|  | /* | 
|  | *  c 2001 PPC 64 Team, IBM Corp | 
|  | * | 
|  | *      This program is free software; you can redistribute it and/or | 
|  | *      modify it under the terms of the GNU General Public License | 
|  | *      as published by the Free Software Foundation; either version | 
|  | *      2 of the License, or (at your option) any later version. | 
|  | * | 
|  | * /dev/nvram driver for PPC64 | 
|  | * | 
|  | * This perhaps should live in drivers/char | 
|  | * | 
|  | * TODO: Split the /dev/nvram part (that one can use | 
|  | *       drivers/char/generic_nvram.c) from the arch & partition | 
|  | *       parsing code. | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/miscdevice.h> | 
|  | #include <linux/fcntl.h> | 
|  | #include <linux/nvram.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/nvram.h> | 
|  | #include <asm/rtas.h> | 
|  | #include <asm/prom.h> | 
|  | #include <asm/machdep.h> | 
|  |  | 
|  | #undef DEBUG_NVRAM | 
|  |  | 
|  | static struct nvram_partition * nvram_part; | 
|  | static long nvram_error_log_index = -1; | 
|  | static long nvram_error_log_size = 0; | 
|  |  | 
|  | struct err_log_info { | 
|  | int error_type; | 
|  | unsigned int seq_num; | 
|  | }; | 
|  |  | 
|  | static loff_t dev_nvram_llseek(struct file *file, loff_t offset, int origin) | 
|  | { | 
|  | int size; | 
|  |  | 
|  | if (ppc_md.nvram_size == NULL) | 
|  | return -ENODEV; | 
|  | size = ppc_md.nvram_size(); | 
|  |  | 
|  | switch (origin) { | 
|  | case 1: | 
|  | offset += file->f_pos; | 
|  | break; | 
|  | case 2: | 
|  | offset += size; | 
|  | break; | 
|  | } | 
|  | if (offset < 0) | 
|  | return -EINVAL; | 
|  | file->f_pos = offset; | 
|  | return file->f_pos; | 
|  | } | 
|  |  | 
|  |  | 
|  | static ssize_t dev_nvram_read(struct file *file, char __user *buf, | 
|  | size_t count, loff_t *ppos) | 
|  | { | 
|  | ssize_t ret; | 
|  | char *tmp = NULL; | 
|  | ssize_t size; | 
|  |  | 
|  | ret = -ENODEV; | 
|  | if (!ppc_md.nvram_size) | 
|  | goto out; | 
|  |  | 
|  | ret = 0; | 
|  | size = ppc_md.nvram_size(); | 
|  | if (*ppos >= size || size < 0) | 
|  | goto out; | 
|  |  | 
|  | count = min_t(size_t, count, size - *ppos); | 
|  | count = min(count, PAGE_SIZE); | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | tmp = kmalloc(count, GFP_KERNEL); | 
|  | if (!tmp) | 
|  | goto out; | 
|  |  | 
|  | ret = ppc_md.nvram_read(tmp, count, ppos); | 
|  | if (ret <= 0) | 
|  | goto out; | 
|  |  | 
|  | if (copy_to_user(buf, tmp, ret)) | 
|  | ret = -EFAULT; | 
|  |  | 
|  | out: | 
|  | kfree(tmp); | 
|  | return ret; | 
|  |  | 
|  | } | 
|  |  | 
|  | static ssize_t dev_nvram_write(struct file *file, const char __user *buf, | 
|  | size_t count, loff_t *ppos) | 
|  | { | 
|  | ssize_t ret; | 
|  | char *tmp = NULL; | 
|  | ssize_t size; | 
|  |  | 
|  | ret = -ENODEV; | 
|  | if (!ppc_md.nvram_size) | 
|  | goto out; | 
|  |  | 
|  | ret = 0; | 
|  | size = ppc_md.nvram_size(); | 
|  | if (*ppos >= size || size < 0) | 
|  | goto out; | 
|  |  | 
|  | count = min_t(size_t, count, size - *ppos); | 
|  | count = min(count, PAGE_SIZE); | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | tmp = kmalloc(count, GFP_KERNEL); | 
|  | if (!tmp) | 
|  | goto out; | 
|  |  | 
|  | ret = -EFAULT; | 
|  | if (copy_from_user(tmp, buf, count)) | 
|  | goto out; | 
|  |  | 
|  | ret = ppc_md.nvram_write(tmp, count, ppos); | 
|  |  | 
|  | out: | 
|  | kfree(tmp); | 
|  | return ret; | 
|  |  | 
|  | } | 
|  |  | 
|  | static long dev_nvram_ioctl(struct file *file, unsigned int cmd, | 
|  | unsigned long arg) | 
|  | { | 
|  | switch(cmd) { | 
|  | #ifdef CONFIG_PPC_PMAC | 
