|  | /* | 
|  | * Copyright (C) 2011 Red Hat UK. | 
|  | * | 
|  | * This file is released under the GPL. | 
|  | */ | 
|  |  | 
|  | #include "dm-thin-metadata.h" | 
|  |  | 
|  | #include <linux/device-mapper.h> | 
|  | #include <linux/dm-io.h> | 
|  | #include <linux/dm-kcopyd.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #define	DM_MSG_PREFIX	"thin" | 
|  |  | 
|  | /* | 
|  | * Tunable constants | 
|  | */ | 
|  | #define ENDIO_HOOK_POOL_SIZE 10240 | 
|  | #define DEFERRED_SET_SIZE 64 | 
|  | #define MAPPING_POOL_SIZE 1024 | 
|  | #define PRISON_CELLS 1024 | 
|  |  | 
|  | /* | 
|  | * The block size of the device holding pool data must be | 
|  | * between 64KB and 1GB. | 
|  | */ | 
|  | #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) | 
|  | #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) | 
|  |  | 
|  | /* | 
|  | * The metadata device is currently limited in size.  The limitation is | 
|  | * checked lower down in dm-space-map-metadata, but we also check it here | 
|  | * so we can fail early. | 
|  | * | 
|  | * We have one block of index, which can hold 255 index entries.  Each | 
|  | * index entry contains allocation info about 16k metadata blocks. | 
|  | */ | 
|  | #define METADATA_DEV_MAX_SECTORS (255 * (1 << 14) * (THIN_METADATA_BLOCK_SIZE / (1 << SECTOR_SHIFT))) | 
|  |  | 
|  | /* | 
|  | * Device id is restricted to 24 bits. | 
|  | */ | 
|  | #define MAX_DEV_ID ((1 << 24) - 1) | 
|  |  | 
|  | /* | 
|  | * How do we handle breaking sharing of data blocks? | 
|  | * ================================================= | 
|  | * | 
|  | * We use a standard copy-on-write btree to store the mappings for the | 
|  | * devices (note I'm talking about copy-on-write of the metadata here, not | 
|  | * the data).  When you take an internal snapshot you clone the root node | 
|  | * of the origin btree.  After this there is no concept of an origin or a | 
|  | * snapshot.  They are just two device trees that happen to point to the | 
|  | * same data blocks. | 
|  | * | 
|  | * When we get a write in we decide if it's to a shared data block using | 
|  | * some timestamp magic.  If it is, we have to break sharing. | 
|  | * | 
|  | * Let's say we write to a shared block in what was the origin.  The | 
|  | * steps are: | 
|  | * | 
|  | * i) plug io further to this physical block. (see bio_prison code). | 
|  | * | 
|  | * ii) quiesce any read io to that shared data block.  Obviously | 
|  | * including all devices that share this block.  (see deferred_set code) | 
|  | * | 
|  | * iii) copy the data block to a newly allocate block.  This step can be | 
|  | * missed out if the io covers the block. (schedule_copy). | 
|  | * | 
|  | * iv) insert the new mapping into the origin's btree | 
|  | * (process_prepared_mappings).  This act of inserting breaks some | 
|  | * sharing of btree nodes between the two devices.  Breaking sharing only | 
|  | * effects the btree of that specific device.  Btrees for the other | 
|  | * devices that share the block never change.  The btree for the origin | 
|  | * device as it was after the last commit is untouched, ie. we're using | 
|  | * persistent data structures in the functional programming sense. | 
|  | * | 
|  | * v) unplug io to this physical block, including the io that triggered | 
|  | * the breaking of sharing. | 
|  | * | 
|  | * Steps (ii) and (iii) occur in parallel. | 
|  | * | 
|  | * The metadata _doesn't_ need to be committed before the io continues.  We | 
|  | * get away with this because the io is always written to a _new_ block. | 
|  | * If there's a crash, then: | 
|  | * | 
|  | * - The origin mapping will point to the old origin block (the shared | 
|  | * one).  This will contain the data as it was before the io that triggered | 
|  | * the breaking of sharing came in. | 
|  | * | 
|  | * - The snap mapping still points to the old block.  As it would after | 
|  | * the commit. | 
|  | * | 
|  | * The downside of this scheme is the timestamp magic isn't perfect, and | 
|  | * will continue to think that data block in the snapshot device is shared | 
|  | * even after the write to the origin has broken sharing.  I suspect data | 
|  | * blocks will typically be shared by many different devices, so we're | 
|  | * breaking sharing n + 1 times, rather than n, where n is the number of | 
|  | * devices that reference this data block.  At the moment I think the | 
|  | * benefits far, far outweigh the disadvantages. | 
|  | */ | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * Sometimes we can't deal with a bio straight away.  We put them in prison | 
|  | * where they can't cause any mischief.  Bios are put in a cell identified | 
|  | * by a key, multiple bios can be in the same cell.  When the cell is | 
|  | * subsequently unlocked the bios become available. | 
|  | */ | 
|  | struct bio_prison; | 
|  |  | 
|  | struct cell_key { | 
|  | int virtual; | 
|  | dm_thin_id dev; | 
|  | dm_block_t block; | 
|  | }; | 
|  |  | 
|  | struct cell { | 
|  | struct hlist_node list; | 
|  | struct bio_prison *prison; | 
|  | struct cell_key key; | 
|  | unsigned count; | 
|  | struct bio_list bios; | 
|  | }; | 
|  |  | 
|  | struct bio_prison { | 
|  | spinlock_t lock; | 
|  | mempool_t *cell_pool; | 
|  |  | 
|  | unsigned nr_buckets; | 
|  | unsigned hash_mask; | 
|  | struct hlist_head *cells; | 
|  | }; | 
|  |  | 
|  | static uint32_t calc_nr_buckets(unsigned nr_cells) | 
|  | { | 
|  | uint32_t n = 128; | 
|  |  | 
|  | nr_cells /= 4; | 
|  | nr_cells = min(nr_cells, 8192u); | 
|  |  | 
|  | while (n < nr_cells) | 
|  | n <<= 1; | 
|  |  | 
|  | return n; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * @nr_cells should be the number of cells you want in use _concurrently_. | 
|  | * Don't confuse it with the number of distinct keys. | 
|  | */ | 
|  | static struct bio_prison *prison_create(unsigned nr_cells) | 
|  | { | 
|  | unsigned i; | 
|  | uint32_t nr_buckets = calc_nr_buckets(nr_cells); | 
|  | size_t len = sizeof(struct bio_prison) + | 
|  | (sizeof(struct hlist_head) * nr_buckets); | 
|  | struct bio_prison *prison = kmalloc(len, GFP_KERNEL); | 
|  |  | 
|  | if (!prison) | 
|  | return NULL; | 
|  |  | 
|  | spin_lock_init(&prison->lock); | 
|  | prison->cell_pool = mempool_create_kmalloc_pool(nr_cells, | 
|  | sizeof(struct cell)); | 
|  | if (!prison->cell_pool) { | 
|  | kfree(prison); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | prison->nr_buckets = nr_buckets; | 
|  | prison->hash_mask = nr_buckets - 1; | 
|  | prison->cells = (struct hlist_head *) (prison + 1); | 
|  | for (i = 0; i < nr_buckets; i++) | 
|  | INIT_HLIST_HEAD(prison->cells + i); | 
|  |  | 
|  | return prison; | 
|  | } | 
|  |  | 
|  | static void prison_destroy(struct bio_prison *prison) | 
|  | { | 
|  | mempool_destroy(prison->cell_pool); | 
|  | kfree(prison); | 
|  | } | 
|  |  | 
|  | static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key) | 
|  | { | 
|  | const unsigned long BIG_PRIME = 4294967291UL; | 
|  | uint64_t hash = key->block * BIG_PRIME; | 
|  |  | 
|  | return (uint32_t) (hash & prison->hash_mask); | 
|  | } | 
|  |  | 
|  | static int keys_equal(struct cell_key *lhs, struct cell_key *rhs) | 
|  | { | 
|  | return (lhs->virtual == rhs->virtual) && | 
|  | (lhs->dev == rhs->dev) && | 
|  | (lhs->block == rhs->block); | 
|  | } | 
|  |  | 
|  | static struct cell *__search_bucket(struct hlist_head *bucket, | 
|  | struct cell_key *key) | 
|  | { | 
|  | struct cell *cell; | 
|  | struct hlist_node *tmp; | 
|  |  | 
|  | hlist_for_each_entry(cell, tmp, bucket, list) | 
|  | if (keys_equal(&cell->key, key)) | 
|  | return cell; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This may block if a new cell needs allocating.  You must ensure that | 
|  | * cells will be unlocked even if the calling thread is blocked. | 
|  | * | 
|  | * Returns the number of entries in the cell prior to the new addition | 
|  | * or < 0 on failure. | 
|  | */ | 
|  | static int bio_detain(struct bio_prison *prison, struct cell_key *key, | 
|  | struct bio *inmate, struct cell **ref) | 
|  | { | 
|  | int r; | 
|  | unsigned long flags; | 
|  | uint32_t hash = hash_key(prison, key); | 
|  | struct cell *uninitialized_var(cell), *cell2 = NULL; | 
|  |  | 
|  | BUG_ON(hash > prison->nr_buckets); | 
|  |  | 
|  | spin_lock_irqsave(&prison->lock, flags); | 
|  | cell = __search_bucket(prison->cells + hash, key); | 
|  |  | 
|  | if (!cell) { | 
|  | /* | 
|  | * Allocate a new cell | 
|  | */ | 
|  | spin_unlock_irqrestore(&prison->lock, flags); | 
|  | cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO); | 
|  | spin_lock_irqsave(&prison->lock, flags); | 
|  |  | 
|  | /* | 
|  | * We've been unlocked, so we have to double check that | 
