= inv; | 
 | 	if (dirty < *pdirty/2) | 
 | 		dirty = *pdirty/2; | 
 |  | 
 | 	*pdirty = dirty; | 
 | } | 
 |  | 
 | /* | 
 |  * | 
 |  */ | 
 | static unsigned int bdi_min_ratio; | 
 |  | 
 | int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	spin_lock_bh(&bdi_lock); | 
 | 	if (min_ratio > bdi->max_ratio) { | 
 | 		ret = -EINVAL; | 
 | 	} else { | 
 | 		min_ratio -= bdi->min_ratio; | 
 | 		if (bdi_min_ratio + min_ratio < 100) { | 
 | 			bdi_min_ratio += min_ratio; | 
 | 			bdi->min_ratio += min_ratio; | 
 | 		} else { | 
 | 			ret = -EINVAL; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_bh(&bdi_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	if (max_ratio > 100) | 
 | 		return -EINVAL; | 
 |  | 
 | 	spin_lock_bh(&bdi_lock); | 
 | 	if (bdi->min_ratio > max_ratio) { | 
 | 		ret = -EINVAL; | 
 | 	} else { | 
 | 		bdi->max_ratio = max_ratio; | 
 | 		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100; | 
 | 	} | 
 | 	spin_unlock_bh(&bdi_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(bdi_set_max_ratio); | 
 |  | 
 | /* | 
 |  * Work out the current dirty-memory clamping and background writeout | 
 |  * thresholds. | 
 |  * | 
 |  * The main aim here is to lower them aggressively if there is a lot of mapped | 
 |  * memory around.  To avoid stressing page reclaim with lots of unreclaimable | 
 |  * pages.  It is better to clamp down on writers than to start swapping, and | 
 |  * performing lots of scanning. | 
 |  * | 
 |  * We only allow 1/2 of the currently-unmapped memory to be dirtied. | 
 |  * | 
 |  * We don't permit the clamping level to fall below 5% - that is getting rather | 
 |  * excessive. | 
 |  * | 
 |  * We make sure that the background writeout level is below the adjusted | 
 |  * clamping level. | 
 |  */ | 
 |  | 
 | static unsigned long highmem_dirtyable_memory(unsigned long total) | 
 | { | 
 | #ifdef CONFIG_HIGHMEM | 
 | 	int node; | 
 | 	unsigned long x = 0; | 
 |  | 
 | 	for_each_node_state(node, N_HIGH_MEMORY) { | 
 | 		struct zone *z = | 
 | 			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; | 
 |  | 
 | 		x += zone_page_state(z, NR_FREE_PAGES) + | 
 | 		     zone_reclaimable_pages(z); | 
 | 	} | 
 | 	/* | 
 | 	 * Make sure that the number of highmem pages is never larger | 
 | 	 * than the number of the total dirtyable memory. This can only | 
 | 	 * occur in very strange VM situations but we want to make sure | 
 | 	 * that this does not occur. | 
 | 	 */ | 
 | 	return min(x, total); | 
 | #else | 
 | 	return 0; | 
 | #endif | 
 | } | 
 |  | 
 | /** | 
 |  * determine_dirtyable_memory - amount of memory that may be used | 
 |  * | 
 |  * Returns the numebr of pages that can currently be freed and used | 
 |  * by the kernel for direct mappings. | 
 |  */ | 
 | unsigned long determine_dirtyable_memory(void) | 
 | { | 
 | 	unsigned long x; | 
 |  | 
 | 	x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages(); | 
 |  | 
 | 	if (!vm_highmem_is_dirtyable) | 
 | 		x -= highmem_dirtyable_memory(x); | 
 |  | 
 | 	return x + 1;	/* Ensure that we never return 0 */ | 
 | } | 
 |  | 
 | void | 
 | get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty, | 
 | 		 unsigned long *pbdi_dirty, struct backing_dev_info *bdi) | 
 | { | 
 | 	unsigned long background; | 
 | 	unsigned long dirty; | 
 | 	unsigned long available_memory = determine_dirtyable_memory(); | 
 | 	struct task_struct *tsk; | 
 |  | 
 | 	if (vm_dirty_bytes) | 
 | 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE); | 
 | 	else { | 
 | 		int dirty_ratio; | 
 |  | 
 | 		dirty_ratio = vm_dirty_ratio; | 
 | 		if (dirty_ratio < 5) | 
 | 			dirty_ratio = 5; | 
 | 		dirty = (dirty_ratio * available_memory) / 100; | 
 | 	} | 
 |  | 
 | 	if (dirty_background_bytes) | 
 | 		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE); | 
 | 	else | 
 | 		background = (dirty_background_ratio * available_memory) / 100; | 
 |  | 
 | 	if (background >= dirty) | 
 | 		background = dirty / 2; | 
 | 	tsk = current; | 
 | 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { | 
 | 		background += background / 4; | 
 | 		dirty += dirty / 4; | 
 | 	} | 
 | 	*pbackground = background; | 
 | 	*pdirty = dirty; | 
 |  | 
 | 	if (bdi) { | 
 | 		u64 bdi_dirty; | 
 | 		long numerator, denominator; | 
 |  | 
 | 		/* | 
 | 		 * Calculate this BDI's share of the dirty ratio. | 
 | 		 */ | 
