|  | /* | 
|  | * Freescale GPMI NAND Flash Driver | 
|  | * | 
|  | * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. | 
|  | * Copyright (C) 2008 Embedded Alley Solutions, Inc. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License along | 
|  | * with this program; if not, write to the Free Software Foundation, Inc., | 
|  | * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | 
|  | */ | 
|  | #include <linux/clk.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/mtd/gpmi-nand.h> | 
|  | #include <linux/mtd/partitions.h> | 
|  | #include "gpmi-nand.h" | 
|  |  | 
|  | /* add our owner bbt descriptor */ | 
|  | static uint8_t scan_ff_pattern[] = { 0xff }; | 
|  | static struct nand_bbt_descr gpmi_bbt_descr = { | 
|  | .options	= 0, | 
|  | .offs		= 0, | 
|  | .len		= 1, | 
|  | .pattern	= scan_ff_pattern | 
|  | }; | 
|  |  | 
|  | /*  We will use all the (page + OOB). */ | 
|  | static struct nand_ecclayout gpmi_hw_ecclayout = { | 
|  | .eccbytes = 0, | 
|  | .eccpos = { 0, }, | 
|  | .oobfree = { {.offset = 0, .length = 0} } | 
|  | }; | 
|  |  | 
|  | static irqreturn_t bch_irq(int irq, void *cookie) | 
|  | { | 
|  | struct gpmi_nand_data *this = cookie; | 
|  |  | 
|  | gpmi_clear_bch(this); | 
|  | complete(&this->bch_done); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  Calculate the ECC strength by hand: | 
|  | *	E : The ECC strength. | 
|  | *	G : the length of Galois Field. | 
|  | *	N : The chunk count of per page. | 
|  | *	O : the oobsize of the NAND chip. | 
|  | *	M : the metasize of per page. | 
|  | * | 
|  | *	The formula is : | 
|  | *		E * G * N | 
|  | *	      ------------ <= (O - M) | 
|  | *                  8 | 
|  | * | 
|  | *      So, we get E by: | 
|  | *                    (O - M) * 8 | 
|  | *              E <= ------------- | 
|  | *                       G * N | 
|  | */ | 
|  | static inline int get_ecc_strength(struct gpmi_nand_data *this) | 
|  | { | 
|  | struct bch_geometry *geo = &this->bch_geometry; | 
|  | struct mtd_info	*mtd = &this->mtd; | 
|  | int ecc_strength; | 
|  |  | 
|  | ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8) | 
|  | / (geo->gf_len * geo->ecc_chunk_count); | 
|  |  | 
|  | /* We need the minor even number. */ | 
|  | return round_down(ecc_strength, 2); | 
|  | } | 
|  |  | 
|  | int common_nfc_set_geometry(struct gpmi_nand_data *this) | 
|  | { | 
|  | struct bch_geometry *geo = &this->bch_geometry; | 
|  | struct mtd_info *mtd = &this->mtd; | 
|  | unsigned int metadata_size; | 
|  | unsigned int status_size; | 
|  | unsigned int block_mark_bit_offset; | 
|  |  | 
|  | /* | 
|  | * The size of the metadata can be changed, though we set it to 10 | 
|  | * bytes now. But it can't be too large, because we have to save | 
|  | * enough space for BCH. | 
|  | */ | 
|  | geo->metadata_size = 10; | 
|  |  | 
|  | /* The default for the length of Galois Field. */ | 
|  | geo->gf_len = 13; | 
|  |  | 
|  | /* The default for chunk size. There is no oobsize greater then 512. */ | 
|  | geo->ecc_chunk_size = 512; | 
|  | while (geo->ecc_chunk_size < mtd->oobsize) | 
|  | geo->ecc_chunk_size *= 2; /* keep C >= O */ | 
|  |  | 
|  | geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; | 
|  |  | 
|  | /* We use the same ECC strength for all chunks. */ | 
|  | geo->ecc_strength = get_ecc_strength(this); | 
|  | if (!geo->ecc_strength) { | 
|  | pr_err("We get a wrong ECC strength.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | geo->page_size = mtd->writesize + mtd->oobsize; | 
|  | geo->payload_size = mtd->writesize; | 
|  |  | 
|  | /* | 
|  | * The auxiliary buffer contains the metadata and the ECC status. The | 
|  | * metadata is padded to the nearest 32-bit boundary. The ECC status | 
|  | * contains one byte for every ECC chunk, and is also padded to the | 
|  | * nearest 32-bit boundary. | 
|  | */ | 
|  | metadata_size = ALIGN(geo->metadata_size, 4); | 
|  | status_size   = ALIGN(geo->ecc_chunk_count, 4); | 
|  |  | 
|  | geo->auxiliary_size = metadata_size + status_size; | 
|  | geo->auxiliary_status_offset = metadata_size; | 
|  |  | 
|  | if (!this->swap_block_mark) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * We need to compute the byte and bit offsets of | 
|  | * the physical block mark within the ECC-based view of the page. | 
|  | * | 
|  | * NAND chip with 2K page shows below: | 
|  | *                                             (Block Mark) | 
|  | *                                                   |      | | 
|  | *                                                   |  D   | | 
|  | *                                                   |<---->| | 
|  | *                                                   V      V | 
|  | *    +---+----------+-+----------+-+----------+-+----------+-+ | 
|  | *    | M |   data   |E|   data   |E|   data   |E|   data   |E| | 
|  | *    +---+----------+-+----------+-+----------+-+----------+-+ | 
|  | * | 
|  | * The position of block mark moves forward in the ECC-based view | 
|  | * of page, and the delta is: | 
|  | * | 
|  | *                   E * G * (N - 1) | 
|  | *             D = (---------------- + M) | 
|  | *                          8 | 
|  | * | 
|  | * With the formula to compute the ECC strength, and the condition | 
|  | *       : C >= O         (C is the ecc chunk size) | 
|  | * | 
|  | * It's easy to deduce to the following result: | 
|  | * | 
|  | *         E * G       (O - M)      C - M         C - M | 
|  | *      ----------- <= ------- <=  --------  <  --------- | 
|  | *           8            N           N          (N - 1) | 
|  | * | 
|  | *  So, we get: | 
|  | * | 
|  | *                   E * G * (N - 1) | 
|  | *             D = (---------------- + M) < C | 
|  | *                          8 | 
|  | * | 
|  | *  The above inequality means the position of block mark | 
|  | *  within the ECC-based view of the page is still in the data chunk, | 
|  | *  and it's NOT in the ECC bits of the chunk. | 
|  | * | 
|  | *  Use the following to compute the bit position of the | 
|  | *  physical block mark within the ECC-based view of the page: | 
|  | *          (page_size - D) * 8 | 
|  | * | 
|  | *  --Huang Shijie | 
|  | */ | 
|  | block_mark_bit_offset = mtd->writesize * 8 - | 
|  | (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) | 
|  | + geo->metadata_size * 8); | 
|  |  | 
|  | geo->block_mark_byte_offset = block_mark_bit_offset / 8; | 
|  | geo->block_mark_bit_offset  = block_mark_bit_offset % 8; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct dma_chan *get_dma_chan(struct gpmi_nand_data *this) | 
|  | { | 
|  | int chipnr = this->current_chip; | 
|  |  | 
|  | return this->dma_chans[chipnr]; | 
|  | } | 
|  |  | 
|  | /* Can we use the upper's buffer directly for DMA? */ | 
|  | void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr) | 
|  | { | 