|  | case OBSOLETE_PMAC_NVRAM_GET_OFFSET: | 
|  | printk(KERN_WARNING "nvram: Using obsolete PMAC_NVRAM_GET_OFFSET ioctl\n"); | 
|  | case IOC_NVRAM_GET_OFFSET: { | 
|  | int part, offset; | 
|  |  | 
|  | if (!machine_is(powermac)) | 
|  | return -EINVAL; | 
|  | if (copy_from_user(&part, (void __user*)arg, sizeof(part)) != 0) | 
|  | return -EFAULT; | 
|  | if (part < pmac_nvram_OF || part > pmac_nvram_NR) | 
|  | return -EINVAL; | 
|  | offset = pmac_get_partition(part); | 
|  | if (offset < 0) | 
|  | return offset; | 
|  | if (copy_to_user((void __user*)arg, &offset, sizeof(offset)) != 0) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_PPC_PMAC */ | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | const struct file_operations nvram_fops = { | 
|  | .owner		= THIS_MODULE, | 
|  | .llseek		= dev_nvram_llseek, | 
|  | .read		= dev_nvram_read, | 
|  | .write		= dev_nvram_write, | 
|  | .unlocked_ioctl	= dev_nvram_ioctl, | 
|  | }; | 
|  |  | 
|  | static struct miscdevice nvram_dev = { | 
|  | NVRAM_MINOR, | 
|  | "nvram", | 
|  | &nvram_fops | 
|  | }; | 
|  |  | 
|  |  | 
|  | #ifdef DEBUG_NVRAM | 
|  | static void __init nvram_print_partitions(char * label) | 
|  | { | 
|  | struct list_head * p; | 
|  | struct nvram_partition * tmp_part; | 
|  |  | 
|  | printk(KERN_WARNING "--------%s---------\n", label); | 
|  | printk(KERN_WARNING "indx\t\tsig\tchks\tlen\tname\n"); | 
|  | list_for_each(p, &nvram_part->partition) { | 
|  | tmp_part = list_entry(p, struct nvram_partition, partition); | 
|  | printk(KERN_WARNING "%4d    \t%02x\t%02x\t%d\t%s\n", | 
|  | tmp_part->index, tmp_part->header.signature, | 
|  | tmp_part->header.checksum, tmp_part->header.length, | 
|  | tmp_part->header.name); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | static int __init nvram_write_header(struct nvram_partition * part) | 
|  | { | 
|  | loff_t tmp_index; | 
|  | int rc; | 
|  |  | 
|  | tmp_index = part->index; | 
|  | rc = ppc_md.nvram_write((char *)&part->header, NVRAM_HEADER_LEN, &tmp_index); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  |  | 
|  | static unsigned char __init nvram_checksum(struct nvram_header *p) | 
|  | { | 
|  | unsigned int c_sum, c_sum2; | 
|  | unsigned short *sp = (unsigned short *)p->name; /* assume 6 shorts */ | 
|  | c_sum = p->signature + p->length + sp[0] + sp[1] + sp[2] + sp[3] + sp[4] + sp[5]; | 
|  |  | 
|  | /* The sum may have spilled into the 3rd byte.  Fold it back. */ | 
|  | c_sum = ((c_sum & 0xffff) + (c_sum >> 16)) & 0xffff; | 
|  | /* The sum cannot exceed 2 bytes.  Fold it into a checksum */ | 
|  | c_sum2 = (c_sum >> 8) + (c_sum << 8); | 
|  | c_sum = ((c_sum + c_sum2) >> 8) & 0xff; | 
|  | return c_sum; | 
|  | } | 
|  |  | 
|  | static int __init nvram_remove_os_partition(void) | 
|  | { | 
|  | struct list_head *i; | 
|  | struct list_head *j; | 
|  | struct nvram_partition * part; | 
|  | struct nvram_partition * cur_part; | 
|  | int rc; | 
|  |  | 
|  | list_for_each(i, &nvram_part->partition) { | 
|  | part = list_entry(i, struct nvram_partition, partition); | 
|  | if (part->header.signature != NVRAM_SIG_OS) | 
|  | continue; | 
|  |  | 
|  | /* Make os partition a free partition */ | 
|  | part->header.signature = NVRAM_SIG_FREE; | 
|  | sprintf(part->header.name, "wwwwwwwwwwww"); | 
|  | part->header.checksum = nvram_checksum(&part->header); | 
|  |  | 
|  | /* Merge contiguous free partitions backwards */ | 
|  | list_for_each_prev(j, &part->partition) { | 
|  | cur_part = list_entry(j, struct nvram_partition, partition); | 
|  | if (cur_part == nvram_part || cur_part->header.signature != NVRAM_SIG_FREE) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | part->header.length += cur_part->header.length; | 