|  | * nobody else has inserted this cell in the meantime. | 
|  | */ | 
|  | cell = __search_bucket(prison->cells + hash, key); | 
|  |  | 
|  | if (!cell) { | 
|  | cell = cell2; | 
|  | cell2 = NULL; | 
|  |  | 
|  | cell->prison = prison; | 
|  | memcpy(&cell->key, key, sizeof(cell->key)); | 
|  | cell->count = 0; | 
|  | bio_list_init(&cell->bios); | 
|  | hlist_add_head(&cell->list, prison->cells + hash); | 
|  | } | 
|  | } | 
|  |  | 
|  | r = cell->count++; | 
|  | bio_list_add(&cell->bios, inmate); | 
|  | spin_unlock_irqrestore(&prison->lock, flags); | 
|  |  | 
|  | if (cell2) | 
|  | mempool_free(cell2, prison->cell_pool); | 
|  |  | 
|  | *ref = cell; | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * @inmates must have been initialised prior to this call | 
|  | */ | 
|  | static void __cell_release(struct cell *cell, struct bio_list *inmates) | 
|  | { | 
|  | struct bio_prison *prison = cell->prison; | 
|  |  | 
|  | hlist_del(&cell->list); | 
|  |  | 
|  | if (inmates) | 
|  | bio_list_merge(inmates, &cell->bios); | 
|  |  | 
|  | mempool_free(cell, prison->cell_pool); | 
|  | } | 
|  |  | 
|  | static void cell_release(struct cell *cell, struct bio_list *bios) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct bio_prison *prison = cell->prison; | 
|  |  | 
|  | spin_lock_irqsave(&prison->lock, flags); | 
|  | __cell_release(cell, bios); | 
|  | spin_unlock_irqrestore(&prison->lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There are a couple of places where we put a bio into a cell briefly | 
|  | * before taking it out again.  In these situations we know that no other | 
|  | * bio may be in the cell.  This function releases the cell, and also does | 
|  | * a sanity check. | 
|  | */ | 
|  | static void cell_release_singleton(struct cell *cell, struct bio *bio) | 
|  | { | 
|  | struct bio_prison *prison = cell->prison; | 
|  | struct bio_list bios; | 
|  | struct bio *b; | 
|  | unsigned long flags; | 
|  |  | 
|  | bio_list_init(&bios); | 
|  |  | 
|  | spin_lock_irqsave(&prison->lock, flags); | 
|  | __cell_release(cell, &bios); | 
|  | spin_unlock_irqrestore(&prison->lock, flags); | 
|  |  | 
|  | b = bio_list_pop(&bios); | 
|  | BUG_ON(b != bio); | 
|  | BUG_ON(!bio_list_empty(&bios)); | 
|  | } | 
|  |  | 
|  | static void cell_error(struct cell *cell) | 
|  | { | 
|  | struct bio_prison *prison = cell->prison; | 
|  | struct bio_list bios; | 
|  | struct bio *bio; | 
|  | unsigned long flags; | 
|  |  | 
|  | bio_list_init(&bios); | 
|  |  | 
|  | spin_lock_irqsave(&prison->lock, flags); | 
|  | __cell_release(cell, &bios); | 
|  | spin_unlock_irqrestore(&prison->lock, flags); | 
|  |  | 
|  | while ((bio = bio_list_pop(&bios))) | 
|  | bio_io_error(bio); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * We use the deferred set to keep track of pending reads to shared blocks. | 
|  | * We do this to ensure the new mapping caused by a write isn't performed | 
|  | * until these prior reads have completed.  Otherwise the insertion of the | 
|  | * new mapping could free the old block that the read bios are mapped to. | 
|  | */ | 
|  |  | 
|  | struct deferred_set; | 
|  | struct deferred_entry { | 
|  | struct deferred_set *ds; | 
|  | unsigned count; | 
|  | struct list_head work_items; | 
|  | }; | 
|  |  | 
|  | struct deferred_set { | 
|  | spinlock_t lock; | 
|  | unsigned current_entry; | 
|  | unsigned sweeper; | 
|  | struct deferred_entry entries[DEFERRED_SET_SIZE]; | 
|  | }; | 
|  |  | 
|  | static void ds_init(struct deferred_set *ds) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | spin_lock_init(&ds->lock); | 
|  | ds->current_entry = 0; | 
|  | ds->sweeper = 0; | 
|  | for (i = 0; i < DEFERRED_SET_SIZE; i++) { | 
|  | ds->entries[i].ds = ds; | 
|  | ds->entries[i].count = 0; | 
|  | INIT_LIST_HEAD(&ds->entries[i].work_items); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct deferred_entry *ds_inc(struct deferred_set *ds) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct deferred_entry *entry; | 
|  |  | 
|  | spin_lock_irqsave(&ds->lock, flags); | 
|  | entry = ds->entries + ds->current_entry; | 
|  | entry->count++; | 
|  | spin_unlock_irqrestore(&ds->lock, flags); | 
|  |  | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | static unsigned ds_next(unsigned index) | 
|  | { | 
|  | return (index + 1) % DEFERRED_SET_SIZE; | 
|  | } | 
|  |  | 
|  | static void __sweep(struct deferred_set *ds, struct list_head *head) | 
|  | { | 
|  | while ((ds->sweeper != ds->current_entry) && | 
|  | !ds->entries[ds->sweeper].count) { | 
|  | list_splice_init(&ds->entries[ds->sweeper].work_items, head); | 
|  | ds->sweeper = ds_next(ds->sweeper); | 
|  | } | 
|  |  | 
|  | if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count) | 
|  | list_splice_init(&ds->entries[ds->sweeper].work_items, head); | 
|  | } | 
|  |  | 
|  | static void ds_dec(struct deferred_entry *entry, struct list_head *head) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&entry->ds->lock, flags); | 
|  | BUG_ON(!entry->count); | 
|  | --entry->count; | 
|  | __sweep(entry->ds, head); | 
|  | spin_unlock_irqrestore(&entry->ds->lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns 1 if deferred or 0 if no pending items to delay job. | 
|  | */ | 
|  | static int ds_add_work(struct deferred_set *ds, struct list_head *work) | 
|  | { | 
|  | int r = 1; | 
|  | unsigned long flags; | 
|  | unsigned next_entry; | 
|  |  | 
|  | spin_lock_irqsave(&ds->lock, flags); | 
|  | if ((ds->sweeper == ds->current_entry) && | 
|  | !ds->entries[ds->current_entry].count) | 
|  | r = 0; | 
|  | else { | 
|  | list_add(work, &ds->entries[ds->current_entry].work_items); | 
|  | next_entry = ds_next(ds->current_entry); | 
|  | if (!ds->entries[next_entry].count) | 
|  | ds->current_entry = next_entry; | 
|  | } | 
|  | spin_unlock_irqrestore(&ds->lock, flags); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * Key building. | 
|  | */ | 
|  | static void build_data_key(struct dm_thin_device *td, | 
|  | dm_block_t b, struct cell_key *key) | 
|  | { | 
|  | key->virtual = 0; | 
|  | key->dev = dm_thin_dev_id(td); | 
|  | key->block = b; | 
|  | } | 
|  |  | 
|  | static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, | 
|  | struct cell_key *key) | 
|  | { | 
|  | key->virtual = 1; | 
|  | key->dev = dm_thin_dev_id(td); | 
|  | key->block = b; | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * A pool device ties together a metadata device and a data device.  It | 
|  | * also provides the interface for creating and destroying internal | 
|  | * devices. | 
|  | */ | 
|  | struct new_mapping; | 
|  | struct pool { | 
|  | struct list_head list; | 
|  | struct dm_target *ti;	/* Only set if a pool target is bound */ | 
|  |  | 
|  | struct mapped_device *pool_md; | 
|  | struct block_device *md_dev; | 
|  | struct dm_pool_metadata *pmd; | 
|  |  | 
|  | uint32_t sectors_per_block; | 
|  | unsigned block_shift; | 
|  | dm_block_t offset_mask; | 
|  | dm_block_t low_water_blocks; | 
|  |  | 
|  | unsigned zero_new_blocks:1; | 
|  | unsigned low_water_triggered:1;	/* A dm event has been sent */ | 
|  | unsigned no_free_space:1;	/* A -ENOSPC warning has been issued */ | 
|  |  | 
|  | struct bio_prison *prison; | 
|  | struct dm_kcopyd_client *copier; | 
|  |  | 
|  | struct workqueue_struct *wq; | 
|  | struct work_struct worker; | 
|  |  | 
|  | unsigned ref_count; | 
|  |  | 
|  | spinlock_t lock; | 
|  | struct bio_list deferred_bios; | 
|  | struct bio_list deferred_flush_bios; | 
|  | struct list_head prepared_mappings; | 
|  |  | 
|  | struct bio_list retry_on_resume_list; | 
|  |  | 
|  | struct deferred_set ds;	/* FIXME: move to thin_c */ | 
|  |  | 
|  | struct new_mapping *next_mapping; | 
|  | mempool_t *mapping_pool; | 
|  | mempool_t *endio_hook_pool; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Target context for a pool. | 
|  | */ | 
|  | struct pool_c { | 
|  | struct dm_target *ti; | 
|  | struct pool *pool; | 
|  | struct dm_dev *data_dev; | 
|  | struct dm_dev *metadata_dev; | 
|  | struct dm_target_callbacks callbacks; | 
|  |  | 
|  | dm_block_t low_water_blocks; | 
|  | unsigned zero_new_blocks:1; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Target context for a thin. | 
|  | */ | 
|  | struct thin_c { | 
|  | struct dm_dev *pool_dev; | 
|  | dm_thin_id dev_id; | 
|  |  | 
|  | struct pool *pool; | 
|  | struct dm_thin_device *td; | 
|  | }; | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * A global list of pools that uses a struct mapped_device as a key. | 
|  | */ | 
|  | static struct dm_thin_pool_table { | 
|  | struct mutex mutex; | 
|  | struct list_head pools; | 
|  | } dm_thin_pool_table; | 
|  |  | 
|  | static void pool_table_init(void) | 
|  | { | 
|  | mutex_init(&dm_thin_pool_table.mutex); | 