|  | struct scatterlist *sgl = &this->data_sgl; | 
|  | int ret; | 
|  |  | 
|  | this->direct_dma_map_ok = true; | 
|  |  | 
|  | /* first try to map the upper buffer directly */ | 
|  | sg_init_one(sgl, this->upper_buf, this->upper_len); | 
|  | ret = dma_map_sg(this->dev, sgl, 1, dr); | 
|  | if (ret == 0) { | 
|  | /* We have to use our own DMA buffer. */ | 
|  | sg_init_one(sgl, this->data_buffer_dma, PAGE_SIZE); | 
|  |  | 
|  | if (dr == DMA_TO_DEVICE) | 
|  | memcpy(this->data_buffer_dma, this->upper_buf, | 
|  | this->upper_len); | 
|  |  | 
|  | ret = dma_map_sg(this->dev, sgl, 1, dr); | 
|  | if (ret == 0) | 
|  | pr_err("map failed.\n"); | 
|  |  | 
|  | this->direct_dma_map_ok = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* This will be called after the DMA operation is finished. */ | 
|  | static void dma_irq_callback(void *param) | 
|  | { | 
|  | struct gpmi_nand_data *this = param; | 
|  | struct completion *dma_c = &this->dma_done; | 
|  |  | 
|  | complete(dma_c); | 
|  |  | 
|  | switch (this->dma_type) { | 
|  | case DMA_FOR_COMMAND: | 
|  | dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE); | 
|  | break; | 
|  |  | 
|  | case DMA_FOR_READ_DATA: | 
|  | dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE); | 
|  | if (this->direct_dma_map_ok == false) | 
|  | memcpy(this->upper_buf, this->data_buffer_dma, | 
|  | this->upper_len); | 
|  | break; | 
|  |  | 
|  | case DMA_FOR_WRITE_DATA: | 
|  | dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE); | 
|  | break; | 
|  |  | 
|  | case DMA_FOR_READ_ECC_PAGE: | 
|  | case DMA_FOR_WRITE_ECC_PAGE: | 
|  | /* We have to wait the BCH interrupt to finish. */ | 
|  | break; | 
|  |  | 
|  | default: | 
|  | pr_err("in wrong DMA operation.\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | int start_dma_without_bch_irq(struct gpmi_nand_data *this, | 
|  | struct dma_async_tx_descriptor *desc) | 
|  | { | 
|  | struct completion *dma_c = &this->dma_done; | 
|  | int err; | 
|  |  | 
|  | init_completion(dma_c); | 
|  |  | 
|  | desc->callback		= dma_irq_callback; | 
|  | desc->callback_param	= this; | 
|  | dmaengine_submit(desc); | 
|  |  | 
|  | /* Wait for the interrupt from the DMA block. */ | 
|  | err = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000)); | 
|  | if (!err) { | 
|  | pr_err("DMA timeout, last DMA :%d\n", this->last_dma_type); | 
|  | gpmi_dump_info(this); | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is used in BCH reading or BCH writing pages. | 
|  | * It will wait for the BCH interrupt as long as ONE second. | 
|  | * Actually, we must wait for two interrupts : | 
|  | *	[1] firstly the DMA interrupt and | 
|  | *	[2] secondly the BCH interrupt. | 
|  | */ | 
|  | int start_dma_with_bch_irq(struct gpmi_nand_data *this, | 
|  | struct dma_async_tx_descriptor *desc) | 
|  | { | 
|  | struct completion *bch_c = &this->bch_done; | 
|  | int err; | 
|  |  | 
|  | /* Prepare to receive an interrupt from the BCH block. */ | 
|  | init_completion(bch_c); | 
|  |  | 
|  | /* start the DMA */ | 
|  | start_dma_without_bch_irq(this, desc); | 
|  |  | 
|  | /* Wait for the interrupt from the BCH block. */ | 
|  | err = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000)); | 
|  | if (!err) { | 
|  | pr_err("BCH timeout, last DMA :%d\n", this->last_dma_type); | 
|  | gpmi_dump_info(this); | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __devinit | 
|  | acquire_register_block(struct gpmi_nand_data *this, const char *res_name) | 
|  | { | 
|  | struct platform_device *pdev = this->pdev; | 
|  | struct resources *res = &this->resources; | 
|  | struct resource *r; | 
|  | void *p; | 
|  |  | 
|  | r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name); | 
|  | if (!r) { | 
|  | pr_err("Can't get resource for %s\n", res_name); | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | p = ioremap(r->start, resource_size(r)); | 
|  | if (!p) { | 
|  | pr_err("Can't remap %s\n", res_name); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME)) | 
|  | res->gpmi_regs = p; | 
|  | else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME)) | 
|  | res->bch_regs = p; | 
|  | else | 
|  | pr_err("unknown resource name : %s\n", res_name); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void release_register_block(struct gpmi_nand_data *this) | 
|  | { | 
|  | struct resources *res = &this->resources; | 
|  | if (res->gpmi_regs) | 
|  | iounmap(res->gpmi_regs); | 
|  | if (res->bch_regs) | 
|  | iounmap(res->bch_regs); | 
|  | res->gpmi_regs = NULL; | 
|  | res->bch_regs = NULL; | 
|  | } | 
|  |  | 
|  | static int __devinit | 
|  | acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h) | 
|  | { | 
|  | struct platform_device *pdev = this->pdev; | 
|  | struct resources *res = &this->resources; | 
|  | const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME; | 
|  | struct resource *r; | 
|  | int err; | 
|  |  | 
|  | r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name); | 
|  | if (!r) { | 
|  | pr_err("Can't get resource for %s\n", res_name); | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | err = request_irq(r->start, irq_h, 0, res_name, this); | 
|  | if (err) { | 
|  | pr_err("Can't own %s\n", res_name); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | res->bch_low_interrupt = r->start; | 
|  | res->bch_high_interrupt = r->end; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void release_bch_irq(struct gpmi_nand_data *this) | 
|  | { | 
|  | struct resources *res = &this->resources; | 
|  | int i = res->bch_low_interrupt; | 
|  |  | 
|  | for (; i <= res->bch_high_interrupt; i++) | 
|  | free_irq(i, this); | 
|  | } | 
|  |  | 
|  | static bool gpmi_dma_filter(struct dma_chan *chan, void *param) | 
|  | { | 
|  | struct gpmi_nand_data *this = param; | 
|  | struct resource *r = this->private; | 
|  |  | 
|  | if (!mxs_dma_is_apbh(chan)) | 
|  | return false; | 
|  | /* | 
|  | * only catch the GPMI dma channels : | 
|  | *	for mx23 :	MX23_DMA_GPMI0 ~ MX23_DMA_GPMI3 | 
|  | *		(These four channels share the same IRQ!) | 
|  | * | 
|  | *	for mx28 :	MX28_DMA_GPMI0 ~ MX28_DMA_GPMI7 | 
|  | *		(These eight channels share the same IRQ!) | 
|  | */ | 
|  | if (r->start <= chan->chan_id && chan->chan_id <= r->end) { | 
|  | chan->private = &this->dma_data; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void release_dma_channels(struct gpmi_nand_data *this) | 
|  | { | 
|  | unsigned int i; | 
|  | for (i = 0; i < DMA_CHANS; i++) | 
|  | if (this->dma_chans[i]) { | 
|  | dma_release_channel(this->dma_chans[i]); | 
|  | this->dma_chans[i] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __devinit acquire_dma_channels(struct gpmi_nand_data *this) | 
|  | { | 
|  | struct platform_device *pdev = this->pdev; | 
|  | struct gpmi_nand_platform_data *pdata = this->pdata; | 
|  | struct resources *res = &this->resources; | 