 | 		bdi_writeout_fraction(bdi, &numerator, &denominator); | 
 |  | 
 | 		bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100; | 
 | 		bdi_dirty *= numerator; | 
 | 		do_div(bdi_dirty, denominator); | 
 | 		bdi_dirty += (dirty * bdi->min_ratio) / 100; | 
 | 		if (bdi_dirty > (dirty * bdi->max_ratio) / 100) | 
 | 			bdi_dirty = dirty * bdi->max_ratio / 100; | 
 |  | 
 | 		*pbdi_dirty = bdi_dirty; | 
 | 		clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty); | 
 | 		task_dirty_limit(current, pbdi_dirty); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * balance_dirty_pages() must be called by processes which are generating dirty | 
 |  * data.  It looks at the number of dirty pages in the machine and will force | 
 |  * the caller to perform writeback if the system is over `vm_dirty_ratio'. | 
 |  * If we're over `background_thresh' then the writeback threads are woken to | 
 |  * perform some writeout. | 
 |  */ | 
 | static void balance_dirty_pages(struct address_space *mapping, | 
 | 				unsigned long write_chunk) | 
 | { | 
 | 	long nr_reclaimable, bdi_nr_reclaimable; | 
 | 	long nr_writeback, bdi_nr_writeback; | 
 | 	unsigned long background_thresh; | 
 | 	unsigned long dirty_thresh; | 
 | 	unsigned long bdi_thresh; | 
 | 	unsigned long pages_written = 0; | 
 | 	unsigned long pause = 1; | 
 |  | 
 | 	struct backing_dev_info *bdi = mapping->backing_dev_info; | 
 |  | 
 | 	for (;;) { | 
 | 		struct writeback_control wbc = { | 
 | 			.bdi		= bdi, | 
 | 			.sync_mode	= WB_SYNC_NONE, | 
 | 			.older_than_this = NULL, | 
 | 			.nr_to_write	= write_chunk, | 
 | 			.range_cyclic	= 1, | 
 | 		}; | 
 |  | 
 | 		get_dirty_limits(&background_thresh, &dirty_thresh, | 
 | 				&bdi_thresh, bdi); | 
 |  | 
 | 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) + | 
 | 					global_page_state(NR_UNSTABLE_NFS); | 
 | 		nr_writeback = global_page_state(NR_WRITEBACK); | 
 |  | 
 | 		bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); | 
 | 		bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); | 
 |  | 
 | 		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * Throttle it only when the background writeback cannot | 
 | 		 * catch-up. This avoids (excessively) small writeouts | 
 | 		 * when the bdi limits are ramping up. | 
 | 		 */ | 
 | 		if (nr_reclaimable + nr_writeback < | 
 | 				(background_thresh + dirty_thresh) / 2) | 
 | 			break; | 
 |  | 
 | 		if (!bdi->dirty_exceeded) | 
 | 			bdi->dirty_exceeded = 1; | 
 |  | 
 | 		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable. | 
 | 		 * Unstable writes are a feature of certain networked | 
 | 		 * filesystems (i.e. NFS) in which data may have been | 
 | 		 * written to the server's write cache, but has not yet | 
 | 		 * been flushed to permanent storage. | 
 | 		 * Only move pages to writeback if this bdi is over its | 
 | 		 * threshold otherwise wait until the disk writes catch | 
 | 		 * up. | 
 | 		 */ | 
 | 		if (bdi_nr_reclaimable > bdi_thresh) { | 
 | 			writeback_inodes_wbc(&wbc); | 
 | 			pages_written += write_chunk - wbc.nr_to_write; | 
 | 			get_dirty_limits(&background_thresh, &dirty_thresh, | 
 | 				       &bdi_thresh, bdi); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * In order to avoid the stacked BDI deadlock we need | 
 | 		 * to ensure we accurately count the 'dirty' pages when | 
 | 		 * the threshold is low. | 
 | 		 * | 
 | 		 * Otherwise it would be possible to get thresh+n pages | 
 | 		 * reported dirty, even though there are thresh-m pages | 
 | 		 * actually dirty; with m+n sitting in the percpu | 
 | 		 * deltas. | 
 | 		 */ | 
 | 		if (bdi_thresh < 2*bdi_stat_error(bdi)) { | 
 | 			bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); | 
 | 			bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK); | 
 | 		} else if (bdi_nr_reclaimable) { | 
 | 			bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); | 
 | 			bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); | 
 | 		} | 
 |  | 
 | 		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh) | 
 | 			break; | 
 | 		if (pages_written >= write_chunk) | 
 | 			break;		/* We've done our duty */ | 
 |  | 
 | 		__set_current_state(TASK_INTERRUPTIBLE); | 
 | 		io_schedule_timeout(pause); | 
 |  | 
 | 		/* | 
 | 		 * Increase the delay for each loop, up to our previous | 
 | 		 * default of taking a 100ms nap. | 
 | 		 */ | 
 | 		pause <<= 1; | 
 | 		if (pause > HZ / 10) | 