|  | part->header.checksum = nvram_checksum(&part->header); | 
|  | part->index = cur_part->index; | 
|  |  | 
|  | list_del(&cur_part->partition); | 
|  | kfree(cur_part); | 
|  | j = &part->partition; /* fixup our loop */ | 
|  | } | 
|  |  | 
|  | /* Merge contiguous free partitions forwards */ | 
|  | list_for_each(j, &part->partition) { | 
|  | cur_part = list_entry(j, struct nvram_partition, partition); | 
|  | if (cur_part == nvram_part || cur_part->header.signature != NVRAM_SIG_FREE) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | part->header.length += cur_part->header.length; | 
|  | part->header.checksum = nvram_checksum(&part->header); | 
|  |  | 
|  | list_del(&cur_part->partition); | 
|  | kfree(cur_part); | 
|  | j = &part->partition; /* fixup our loop */ | 
|  | } | 
|  |  | 
|  | rc = nvram_write_header(part); | 
|  | if (rc <= 0) { | 
|  | printk(KERN_ERR "nvram_remove_os_partition: nvram_write failed (%d)\n", rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* nvram_create_os_partition | 
|  | * | 
|  | * Create a OS linux partition to buffer error logs. | 
|  | * Will create a partition starting at the first free | 
|  | * space found if space has enough room. | 
|  | */ | 
|  | static int __init nvram_create_os_partition(void) | 
|  | { | 
|  | struct nvram_partition *part; | 
|  | struct nvram_partition *new_part; | 
|  | struct nvram_partition *free_part = NULL; | 
|  | int seq_init[2] = { 0, 0 }; | 
|  | loff_t tmp_index; | 
|  | long size = 0; | 
|  | int rc; | 
|  |  | 
|  | /* Find a free partition that will give us the maximum needed size | 
|  | If can't find one that will give us the minimum size needed */ | 
|  | list_for_each_entry(part, &nvram_part->partition, partition) { | 
|  | if (part->header.signature != NVRAM_SIG_FREE) | 
|  | continue; | 
|  |  | 
|  | if (part->header.length >= NVRAM_MAX_REQ) { | 
|  | size = NVRAM_MAX_REQ; | 
|  | free_part = part; | 
|  | break; | 
|  | } | 
|  | if (!size && part->header.length >= NVRAM_MIN_REQ) { | 
|  | size = NVRAM_MIN_REQ; | 
|  | free_part = part; | 
|  | } | 
|  | } | 
|  | if (!size) | 
|  | return -ENOSPC; | 
|  |  | 
|  | /* Create our OS partition */ | 
|  | new_part = kmalloc(sizeof(*new_part), GFP_KERNEL); | 
|  | if (!new_part) { | 
|  | printk(KERN_ERR "nvram_create_os_partition: kmalloc failed\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | new_part->index = free_part->index; | 
|  | new_part->header.signature = NVRAM_SIG_OS; | 
|  | new_part->header.length = size; | 
|  | strcpy(new_part->header.name, "ppc64,linux"); | 
|  | new_part->header.checksum = nvram_checksum(&new_part->header); | 
|  |  | 
|  | rc = nvram_write_header(new_part); | 
|  | if (rc <= 0) { | 
|  | printk(KERN_ERR "nvram_create_os_partition: nvram_write_header " | 
|  | "failed (%d)\n", rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* make sure and initialize to zero the sequence number and the error | 
|  | type logged */ | 
|  | tmp_index = new_part->index + NVRAM_HEADER_LEN; | 
|  | rc = ppc_md.nvram_write((char *)&seq_init, sizeof(seq_init), &tmp_index); | 
|  | if (rc <= 0) { | 
|  | printk(KERN_ERR "nvram_create_os_partition: nvram_write " | 
|  | "failed (%d)\n", rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | nvram_error_log_index = new_part->index + NVRAM_HEADER_LEN; | 
|  | nvram_error_log_size = ((part->header.length - 1) * | 
|  | NVRAM_BLOCK_LEN) - sizeof(struct err_log_info); | 
|  |  | 
|  | list_add_tail(&new_part->partition, &free_part->partition); | 
|  |  | 
|  | if (free_part->header.length <= size) { | 