|  | INIT_LIST_HEAD(&dm_thin_pool_table.pools); | 
|  | } | 
|  |  | 
|  | static void __pool_table_insert(struct pool *pool) | 
|  | { | 
|  | BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | 
|  | list_add(&pool->list, &dm_thin_pool_table.pools); | 
|  | } | 
|  |  | 
|  | static void __pool_table_remove(struct pool *pool) | 
|  | { | 
|  | BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | 
|  | list_del(&pool->list); | 
|  | } | 
|  |  | 
|  | static struct pool *__pool_table_lookup(struct mapped_device *md) | 
|  | { | 
|  | struct pool *pool = NULL, *tmp; | 
|  |  | 
|  | BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | 
|  |  | 
|  | list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { | 
|  | if (tmp->pool_md == md) { | 
|  | pool = tmp; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return pool; | 
|  | } | 
|  |  | 
|  | static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) | 
|  | { | 
|  | struct pool *pool = NULL, *tmp; | 
|  |  | 
|  | BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | 
|  |  | 
|  | list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { | 
|  | if (tmp->md_dev == md_dev) { | 
|  | pool = tmp; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return pool; | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master) | 
|  | { | 
|  | struct bio *bio; | 
|  | struct bio_list bios; | 
|  |  | 
|  | bio_list_init(&bios); | 
|  | bio_list_merge(&bios, master); | 
|  | bio_list_init(master); | 
|  |  | 
|  | while ((bio = bio_list_pop(&bios))) { | 
|  | if (dm_get_mapinfo(bio)->ptr == tc) | 
|  | bio_endio(bio, DM_ENDIO_REQUEUE); | 
|  | else | 
|  | bio_list_add(master, bio); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void requeue_io(struct thin_c *tc) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | __requeue_bio_list(tc, &pool->deferred_bios); | 
|  | __requeue_bio_list(tc, &pool->retry_on_resume_list); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This section of code contains the logic for processing a thin device's IO. | 
|  | * Much of the code depends on pool object resources (lists, workqueues, etc) | 
|  | * but most is exclusively called from the thin target rather than the thin-pool | 
|  | * target. | 
|  | */ | 
|  |  | 
|  | static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) | 
|  | { | 
|  | return bio->bi_sector >> tc->pool->block_shift; | 
|  | } | 
|  |  | 
|  | static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  |  | 
|  | bio->bi_bdev = tc->pool_dev->bdev; | 
|  | bio->bi_sector = (block << pool->block_shift) + | 
|  | (bio->bi_sector & pool->offset_mask); | 
|  | } | 
|  |  | 
|  | static void remap_and_issue(struct thin_c *tc, struct bio *bio, | 
|  | dm_block_t block) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  | unsigned long flags; | 
|  |  | 
|  | remap(tc, bio, block); | 
|  |  | 
|  | /* | 
|  | * Batch together any FUA/FLUSH bios we find and then issue | 
|  | * a single commit for them in process_deferred_bios(). | 
|  | */ | 
|  | if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) { | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | bio_list_add(&pool->deferred_flush_bios, bio); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | } else | 
|  | generic_make_request(bio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * wake_worker() is used when new work is queued and when pool_resume is | 
|  | * ready to continue deferred IO processing. | 
|  | */ | 
|  | static void wake_worker(struct pool *pool) | 
|  | { | 
|  | queue_work(pool->wq, &pool->worker); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * Bio endio functions. | 
|  | */ | 
|  | struct endio_hook { | 
|  | struct thin_c *tc; | 
|  | bio_end_io_t *saved_bi_end_io; | 
|  | struct deferred_entry *entry; | 
|  | }; | 
|  |  | 
|  | struct new_mapping { | 
|  | struct list_head list; | 
|  |  | 
|  | int prepared; | 
|  |  | 
|  | struct thin_c *tc; | 
|  | dm_block_t virt_block; | 
|  | dm_block_t data_block; | 
|  | struct cell *cell; | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * If the bio covers the whole area of a block then we can avoid | 
|  | * zeroing or copying.  Instead this bio is hooked.  The bio will | 
|  | * still be in the cell, so care has to be taken to avoid issuing | 
|  | * the bio twice. | 
|  | */ | 
|  | struct bio *bio; | 
|  | bio_end_io_t *saved_bi_end_io; | 
|  | }; | 
|  |  | 
|  | static void __maybe_add_mapping(struct new_mapping *m) | 
|  | { | 
|  | struct pool *pool = m->tc->pool; | 
|  |  | 
|  | if (list_empty(&m->list) && m->prepared) { | 
|  | list_add(&m->list, &pool->prepared_mappings); | 
|  | wake_worker(pool); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void copy_complete(int read_err, unsigned long write_err, void *context) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct new_mapping *m = context; | 
|  | struct pool *pool = m->tc->pool; | 
|  |  | 
|  | m->err = read_err || write_err ? -EIO : 0; | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | m->prepared = 1; | 
|  | __maybe_add_mapping(m); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | } | 
|  |  | 
|  | static void overwrite_endio(struct bio *bio, int err) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct new_mapping *m = dm_get_mapinfo(bio)->ptr; | 
|  | struct pool *pool = m->tc->pool; | 
|  |  | 
|  | m->err = err; | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | m->prepared = 1; | 
|  | __maybe_add_mapping(m); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | } | 
|  |  | 
|  | static void shared_read_endio(struct bio *bio, int err) | 
|  | { | 
|  | struct list_head mappings; | 
|  | struct new_mapping *m, *tmp; | 
|  | struct endio_hook *h = dm_get_mapinfo(bio)->ptr; | 
|  | unsigned long flags; | 
|  | struct pool *pool = h->tc->pool; | 
|  |  | 
|  | bio->bi_end_io = h->saved_bi_end_io; | 
|  | bio_endio(bio, err); | 
|  |  | 
|  | INIT_LIST_HEAD(&mappings); | 
|  | ds_dec(h->entry, &mappings); | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | list_for_each_entry_safe(m, tmp, &mappings, list) { | 
|  | list_del(&m->list); | 
|  | INIT_LIST_HEAD(&m->list); | 
|  | __maybe_add_mapping(m); | 
|  | } | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  |  | 
|  | mempool_free(h, pool->endio_hook_pool); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * Workqueue. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Prepared mapping jobs. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This sends the bios in the cell back to the deferred_bios list. | 
|  | */ | 
|  | static void cell_defer(struct thin_c *tc, struct cell *cell, | 
|  | dm_block_t data_block) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | cell_release(cell, &pool->deferred_bios); | 
|  | spin_unlock_irqrestore(&tc->pool->lock, flags); | 
|  |  | 
|  | wake_worker(pool); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Same as cell_defer above, except it omits one particular detainee, | 
|  | * a write bio that covers the block and has already been processed. | 
|  | */ | 
|  | static void cell_defer_except(struct thin_c *tc, struct cell *cell, | 
|  | struct bio *exception) | 
|  | { | 
|  | struct bio_list bios; | 
|  | struct bio *bio; | 
|  | struct pool *pool = tc->pool; | 
|  | unsigned long flags; | 
|  |  | 
|  | bio_list_init(&bios); | 
|  | cell_release(cell, &bios); | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | while ((bio = bio_list_pop(&bios))) | 
|  | if (bio != exception) | 
|  | bio_list_add(&pool->deferred_bios, bio); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  |  | 
|  | wake_worker(pool); | 
|  | } | 
|  |  | 
|  | static void process_prepared_mapping(struct new_mapping *m) | 
|  | { | 
|  | struct thin_c *tc = m->tc; | 
|  | struct bio *bio; | 
|  | int r; | 
|  |  | 
|  | bio = m->bio; | 
|  | if (bio) | 
|  | bio->bi_end_io = m->saved_bi_end_io; | 
|  |  | 
|  | if (m->err) { | 
|  | cell_error(m->cell); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Commit the prepared block into the mapping btree. | 
|  | * Any I/O for this block arriving after this point will get | 
|  | * remapped to it directly. | 
|  | */ | 
|  | r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block); | 
|  | if (r) { | 
|  | DMERR("dm_thin_insert_block() failed"); | 
|  | cell_error(m->cell); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release any bios held while the block was being provisioned. | 
|  | * If we are processing a write bio that completely covers the block, | 
|  | * we already processed it so can ignore it now when processing | 
|  | * the bios in the cell. | 
|  | */ | 
|  | if (bio) { | 
|  | cell_defer_except(tc, m->cell, bio); | 
|  | bio_endio(bio, 0); | 
|  | } else | 
|  | cell_defer(tc, m->cell, m->data_block); | 