|  | struct resource *r, *r_dma; | 
|  | unsigned int i; | 
|  |  | 
|  | r = platform_get_resource_byname(pdev, IORESOURCE_DMA, | 
|  | GPMI_NAND_DMA_CHANNELS_RES_NAME); | 
|  | r_dma = platform_get_resource_byname(pdev, IORESOURCE_IRQ, | 
|  | GPMI_NAND_DMA_INTERRUPT_RES_NAME); | 
|  | if (!r || !r_dma) { | 
|  | pr_err("Can't get resource for DMA\n"); | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | /* used in gpmi_dma_filter() */ | 
|  | this->private = r; | 
|  |  | 
|  | for (i = r->start; i <= r->end; i++) { | 
|  | struct dma_chan *dma_chan; | 
|  | dma_cap_mask_t mask; | 
|  |  | 
|  | if (i - r->start >= pdata->max_chip_count) | 
|  | break; | 
|  |  | 
|  | dma_cap_zero(mask); | 
|  | dma_cap_set(DMA_SLAVE, mask); | 
|  |  | 
|  | /* get the DMA interrupt */ | 
|  | if (r_dma->start == r_dma->end) { | 
|  | /* only register the first. */ | 
|  | if (i == r->start) | 
|  | this->dma_data.chan_irq = r_dma->start; | 
|  | else | 
|  | this->dma_data.chan_irq = NO_IRQ; | 
|  | } else | 
|  | this->dma_data.chan_irq = r_dma->start + (i - r->start); | 
|  |  | 
|  | dma_chan = dma_request_channel(mask, gpmi_dma_filter, this); | 
|  | if (!dma_chan) | 
|  | goto acquire_err; | 
|  |  | 
|  | /* fill the first empty item */ | 
|  | this->dma_chans[i - r->start] = dma_chan; | 
|  | } | 
|  |  | 
|  | res->dma_low_channel = r->start; | 
|  | res->dma_high_channel = i; | 
|  | return 0; | 
|  |  | 
|  | acquire_err: | 
|  | pr_err("Can't acquire DMA channel %u\n", i); | 
|  | release_dma_channels(this); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int __devinit acquire_resources(struct gpmi_nand_data *this) | 
|  | { | 
|  | struct resources *res = &this->resources; | 
|  | int ret; | 
|  |  | 
|  | ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME); | 
|  | if (ret) | 
|  | goto exit_regs; | 
|  |  | 
|  | ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME); | 
|  | if (ret) | 
|  | goto exit_regs; | 
|  |  | 
|  | ret = acquire_bch_irq(this, bch_irq); | 
|  | if (ret) | 
|  | goto exit_regs; | 
|  |  | 
|  | ret = acquire_dma_channels(this); | 
|  | if (ret) | 
|  | goto exit_dma_channels; | 
|  |  | 
|  | res->clock = clk_get(&this->pdev->dev, NULL); | 
|  | if (IS_ERR(res->clock)) { | 
|  | pr_err("can not get the clock\n"); | 
|  | ret = -ENOENT; | 
|  | goto exit_clock; | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | exit_clock: | 
|  | release_dma_channels(this); | 
|  | exit_dma_channels: | 
|  | release_bch_irq(this); | 
|  | exit_regs: | 
|  | release_register_block(this); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void release_resources(struct gpmi_nand_data *this) | 
|  | { | 
|  | struct resources *r = &this->resources; | 
|  |  | 
|  | clk_put(r->clock); | 
|  | release_register_block(this); | 
|  | release_bch_irq(this); | 
|  | release_dma_channels(this); | 
|  | } | 
|  |  | 
|  | static int __devinit init_hardware(struct gpmi_nand_data *this) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * This structure contains the "safe" GPMI timing that should succeed | 
|  | * with any NAND Flash device | 
|  | * (although, with less-than-optimal performance). | 
|  | */ | 
|  | struct nand_timing  safe_timing = { | 
|  | .data_setup_in_ns        = 80, | 
|  | .data_hold_in_ns         = 60, | 
|  | .address_setup_in_ns     = 25, | 
|  | .gpmi_sample_delay_in_ns =  6, | 
|  | .tREA_in_ns              = -1, | 
|  | .tRLOH_in_ns             = -1, | 
|  | .tRHOH_in_ns             = -1, | 
|  | }; | 
|  |  | 
|  | /* Initialize the hardwares. */ | 
|  | ret = gpmi_init(this); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | this->timing = safe_timing; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int read_page_prepare(struct gpmi_nand_data *this, | 
|  | void *destination, unsigned length, | 
|  | void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, | 
|  | void **use_virt, dma_addr_t *use_phys) | 
|  | { | 
|  | struct device *dev = this->dev; | 
|  |  | 
|  | if (virt_addr_valid(destination)) { | 
|  | dma_addr_t dest_phys; | 
|  |  | 
|  | dest_phys = dma_map_single(dev, destination, | 
|  | length, DMA_FROM_DEVICE); | 
|  | if (dma_mapping_error(dev, dest_phys)) { | 
|  | if (alt_size < length) { | 
|  | pr_err("Alternate buffer is too small\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | goto map_failed; | 
|  | } | 
|  | *use_virt = destination; | 
|  | *use_phys = dest_phys; | 
|  | this->direct_dma_map_ok = true; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | map_failed: | 
|  | *use_virt = alt_virt; | 
|  | *use_phys = alt_phys; | 
|  | this->direct_dma_map_ok = false; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void read_page_end(struct gpmi_nand_data *this, | 
|  | void *destination, unsigned length, | 
|  | void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, | 
|  | void *used_virt, dma_addr_t used_phys) | 
|  | { | 
|  | if (this->direct_dma_map_ok) | 
|  | dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE); | 
|  | } | 
|  |  | 
|  | static inline void read_page_swap_end(struct gpmi_nand_data *this, | 
|  | void *destination, unsigned length, | 
|  | void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, | 
|  | void *used_virt, dma_addr_t used_phys) | 
|  | { | 
|  | if (!this->direct_dma_map_ok) | 
|  | memcpy(destination, alt_virt, length); | 
|  | } | 
|  |  | 
|  | static int send_page_prepare(struct gpmi_nand_data *this, | 
|  | const void *source, unsigned length, | 
|  | void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, | 
|  | const void **use_virt, dma_addr_t *use_phys) | 
|  | { | 
|  | struct device *dev = this->dev; | 
|  |  | 
|  | if (virt_addr_valid(source)) { | 
|  | dma_addr_t source_phys; | 
|  |  | 
|  | source_phys = dma_map_single(dev, (void *)source, length, | 
|  | DMA_TO_DEVICE); | 
|  | if (dma_mapping_error(dev, source_phys)) { | 
|  | if (alt_size < length) { | 
|  | pr_err("Alternate buffer is too small\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | goto map_failed; | 
|  | } | 
|  | *use_virt = source; | 
|  | *use_phys = source_phys; | 
|  | return 0; | 
|  | } | 
|  | map_failed: | 
|  | /* | 
|  | * Copy the content of the source buffer into the alternate | 
|  | * buffer and set up the return values accordingly. | 
|  | */ | 
|  | memcpy(alt_virt, source, length); | 
|  |  | 
|  | *use_virt = alt_virt; | 
|  | *use_phys = alt_phys; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void send_page_end(struct gpmi_nand_data *this, | 
|  | const void *source, unsigned length, | 
|  | void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, | 
|  | const void *used_virt, dma_addr_t used_phys) | 
|  | { | 
|  | struct device *dev = this->dev; | 
|  | if (used_virt == source) | 
|  | dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE); | 
|  | } | 
|  |  | 