|  | list_del(&free_part->partition); | 
|  | kfree(free_part); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Adjust the partition we stole the space from */ | 
|  | free_part->index += size * NVRAM_BLOCK_LEN; | 
|  | free_part->header.length -= size; | 
|  | free_part->header.checksum = nvram_checksum(&free_part->header); | 
|  |  | 
|  | rc = nvram_write_header(free_part); | 
|  | if (rc <= 0) { | 
|  | printk(KERN_ERR "nvram_create_os_partition: nvram_write_header " | 
|  | "failed (%d)\n", rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* nvram_setup_partition | 
|  | * | 
|  | * This will setup the partition we need for buffering the | 
|  | * error logs and cleanup partitions if needed. | 
|  | * | 
|  | * The general strategy is the following: | 
|  | * 1.) If there is ppc64,linux partition large enough then use it. | 
|  | * 2.) If there is not a ppc64,linux partition large enough, search | 
|  | * for a free partition that is large enough. | 
|  | * 3.) If there is not a free partition large enough remove | 
|  | * _all_ OS partitions and consolidate the space. | 
|  | * 4.) Will first try getting a chunk that will satisfy the maximum | 
|  | * error log size (NVRAM_MAX_REQ). | 
|  | * 5.) If the max chunk cannot be allocated then try finding a chunk | 
|  | * that will satisfy the minum needed (NVRAM_MIN_REQ). | 
|  | */ | 
|  | static int __init nvram_setup_partition(void) | 
|  | { | 
|  | struct list_head * p; | 
|  | struct nvram_partition * part; | 
|  | int rc; | 
|  |  | 
|  | /* For now, we don't do any of this on pmac, until I | 
|  | * have figured out if it's worth killing some unused stuffs | 
|  | * in our nvram, as Apple defined partitions use pretty much | 
|  | * all of the space | 
|  | */ | 
|  | if (machine_is(powermac)) | 
|  | return -ENOSPC; | 
|  |  | 
|  | /* see if we have an OS partition that meets our needs. | 
|  | will try getting the max we need.  If not we'll delete | 
|  | partitions and try again. */ | 
|  | list_for_each(p, &nvram_part->partition) { | 
|  | part = list_entry(p, struct nvram_partition, partition); | 
|  | if (part->header.signature != NVRAM_SIG_OS) | 
|  | continue; | 
|  |  | 
|  | if (strcmp(part->header.name, "ppc64,linux")) | 
|  | continue; | 
|  |  | 
|  | if (part->header.length >= NVRAM_MIN_REQ) { | 
|  | /* found our partition */ | 
|  | nvram_error_log_index = part->index + NVRAM_HEADER_LEN; | 
|  | nvram_error_log_size = ((part->header.length - 1) * | 
|  | NVRAM_BLOCK_LEN) - sizeof(struct err_log_info); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* try creating a partition with the free space we have */ | 
|  | rc = nvram_create_os_partition(); | 
|  | if (!rc) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* need to free up some space */ | 
|  | rc = nvram_remove_os_partition(); | 
|  | if (rc) { | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* create a partition in this new space */ | 
|  | rc = nvram_create_os_partition(); | 
|  | if (rc) { | 
|  | printk(KERN_ERR "nvram_create_os_partition: Could not find a " | 
|  | "NVRAM partition large enough\n"); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int __init nvram_scan_partitions(void) | 
|  | { | 
|  | loff_t cur_index = 0; | 
|  | struct nvram_header phead; | 
|  | struct nvram_partition * tmp_part; | 
|  | unsigned char c_sum; | 
|  | char * header; | 
|  | int total_size; | 
|  | int err; | 
|  |  | 
|  | if (ppc_md.nvram_size == NULL) | 
|  | return -ENODEV; | 
|  | total_size = ppc_md.nvram_size(); | 
|  |  | 
|  | header = kmalloc(NVRAM_HEADER_LEN, GFP_KERNEL); | 
|  | if (!header) { | 