|  |  | 
|  | list_del(&m->list); | 
|  | mempool_free(m, tc->pool->mapping_pool); | 
|  | } | 
|  |  | 
|  | static void process_prepared_mappings(struct pool *pool) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct list_head maps; | 
|  | struct new_mapping *m, *tmp; | 
|  |  | 
|  | INIT_LIST_HEAD(&maps); | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | list_splice_init(&pool->prepared_mappings, &maps); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  |  | 
|  | list_for_each_entry_safe(m, tmp, &maps, list) | 
|  | process_prepared_mapping(m); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Deferred bio jobs. | 
|  | */ | 
|  | static int io_overwrites_block(struct pool *pool, struct bio *bio) | 
|  | { | 
|  | return ((bio_data_dir(bio) == WRITE) && | 
|  | !(bio->bi_sector & pool->offset_mask)) && | 
|  | (bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT)); | 
|  | } | 
|  |  | 
|  | static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, | 
|  | bio_end_io_t *fn) | 
|  | { | 
|  | *save = bio->bi_end_io; | 
|  | bio->bi_end_io = fn; | 
|  | } | 
|  |  | 
|  | static int ensure_next_mapping(struct pool *pool) | 
|  | { | 
|  | if (pool->next_mapping) | 
|  | return 0; | 
|  |  | 
|  | pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC); | 
|  |  | 
|  | return pool->next_mapping ? 0 : -ENOMEM; | 
|  | } | 
|  |  | 
|  | static struct new_mapping *get_next_mapping(struct pool *pool) | 
|  | { | 
|  | struct new_mapping *r = pool->next_mapping; | 
|  |  | 
|  | BUG_ON(!pool->next_mapping); | 
|  |  | 
|  | pool->next_mapping = NULL; | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, | 
|  | dm_block_t data_origin, dm_block_t data_dest, | 
|  | struct cell *cell, struct bio *bio) | 
|  | { | 
|  | int r; | 
|  | struct pool *pool = tc->pool; | 
|  | struct new_mapping *m = get_next_mapping(pool); | 
|  |  | 
|  | INIT_LIST_HEAD(&m->list); | 
|  | m->prepared = 0; | 
|  | m->tc = tc; | 
|  | m->virt_block = virt_block; | 
|  | m->data_block = data_dest; | 
|  | m->cell = cell; | 
|  | m->err = 0; | 
|  | m->bio = NULL; | 
|  |  | 
|  | ds_add_work(&pool->ds, &m->list); | 
|  |  | 
|  | /* | 
|  | * IO to pool_dev remaps to the pool target's data_dev. | 
|  | * | 
|  | * If the whole block of data is being overwritten, we can issue the | 
|  | * bio immediately. Otherwise we use kcopyd to clone the data first. | 
|  | */ | 
|  | if (io_overwrites_block(pool, bio)) { | 
|  | m->bio = bio; | 
|  | save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); | 
|  | dm_get_mapinfo(bio)->ptr = m; | 
|  | remap_and_issue(tc, bio, data_dest); | 
|  | } else { | 
|  | struct dm_io_region from, to; | 
|  |  | 
|  | from.bdev = tc->pool_dev->bdev; | 
|  | from.sector = data_origin * pool->sectors_per_block; | 
|  | from.count = pool->sectors_per_block; | 
|  |  | 
|  | to.bdev = tc->pool_dev->bdev; | 
|  | to.sector = data_dest * pool->sectors_per_block; | 
|  | to.count = pool->sectors_per_block; | 
|  |  | 
|  | r = dm_kcopyd_copy(pool->copier, &from, 1, &to, | 
|  | 0, copy_complete, m); | 
|  | if (r < 0) { | 
|  | mempool_free(m, pool->mapping_pool); | 
|  | DMERR("dm_kcopyd_copy() failed"); | 
|  | cell_error(cell); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, | 
|  | dm_block_t data_block, struct cell *cell, | 
|  | struct bio *bio) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  | struct new_mapping *m = get_next_mapping(pool); | 
|  |  | 
|  | INIT_LIST_HEAD(&m->list); | 
|  | m->prepared = 0; | 
|  | m->tc = tc; | 
|  | m->virt_block = virt_block; | 
|  | m->data_block = data_block; | 
|  | m->cell = cell; | 
|  | m->err = 0; | 
|  | m->bio = NULL; | 
|  |  | 
|  | /* | 
|  | * If the whole block of data is being overwritten or we are not | 
|  | * zeroing pre-existing data, we can issue the bio immediately. | 
|  | * Otherwise we use kcopyd to zero the data first. | 
|  | */ | 
|  | if (!pool->zero_new_blocks) | 
|  | process_prepared_mapping(m); | 
|  |  | 
|  | else if (io_overwrites_block(pool, bio)) { | 
|  | m->bio = bio; | 
|  | save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); | 
|  | dm_get_mapinfo(bio)->ptr = m; | 
|  | remap_and_issue(tc, bio, data_block); | 
|  |  | 
|  | } else { | 
|  | int r; | 
|  | struct dm_io_region to; | 
|  |  | 
|  | to.bdev = tc->pool_dev->bdev; | 
|  | to.sector = data_block * pool->sectors_per_block; | 
|  | to.count = pool->sectors_per_block; | 
|  |  | 
|  | r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m); | 
|  | if (r < 0) { | 
|  | mempool_free(m, pool->mapping_pool); | 
|  | DMERR("dm_kcopyd_zero() failed"); | 
|  | cell_error(cell); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int alloc_data_block(struct thin_c *tc, dm_block_t *result) | 
|  | { | 
|  | int r; | 
|  | dm_block_t free_blocks; | 
|  | unsigned long flags; | 
|  | struct pool *pool = tc->pool; | 
|  |  | 
|  | r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { | 
|  | DMWARN("%s: reached low water mark, sending event.", | 
|  | dm_device_name(pool->pool_md)); | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | pool->low_water_triggered = 1; | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | dm_table_event(pool->ti->table); | 
|  | } | 
|  |  | 
|  | if (!free_blocks) { | 
|  | if (pool->no_free_space) | 
|  | return -ENOSPC; | 
|  | else { | 
|  | /* | 
|  | * Try to commit to see if that will free up some | 
|  | * more space. | 
|  | */ | 
|  | r = dm_pool_commit_metadata(pool->pmd); | 
|  | if (r) { | 
|  | DMERR("%s: dm_pool_commit_metadata() failed, error = %d", | 
|  | __func__, r); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | /* | 
|  | * If we still have no space we set a flag to avoid | 
|  | * doing all this checking and return -ENOSPC. | 
|  | */ | 
|  | if (!free_blocks) { | 
|  | DMWARN("%s: no free space available.", | 
|  | dm_device_name(pool->pool_md)); | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | pool->no_free_space = 1; | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | return -ENOSPC; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | r = dm_pool_alloc_data_block(pool->pmd, result); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we have run out of space, queue bios until the device is | 
|  | * resumed, presumably after having been reloaded with more space. | 
|  | */ | 
|  | static void retry_on_resume(struct bio *bio) | 
|  | { | 
|  | struct thin_c *tc = dm_get_mapinfo(bio)->ptr; | 
|  | struct pool *pool = tc->pool; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | bio_list_add(&pool->retry_on_resume_list, bio); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | } | 
|  |  | 
|  | static void no_space(struct cell *cell) | 
|  | { | 
|  | struct bio *bio; | 
|  | struct bio_list bios; | 
|  |  | 
|  | bio_list_init(&bios); | 
|  | cell_release(cell, &bios); | 
|  |  | 
|  | while ((bio = bio_list_pop(&bios))) | 
|  | retry_on_resume(bio); | 
|  | } | 
|  |  | 
|  | static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, | 
|  | struct cell_key *key, | 
|  | struct dm_thin_lookup_result *lookup_result, | 
|  | struct cell *cell) | 
|  | { | 
|  | int r; | 
|  | dm_block_t data_block; | 
|  |  | 
|  | r = alloc_data_block(tc, &data_block); | 
|  | switch (r) { | 
|  | case 0: | 
|  | schedule_copy(tc, block, lookup_result->block, | 
|  | data_block, cell, bio); | 
|  | break; | 
|  |  | 
|  | case -ENOSPC: | 
|  | no_space(cell); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | DMERR("%s: alloc_data_block() failed, error = %d", __func__, r); | 
|  | cell_error(cell); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void process_shared_bio(struct thin_c *tc, struct bio *bio, | 
|  | dm_block_t block, | 
|  | struct dm_thin_lookup_result *lookup_result) | 
|  | { | 
|  | struct cell *cell; | 
|  | struct pool *pool = tc->pool; | 
|  | struct cell_key key; | 
|  |  | 
|  | /* | 
|  | * If cell is already occupied, then sharing is already in the process | 
|  | * of being broken so we have nothing further to do here. | 
|  | */ | 
|  | build_data_key(tc->td, lookup_result->block, &key); | 
|  | if (bio_detain(pool->prison, &key, bio, &cell)) | 
|  | return; | 
|  |  | 
|  | if (bio_data_dir(bio) == WRITE) | 
|  | break_sharing(tc, bio, block, &key, lookup_result, cell); | 
|  | else { | 
|  | struct endio_hook *h; | 
|  | h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO); | 
|  |  | 
|  | h->tc = tc; | 
|  | h->entry = ds_inc(&pool->ds); | 
|  | save_and_set_endio(bio, &h->saved_bi_end_io, shared_read_endio); | 
|  | dm_get_mapinfo(bio)->ptr = h; | 
|  |  | 
|  | cell_release_singleton(cell, bio); | 
|  | remap_and_issue(tc, bio, lookup_result->block); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, | 
|  | struct cell *cell) | 
|  | { | 
|  | int r; | 