|  | static void gpmi_free_dma_buffer(struct gpmi_nand_data *this) | 
|  | { | 
|  | struct device *dev = this->dev; | 
|  |  | 
|  | if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt)) | 
|  | dma_free_coherent(dev, this->page_buffer_size, | 
|  | this->page_buffer_virt, | 
|  | this->page_buffer_phys); | 
|  | kfree(this->cmd_buffer); | 
|  | kfree(this->data_buffer_dma); | 
|  |  | 
|  | this->cmd_buffer	= NULL; | 
|  | this->data_buffer_dma	= NULL; | 
|  | this->page_buffer_virt	= NULL; | 
|  | this->page_buffer_size	=  0; | 
|  | } | 
|  |  | 
|  | /* Allocate the DMA buffers */ | 
|  | static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this) | 
|  | { | 
|  | struct bch_geometry *geo = &this->bch_geometry; | 
|  | struct device *dev = this->dev; | 
|  |  | 
|  | /* [1] Allocate a command buffer. PAGE_SIZE is enough. */ | 
|  | this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA); | 
|  | if (this->cmd_buffer == NULL) | 
|  | goto error_alloc; | 
|  |  | 
|  | /* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */ | 
|  | this->data_buffer_dma = kzalloc(PAGE_SIZE, GFP_DMA); | 
|  | if (this->data_buffer_dma == NULL) | 
|  | goto error_alloc; | 
|  |  | 
|  | /* | 
|  | * [3] Allocate the page buffer. | 
|  | * | 
|  | * Both the payload buffer and the auxiliary buffer must appear on | 
|  | * 32-bit boundaries. We presume the size of the payload buffer is a | 
|  | * power of two and is much larger than four, which guarantees the | 
|  | * auxiliary buffer will appear on a 32-bit boundary. | 
|  | */ | 
|  | this->page_buffer_size = geo->payload_size + geo->auxiliary_size; | 
|  | this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size, | 
|  | &this->page_buffer_phys, GFP_DMA); | 
|  | if (!this->page_buffer_virt) | 
|  | goto error_alloc; | 
|  |  | 
|  |  | 
|  | /* Slice up the page buffer. */ | 
|  | this->payload_virt = this->page_buffer_virt; | 
|  | this->payload_phys = this->page_buffer_phys; | 
|  | this->auxiliary_virt = this->payload_virt + geo->payload_size; | 
|  | this->auxiliary_phys = this->payload_phys + geo->payload_size; | 
|  | return 0; | 
|  |  | 
|  | error_alloc: | 
|  | gpmi_free_dma_buffer(this); | 
|  | pr_err("allocate DMA buffer ret!!\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct gpmi_nand_data *this = chip->priv; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Every operation begins with a command byte and a series of zero or | 
|  | * more address bytes. These are distinguished by either the Address | 
|  | * Latch Enable (ALE) or Command Latch Enable (CLE) signals being | 
|  | * asserted. When MTD is ready to execute the command, it will deassert | 
|  | * both latch enables. | 
|  | * | 
|  | * Rather than run a separate DMA operation for every single byte, we | 
|  | * queue them up and run a single DMA operation for the entire series | 
|  | * of command and data bytes. NAND_CMD_NONE means the END of the queue. | 
|  | */ | 
|  | if ((ctrl & (NAND_ALE | NAND_CLE))) { | 
|  | if (data != NAND_CMD_NONE) | 
|  | this->cmd_buffer[this->command_length++] = data; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!this->command_length) | 
|  | return; | 
|  |  | 
|  | ret = gpmi_send_command(this); | 
|  | if (ret) | 
|  | pr_err("Chip: %u, Error %d\n", this->current_chip, ret); | 
|  |  | 
|  | this->command_length = 0; | 
|  | } | 
|  |  | 
|  | static int gpmi_dev_ready(struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct gpmi_nand_data *this = chip->priv; | 
|  |  | 
|  | return gpmi_is_ready(this, this->current_chip); | 
|  | } | 
|  |  | 
|  | static void gpmi_select_chip(struct mtd_info *mtd, int chipnr) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct gpmi_nand_data *this = chip->priv; | 
|  |  | 
|  | if ((this->current_chip < 0) && (chipnr >= 0)) | 
|  | gpmi_begin(this); | 
|  | else if ((this->current_chip >= 0) && (chipnr < 0)) | 
|  | gpmi_end(this); | 
|  |  | 
|  | this->current_chip = chipnr; | 
|  | } | 
|  |  | 
|  | static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct gpmi_nand_data *this = chip->priv; | 
|  |  | 
|  | pr_debug("len is %d\n", len); | 
|  | this->upper_buf	= buf; | 
|  | this->upper_len	= len; | 
|  |  | 
|  | gpmi_read_data(this); | 
|  | } | 
|  |  | 
|  | static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct gpmi_nand_data *this = chip->priv; | 
|  |  | 
|  | pr_debug("len is %d\n", len); | 
|  | this->upper_buf	= (uint8_t *)buf; | 
|  | this->upper_len	= len; | 
|  |  | 
|  | gpmi_send_data(this); | 
|  | } | 
|  |  | 
|  | static uint8_t gpmi_read_byte(struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct gpmi_nand_data *this = chip->priv; | 
|  | uint8_t *buf = this->data_buffer_dma; | 
|  |  | 
|  | gpmi_read_buf(mtd, buf, 1); | 
|  | return buf[0]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handles block mark swapping. | 
|  | * It can be called in swapping the block mark, or swapping it back, | 
|  | * because the the operations are the same. | 
|  | */ | 
|  | static void block_mark_swapping(struct gpmi_nand_data *this, | 
|  | void *payload, void *auxiliary) | 
|  | { | 
|  | struct bch_geometry *nfc_geo = &this->bch_geometry; | 
|  | unsigned char *p; | 
|  | unsigned char *a; | 
|  | unsigned int  bit; | 
|  | unsigned char mask; | 
|  | unsigned char from_data; | 
|  | unsigned char from_oob; | 
|  |  | 
|  | if (!this->swap_block_mark) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If control arrives here, we're swapping. Make some convenience | 
|  | * variables. | 
|  | */ | 
|  | bit = nfc_geo->block_mark_bit_offset; | 
|  | p   = payload + nfc_geo->block_mark_byte_offset; | 
|  | a   = auxiliary; | 
|  |  | 
|  | /* | 
|  | * Get the byte from the data area that overlays the block mark. Since | 
|  | * the ECC engine applies its own view to the bits in the page, the | 
|  | * physical block mark won't (in general) appear on a byte boundary in | 
|  | * the data. | 
|  | */ | 
|  | from_data = (p[0] >> bit) | (p[1] << (8 - bit)); | 
|  |  | 
|  | /* Get the byte from the OOB. */ | 
|  | from_oob = a[0]; | 
|  |  | 
|  | /* Swap them. */ | 
|  | a[0] = from_data; | 
|  |  | 
|  | mask = (0x1 << bit) - 1; | 
|  | p[0] = (p[0] & mask) | (from_oob << bit); | 
|  |  | 
|  | mask = ~0 << bit; | 
|  | p[1] = (p[1] & mask) | (from_oob >> (8 - bit)); | 
|  | } | 
|  |  | 
|  | static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | uint8_t *buf, int page) | 
|  | { | 
|  | struct gpmi_nand_data *this = chip->priv; | 
|  | struct bch_geometry *nfc_geo = &this->bch_geometry; | 
|  | void          *payload_virt; | 
|  | dma_addr_t    payload_phys; | 
|  | void          *auxiliary_virt; | 
|  | dma_addr_t    auxiliary_phys; | 
|  | unsigned int  i; | 
|  | unsigned char *status; | 
|  | unsigned int  failed; | 
|  | unsigned int  corrected; | 
|  | int           ret; | 
|  |  | 