 | 			pause = HZ / 10; | 
 | 	} | 
 |  | 
 | 	if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh && | 
 | 			bdi->dirty_exceeded) | 
 | 		bdi->dirty_exceeded = 0; | 
 |  | 
 | 	if (writeback_in_progress(bdi)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * In laptop mode, we wait until hitting the higher threshold before | 
 | 	 * starting background writeout, and then write out all the way down | 
 | 	 * to the lower threshold.  So slow writers cause minimal disk activity. | 
 | 	 * | 
 | 	 * In normal mode, we start background writeout at the lower | 
 | 	 * background_thresh, to keep the amount of dirty memory low. | 
 | 	 */ | 
 | 	if ((laptop_mode && pages_written) || | 
 | 	    (!laptop_mode && ((global_page_state(NR_FILE_DIRTY) | 
 | 			       + global_page_state(NR_UNSTABLE_NFS)) | 
 | 					  > background_thresh))) | 
 | 		bdi_start_writeback(bdi, NULL, 0); | 
 | } | 
 |  | 
 | void set_page_dirty_balance(struct page *page, int page_mkwrite) | 
 | { | 
 | 	if (set_page_dirty(page) || page_mkwrite) { | 
 | 		struct address_space *mapping = page_mapping(page); | 
 |  | 
 | 		if (mapping) | 
 | 			balance_dirty_pages_ratelimited(mapping); | 
 | 	} | 
 | } | 
 |  | 
 | static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0; | 
 |  | 
 | /** | 
 |  * balance_dirty_pages_ratelimited_nr - balance dirty memory state | 
 |  * @mapping: address_space which was dirtied | 
 |  * @nr_pages_dirtied: number of pages which the caller has just dirtied | 
 |  * | 
 |  * Processes which are dirtying memory should call in here once for each page | 
 |  * which was newly dirtied.  The function will periodically check the system's | 
 |  * dirty state and will initiate writeback if needed. | 
 |  * | 
 |  * On really big machines, get_writeback_state is expensive, so try to avoid | 
 |  * calling it too often (ratelimiting).  But once we're over the dirty memory | 
 |  * limit we decrease the ratelimiting by a lot, to prevent individual processes | 
 |  * from overshooting the limit by (ratelimit_pages) each. | 
 |  */ | 
 | void balance_dirty_pages_ratelimited_nr(struct address_space *mapping, | 
 | 					unsigned long nr_pages_dirtied) | 
 | { | 
 | 	unsigned long ratelimit; | 
 | 	unsigned long *p; | 
 |  | 
 | 	ratelimit = ratelimit_pages; | 
 | 	if (mapping->backing_dev_info->dirty_exceeded) | 
 | 		ratelimit = 8; | 
 |  | 
 | 	/* | 
 | 	 * Check the rate limiting. Also, we do not want to throttle real-time | 
 | 	 * tasks in balance_dirty_pages(). Period. | 
 | 	 */ | 
 | 	preempt_disable(); | 
 | 	p =  &__get_cpu_var(bdp_ratelimits); | 
 | 	*p += nr_pages_dirtied; | 
 | 	if (unlikely(*p >= ratelimit)) { | 
 | 		ratelimit = sync_writeback_pages(*p); | 
 | 		*p = 0; | 
 | 		preempt_enable(); | 
 | 		balance_dirty_pages(mapping, ratelimit); | 
 | 		return; | 
 | 	} | 
 | 	preempt_enable(); | 
 | } | 
 | EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr); | 
 |  | 
 | void throttle_vm_writeout(gfp_t gfp_mask) | 
 | { | 
 | 	unsigned long background_thresh; | 
 | 	unsigned long dirty_thresh; | 
 |  | 
 |         for ( ; ; ) { | 
 | 		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL); | 
 |  | 
 |                 /* | 
 |                  * Boost the allowable dirty threshold a bit for page | 
 |                  * allocators so they don't get DoS'ed by heavy writers | 
 |                  */ | 
 |                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */ | 
 |  | 
 |                 if (global_page_state(NR_UNSTABLE_NFS) + | 
 | 			global_page_state(NR_WRITEBACK) <= dirty_thresh) | 
 |                         	break; | 
 |                 congestion_wait(BLK_RW_ASYNC, HZ/10); | 
 |  | 
 | 		/* | 
 | 		 * The caller might hold locks which can prevent IO completion | 
 | 		 * or progress in the filesystem.  So we cannot just sit here | 
 | 		 * waiting for IO to complete. | 
 | 		 */ | 
 | 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) | 
 | 			break; | 
 |         } | 
 | } | 
 |  | 
 | static void laptop_timer_fn(unsigned long unused); | 
 |  | 
 | static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0); | 
 |  | 
 | /* | 
 |  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs | 
 |  */ | 
 | int dirty_writeback_centisecs_handler(ctl_table *table, int write, | 
 | 	void __user *buffer, size_t *length, loff_t *ppos) | 
 | { | 