|  | printk(KERN_ERR "nvram_scan_partitions: Failed kmalloc\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | while (cur_index < total_size) { | 
|  |  | 
|  | err = ppc_md.nvram_read(header, NVRAM_HEADER_LEN, &cur_index); | 
|  | if (err != NVRAM_HEADER_LEN) { | 
|  | printk(KERN_ERR "nvram_scan_partitions: Error parsing " | 
|  | "nvram partitions\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | cur_index -= NVRAM_HEADER_LEN; /* nvram_read will advance us */ | 
|  |  | 
|  | memcpy(&phead, header, NVRAM_HEADER_LEN); | 
|  |  | 
|  | err = 0; | 
|  | c_sum = nvram_checksum(&phead); | 
|  | if (c_sum != phead.checksum) { | 
|  | printk(KERN_WARNING "WARNING: nvram partition checksum" | 
|  | " was %02x, should be %02x!\n", | 
|  | phead.checksum, c_sum); | 
|  | printk(KERN_WARNING "Terminating nvram partition scan\n"); | 
|  | goto out; | 
|  | } | 
|  | if (!phead.length) { | 
|  | printk(KERN_WARNING "WARNING: nvram corruption " | 
|  | "detected: 0-length partition\n"); | 
|  | goto out; | 
|  | } | 
|  | tmp_part = (struct nvram_partition *) | 
|  | kmalloc(sizeof(struct nvram_partition), GFP_KERNEL); | 
|  | err = -ENOMEM; | 
|  | if (!tmp_part) { | 
|  | printk(KERN_ERR "nvram_scan_partitions: kmalloc failed\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | memcpy(&tmp_part->header, &phead, NVRAM_HEADER_LEN); | 
|  | tmp_part->index = cur_index; | 
|  | list_add_tail(&tmp_part->partition, &nvram_part->partition); | 
|  |  | 
|  | cur_index += phead.length * NVRAM_BLOCK_LEN; | 
|  | } | 
|  | err = 0; | 
|  |  | 
|  | out: | 
|  | kfree(header); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int __init nvram_init(void) | 
|  | { | 
|  | int error; | 
|  | int rc; | 
|  |  | 
|  | if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0) | 
|  | return  -ENODEV; | 
|  |  | 
|  | rc = misc_register(&nvram_dev); | 
|  | if (rc != 0) { | 
|  | printk(KERN_ERR "nvram_init: failed to register device\n"); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* initialize our anchor for the nvram partition list */ | 
|  | nvram_part = kmalloc(sizeof(struct nvram_partition), GFP_KERNEL); | 
|  | if (!nvram_part) { | 
|  | printk(KERN_ERR "nvram_init: Failed kmalloc\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | INIT_LIST_HEAD(&nvram_part->partition); | 
|  |  | 
|  | /* Get all the NVRAM partitions */ | 
|  | error = nvram_scan_partitions(); | 
|  | if (error) { | 
|  | printk(KERN_ERR "nvram_init: Failed nvram_scan_partitions\n"); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | if(nvram_setup_partition()) | 
|  | printk(KERN_WARNING "nvram_init: Could not find nvram partition" | 
|  | " for nvram buffered error logging.\n"); | 
|  |  | 
|  | #ifdef DEBUG_NVRAM | 
|  | nvram_print_partitions("NVRAM Partitions"); | 
|  | #endif | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | void __exit nvram_cleanup(void) | 
|  | { | 
|  | misc_deregister( &nvram_dev ); | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_PPC_PSERIES | 
|  |  | 
|  | /* nvram_write_error_log | 
|  | * | 
|  | * We need to buffer the error logs into nvram to ensure that we have | 
|  | * the failure information to decode.  If we have a severe error there | 
|  | * is no way to guarantee that the OS or the machine is in a state to | 
|  | * get back to user land and write the error to disk.  For example if | 
|  | * the SCSI device driver causes a Machine Check by writing to a bad | 
|  | * IO address, there is no way of guaranteeing that the device driver | 
|  | * is in any state that is would also be able to write the error data | 
|  | * captured to disk, thus we buffer it in NVRAM for analysis on the | 
|  | * next boot. | 