|  | pr_debug("page number is : %d\n", page); | 
|  | ret = read_page_prepare(this, buf, mtd->writesize, | 
|  | this->payload_virt, this->payload_phys, | 
|  | nfc_geo->payload_size, | 
|  | &payload_virt, &payload_phys); | 
|  | if (ret) { | 
|  | pr_err("Inadequate DMA buffer\n"); | 
|  | ret = -ENOMEM; | 
|  | return ret; | 
|  | } | 
|  | auxiliary_virt = this->auxiliary_virt; | 
|  | auxiliary_phys = this->auxiliary_phys; | 
|  |  | 
|  | /* go! */ | 
|  | ret = gpmi_read_page(this, payload_phys, auxiliary_phys); | 
|  | read_page_end(this, buf, mtd->writesize, | 
|  | this->payload_virt, this->payload_phys, | 
|  | nfc_geo->payload_size, | 
|  | payload_virt, payload_phys); | 
|  | if (ret) { | 
|  | pr_err("Error in ECC-based read: %d\n", ret); | 
|  | goto exit_nfc; | 
|  | } | 
|  |  | 
|  | /* handle the block mark swapping */ | 
|  | block_mark_swapping(this, payload_virt, auxiliary_virt); | 
|  |  | 
|  | /* Loop over status bytes, accumulating ECC status. */ | 
|  | failed		= 0; | 
|  | corrected	= 0; | 
|  | status		= auxiliary_virt + nfc_geo->auxiliary_status_offset; | 
|  |  | 
|  | for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) { | 
|  | if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED)) | 
|  | continue; | 
|  |  | 
|  | if (*status == STATUS_UNCORRECTABLE) { | 
|  | failed++; | 
|  | continue; | 
|  | } | 
|  | corrected += *status; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Propagate ECC status to the owning MTD only when failed or | 
|  | * corrected times nearly reaches our ECC correction threshold. | 
|  | */ | 
|  | if (failed || corrected >= (nfc_geo->ecc_strength - 1)) { | 
|  | mtd->ecc_stats.failed    += failed; | 
|  | mtd->ecc_stats.corrected += corrected; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob() for | 
|  | * details about our policy for delivering the OOB. | 
|  | * | 
|  | * We fill the caller's buffer with set bits, and then copy the block | 
|  | * mark to th caller's buffer. Note that, if block mark swapping was | 
|  | * necessary, it has already been done, so we can rely on the first | 
|  | * byte of the auxiliary buffer to contain the block mark. | 
|  | */ | 
|  | memset(chip->oob_poi, ~0, mtd->oobsize); | 
|  | chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0]; | 
|  |  | 
|  | read_page_swap_end(this, buf, mtd->writesize, | 
|  | this->payload_virt, this->payload_phys, | 
|  | nfc_geo->payload_size, | 
|  | payload_virt, payload_phys); | 
|  | exit_nfc: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void gpmi_ecc_write_page(struct mtd_info *mtd, | 
|  | struct nand_chip *chip, const uint8_t *buf) | 
|  | { | 
|  | struct gpmi_nand_data *this = chip->priv; | 
|  | struct bch_geometry *nfc_geo = &this->bch_geometry; | 
|  | const void *payload_virt; | 
|  | dma_addr_t payload_phys; | 
|  | const void *auxiliary_virt; | 
|  | dma_addr_t auxiliary_phys; | 
|  | int        ret; | 
|  |  | 
|  | pr_debug("ecc write page.\n"); | 
|  | if (this->swap_block_mark) { | 
|  | /* | 
|  | * If control arrives here, we're doing block mark swapping. | 
|  | * Since we can't modify the caller's buffers, we must copy them | 
|  | * into our own. | 
|  | */ | 
|  | memcpy(this->payload_virt, buf, mtd->writesize); | 
|  | payload_virt = this->payload_virt; | 
|  | payload_phys = this->payload_phys; | 
|  |  | 
|  | memcpy(this->auxiliary_virt, chip->oob_poi, | 
|  | nfc_geo->auxiliary_size); | 
|  | auxiliary_virt = this->auxiliary_virt; | 
|  | auxiliary_phys = this->auxiliary_phys; | 
|  |  | 
|  | /* Handle block mark swapping. */ | 
|  | block_mark_swapping(this, | 
|  | (void *) payload_virt, (void *) auxiliary_virt); | 
|  | } else { | 
|  | /* | 
|  | * If control arrives here, we're not doing block mark swapping, | 
|  | * so we can to try and use the caller's buffers. | 
|  | */ | 
|  | ret = send_page_prepare(this, | 
|  | buf, mtd->writesize, | 
|  | this->payload_virt, this->payload_phys, | 
|  | nfc_geo->payload_size, | 
|  | &payload_virt, &payload_phys); | 
|  | if (ret) { | 
|  | pr_err("Inadequate payload DMA buffer\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ret = send_page_prepare(this, | 
|  | chip->oob_poi, mtd->oobsize, | 
|  | this->auxiliary_virt, this->auxiliary_phys, | 
|  | nfc_geo->auxiliary_size, | 
|  | &auxiliary_virt, &auxiliary_phys); | 
|  | if (ret) { | 
|  | pr_err("Inadequate auxiliary DMA buffer\n"); | 
|  | goto exit_auxiliary; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Ask the NFC. */ | 
|  | ret = gpmi_send_page(this, payload_phys, auxiliary_phys); | 
|  | if (ret) | 
|  | pr_err("Error in ECC-based write: %d\n", ret); | 
|  |  | 
|  | if (!this->swap_block_mark) { | 
|  | send_page_end(this, chip->oob_poi, mtd->oobsize, | 
|  | this->auxiliary_virt, this->auxiliary_phys, | 
|  | nfc_geo->auxiliary_size, | 
|  | auxiliary_virt, auxiliary_phys); | 
|  | exit_auxiliary: | 
|  | send_page_end(this, buf, mtd->writesize, | 
|  | this->payload_virt, this->payload_phys, | 
|  | nfc_geo->payload_size, | 
|  | payload_virt, payload_phys); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There are several places in this driver where we have to handle the OOB and | 
|  | * block marks. This is the function where things are the most complicated, so | 
|  | * this is where we try to explain it all. All the other places refer back to | 
|  | * here. | 
|  | * | 
|  | * These are the rules, in order of decreasing importance: | 
|  | * | 
|  | * 1) Nothing the caller does can be allowed to imperil the block mark. | 
|  | * | 
|  | * 2) In read operations, the first byte of the OOB we return must reflect the | 
|  | *    true state of the block mark, no matter where that block mark appears in | 
|  | *    the physical page. | 
|  | * | 
|  | * 3) ECC-based read operations return an OOB full of set bits (since we never | 
|  | *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads | 
|  | *    return). | 
|  | * | 
|  | * 4) "Raw" read operations return a direct view of the physical bytes in the | 
|  | *    page, using the conventional definition of which bytes are data and which | 
|  | *    are OOB. This gives the caller a way to see the actual, physical bytes | 
|  | *    in the page, without the distortions applied by our ECC engine. | 
|  | * | 
|  | * | 
|  | * What we do for this specific read operation depends on two questions: | 
|  | * | 
|  | * 1) Are we doing a "raw" read, or an ECC-based read? | 
|  | * | 
|  | * 2) Are we using block mark swapping or transcription? | 
|  | * | 
|  | * There are four cases, illustrated by the following Karnaugh map: | 
|  | * | 
|  | *                    |           Raw           |         ECC-based       | | 
|  | *       -------------+-------------------------+-------------------------+ | 
|  | *                    | Read the conventional   |                         | | 