 | 	proc_dointvec(table, write, buffer, length, ppos); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void do_laptop_sync(struct work_struct *work) | 
 | { | 
 | 	wakeup_flusher_threads(0); | 
 | 	kfree(work); | 
 | } | 
 |  | 
 | static void laptop_timer_fn(unsigned long unused) | 
 | { | 
 | 	struct work_struct *work; | 
 |  | 
 | 	work = kmalloc(sizeof(*work), GFP_ATOMIC); | 
 | 	if (work) { | 
 | 		INIT_WORK(work, do_laptop_sync); | 
 | 		schedule_work(work); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * We've spun up the disk and we're in laptop mode: schedule writeback | 
 |  * of all dirty data a few seconds from now.  If the flush is already scheduled | 
 |  * then push it back - the user is still using the disk. | 
 |  */ | 
 | void laptop_io_completion(void) | 
 | { | 
 | 	mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode); | 
 | } | 
 |  | 
 | /* | 
 |  * We're in laptop mode and we've just synced. The sync's writes will have | 
 |  * caused another writeback to be scheduled by laptop_io_completion. | 
 |  * Nothing needs to be written back anymore, so we unschedule the writeback. | 
 |  */ | 
 | void laptop_sync_completion(void) | 
 | { | 
 | 	del_timer(&laptop_mode_wb_timer); | 
 | } | 
 |  | 
 | /* | 
 |  * If ratelimit_pages is too high then we can get into dirty-data overload | 
 |  * if a large number of processes all perform writes at the same time. | 
 |  * If it is too low then SMP machines will call the (expensive) | 
 |  * get_writeback_state too often. | 
 |  * | 
 |  * Here we set ratelimit_pages to a level which ensures that when all CPUs are | 
 |  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory | 
 |  * thresholds before writeback cuts in. | 
 |  * | 
 |  * But the limit should not be set too high.  Because it also controls the | 
 |  * amount of memory which the balance_dirty_pages() caller has to write back. | 
 |  * If this is too large then the caller will block on the IO queue all the | 
 |  * time.  So limit it to four megabytes - the balance_dirty_pages() caller | 
 |  * will write six megabyte chunks, max. | 
 |  */ | 
 |  | 
 | void writeback_set_ratelimit(void) | 
 | { | 
 | 	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32); | 
 | 	if (ratelimit_pages < 16) | 
 | 		ratelimit_pages = 16; | 
 | 	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024) | 
 | 		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE; | 
 | } | 
 |  | 
 | static int __cpuinit | 
 | ratelimit_handler(struct notifier_block *self, unsigned long u, void *v) | 
 | { | 
 | 	writeback_set_ratelimit(); | 
 | 	return NOTIFY_DONE; | 
 | } | 
 |  | 
 | static struct notifier_block __cpuinitdata ratelimit_nb = { | 
 | 	.notifier_call	= ratelimit_handler, | 
 | 	.next		= NULL, | 
 | }; | 
 |  | 
 | /* | 
 |  * Called early on to tune the page writeback dirty limits. | 
 |  * | 
 |  * We used to scale dirty pages according to how total memory | 
 |  * related to pages that could be allocated for buffers (by | 
 |  * comparing nr_free_buffer_pages() to vm_total_pages. | 
 |  * | 
 |  * However, that was when we used "dirty_ratio" to scale with | 
 |  * all memory, and we don't do that any more. "dirty_ratio" | 
 |  * is now applied to total non-HIGHPAGE memory (by subtracting | 
 |  * totalhigh_pages from vm_total_pages), and as such we can't | 
 |  * get into the old insane situation any more where we had | 
 |  * large amounts of dirty pages compared to a small amount of | 
 |  * non-HIGHMEM memory. | 
 |  * | 
 |  * But we might still want to scale the dirty_ratio by how | 
 |  * much memory the box has.. | 
 |  */ | 
 | void __init page_writeback_init(void) | 
 | { | 
 | 	int shift; | 
 |  | 
 | 	writeback_set_ratelimit(); | 
 | 	register_cpu_notifier(&ratelimit_nb); | 
 |  | 
 | 	shift = calc_period_shift(); | 
 | 	prop_descriptor_init(&vm_completions, shift); | 
 | 	prop_descriptor_init(&vm_dirties, shift); | 
 | } | 
 |  | 
 | /** | 
 |  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. | 
 |  * @mapping: address space structure to write | 
 |  * @wbc: subtract the number of written pages from *@wbc->nr_to_write | 
 |  * @writepage: function called for each page | 
 |  * @data: data passed to writepage function | 
 |  * | 
 |  * If a page is already under I/O, write_cache_pages() skips it, even | 
 |  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback, | 
 |  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync() | 