|  | * | 
|  | * In NVRAM the partition containing the error log buffer will looks like: | 
|  | * Header (in bytes): | 
|  | * +-----------+----------+--------+------------+------------------+ | 
|  | * | signature | checksum | length | name       | data             | | 
|  | * |0          |1         |2      3|4         15|16        length-1| | 
|  | * +-----------+----------+--------+------------+------------------+ | 
|  | * | 
|  | * The 'data' section would look like (in bytes): | 
|  | * +--------------+------------+-----------------------------------+ | 
|  | * | event_logged | sequence # | error log                         | | 
|  | * |0            3|4          7|8            nvram_error_log_size-1| | 
|  | * +--------------+------------+-----------------------------------+ | 
|  | * | 
|  | * event_logged: 0 if event has not been logged to syslog, 1 if it has | 
|  | * sequence #: The unique sequence # for each event. (until it wraps) | 
|  | * error log: The error log from event_scan | 
|  | */ | 
|  | int nvram_write_error_log(char * buff, int length, | 
|  | unsigned int err_type, unsigned int error_log_cnt) | 
|  | { | 
|  | int rc; | 
|  | loff_t tmp_index; | 
|  | struct err_log_info info; | 
|  |  | 
|  | if (nvram_error_log_index == -1) { | 
|  | return -ESPIPE; | 
|  | } | 
|  |  | 
|  | if (length > nvram_error_log_size) { | 
|  | length = nvram_error_log_size; | 
|  | } | 
|  |  | 
|  | info.error_type = err_type; | 
|  | info.seq_num = error_log_cnt; | 
|  |  | 
|  | tmp_index = nvram_error_log_index; | 
|  |  | 
|  | rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), &tmp_index); | 
|  | if (rc <= 0) { | 
|  | printk(KERN_ERR "nvram_write_error_log: Failed nvram_write (%d)\n", rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | rc = ppc_md.nvram_write(buff, length, &tmp_index); | 
|  | if (rc <= 0) { | 
|  | printk(KERN_ERR "nvram_write_error_log: Failed nvram_write (%d)\n", rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* nvram_read_error_log | 
|  | * | 
|  | * Reads nvram for error log for at most 'length' | 
|  | */ | 
|  | int nvram_read_error_log(char * buff, int length, | 
|  | unsigned int * err_type, unsigned int * error_log_cnt) | 
|  | { | 
|  | int rc; | 
|  | loff_t tmp_index; | 
|  | struct err_log_info info; | 
|  |  | 
|  | if (nvram_error_log_index == -1) | 
|  | return -1; | 
|  |  | 
|  | if (length > nvram_error_log_size) | 
|  | length = nvram_error_log_size; | 
|  |  | 
|  | tmp_index = nvram_error_log_index; | 
|  |  | 
|  | rc = ppc_md.nvram_read((char *)&info, sizeof(struct err_log_info), &tmp_index); | 
|  | if (rc <= 0) { | 
|  | printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | rc = ppc_md.nvram_read(buff, length, &tmp_index); | 
|  | if (rc <= 0) { | 
|  | printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | *error_log_cnt = info.seq_num; | 
|  | *err_type = info.error_type; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* This doesn't actually zero anything, but it sets the event_logged | 
|  | * word to tell that this event is safely in syslog. | 
|  | */ | 
|  | int nvram_clear_error_log(void) | 
|  | { | 
|  | loff_t tmp_index; | 
|  | int clear_word = ERR_FLAG_ALREADY_LOGGED; | 
|  | int rc; | 
|  |  | 
|  | if (nvram_error_log_index == -1) | 
|  | return -1; | 
|  |  | 
|  | tmp_index = nvram_error_log_index; | 
|  |  | 
|  | rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index); | 
|  | if (rc <= 0) { | 
|  | printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_PPC_PSERIES */ | 
|  |  | 
|  | module_init(nvram_init); | 
|  | module_exit(nvram_cleanup); | 
|  | MODULE_LICENSE("GPL"); |