|  | *                    | OOB at the end of the   |                         | | 
|  | *       Swapping     | page and return it. It  |                         | | 
|  | *                    | contains exactly what   |                         | | 
|  | *                    | we want.                | Read the block mark and | | 
|  | *       -------------+-------------------------+ return it in a buffer   | | 
|  | *                    | Read the conventional   | full of set bits.       | | 
|  | *                    | OOB at the end of the   |                         | | 
|  | *                    | page and also the block |                         | | 
|  | *       Transcribing | mark in the metadata.   |                         | | 
|  | *                    | Copy the block mark     |                         | | 
|  | *                    | into the first byte of  |                         | | 
|  | *                    | the OOB.                |                         | | 
|  | *       -------------+-------------------------+-------------------------+ | 
|  | * | 
|  | * Note that we break rule #4 in the Transcribing/Raw case because we're not | 
|  | * giving an accurate view of the actual, physical bytes in the page (we're | 
|  | * overwriting the block mark). That's OK because it's more important to follow | 
|  | * rule #2. | 
|  | * | 
|  | * It turns out that knowing whether we want an "ECC-based" or "raw" read is not | 
|  | * easy. When reading a page, for example, the NAND Flash MTD code calls our | 
|  | * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an | 
|  | * ECC-based or raw view of the page is implicit in which function it calls | 
|  | * (there is a similar pair of ECC-based/raw functions for writing). | 
|  | * | 
|  | * Since MTD assumes the OOB is not covered by ECC, there is no pair of | 
|  | * ECC-based/raw functions for reading or or writing the OOB. The fact that the | 
|  | * caller wants an ECC-based or raw view of the page is not propagated down to | 
|  | * this driver. | 
|  | */ | 
|  | static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | int page, int sndcmd) | 
|  | { | 
|  | struct gpmi_nand_data *this = chip->priv; | 
|  |  | 
|  | pr_debug("page number is %d\n", page); | 
|  | /* clear the OOB buffer */ | 
|  | memset(chip->oob_poi, ~0, mtd->oobsize); | 
|  |  | 
|  | /* Read out the conventional OOB. */ | 
|  | chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); | 
|  | chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); | 
|  |  | 
|  | /* | 
|  | * Now, we want to make sure the block mark is correct. In the | 
|  | * Swapping/Raw case, we already have it. Otherwise, we need to | 
|  | * explicitly read it. | 
|  | */ | 
|  | if (!this->swap_block_mark) { | 
|  | /* Read the block mark into the first byte of the OOB buffer. */ | 
|  | chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); | 
|  | chip->oob_poi[0] = chip->read_byte(mtd); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true, indicating that the next call to this function must send | 
|  | * a command. | 
|  | */ | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int | 
|  | gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) | 
|  | { | 
|  | /* | 
|  | * The BCH will use all the (page + oob). | 
|  | * Our gpmi_hw_ecclayout can only prohibit the JFFS2 to write the oob. | 
|  | * But it can not stop some ioctls such MEMWRITEOOB which uses | 
|  | * MTD_OPS_PLACE_OOB. So We have to implement this function to prohibit | 
|  | * these ioctls too. | 
|  | */ | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct gpmi_nand_data *this = chip->priv; | 
|  | int block, ret = 0; | 
|  | uint8_t *block_mark; | 
|  | int column, page, status, chipnr; | 
|  |  | 
|  | /* Get block number */ | 
|  | block = (int)(ofs >> chip->bbt_erase_shift); | 
|  | if (chip->bbt) | 
|  | chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); | 
|  |  | 
|  | /* Do we have a flash based bad block table ? */ | 
|  | if (chip->options & NAND_BBT_USE_FLASH) | 
|  | ret = nand_update_bbt(mtd, ofs); | 
|  | else { | 
|  | chipnr = (int)(ofs >> chip->chip_shift); | 
|  | chip->select_chip(mtd, chipnr); | 
|  |  | 
|  | column = this->swap_block_mark ? mtd->writesize : 0; | 
|  |  | 
|  | /* Write the block mark. */ | 
|  | block_mark = this->data_buffer_dma; | 
|  | block_mark[0] = 0; /* bad block marker */ | 
|  |  | 
|  | /* Shift to get page */ | 
|  | page = (int)(ofs >> chip->page_shift); | 
|  |  | 
|  | chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page); | 
|  | chip->write_buf(mtd, block_mark, 1); | 
|  | chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); | 
|  |  | 
|  | status = chip->waitfunc(mtd, chip); | 
|  | if (status & NAND_STATUS_FAIL) | 
|  | ret = -EIO; | 
|  |  | 
|  | chip->select_chip(mtd, -1); | 
|  | } | 
|  | if (!ret) | 
|  | mtd->ecc_stats.badblocks++; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __devinit nand_boot_set_geometry(struct gpmi_nand_data *this) | 
|  | { | 
|  | struct boot_rom_geometry *geometry = &this->rom_geometry; | 
|  |  | 
|  | /* | 
|  | * Set the boot block stride size. | 
|  | * | 
|  | * In principle, we should be reading this from the OTP bits, since | 
|  | * that's where the ROM is going to get it. In fact, we don't have any | 
|  | * way to read the OTP bits, so we go with the default and hope for the | 
|  | * best. | 
|  | */ | 
|  | geometry->stride_size_in_pages = 64; | 
|  |  | 
|  | /* | 
|  | * Set the search area stride exponent. | 
|  | * | 
|  | * In principle, we should be reading this from the OTP bits, since | 
|  | * that's where the ROM is going to get it. In fact, we don't have any | 
|  | * way to read the OTP bits, so we go with the default and hope for the | 
|  | * best. | 
|  | */ | 
|  | geometry->search_area_stride_exponent = 2; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const char  *fingerprint = "STMP"; | 
|  | static int __devinit mx23_check_transcription_stamp(struct gpmi_nand_data *this) | 
|  | { | 
|  | struct boot_rom_geometry *rom_geo = &this->rom_geometry; | 
|  | struct device *dev = this->dev; | 
|  | struct mtd_info *mtd = &this->mtd; | 
|  | struct nand_chip *chip = &this->nand; | 
|  | unsigned int search_area_size_in_strides; | 
|  | unsigned int stride; | 
|  | unsigned int page; | 
|  | loff_t byte; | 
|  | uint8_t *buffer = chip->buffers->databuf; | 
|  | int saved_chip_number; | 
|  | int found_an_ncb_fingerprint = false; | 
|  |  | 
|  | /* Compute the number of strides in a search area. */ | 
|  | search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; | 
|  |  | 
|  | saved_chip_number = this->current_chip; | 
|  | chip->select_chip(mtd, 0); | 
|  |  | 
|  | /* | 
|  | * Loop through the first search area, looking for the NCB fingerprint. | 
|  | */ | 
|  | dev_dbg(dev, "Scanning for an NCB fingerprint...\n"); | 
|  |  | 