 |  * and msync() need to guarantee that all the data which was dirty at the time | 
 |  * the call was made get new I/O started against them.  If wbc->sync_mode is | 
 |  * WB_SYNC_ALL then we were called for data integrity and we must wait for | 
 |  * existing IO to complete. | 
 |  */ | 
 | int write_cache_pages(struct address_space *mapping, | 
 | 		      struct writeback_control *wbc, writepage_t writepage, | 
 | 		      void *data) | 
 | { | 
 | 	int ret = 0; | 
 | 	int done = 0; | 
 | 	struct pagevec pvec; | 
 | 	int nr_pages; | 
 | 	pgoff_t uninitialized_var(writeback_index); | 
 | 	pgoff_t index; | 
 | 	pgoff_t end;		/* Inclusive */ | 
 | 	pgoff_t done_index; | 
 | 	int cycled; | 
 | 	int range_whole = 0; | 
 | 	long nr_to_write = wbc->nr_to_write; | 
 |  | 
 | 	pagevec_init(&pvec, 0); | 
 | 	if (wbc->range_cyclic) { | 
 | 		writeback_index = mapping->writeback_index; /* prev offset */ | 
 | 		index = writeback_index; | 
 | 		if (index == 0) | 
 | 			cycled = 1; | 
 | 		else | 
 | 			cycled = 0; | 
 | 		end = -1; | 
 | 	} else { | 
 | 		index = wbc->range_start >> PAGE_CACHE_SHIFT; | 
 | 		end = wbc->range_end >> PAGE_CACHE_SHIFT; | 
 | 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) | 
 | 			range_whole = 1; | 
 | 		cycled = 1; /* ignore range_cyclic tests */ | 
 | 	} | 
 | retry: | 
 | 	done_index = index; | 
 | 	while (!done && (index <= end)) { | 
 | 		int i; | 
 |  | 
 | 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, | 
 | 			      PAGECACHE_TAG_DIRTY, | 
 | 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); | 
 | 		if (nr_pages == 0) | 
 | 			break; | 
 |  | 
 | 		for (i = 0; i < nr_pages; i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 |  | 
 | 			/* | 
 | 			 * At this point, the page may be truncated or | 
 | 			 * invalidated (changing page->mapping to NULL), or | 
 | 			 * even swizzled back from swapper_space to tmpfs file | 
 | 			 * mapping. However, page->index will not change | 
 | 			 * because we have a reference on the page. | 
 | 			 */ | 
 | 			if (page->index > end) { | 
 | 				/* | 
 | 				 * can't be range_cyclic (1st pass) because | 
 | 				 * end == -1 in that case. | 
 | 				 */ | 
 | 				done = 1; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			done_index = page->index + 1; | 
 |  | 
 | 			lock_page(page); | 
 |  | 
 | 			/* | 
 | 			 * Page truncated or invalidated. We can freely skip it | 
 | 			 * then, even for data integrity operations: the page | 
 | 			 * has disappeared concurrently, so there could be no | 
 | 			 * real expectation of this data interity operation | 
 | 			 * even if there is now a new, dirty page at the same | 
 | 			 * pagecache address. | 
 | 			 */ | 
 | 			if (unlikely(page->mapping != mapping)) { | 
 | continue_unlock: | 
 | 				unlock_page(page); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			if (!PageDirty(page)) { | 
 | 				/* someone wrote it for us */ | 
 | 				goto continue_unlock; | 
 | 			} | 
 |  | 
 | 			if (PageWriteback(page)) { | 
 | 				if (wbc->sync_mode != WB_SYNC_NONE) | 
 | 					wait_on_page_writeback(page); | 
 | 				else | 
 | 					goto continue_unlock; | 
 | 			} | 
 |  | 
 | 			BUG_ON(PageWriteback(page)); | 
 | 			if (!clear_page_dirty_for_io(page)) | 
 | 				goto continue_unlock; | 
 |  | 
 | 			ret = (*writepage)(page, wbc, data); | 
 | 			if (unlikely(ret)) { | 
 | 				if (ret == AOP_WRITEPAGE_ACTIVATE) { | 
 | 					unlock_page(page); | 
 | 					ret = 0; | 
 | 				} else { | 
 | 					/* | 
 | 					 * done_index is set past this page, | 
 | 					 * so media errors will not choke | 
 | 					 * background writeout for the entire | 
 | 					 * file. This has consequences for | 
 | 					 * range_cyclic semantics (ie. it may | 
 | 					 * not be suitable for data integrity | 
 | 					 * writeout). | 
 | 					 */ | 
 | 					done = 1; | 
 | 					break; | 
 | 				} | 
 |  			} | 
 |  | 
 | 			if (nr_to_write > 0) { | 
 | 				nr_to_write--; | 
 | 				if (nr_to_write == 0 && | 
 | 				    wbc->sync_mode == WB_SYNC_NONE) { | 
 | 					/* | 
 | 					 * We stop writing back only if we are | 
 | 					 * not doing integrity sync. In case of | 
 | 					 * integrity sync we have to keep going | 
 | 					 * because someone may be concurrently | 
 | 					 * dirtying pages, and we might have | 
 | 					 * synced a lot of newly appeared dirty | 