|  | dm_block_t data_block; | 
|  |  | 
|  | /* | 
|  | * Remap empty bios (flushes) immediately, without provisioning. | 
|  | */ | 
|  | if (!bio->bi_size) { | 
|  | cell_release_singleton(cell, bio); | 
|  | remap_and_issue(tc, bio, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fill read bios with zeroes and complete them immediately. | 
|  | */ | 
|  | if (bio_data_dir(bio) == READ) { | 
|  | zero_fill_bio(bio); | 
|  | cell_release_singleton(cell, bio); | 
|  | bio_endio(bio, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | r = alloc_data_block(tc, &data_block); | 
|  | switch (r) { | 
|  | case 0: | 
|  | schedule_zero(tc, block, data_block, cell, bio); | 
|  | break; | 
|  |  | 
|  | case -ENOSPC: | 
|  | no_space(cell); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | DMERR("%s: alloc_data_block() failed, error = %d", __func__, r); | 
|  | cell_error(cell); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void process_bio(struct thin_c *tc, struct bio *bio) | 
|  | { | 
|  | int r; | 
|  | dm_block_t block = get_bio_block(tc, bio); | 
|  | struct cell *cell; | 
|  | struct cell_key key; | 
|  | struct dm_thin_lookup_result lookup_result; | 
|  |  | 
|  | /* | 
|  | * If cell is already occupied, then the block is already | 
|  | * being provisioned so we have nothing further to do here. | 
|  | */ | 
|  | build_virtual_key(tc->td, block, &key); | 
|  | if (bio_detain(tc->pool->prison, &key, bio, &cell)) | 
|  | return; | 
|  |  | 
|  | r = dm_thin_find_block(tc->td, block, 1, &lookup_result); | 
|  | switch (r) { | 
|  | case 0: | 
|  | /* | 
|  | * We can release this cell now.  This thread is the only | 
|  | * one that puts bios into a cell, and we know there were | 
|  | * no preceding bios. | 
|  | */ | 
|  | /* | 
|  | * TODO: this will probably have to change when discard goes | 
|  | * back in. | 
|  | */ | 
|  | cell_release_singleton(cell, bio); | 
|  |  | 
|  | if (lookup_result.shared) | 
|  | process_shared_bio(tc, bio, block, &lookup_result); | 
|  | else | 
|  | remap_and_issue(tc, bio, lookup_result.block); | 
|  | break; | 
|  |  | 
|  | case -ENODATA: | 
|  | provision_block(tc, bio, block, cell); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | DMERR("dm_thin_find_block() failed, error = %d", r); | 
|  | bio_io_error(bio); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void process_deferred_bios(struct pool *pool) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct bio *bio; | 
|  | struct bio_list bios; | 
|  | int r; | 
|  |  | 
|  | bio_list_init(&bios); | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | bio_list_merge(&bios, &pool->deferred_bios); | 
|  | bio_list_init(&pool->deferred_bios); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  |  | 
|  | while ((bio = bio_list_pop(&bios))) { | 
|  | struct thin_c *tc = dm_get_mapinfo(bio)->ptr; | 
|  | /* | 
|  | * If we've got no free new_mapping structs, and processing | 
|  | * this bio might require one, we pause until there are some | 
|  | * prepared mappings to process. | 
|  | */ | 
|  | if (ensure_next_mapping(pool)) { | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | bio_list_merge(&pool->deferred_bios, &bios); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  |  | 
|  | break; | 
|  | } | 
|  | process_bio(tc, bio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there are any deferred flush bios, we must commit | 
|  | * the metadata before issuing them. | 
|  | */ | 
|  | bio_list_init(&bios); | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | bio_list_merge(&bios, &pool->deferred_flush_bios); | 
|  | bio_list_init(&pool->deferred_flush_bios); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  |  | 
|  | if (bio_list_empty(&bios)) | 
|  | return; | 
|  |  | 
|  | r = dm_pool_commit_metadata(pool->pmd); | 
|  | if (r) { | 
|  | DMERR("%s: dm_pool_commit_metadata() failed, error = %d", | 
|  | __func__, r); | 
|  | while ((bio = bio_list_pop(&bios))) | 
|  | bio_io_error(bio); | 
|  | return; | 
|  | } | 
|  |  | 
|  | while ((bio = bio_list_pop(&bios))) | 
|  | generic_make_request(bio); | 
|  | } | 
|  |  | 
|  | static void do_worker(struct work_struct *ws) | 
|  | { | 
|  | struct pool *pool = container_of(ws, struct pool, worker); | 
|  |  | 
|  | process_prepared_mappings(pool); | 
|  | process_deferred_bios(pool); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * Mapping functions. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Called only while mapping a thin bio to hand it over to the workqueue. | 
|  | */ | 
|  | static void thin_defer_bio(struct thin_c *tc, struct bio *bio) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct pool *pool = tc->pool; | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | bio_list_add(&pool->deferred_bios, bio); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  |  | 
|  | wake_worker(pool); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Non-blocking function called from the thin target's map function. | 
|  | */ | 
|  | static int thin_bio_map(struct dm_target *ti, struct bio *bio, | 
|  | union map_info *map_context) | 
|  | { | 
|  | int r; | 
|  | struct thin_c *tc = ti->private; | 
|  | dm_block_t block = get_bio_block(tc, bio); | 
|  | struct dm_thin_device *td = tc->td; | 
|  | struct dm_thin_lookup_result result; | 
|  |  | 
|  | /* | 
|  | * Save the thin context for easy access from the deferred bio later. | 
|  | */ | 
|  | map_context->ptr = tc; | 
|  |  | 
|  | if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) { | 
|  | thin_defer_bio(tc, bio); | 
|  | return DM_MAPIO_SUBMITTED; | 
|  | } | 
|  |  | 
|  | r = dm_thin_find_block(td, block, 0, &result); | 
|  |  | 
|  | /* | 
|  | * Note that we defer readahead too. | 
|  | */ | 
|  | switch (r) { | 
|  | case 0: | 
|  | if (unlikely(result.shared)) { | 
|  | /* | 
|  | * We have a race condition here between the | 
|  | * result.shared value returned by the lookup and | 
|  | * snapshot creation, which may cause new | 
|  | * sharing. | 
|  | * | 
|  | * To avoid this always quiesce the origin before | 
|  | * taking the snap.  You want to do this anyway to | 
|  | * ensure a consistent application view | 
|  | * (i.e. lockfs). | 
|  | * | 
|  | * More distant ancestors are irrelevant. The | 
|  | * shared flag will be set in their case. | 
|  | */ | 
|  | thin_defer_bio(tc, bio); | 
|  | r = DM_MAPIO_SUBMITTED; | 
|  | } else { | 
|  | remap(tc, bio, result.block); | 
|  | r = DM_MAPIO_REMAPPED; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case -ENODATA: | 
|  | /* | 
|  | * In future, the failed dm_thin_find_block above could | 
|  | * provide the hint to load the metadata into cache. | 
|  | */ | 
|  | case -EWOULDBLOCK: | 
|  | thin_defer_bio(tc, bio); | 
|  | r = DM_MAPIO_SUBMITTED; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) | 
|  | { | 
|  | int r; | 
|  | unsigned long flags; | 
|  | struct pool_c *pt = container_of(cb, struct pool_c, callbacks); | 
|  |  | 
|  | spin_lock_irqsave(&pt->pool->lock, flags); | 
|  | r = !bio_list_empty(&pt->pool->retry_on_resume_list); | 
|  | spin_unlock_irqrestore(&pt->pool->lock, flags); | 
|  |  | 
|  | if (!r) { | 
|  | struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); | 
|  | r = bdi_congested(&q->backing_dev_info, bdi_bits); | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void __requeue_bios(struct pool *pool) | 
|  | { | 
|  | bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list); | 
|  | bio_list_init(&pool->retry_on_resume_list); | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------- | 
|  | * Binding of control targets to a pool object | 
|  | *--------------------------------------------------------------*/ | 
|  | static int bind_control_target(struct pool *pool, struct dm_target *ti) | 
|  | { | 
|  | struct pool_c *pt = ti->private; | 
|  |  | 
|  | pool->ti = ti; | 
|  | pool->low_water_blocks = pt->low_water_blocks; | 
|  | pool->zero_new_blocks = pt->zero_new_blocks; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void unbind_control_target(struct pool *pool, struct dm_target *ti) | 
|  | { | 
|  | if (pool->ti == ti) | 
|  | pool->ti = NULL; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------- | 
|  | * Pool creation | 
|  | *--------------------------------------------------------------*/ | 
|  | static void __pool_destroy(struct pool *pool) | 
|  | { | 
|  | __pool_table_remove(pool); | 
|  |  | 
|  | if (dm_pool_metadata_close(pool->pmd) < 0) | 
|  | DMWARN("%s: dm_pool_metadata_close() failed.", __func__); | 
|  |  | 
|  | prison_destroy(pool->prison); | 
|  | dm_kcopyd_client_destroy(pool->copier); | 
|  |  | 
|  | if (pool->wq) | 
|  | destroy_workqueue(pool->wq); | 
|  |  | 
|  | if (pool->next_mapping) | 
|  | mempool_free(pool->next_mapping, pool->mapping_pool); | 