|  | for (stride = 0; stride < search_area_size_in_strides; stride++) { | 
|  | /* Compute the page and byte addresses. */ | 
|  | page = stride * rom_geo->stride_size_in_pages; | 
|  | byte = page   * mtd->writesize; | 
|  |  | 
|  | dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page); | 
|  |  | 
|  | /* | 
|  | * Read the NCB fingerprint. The fingerprint is four bytes long | 
|  | * and starts in the 12th byte of the page. | 
|  | */ | 
|  | chip->cmdfunc(mtd, NAND_CMD_READ0, 12, page); | 
|  | chip->read_buf(mtd, buffer, strlen(fingerprint)); | 
|  |  | 
|  | /* Look for the fingerprint. */ | 
|  | if (!memcmp(buffer, fingerprint, strlen(fingerprint))) { | 
|  | found_an_ncb_fingerprint = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | chip->select_chip(mtd, saved_chip_number); | 
|  |  | 
|  | if (found_an_ncb_fingerprint) | 
|  | dev_dbg(dev, "\tFound a fingerprint\n"); | 
|  | else | 
|  | dev_dbg(dev, "\tNo fingerprint found\n"); | 
|  | return found_an_ncb_fingerprint; | 
|  | } | 
|  |  | 
|  | /* Writes a transcription stamp. */ | 
|  | static int __devinit mx23_write_transcription_stamp(struct gpmi_nand_data *this) | 
|  | { | 
|  | struct device *dev = this->dev; | 
|  | struct boot_rom_geometry *rom_geo = &this->rom_geometry; | 
|  | struct mtd_info *mtd = &this->mtd; | 
|  | struct nand_chip *chip = &this->nand; | 
|  | unsigned int block_size_in_pages; | 
|  | unsigned int search_area_size_in_strides; | 
|  | unsigned int search_area_size_in_pages; | 
|  | unsigned int search_area_size_in_blocks; | 
|  | unsigned int block; | 
|  | unsigned int stride; | 
|  | unsigned int page; | 
|  | loff_t       byte; | 
|  | uint8_t      *buffer = chip->buffers->databuf; | 
|  | int saved_chip_number; | 
|  | int status; | 
|  |  | 
|  | /* Compute the search area geometry. */ | 
|  | block_size_in_pages = mtd->erasesize / mtd->writesize; | 
|  | search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; | 
|  | search_area_size_in_pages = search_area_size_in_strides * | 
|  | rom_geo->stride_size_in_pages; | 
|  | search_area_size_in_blocks = | 
|  | (search_area_size_in_pages + (block_size_in_pages - 1)) / | 
|  | block_size_in_pages; | 
|  |  | 
|  | dev_dbg(dev, "Search Area Geometry :\n"); | 
|  | dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks); | 
|  | dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides); | 
|  | dev_dbg(dev, "\tin Pages  : %u\n", search_area_size_in_pages); | 
|  |  | 
|  | /* Select chip 0. */ | 
|  | saved_chip_number = this->current_chip; | 
|  | chip->select_chip(mtd, 0); | 
|  |  | 
|  | /* Loop over blocks in the first search area, erasing them. */ | 
|  | dev_dbg(dev, "Erasing the search area...\n"); | 
|  |  | 
|  | for (block = 0; block < search_area_size_in_blocks; block++) { | 
|  | /* Compute the page address. */ | 
|  | page = block * block_size_in_pages; | 
|  |  | 
|  | /* Erase this block. */ | 
|  | dev_dbg(dev, "\tErasing block 0x%x\n", block); | 
|  | chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); | 
|  | chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); | 
|  |  | 
|  | /* Wait for the erase to finish. */ | 
|  | status = chip->waitfunc(mtd, chip); | 
|  | if (status & NAND_STATUS_FAIL) | 
|  | dev_err(dev, "[%s] Erase failed.\n", __func__); | 
|  | } | 
|  |  | 
|  | /* Write the NCB fingerprint into the page buffer. */ | 
|  | memset(buffer, ~0, mtd->writesize); | 
|  | memset(chip->oob_poi, ~0, mtd->oobsize); | 
|  | memcpy(buffer + 12, fingerprint, strlen(fingerprint)); | 
|  |  | 
|  | /* Loop through the first search area, writing NCB fingerprints. */ | 
|  | dev_dbg(dev, "Writing NCB fingerprints...\n"); | 
|  | for (stride = 0; stride < search_area_size_in_strides; stride++) { | 
|  | /* Compute the page and byte addresses. */ | 
|  | page = stride * rom_geo->stride_size_in_pages; | 
|  | byte = page   * mtd->writesize; | 
|  |  | 
|  | /* Write the first page of the current stride. */ | 
|  | dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page); | 
|  | chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); | 
|  | chip->ecc.write_page_raw(mtd, chip, buffer); | 
|  | chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); | 
|  |  | 
|  | /* Wait for the write to finish. */ | 
|  | status = chip->waitfunc(mtd, chip); | 
|  | if (status & NAND_STATUS_FAIL) | 
|  | dev_err(dev, "[%s] Write failed.\n", __func__); | 
|  | } | 
|  |  | 
|  | /* Deselect chip 0. */ | 
|  | chip->select_chip(mtd, saved_chip_number); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __devinit mx23_boot_init(struct gpmi_nand_data  *this) | 
|  | { | 
|  | struct device *dev = this->dev; | 
|  | struct nand_chip *chip = &this->nand; | 
|  | struct mtd_info *mtd = &this->mtd; | 
|  | unsigned int block_count; | 
|  | unsigned int block; | 
|  | int     chipnr; | 
|  | int     page; | 
|  | loff_t  byte; | 
|  | uint8_t block_mark; | 
|  | int     ret = 0; | 
|  |  | 
|  | /* | 
|  | * If control arrives here, we can't use block mark swapping, which | 
|  | * means we're forced to use transcription. First, scan for the | 
|  | * transcription stamp. If we find it, then we don't have to do | 
|  | * anything -- the block marks are already transcribed. | 
|  | */ | 
|  | if (mx23_check_transcription_stamp(this)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If control arrives here, we couldn't find a transcription stamp, so | 
|  | * so we presume the block marks are in the conventional location. | 
|  | */ | 
|  | dev_dbg(dev, "Transcribing bad block marks...\n"); | 
|  |  | 
|  | /* Compute the number of blocks in the entire medium. */ | 
|  | block_count = chip->chipsize >> chip->phys_erase_shift; | 
|  |  | 
|  | /* | 
|  | * Loop over all the blocks in the medium, transcribing block marks as | 
|  | * we go. | 
|  | */ | 
|  | for (block = 0; block < block_count; block++) { | 
|  | /* | 
|  | * Compute the chip, page and byte addresses for this block's | 
|  | * conventional mark. | 
|  | */ | 
|  | chipnr = block >> (chip->chip_shift - chip->phys_erase_shift); | 
|  | page = block << (chip->phys_erase_shift - chip->page_shift); | 
|  | byte = block <<  chip->phys_erase_shift; | 
|  |  | 
|  | /* Send the command to read the conventional block mark. */ | 
|  | chip->select_chip(mtd, chipnr); | 
|  | chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); | 
|  | block_mark = chip->read_byte(mtd); | 
|  | chip->select_chip(mtd, -1); | 
|  |  | 
|  | /* | 
|  | * Check if the block is marked bad. If so, we need to mark it | 
|  | * again, but this time the result will be a mark in the | 
|  | * location where we transcribe block marks. | 
|  | */ | 
|  | if (block_mark != 0xff) { | 
|  | dev_dbg(dev, "Transcribing mark in block %u\n", block); | 
|  | ret = chip->block_markbad(mtd, byte); | 
|  | if (ret) | 
|  | dev_err(dev, "Failed to mark block bad with " | 