 | 					 * pages, but have not synced all of the | 
 | 					 * old dirty pages. | 
 | 					 */ | 
 | 					done = 1; | 
 | 					break; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		pagevec_release(&pvec); | 
 | 		cond_resched(); | 
 | 	} | 
 | 	if (!cycled && !done) { | 
 | 		/* | 
 | 		 * range_cyclic: | 
 | 		 * We hit the last page and there is more work to be done: wrap | 
 | 		 * back to the start of the file | 
 | 		 */ | 
 | 		cycled = 1; | 
 | 		index = 0; | 
 | 		end = writeback_index - 1; | 
 | 		goto retry; | 
 | 	} | 
 | 	if (!wbc->no_nrwrite_index_update) { | 
 | 		if (wbc->range_cyclic || (range_whole && nr_to_write > 0)) | 
 | 			mapping->writeback_index = done_index; | 
 | 		wbc->nr_to_write = nr_to_write; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(write_cache_pages); | 
 |  | 
 | /* | 
 |  * Function used by generic_writepages to call the real writepage | 
 |  * function and set the mapping flags on error | 
 |  */ | 
 | static int __writepage(struct page *page, struct writeback_control *wbc, | 
 | 		       void *data) | 
 | { | 
 | 	struct address_space *mapping = data; | 
 | 	int ret = mapping->a_ops->writepage(page, wbc); | 
 | 	mapping_set_error(mapping, ret); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. | 
 |  * @mapping: address space structure to write | 
 |  * @wbc: subtract the number of written pages from *@wbc->nr_to_write | 
 |  * | 
 |  * This is a library function, which implements the writepages() | 
 |  * address_space_operation. | 
 |  */ | 
 | int generic_writepages(struct address_space *mapping, | 
 | 		       struct writeback_control *wbc) | 
 | { | 
 | 	/* deal with chardevs and other special file */ | 
 | 	if (!mapping->a_ops->writepage) | 
 | 		return 0; | 
 |  | 
 | 	return write_cache_pages(mapping, wbc, __writepage, mapping); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(generic_writepages); | 
 |  | 
 | int do_writepages(struct address_space *mapping, struct writeback_control *wbc) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (wbc->nr_to_write <= 0) | 
 | 		return 0; | 
 | 	if (mapping->a_ops->writepages) | 
 | 		ret = mapping->a_ops->writepages(mapping, wbc); | 
 | 	else | 
 | 		ret = generic_writepages(mapping, wbc); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * write_one_page - write out a single page and optionally wait on I/O | 
 |  * @page: the page to write | 
 |  * @wait: if true, wait on writeout | 
 |  * | 
 |  * The page must be locked by the caller and will be unlocked upon return. | 
 |  * | 
 |  * write_one_page() returns a negative error code if I/O failed. | 
 |  */ | 
 | int write_one_page(struct page *page, int wait) | 
 | { | 
 | 	struct address_space *mapping = page->mapping; | 
 | 	int ret = 0; | 
 | 	struct writeback_control wbc = { | 
 | 		.sync_mode = WB_SYNC_ALL, | 
 | 		.nr_to_write = 1, | 
 | 	}; | 
 |  | 
 | 	BUG_ON(!PageLocked(page)); | 
 |  | 
 | 	if (wait) | 
 | 		wait_on_page_writeback(page); | 
 |  | 
 | 	if (clear_page_dirty_for_io(page)) { | 
 | 		page_cache_get(page); | 
 | 		ret = mapping->a_ops->writepage(page, &wbc); | 
 | 		if (ret == 0 && wait) { | 
 | 			wait_on_page_writeback(page); | 
 | 			if (PageError(page)) | 
 | 				ret = -EIO; | 
 | 		} | 
 | 		page_cache_release(page); | 
 | 	} else { | 
 | 		unlock_page(page); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(write_one_page); | 
 |  | 
 | /* | 
 |  * For address_spaces which do not use buffers nor write back. | 
 |  */ | 
 | int __set_page_dirty_no_writeback(struct page *page) | 
 | { | 
 | 	if (!PageDirty(page)) | 
 | 		SetPageDirty(page); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Helper function for set_page_dirty family. | 
 |  * NOTE: This relies on being atomic wrt interrupts. | 
 |  */ | 
 | void account_page_dirtied(struct page *page, struct address_space *mapping) | 
 | { | 
 | 	if (mapping_cap_account_dirty(mapping)) { | 
 | 		__inc_zone_page_state(page, NR_FILE_DIRTY); | 
 | 		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); | 
 | 		task_dirty_inc(current); | 
 | 		task_io_account_write(PAGE_CACHE_SIZE); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * For address_spaces which do not use buffers.  Just tag the page as dirty in | 
 |  * its radix tree. | 
 |  * | 
 |  * This is also used when a single buffer is being dirtied: we want to set the | 
 |  * page dirty in that case, but not all the buffers.  This is a "bottom-up" | 