|  | mempool_destroy(pool->mapping_pool); | 
|  | mempool_destroy(pool->endio_hook_pool); | 
|  | kfree(pool); | 
|  | } | 
|  |  | 
|  | static struct pool *pool_create(struct mapped_device *pool_md, | 
|  | struct block_device *metadata_dev, | 
|  | unsigned long block_size, char **error) | 
|  | { | 
|  | int r; | 
|  | void *err_p; | 
|  | struct pool *pool; | 
|  | struct dm_pool_metadata *pmd; | 
|  |  | 
|  | pmd = dm_pool_metadata_open(metadata_dev, block_size); | 
|  | if (IS_ERR(pmd)) { | 
|  | *error = "Error creating metadata object"; | 
|  | return (struct pool *)pmd; | 
|  | } | 
|  |  | 
|  | pool = kmalloc(sizeof(*pool), GFP_KERNEL); | 
|  | if (!pool) { | 
|  | *error = "Error allocating memory for pool"; | 
|  | err_p = ERR_PTR(-ENOMEM); | 
|  | goto bad_pool; | 
|  | } | 
|  |  | 
|  | pool->pmd = pmd; | 
|  | pool->sectors_per_block = block_size; | 
|  | pool->block_shift = ffs(block_size) - 1; | 
|  | pool->offset_mask = block_size - 1; | 
|  | pool->low_water_blocks = 0; | 
|  | pool->zero_new_blocks = 1; | 
|  | pool->prison = prison_create(PRISON_CELLS); | 
|  | if (!pool->prison) { | 
|  | *error = "Error creating pool's bio prison"; | 
|  | err_p = ERR_PTR(-ENOMEM); | 
|  | goto bad_prison; | 
|  | } | 
|  |  | 
|  | pool->copier = dm_kcopyd_client_create(); | 
|  | if (IS_ERR(pool->copier)) { | 
|  | r = PTR_ERR(pool->copier); | 
|  | *error = "Error creating pool's kcopyd client"; | 
|  | err_p = ERR_PTR(r); | 
|  | goto bad_kcopyd_client; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create singlethreaded workqueue that will service all devices | 
|  | * that use this metadata. | 
|  | */ | 
|  | pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); | 
|  | if (!pool->wq) { | 
|  | *error = "Error creating pool's workqueue"; | 
|  | err_p = ERR_PTR(-ENOMEM); | 
|  | goto bad_wq; | 
|  | } | 
|  |  | 
|  | INIT_WORK(&pool->worker, do_worker); | 
|  | spin_lock_init(&pool->lock); | 
|  | bio_list_init(&pool->deferred_bios); | 
|  | bio_list_init(&pool->deferred_flush_bios); | 
|  | INIT_LIST_HEAD(&pool->prepared_mappings); | 
|  | pool->low_water_triggered = 0; | 
|  | pool->no_free_space = 0; | 
|  | bio_list_init(&pool->retry_on_resume_list); | 
|  | ds_init(&pool->ds); | 
|  |  | 
|  | pool->next_mapping = NULL; | 
|  | pool->mapping_pool = | 
|  | mempool_create_kmalloc_pool(MAPPING_POOL_SIZE, sizeof(struct new_mapping)); | 
|  | if (!pool->mapping_pool) { | 
|  | *error = "Error creating pool's mapping mempool"; | 
|  | err_p = ERR_PTR(-ENOMEM); | 
|  | goto bad_mapping_pool; | 
|  | } | 
|  |  | 
|  | pool->endio_hook_pool = | 
|  | mempool_create_kmalloc_pool(ENDIO_HOOK_POOL_SIZE, sizeof(struct endio_hook)); | 
|  | if (!pool->endio_hook_pool) { | 
|  | *error = "Error creating pool's endio_hook mempool"; | 
|  | err_p = ERR_PTR(-ENOMEM); | 
|  | goto bad_endio_hook_pool; | 
|  | } | 
|  | pool->ref_count = 1; | 
|  | pool->pool_md = pool_md; | 
|  | pool->md_dev = metadata_dev; | 
|  | __pool_table_insert(pool); | 
|  |  | 
|  | return pool; | 
|  |  | 
|  | bad_endio_hook_pool: | 
|  | mempool_destroy(pool->mapping_pool); | 
|  | bad_mapping_pool: | 
|  | destroy_workqueue(pool->wq); | 
|  | bad_wq: | 
|  | dm_kcopyd_client_destroy(pool->copier); | 
|  | bad_kcopyd_client: | 
|  | prison_destroy(pool->prison); | 
|  | bad_prison: | 
|  | kfree(pool); | 
|  | bad_pool: | 
|  | if (dm_pool_metadata_close(pmd)) | 
|  | DMWARN("%s: dm_pool_metadata_close() failed.", __func__); | 
|  |  | 
|  | return err_p; | 
|  | } | 
|  |  | 
|  | static void __pool_inc(struct pool *pool) | 
|  | { | 
|  | BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | 
|  | pool->ref_count++; | 
|  | } | 
|  |  | 
|  | static void __pool_dec(struct pool *pool) | 
|  | { | 
|  | BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | 
|  | BUG_ON(!pool->ref_count); | 
|  | if (!--pool->ref_count) | 
|  | __pool_destroy(pool); | 
|  | } | 
|  |  | 
|  | static struct pool *__pool_find(struct mapped_device *pool_md, | 
|  | struct block_device *metadata_dev, | 
|  | unsigned long block_size, char **error) | 
|  | { | 
|  | struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); | 
|  |  | 
|  | if (pool) { | 
|  | if (pool->pool_md != pool_md) | 
|  | return ERR_PTR(-EBUSY); | 
|  | __pool_inc(pool); | 
|  |  | 
|  | } else { | 
|  | pool = __pool_table_lookup(pool_md); | 
|  | if (pool) { | 
|  | if (pool->md_dev != metadata_dev) | 
|  | return ERR_PTR(-EINVAL); | 
|  | __pool_inc(pool); | 
|  |  | 
|  | } else | 
|  | pool = pool_create(pool_md, metadata_dev, block_size, error); | 
|  | } | 
|  |  | 
|  | return pool; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------- | 
|  | * Pool target methods | 
|  | *--------------------------------------------------------------*/ | 
|  | static void pool_dtr(struct dm_target *ti) | 
|  | { | 
|  | struct pool_c *pt = ti->private; | 
|  |  | 
|  | mutex_lock(&dm_thin_pool_table.mutex); | 
|  |  | 
|  | unbind_control_target(pt->pool, ti); | 
|  | __pool_dec(pt->pool); | 
|  | dm_put_device(ti, pt->metadata_dev); | 
|  | dm_put_device(ti, pt->data_dev); | 
|  | kfree(pt); | 
|  |  | 
|  | mutex_unlock(&dm_thin_pool_table.mutex); | 
|  | } | 
|  |  | 
|  | struct pool_features { | 
|  | unsigned zero_new_blocks:1; | 
|  | }; | 
|  |  | 
|  | static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, | 
|  | struct dm_target *ti) | 
|  | { | 
|  | int r; | 
|  | unsigned argc; | 
|  | const char *arg_name; | 
|  |  | 
|  | static struct dm_arg _args[] = { | 
|  | {0, 1, "Invalid number of pool feature arguments"}, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * No feature arguments supplied. | 
|  | */ | 
|  | if (!as->argc) | 
|  | return 0; | 
|  |  | 
|  | r = dm_read_arg_group(_args, as, &argc, &ti->error); | 
|  | if (r) | 
|  | return -EINVAL; | 
|  |  | 
|  | while (argc && !r) { | 
|  | arg_name = dm_shift_arg(as); | 
|  | argc--; | 
|  |  | 
|  | if (!strcasecmp(arg_name, "skip_block_zeroing")) { | 
|  | pf->zero_new_blocks = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ti->error = "Unrecognised pool feature requested"; | 
|  | r = -EINVAL; | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * thin-pool <metadata dev> <data dev> | 
|  | *	     <data block size (sectors)> | 
|  | *	     <low water mark (blocks)> | 
|  | *	     [<#feature args> [<arg>]*] | 
|  | * | 
|  | * Optional feature arguments are: | 
|  | *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks. | 
|  | */ | 
|  | static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) | 
|  | { | 
|  | int r; | 
|  | struct pool_c *pt; | 
|  | struct pool *pool; | 
|  | struct pool_features pf; | 
|  | struct dm_arg_set as; | 
|  | struct dm_dev *data_dev; | 
|  | unsigned long block_size; | 
|  | dm_block_t low_water_blocks; | 
|  | struct dm_dev *metadata_dev; | 
|  | sector_t metadata_dev_size; | 
|  |  | 
|  | /* | 
|  | * FIXME Remove validation from scope of lock. | 
|  | */ | 
|  | mutex_lock(&dm_thin_pool_table.mutex); | 
|  |  | 
|  | if (argc < 4) { | 
|  | ti->error = "Invalid argument count"; | 
|  | r = -EINVAL; | 
|  | goto out_unlock; | 
|  | } | 
|  | as.argc = argc; | 
|  | as.argv = argv; | 
|  |  | 
|  | r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev); | 
|  | if (r) { | 
|  | ti->error = "Error opening metadata block device"; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT; | 
|  | if (metadata_dev_size > METADATA_DEV_MAX_SECTORS) { | 
|  | ti->error = "Metadata device is too large"; | 
|  | r = -EINVAL; | 
|  | goto out_metadata; | 
|  | } | 
|  |  | 
|  | r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); | 
|  | if (r) { | 
|  | ti->error = "Error getting data device"; | 
|  | goto out_metadata; | 
|  | } | 
|  |  | 
|  | if (kstrtoul(argv[2], 10, &block_size) || !block_size || | 
|  | block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || | 
|  | block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || | 
|  | !is_power_of_2(block_size)) { | 
|  | ti->error = "Invalid block size"; | 
|  | r = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { | 
|  | ti->error = "Invalid low water mark"; | 
|  | r = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set default pool features. | 
|  | */ | 
|  | memset(&pf, 0, sizeof(pf)); | 
|  | pf.zero_new_blocks = 1; | 
|  |  | 
|  | dm_consume_args(&as, 4); | 
|  | r = parse_pool_features(&as, &pf, ti); | 
|  | if (r) | 
|  | goto out; | 
|  |  | 
|  | pt = kzalloc(sizeof(*pt), GFP_KERNEL); | 
|  | if (!pt) { | 
|  | r = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, | 
|  | block_size, &ti->error); | 
|  | if (IS_ERR(pool)) { | 
|  | r = PTR_ERR(pool); | 
|  | goto out_free_pt; | 
|  | } | 
|  |  | 
|  | pt->pool = pool; | 
|  | pt->ti = ti; | 
|  | pt->metadata_dev = metadata_dev; | 