|  | "ret %d\n", ret); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Write the stamp that indicates we've transcribed the block marks. */ | 
|  | mx23_write_transcription_stamp(this); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __devinit nand_boot_init(struct gpmi_nand_data  *this) | 
|  | { | 
|  | nand_boot_set_geometry(this); | 
|  |  | 
|  | /* This is ROM arch-specific initilization before the BBT scanning. */ | 
|  | if (GPMI_IS_MX23(this)) | 
|  | return mx23_boot_init(this); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __devinit gpmi_set_geometry(struct gpmi_nand_data *this) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* Free the temporary DMA memory for reading ID. */ | 
|  | gpmi_free_dma_buffer(this); | 
|  |  | 
|  | /* Set up the NFC geometry which is used by BCH. */ | 
|  | ret = bch_set_geometry(this); | 
|  | if (ret) { | 
|  | pr_err("set geometry ret : %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Alloc the new DMA buffers according to the pagesize and oobsize */ | 
|  | return gpmi_alloc_dma_buffer(this); | 
|  | } | 
|  |  | 
|  | static int gpmi_pre_bbt_scan(struct gpmi_nand_data  *this) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */ | 
|  | if (GPMI_IS_MX23(this)) | 
|  | this->swap_block_mark = false; | 
|  | else | 
|  | this->swap_block_mark = true; | 
|  |  | 
|  | /* Set up the medium geometry */ | 
|  | ret = gpmi_set_geometry(this); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* NAND boot init, depends on the gpmi_set_geometry(). */ | 
|  | return nand_boot_init(this); | 
|  | } | 
|  |  | 
|  | static int gpmi_scan_bbt(struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct gpmi_nand_data *this = chip->priv; | 
|  | int ret; | 
|  |  | 
|  | /* Prepare for the BBT scan. */ | 
|  | ret = gpmi_pre_bbt_scan(this); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* use the default BBT implementation */ | 
|  | return nand_default_bbt(mtd); | 
|  | } | 
|  |  | 
|  | void gpmi_nfc_exit(struct gpmi_nand_data *this) | 
|  | { | 
|  | nand_release(&this->mtd); | 
|  | gpmi_free_dma_buffer(this); | 
|  | } | 
|  |  | 
|  | static int __devinit gpmi_nfc_init(struct gpmi_nand_data *this) | 
|  | { | 
|  | struct gpmi_nand_platform_data *pdata = this->pdata; | 
|  | struct mtd_info  *mtd = &this->mtd; | 
|  | struct nand_chip *chip = &this->nand; | 
|  | int ret; | 
|  |  | 
|  | /* init current chip */ | 
|  | this->current_chip	= -1; | 
|  |  | 
|  | /* init the MTD data structures */ | 
|  | mtd->priv		= chip; | 
|  | mtd->name		= "gpmi-nand"; | 
|  | mtd->owner		= THIS_MODULE; | 
|  |  | 
|  | /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */ | 
|  | chip->priv		= this; | 
|  | chip->select_chip	= gpmi_select_chip; | 
|  | chip->cmd_ctrl		= gpmi_cmd_ctrl; | 
|  | chip->dev_ready		= gpmi_dev_ready; | 
|  | chip->read_byte		= gpmi_read_byte; | 
|  | chip->read_buf		= gpmi_read_buf; | 
|  | chip->write_buf		= gpmi_write_buf; | 
|  | chip->ecc.read_page	= gpmi_ecc_read_page; | 
|  | chip->ecc.write_page	= gpmi_ecc_write_page; | 
|  | chip->ecc.read_oob	= gpmi_ecc_read_oob; | 
|  | chip->ecc.write_oob	= gpmi_ecc_write_oob; | 
|  | chip->scan_bbt		= gpmi_scan_bbt; | 
|  | chip->badblock_pattern	= &gpmi_bbt_descr; | 
|  | chip->block_markbad	= gpmi_block_markbad; | 
|  | chip->options		|= NAND_NO_SUBPAGE_WRITE; | 
|  | chip->ecc.mode		= NAND_ECC_HW; | 
|  | chip->ecc.size		= 1; | 
|  | chip->ecc.layout	= &gpmi_hw_ecclayout; | 
|  |  | 
|  | /* Allocate a temporary DMA buffer for reading ID in the nand_scan() */ | 
|  | this->bch_geometry.payload_size = 1024; | 
|  | this->bch_geometry.auxiliary_size = 128; | 
|  | ret = gpmi_alloc_dma_buffer(this); | 
|  | if (ret) | 
|  | goto err_out; | 
|  |  | 
|  | ret = nand_scan(mtd, pdata->max_chip_count); | 
|  | if (ret) { | 
|  | pr_err("Chip scan failed\n"); | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | ret = mtd_device_parse_register(mtd, NULL, NULL, | 
|  | pdata->partitions, pdata->partition_count); | 
|  | if (ret) | 
|  | goto err_out; | 
|  | return 0; | 
|  |  | 
|  | err_out: | 
|  | gpmi_nfc_exit(this); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __devinit gpmi_nand_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct gpmi_nand_platform_data *pdata = pdev->dev.platform_data; | 
|  | struct gpmi_nand_data *this; | 
|  | int ret; | 
|  |  | 
|  | this = kzalloc(sizeof(*this), GFP_KERNEL); | 
|  | if (!this) { | 
|  | pr_err("Failed to allocate per-device memory\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | platform_set_drvdata(pdev, this); | 
|  | this->pdev  = pdev; | 
|  | this->dev   = &pdev->dev; | 
|  | this->pdata = pdata; | 
|  |  | 
|  | if (pdata->platform_init) { | 
|  | ret = pdata->platform_init(); | 
|  | if (ret) | 
|  | goto platform_init_error; | 
|  | } | 
|  |  | 
|  | ret = acquire_resources(this); | 
|  | if (ret) | 
|  | goto exit_acquire_resources; | 
|  |  | 
|  | ret = init_hardware(this); | 
|  | if (ret) | 
|  | goto exit_nfc_init; | 
|  |  | 
|  | ret = gpmi_nfc_init(this); | 
|  | if (ret) | 
|  | goto exit_nfc_init; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | exit_nfc_init: | 
|  | release_resources(this); | 
|  | platform_init_error: | 
|  | exit_acquire_resources: | 
|  | platform_set_drvdata(pdev, NULL); | 
|  | kfree(this); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __exit gpmi_nand_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct gpmi_nand_data *this = platform_get_drvdata(pdev); | 
|  |  | 
|  | gpmi_nfc_exit(this); | 
|  | release_resources(this); | 
|  | platform_set_drvdata(pdev, NULL); | 
|  | kfree(this); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct platform_device_id gpmi_ids[] = { | 
|  | { | 
|  | .name = "imx23-gpmi-nand", | 
|  | .driver_data = IS_MX23, | 
|  | }, { | 
|  | .name = "imx28-gpmi-nand", | 
|  | .driver_data = IS_MX28, | 
|  | }, {}, | 
|  | }; | 
|  |  | 
|  | static struct platform_driver gpmi_nand_driver = { | 
|  | .driver = { | 
|  | .name = "gpmi-nand", | 
|  | }, | 
|  | .probe   = gpmi_nand_probe, | 
|  | .remove  = __exit_p(gpmi_nand_remove), | 
|  | .id_table = gpmi_ids, | 
|  | }; | 
|  |  | 
|  | static int __init gpmi_nand_init(void) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = platform_driver_register(&gpmi_nand_driver); | 
|  | if (err == 0) | 
|  | printk(KERN_INFO "GPMI NAND driver registered. (IMX)\n"); | 
|  | else | 
|  | pr_err("i.MX GPMI NAND driver registration failed\n"); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void __exit gpmi_nand_exit(void) | 
|  | { | 
|  | platform_driver_unregister(&gpmi_nand_driver); | 
|  | } | 
|  |  | 
|  | module_init(gpmi_nand_init); | 
|  | module_exit(gpmi_nand_exit); | 
|  |  | 
|  | MODULE_AUTHOR("Freescale Semiconductor, Inc."); | 
|  | MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver"); | 
|  | MODULE_LICENSE("GPL"); |