 |  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. | 
 |  * | 
 |  * Most callers have locked the page, which pins the address_space in memory. | 
 |  * But zap_pte_range() does not lock the page, however in that case the | 
 |  * mapping is pinned by the vma's ->vm_file reference. | 
 |  * | 
 |  * We take care to handle the case where the page was truncated from the | 
 |  * mapping by re-checking page_mapping() inside tree_lock. | 
 |  */ | 
 | int __set_page_dirty_nobuffers(struct page *page) | 
 | { | 
 | 	if (!TestSetPageDirty(page)) { | 
 | 		struct address_space *mapping = page_mapping(page); | 
 | 		struct address_space *mapping2; | 
 |  | 
 | 		if (!mapping) | 
 | 			return 1; | 
 |  | 
 | 		spin_lock_irq(&mapping->tree_lock); | 
 | 		mapping2 = page_mapping(page); | 
 | 		if (mapping2) { /* Race with truncate? */ | 
 | 			BUG_ON(mapping2 != mapping); | 
 | 			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); | 
 | 			account_page_dirtied(page, mapping); | 
 | 			radix_tree_tag_set(&mapping->page_tree, | 
 | 				page_index(page), PAGECACHE_TAG_DIRTY); | 
 | 		} | 
 | 		spin_unlock_irq(&mapping->tree_lock); | 
 | 		if (mapping->host) { | 
 | 			/* !PageAnon && !swapper_space */ | 
 | 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES); | 
 | 		} | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(__set_page_dirty_nobuffers); | 
 |  | 
 | /* | 
 |  * When a writepage implementation decides that it doesn't want to write this | 
 |  * page for some reason, it should redirty the locked page via | 
 |  * redirty_page_for_writepage() and it should then unlock the page and return 0 | 
 |  */ | 
 | int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) | 
 | { | 
 | 	wbc->pages_skipped++; | 
 | 	return __set_page_dirty_nobuffers(page); | 
 | } | 
 | EXPORT_SYMBOL(redirty_page_for_writepage); | 
 |  | 
 | /* | 
 |  * Dirty a page. | 
 |  * | 
 |  * For pages with a mapping this should be done under the page lock | 
 |  * for the benefit of asynchronous memory errors who prefer a consistent | 
 |  * dirty state. This rule can be broken in some special cases, | 
 |  * but should be better not to. | 
 |  * | 
 |  * If the mapping doesn't provide a set_page_dirty a_op, then | 
 |  * just fall through and assume that it wants buffer_heads. | 
 |  */ | 
 | int set_page_dirty(struct page *page) | 
 | { | 
 | 	struct address_space *mapping = page_mapping(page); | 
 |  | 
 | 	if (likely(mapping)) { | 
 | 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; | 
 | #ifdef CONFIG_BLOCK | 
 | 		if (!spd) | 
 | 			spd = __set_page_dirty_buffers; | 
 | #endif | 
 | 		return (*spd)(page); | 
 | 	} | 
 | 	if (!PageDirty(page)) { | 
 | 		if (!TestSetPageDirty(page)) | 
 | 			return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(set_page_dirty); | 
 |  | 
 | /* | 
 |  * set_page_dirty() is racy if the caller has no reference against | 
 |  * page->mapping->host, and if the page is unlocked.  This is because another | 
 |  * CPU could truncate the page off the mapping and then free the mapping. | 
 |  * | 
 |  * Usually, the page _is_ locked, or the caller is a user-space process which | 
 |  * holds a reference on the inode by having an open file. | 
 |  * | 
 |  * In other cases, the page should be locked before running set_page_dirty(). | 
 |  */ | 
 | int set_page_dirty_lock(struct page *page) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	lock_page_nosync(page); | 
 | 	ret = set_page_dirty(page); | 
 | 	unlock_page(page); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(set_page_dirty_lock); | 
 |  | 
 | /* | 
 |  * Clear a page's dirty flag, while caring for dirty memory accounting. | 
 |  * Returns true if the page was previously dirty. | 
 |  * | 
 |  * This is for preparing to put the page under writeout.  We leave the page | 
 |  * tagged as dirty in the radix tree so that a concurrent write-for-sync | 
 |  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage | 
 |  * implementation will run either set_page_writeback() or set_page_dirty(), | 
 |  * at which stage we bring the page's dirty flag and radix-tree dirty tag | 
 |  * back into sync. | 
 |  * | 
 |  * This incoherency between the page's dirty flag and radix-tree tag is | 
 |  * unfortunate, but it only exists while the page is locked. | 
 |  */ | 
 | int clear_page_dirty_for_io(struct page *page) | 