|  | pt->data_dev = data_dev; | 
|  | pt->low_water_blocks = low_water_blocks; | 
|  | pt->zero_new_blocks = pf.zero_new_blocks; | 
|  | ti->num_flush_requests = 1; | 
|  | ti->num_discard_requests = 0; | 
|  | ti->private = pt; | 
|  |  | 
|  | pt->callbacks.congested_fn = pool_is_congested; | 
|  | dm_table_add_target_callbacks(ti->table, &pt->callbacks); | 
|  |  | 
|  | mutex_unlock(&dm_thin_pool_table.mutex); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_free_pt: | 
|  | kfree(pt); | 
|  | out: | 
|  | dm_put_device(ti, data_dev); | 
|  | out_metadata: | 
|  | dm_put_device(ti, metadata_dev); | 
|  | out_unlock: | 
|  | mutex_unlock(&dm_thin_pool_table.mutex); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int pool_map(struct dm_target *ti, struct bio *bio, | 
|  | union map_info *map_context) | 
|  | { | 
|  | int r; | 
|  | struct pool_c *pt = ti->private; | 
|  | struct pool *pool = pt->pool; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * As this is a singleton target, ti->begin is always zero. | 
|  | */ | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | bio->bi_bdev = pt->data_dev->bdev; | 
|  | r = DM_MAPIO_REMAPPED; | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Retrieves the number of blocks of the data device from | 
|  | * the superblock and compares it to the actual device size, | 
|  | * thus resizing the data device in case it has grown. | 
|  | * | 
|  | * This both copes with opening preallocated data devices in the ctr | 
|  | * being followed by a resume | 
|  | * -and- | 
|  | * calling the resume method individually after userspace has | 
|  | * grown the data device in reaction to a table event. | 
|  | */ | 
|  | static int pool_preresume(struct dm_target *ti) | 
|  | { | 
|  | int r; | 
|  | struct pool_c *pt = ti->private; | 
|  | struct pool *pool = pt->pool; | 
|  | dm_block_t data_size, sb_data_size; | 
|  |  | 
|  | /* | 
|  | * Take control of the pool object. | 
|  | */ | 
|  | r = bind_control_target(pool, ti); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | data_size = ti->len >> pool->block_shift; | 
|  | r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); | 
|  | if (r) { | 
|  | DMERR("failed to retrieve data device size"); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | if (data_size < sb_data_size) { | 
|  | DMERR("pool target too small, is %llu blocks (expected %llu)", | 
|  | data_size, sb_data_size); | 
|  | return -EINVAL; | 
|  |  | 
|  | } else if (data_size > sb_data_size) { | 
|  | r = dm_pool_resize_data_dev(pool->pmd, data_size); | 
|  | if (r) { | 
|  | DMERR("failed to resize data device"); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | r = dm_pool_commit_metadata(pool->pmd); | 
|  | if (r) { | 
|  | DMERR("%s: dm_pool_commit_metadata() failed, error = %d", | 
|  | __func__, r); | 
|  | return r; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void pool_resume(struct dm_target *ti) | 
|  | { | 
|  | struct pool_c *pt = ti->private; | 
|  | struct pool *pool = pt->pool; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | pool->low_water_triggered = 0; | 
|  | pool->no_free_space = 0; | 
|  | __requeue_bios(pool); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  |  | 
|  | wake_worker(pool); | 
|  | } | 
|  |  | 
|  | static void pool_postsuspend(struct dm_target *ti) | 
|  | { | 
|  | int r; | 
|  | struct pool_c *pt = ti->private; | 
|  | struct pool *pool = pt->pool; | 
|  |  | 
|  | flush_workqueue(pool->wq); | 
|  |  | 
|  | r = dm_pool_commit_metadata(pool->pmd); | 
|  | if (r < 0) { | 
|  | DMERR("%s: dm_pool_commit_metadata() failed, error = %d", | 
|  | __func__, r); | 
|  | /* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/ | 
|  | } | 
|  | } | 
|  |  | 
|  | static int check_arg_count(unsigned argc, unsigned args_required) | 
|  | { | 
|  | if (argc != args_required) { | 
|  | DMWARN("Message received with %u arguments instead of %u.", | 
|  | argc, args_required); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) | 
|  | { | 
|  | if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && | 
|  | *dev_id <= MAX_DEV_ID) | 
|  | return 0; | 
|  |  | 
|  | if (warning) | 
|  | DMWARN("Message received with invalid device id: %s", arg); | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) | 
|  | { | 
|  | dm_thin_id dev_id; | 
|  | int r; | 
|  |  | 
|  | r = check_arg_count(argc, 2); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = read_dev_id(argv[1], &dev_id, 1); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = dm_pool_create_thin(pool->pmd, dev_id); | 
|  | if (r) { | 
|  | DMWARN("Creation of new thinly-provisioned device with id %s failed.", | 
|  | argv[1]); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) | 
|  | { | 
|  | dm_thin_id dev_id; | 
|  | dm_thin_id origin_dev_id; | 
|  | int r; | 
|  |  | 
|  | r = check_arg_count(argc, 3); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = read_dev_id(argv[1], &dev_id, 1); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = read_dev_id(argv[2], &origin_dev_id, 1); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); | 
|  | if (r) { | 
|  | DMWARN("Creation of new snapshot %s of device %s failed.", | 
|  | argv[1], argv[2]); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) | 
|  | { | 
|  | dm_thin_id dev_id; | 
|  | int r; | 
|  |  | 
|  | r = check_arg_count(argc, 2); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = read_dev_id(argv[1], &dev_id, 1); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = dm_pool_delete_thin_device(pool->pmd, dev_id); | 
|  | if (r) | 
|  | DMWARN("Deletion of thin device %s failed.", argv[1]); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) | 
|  | { | 
|  | dm_thin_id old_id, new_id; | 
|  | int r; | 
|  |  | 
|  | r = check_arg_count(argc, 3); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { | 
|  | DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { | 
|  | DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); | 
|  | if (r) { | 
|  | DMWARN("Failed to change transaction id from %s to %s.", | 
|  | argv[1], argv[2]); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Messages supported: | 
|  | *   create_thin	<dev_id> | 
|  | *   create_snap	<dev_id> <origin_id> | 
|  | *   delete		<dev_id> | 
|  | *   trim		<dev_id> <new_size_in_sectors> | 
|  | *   set_transaction_id <current_trans_id> <new_trans_id> | 
|  | */ | 
|  | static int pool_message(struct dm_target *ti, unsigned argc, char **argv) | 
|  | { | 
|  | int r = -EINVAL; | 
|  | struct pool_c *pt = ti->private; | 
|  | struct pool *pool = pt->pool; | 
|  |  | 
|  | if (!strcasecmp(argv[0], "create_thin")) | 
|  | r = process_create_thin_mesg(argc, argv, pool); | 
|  |  | 
|  | else if (!strcasecmp(argv[0], "create_snap")) | 
|  | r = process_create_snap_mesg(argc, argv, pool); | 
|  |  | 
|  | else if (!strcasecmp(argv[0], "delete")) | 
|  | r = process_delete_mesg(argc, argv, pool); | 
|  |  | 
|  | else if (!strcasecmp(argv[0], "set_transaction_id")) | 
|  | r = process_set_transaction_id_mesg(argc, argv, pool); | 
|  |  | 
|  | else | 
|  | DMWARN("Unrecognised thin pool target message received: %s", argv[0]); | 
|  |  | 
|  | if (!r) { | 
|  | r = dm_pool_commit_metadata(pool->pmd); | 
|  | if (r) | 
|  | DMERR("%s message: dm_pool_commit_metadata() failed, error = %d", | 
|  | argv[0], r); | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Status line is: | 
|  | *    <transaction id> <used metadata sectors>/<total metadata sectors> | 
|  | *    <used data sectors>/<total data sectors> <held metadata root> | 
|  | */ | 
|  | static int pool_status(struct dm_target *ti, status_type_t type, | 
|  | char *result, unsigned maxlen) | 
|  | { | 
|  | int r; | 
|  | unsigned sz = 0; | 
|  | uint64_t transaction_id; | 
|  | dm_block_t nr_free_blocks_data; | 
|  | dm_block_t nr_free_blocks_metadata; | 
|  | dm_block_t nr_blocks_data; | 
|  | dm_block_t nr_blocks_metadata; | 
|  | dm_block_t held_root; | 
|  | char buf[BDEVNAME_SIZE]; | 
|  | char buf2[BDEVNAME_SIZE]; | 
|  | struct pool_c *pt = ti->private; | 
|  | struct pool *pool = pt->pool; | 
|  |  | 
|  | switch (type) { | 
|  | case STATUSTYPE_INFO: | 
|  | r = dm_pool_get_metadata_transaction_id(pool->pmd, | 
|  | &transaction_id); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = dm_pool_get_free_metadata_block_count(pool->pmd, | 
|  | &nr_free_blocks_metadata); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = dm_pool_get_free_block_count(pool->pmd, | 
|  | &nr_free_blocks_data); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = dm_pool_get_held_metadata_root(pool->pmd, &held_root); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | DMEMIT("%llu %llu/%llu %llu/%llu ", | 
|  | (unsigned long long)transaction_id, | 