 | { | 
 | 	struct address_space *mapping = page_mapping(page); | 
 |  | 
 | 	BUG_ON(!PageLocked(page)); | 
 |  | 
 | 	ClearPageReclaim(page); | 
 | 	if (mapping && mapping_cap_account_dirty(mapping)) { | 
 | 		/* | 
 | 		 * Yes, Virginia, this is indeed insane. | 
 | 		 * | 
 | 		 * We use this sequence to make sure that | 
 | 		 *  (a) we account for dirty stats properly | 
 | 		 *  (b) we tell the low-level filesystem to | 
 | 		 *      mark the whole page dirty if it was | 
 | 		 *      dirty in a pagetable. Only to then | 
 | 		 *  (c) clean the page again and return 1 to | 
 | 		 *      cause the writeback. | 
 | 		 * | 
 | 		 * This way we avoid all nasty races with the | 
 | 		 * dirty bit in multiple places and clearing | 
 | 		 * them concurrently from different threads. | 
 | 		 * | 
 | 		 * Note! Normally the "set_page_dirty(page)" | 
 | 		 * has no effect on the actual dirty bit - since | 
 | 		 * that will already usually be set. But we | 
 | 		 * need the side effects, and it can help us | 
 | 		 * avoid races. | 
 | 		 * | 
 | 		 * We basically use the page "master dirty bit" | 
 | 		 * as a serialization point for all the different | 
 | 		 * threads doing their things. | 
 | 		 */ | 
 | 		if (page_mkclean(page)) | 
 | 			set_page_dirty(page); | 
 | 		/* | 
 | 		 * We carefully synchronise fault handlers against | 
 | 		 * installing a dirty pte and marking the page dirty | 
 | 		 * at this point. We do this by having them hold the | 
 | 		 * page lock at some point after installing their | 
 | 		 * pte, but before marking the page dirty. | 
 | 		 * Pages are always locked coming in here, so we get | 
 | 		 * the desired exclusion. See mm/memory.c:do_wp_page() | 
 | 		 * for more comments. | 
 | 		 */ | 
 | 		if (TestClearPageDirty(page)) { | 
 | 			dec_zone_page_state(page, NR_FILE_DIRTY); | 
 | 			dec_bdi_stat(mapping->backing_dev_info, | 
 | 					BDI_RECLAIMABLE); | 
 | 			return 1; | 
 | 		} | 
 | 		return 0; | 
 | 	} | 
 | 	return TestClearPageDirty(page); | 
 | } | 
 | EXPORT_SYMBOL(clear_page_dirty_for_io); | 
 |  | 
 | int test_clear_page_writeback(struct page *page) | 
 | { | 
 | 	struct address_space *mapping = page_mapping(page); | 
 | 	int ret; | 
 |  | 
 | 	if (mapping) { | 
 | 		struct backing_dev_info *bdi = mapping->backing_dev_info; | 
 | 		unsigned long flags; | 
 |  | 
 | 		spin_lock_irqsave(&mapping->tree_lock, flags); | 
 | 		ret = TestClearPageWriteback(page); | 
 | 		if (ret) { | 
 | 			radix_tree_tag_clear(&mapping->page_tree, | 
 | 						page_index(page), | 
 | 						PAGECACHE_TAG_WRITEBACK); | 
 | 			if (bdi_cap_account_writeback(bdi)) { | 
 | 				__dec_bdi_stat(bdi, BDI_WRITEBACK); | 
 | 				__bdi_writeout_inc(bdi); | 
 | 			} | 
 | 		} | 
 | 		spin_unlock_irqrestore(&mapping->tree_lock, flags); | 
 | 	} else { | 
 | 		ret = TestClearPageWriteback(page); | 
 | 	} | 
 | 	if (ret) | 
 | 		dec_zone_page_state(page, NR_WRITEBACK); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int test_set_page_writeback(struct page *page) | 
 | { | 
 | 	struct address_space *mapping = page_mapping(page); | 
 | 	int ret; | 
 |  | 
 | 	if (mapping) { | 
 | 		struct backing_dev_info *bdi = mapping->backing_dev_info; | 
 | 		unsigned long flags; | 
 |  | 
 | 		spin_lock_irqsave(&mapping->tree_lock, flags); | 
 | 		ret = TestSetPageWriteback(page); | 
 | 		if (!ret) { | 
 | 			radix_tree_tag_set(&mapping->page_tree, | 
 | 						page_index(page), | 
 | 						PAGECACHE_TAG_WRITEBACK); | 
 | 			if (bdi_cap_account_writeback(bdi)) | 
 | 				__inc_bdi_stat(bdi, BDI_WRITEBACK); | 
 | 		} | 
 | 		if (!PageDirty(page)) | 
 | 			radix_tree_tag_clear(&mapping->page_tree, | 
 | 						page_index(page), | 
 | 						PAGECACHE_TAG_DIRTY); | 
 | 		spin_unlock_irqrestore(&mapping->tree_lock, flags); | 
 | 	} else { | 
 | 		ret = TestSetPageWriteback(page); | 
 | 	} | 
 | 	if (!ret) | 
 | 		inc_zone_page_state(page, NR_WRITEBACK); | 
 | 	return ret; | 
 |  | 
 | } | 
 | EXPORT_SYMBOL(test_set_page_writeback); | 
 |  | 
 | /* | 
 |  * Return true if any of the pages in the mapping are marked with the | 
 |  * passed tag. | 
 |  */ | 
 | int mapping_tagged(struct address_space *mapping, int tag) | 
 | { | 
 | 	int ret; | 
 | 	rcu_read_lock(); | 
 | 	ret = radix_tree_tagged(&mapping->page_tree, tag); | 
 | 	rcu_read_unlock(); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(mapping_tagged); |