|  | (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), | 
|  | (unsigned long long)nr_blocks_metadata, | 
|  | (unsigned long long)(nr_blocks_data - nr_free_blocks_data), | 
|  | (unsigned long long)nr_blocks_data); | 
|  |  | 
|  | if (held_root) | 
|  | DMEMIT("%llu", held_root); | 
|  | else | 
|  | DMEMIT("-"); | 
|  |  | 
|  | break; | 
|  |  | 
|  | case STATUSTYPE_TABLE: | 
|  | DMEMIT("%s %s %lu %llu ", | 
|  | format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), | 
|  | format_dev_t(buf2, pt->data_dev->bdev->bd_dev), | 
|  | (unsigned long)pool->sectors_per_block, | 
|  | (unsigned long long)pt->low_water_blocks); | 
|  |  | 
|  | DMEMIT("%u ", !pool->zero_new_blocks); | 
|  |  | 
|  | if (!pool->zero_new_blocks) | 
|  | DMEMIT("skip_block_zeroing "); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pool_iterate_devices(struct dm_target *ti, | 
|  | iterate_devices_callout_fn fn, void *data) | 
|  | { | 
|  | struct pool_c *pt = ti->private; | 
|  |  | 
|  | return fn(ti, pt->data_dev, 0, ti->len, data); | 
|  | } | 
|  |  | 
|  | static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm, | 
|  | struct bio_vec *biovec, int max_size) | 
|  | { | 
|  | struct pool_c *pt = ti->private; | 
|  | struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); | 
|  |  | 
|  | if (!q->merge_bvec_fn) | 
|  | return max_size; | 
|  |  | 
|  | bvm->bi_bdev = pt->data_dev->bdev; | 
|  |  | 
|  | return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); | 
|  | } | 
|  |  | 
|  | static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) | 
|  | { | 
|  | struct pool_c *pt = ti->private; | 
|  | struct pool *pool = pt->pool; | 
|  |  | 
|  | blk_limits_io_min(limits, 0); | 
|  | blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); | 
|  | } | 
|  |  | 
|  | static struct target_type pool_target = { | 
|  | .name = "thin-pool", | 
|  | .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | | 
|  | DM_TARGET_IMMUTABLE, | 
|  | .version = {1, 0, 0}, | 
|  | .module = THIS_MODULE, | 
|  | .ctr = pool_ctr, | 
|  | .dtr = pool_dtr, | 
|  | .map = pool_map, | 
|  | .postsuspend = pool_postsuspend, | 
|  | .preresume = pool_preresume, | 
|  | .resume = pool_resume, | 
|  | .message = pool_message, | 
|  | .status = pool_status, | 
|  | .merge = pool_merge, | 
|  | .iterate_devices = pool_iterate_devices, | 
|  | .io_hints = pool_io_hints, | 
|  | }; | 
|  |  | 
|  | /*---------------------------------------------------------------- | 
|  | * Thin target methods | 
|  | *--------------------------------------------------------------*/ | 
|  | static void thin_dtr(struct dm_target *ti) | 
|  | { | 
|  | struct thin_c *tc = ti->private; | 
|  |  | 
|  | mutex_lock(&dm_thin_pool_table.mutex); | 
|  |  | 
|  | __pool_dec(tc->pool); | 
|  | dm_pool_close_thin_device(tc->td); | 
|  | dm_put_device(ti, tc->pool_dev); | 
|  | kfree(tc); | 
|  |  | 
|  | mutex_unlock(&dm_thin_pool_table.mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Thin target parameters: | 
|  | * | 
|  | * <pool_dev> <dev_id> | 
|  | * | 
|  | * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) | 
|  | * dev_id: the internal device identifier | 
|  | */ | 
|  | static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) | 
|  | { | 
|  | int r; | 
|  | struct thin_c *tc; | 
|  | struct dm_dev *pool_dev; | 
|  | struct mapped_device *pool_md; | 
|  |  | 
|  | mutex_lock(&dm_thin_pool_table.mutex); | 
|  |  | 
|  | if (argc != 2) { | 
|  | ti->error = "Invalid argument count"; | 
|  | r = -EINVAL; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); | 
|  | if (!tc) { | 
|  | ti->error = "Out of memory"; | 
|  | r = -ENOMEM; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); | 
|  | if (r) { | 
|  | ti->error = "Error opening pool device"; | 
|  | goto bad_pool_dev; | 
|  | } | 
|  | tc->pool_dev = pool_dev; | 
|  |  | 
|  | if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { | 
|  | ti->error = "Invalid device id"; | 
|  | r = -EINVAL; | 
|  | goto bad_common; | 
|  | } | 
|  |  | 
|  | pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); | 
|  | if (!pool_md) { | 
|  | ti->error = "Couldn't get pool mapped device"; | 
|  | r = -EINVAL; | 
|  | goto bad_common; | 
|  | } | 
|  |  | 
|  | tc->pool = __pool_table_lookup(pool_md); | 
|  | if (!tc->pool) { | 
|  | ti->error = "Couldn't find pool object"; | 
|  | r = -EINVAL; | 
|  | goto bad_pool_lookup; | 
|  | } | 
|  | __pool_inc(tc->pool); | 
|  |  | 
|  | r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); | 
|  | if (r) { | 
|  | ti->error = "Couldn't open thin internal device"; | 
|  | goto bad_thin_open; | 
|  | } | 
|  |  | 
|  | ti->split_io = tc->pool->sectors_per_block; | 
|  | ti->num_flush_requests = 1; | 
|  | ti->num_discard_requests = 0; | 
|  | ti->discards_supported = 0; | 
|  |  | 
|  | dm_put(pool_md); | 
|  |  | 
|  | mutex_unlock(&dm_thin_pool_table.mutex); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | bad_thin_open: | 
|  | __pool_dec(tc->pool); | 
|  | bad_pool_lookup: | 
|  | dm_put(pool_md); | 
|  | bad_common: | 
|  | dm_put_device(ti, tc->pool_dev); | 
|  | bad_pool_dev: | 
|  | kfree(tc); | 
|  | out_unlock: | 
|  | mutex_unlock(&dm_thin_pool_table.mutex); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int thin_map(struct dm_target *ti, struct bio *bio, | 
|  | union map_info *map_context) | 
|  | { | 
|  | bio->bi_sector -= ti->begin; | 
|  |  | 
|  | return thin_bio_map(ti, bio, map_context); | 
|  | } | 
|  |  | 
|  | static void thin_postsuspend(struct dm_target *ti) | 
|  | { | 
|  | if (dm_noflush_suspending(ti)) | 
|  | requeue_io((struct thin_c *)ti->private); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * <nr mapped sectors> <highest mapped sector> | 
|  | */ | 
|  | static int thin_status(struct dm_target *ti, status_type_t type, | 
|  | char *result, unsigned maxlen) | 
|  | { | 
|  | int r; | 
|  | ssize_t sz = 0; | 
|  | dm_block_t mapped, highest; | 
|  | char buf[BDEVNAME_SIZE]; | 
|  | struct thin_c *tc = ti->private; | 
|  |  | 
|  | if (!tc->td) | 
|  | DMEMIT("-"); | 
|  | else { | 
|  | switch (type) { | 
|  | case STATUSTYPE_INFO: | 
|  | r = dm_thin_get_mapped_count(tc->td, &mapped); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = dm_thin_get_highest_mapped_block(tc->td, &highest); | 
|  | if (r < 0) | 
|  | return r; | 
|  |  | 
|  | DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); | 
|  | if (r) | 
|  | DMEMIT("%llu", ((highest + 1) * | 
|  | tc->pool->sectors_per_block) - 1); | 
|  | else | 
|  | DMEMIT("-"); | 
|  | break; | 
|  |  | 
|  | case STATUSTYPE_TABLE: | 
|  | DMEMIT("%s %lu", | 
|  | format_dev_t(buf, tc->pool_dev->bdev->bd_dev), | 
|  | (unsigned long) tc->dev_id); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int thin_iterate_devices(struct dm_target *ti, | 
|  | iterate_devices_callout_fn fn, void *data) | 
|  | { | 
|  | dm_block_t blocks; | 
|  | struct thin_c *tc = ti->private; | 
|  |  | 
|  | /* | 
|  | * We can't call dm_pool_get_data_dev_size() since that blocks.  So | 
|  | * we follow a more convoluted path through to the pool's target. | 
|  | */ | 
|  | if (!tc->pool->ti) | 
|  | return 0;	/* nothing is bound */ | 
|  |  | 
|  | blocks = tc->pool->ti->len >> tc->pool->block_shift; | 
|  | if (blocks) | 
|  | return fn(ti, tc->pool_dev, 0, tc->pool->sectors_per_block * blocks, data); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits) | 
|  | { | 
|  | struct thin_c *tc = ti->private; | 
|  |  | 
|  | blk_limits_io_min(limits, 0); | 
|  | blk_limits_io_opt(limits, tc->pool->sectors_per_block << SECTOR_SHIFT); | 
|  | } | 
|  |  | 
|  | static struct target_type thin_target = { | 
|  | .name = "thin", | 
|  | .version = {1, 0, 0}, | 
|  | .module	= THIS_MODULE, | 
|  | .ctr = thin_ctr, | 
|  | .dtr = thin_dtr, | 
|  | .map = thin_map, | 
|  | .postsuspend = thin_postsuspend, | 
|  | .status = thin_status, | 
|  | .iterate_devices = thin_iterate_devices, | 
|  | .io_hints = thin_io_hints, | 
|  | }; | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | static int __init dm_thin_init(void) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | pool_table_init(); | 
|  |  | 
|  | r = dm_register_target(&thin_target); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = dm_register_target(&pool_target); | 
|  | if (r) | 
|  | dm_unregister_target(&thin_target); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void dm_thin_exit(void) | 
|  | { | 
|  | dm_unregister_target(&thin_target); | 
|  | dm_unregister_target(&pool_target); | 
|  | } | 
|  |  | 
|  | module_init(dm_thin_init); | 
|  | module_exit(dm_thin_exit); | 
|  |  | 
|  | MODULE_DESCRIPTION(DM_NAME "device-mapper thin provisioning target"); | 
|  | MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); | 
|  | MODULE_LICENSE("GPL"); |