|  | /* | 
|  | * Compaq Hot Plug Controller Driver | 
|  | * | 
|  | * Copyright (C) 1995,2001 Compaq Computer Corporation | 
|  | * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com) | 
|  | * Copyright (C) 2001 IBM Corp. | 
|  | * | 
|  | * All rights reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or (at | 
|  | * your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but | 
|  | * WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
|  | * NON INFRINGEMENT.  See the GNU General Public License for more | 
|  | * details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | * | 
|  | * Send feedback to <greg@kroah.com> | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/wait.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/pci_hotplug.h> | 
|  | #include <linux/kthread.h> | 
|  | #include "cpqphp.h" | 
|  |  | 
|  | static u32 configure_new_device(struct controller* ctrl, struct pci_func *func, | 
|  | u8 behind_bridge, struct resource_lists *resources); | 
|  | static int configure_new_function(struct controller* ctrl, struct pci_func *func, | 
|  | u8 behind_bridge, struct resource_lists *resources); | 
|  | static void interrupt_event_handler(struct controller *ctrl); | 
|  |  | 
|  |  | 
|  | static struct task_struct *cpqhp_event_thread; | 
|  | static unsigned long pushbutton_pending;	/* = 0 */ | 
|  |  | 
|  | /* delay is in jiffies to wait for */ | 
|  | static void long_delay(int delay) | 
|  | { | 
|  | /* | 
|  | * XXX(hch): if someone is bored please convert all callers | 
|  | * to call msleep_interruptible directly.  They really want | 
|  | * to specify timeouts in natural units and spend a lot of | 
|  | * effort converting them to jiffies.. | 
|  | */ | 
|  | msleep_interruptible(jiffies_to_msecs(delay)); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* FIXME: The following line needs to be somewhere else... */ | 
|  | #define WRONG_BUS_FREQUENCY 0x07 | 
|  | static u8 handle_switch_change(u8 change, struct controller * ctrl) | 
|  | { | 
|  | int hp_slot; | 
|  | u8 rc = 0; | 
|  | u16 temp_word; | 
|  | struct pci_func *func; | 
|  | struct event_info *taskInfo; | 
|  |  | 
|  | if (!change) | 
|  | return 0; | 
|  |  | 
|  | /* Switch Change */ | 
|  | dbg("cpqsbd:  Switch interrupt received.\n"); | 
|  |  | 
|  | for (hp_slot = 0; hp_slot < 6; hp_slot++) { | 
|  | if (change & (0x1L << hp_slot)) { | 
|  | /* | 
|  | * this one changed. | 
|  | */ | 
|  | func = cpqhp_slot_find(ctrl->bus, | 
|  | (hp_slot + ctrl->slot_device_offset), 0); | 
|  |  | 
|  | /* this is the structure that tells the worker thread | 
|  | * what to do | 
|  | */ | 
|  | taskInfo = &(ctrl->event_queue[ctrl->next_event]); | 
|  | ctrl->next_event = (ctrl->next_event + 1) % 10; | 
|  | taskInfo->hp_slot = hp_slot; | 
|  |  | 
|  | rc++; | 
|  |  | 
|  | temp_word = ctrl->ctrl_int_comp >> 16; | 
|  | func->presence_save = (temp_word >> hp_slot) & 0x01; | 
|  | func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; | 
|  |  | 
|  | if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { | 
|  | /* | 
|  | * Switch opened | 
|  | */ | 
|  |  | 
|  | func->switch_save = 0; | 
|  |  | 
|  | taskInfo->event_type = INT_SWITCH_OPEN; | 
|  | } else { | 
|  | /* | 
|  | * Switch closed | 
|  | */ | 
|  |  | 
|  | func->switch_save = 0x10; | 
|  |  | 
|  | taskInfo->event_type = INT_SWITCH_CLOSE; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cpqhp_find_slot - find the struct slot of given device | 
|  | * @ctrl: scan lots of this controller | 
|  | * @device: the device id to find | 
|  | */ | 
|  | static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device) | 
|  | { | 
|  | struct slot *slot = ctrl->slot; | 
|  |  | 
|  | while (slot && (slot->device != device)) | 
|  | slot = slot->next; | 
|  |  | 
|  | return slot; | 
|  | } | 
|  |  | 
|  |  | 
|  | static u8 handle_presence_change(u16 change, struct controller * ctrl) | 
|  | { | 
|  | int hp_slot; | 
|  | u8 rc = 0; | 
|  | u8 temp_byte; | 
|  | u16 temp_word; | 
|  | struct pci_func *func; | 
|  | struct event_info *taskInfo; | 
|  | struct slot *p_slot; | 
|  |  | 
|  | if (!change) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Presence Change | 
|  | */ | 
|  | dbg("cpqsbd:  Presence/Notify input change.\n"); | 
|  | dbg("         Changed bits are 0x%4.4x\n", change ); | 
|  |  | 
|  | for (hp_slot = 0; hp_slot < 6; hp_slot++) { | 
|  | if (change & (0x0101 << hp_slot)) { | 
|  | /* | 
|  | * this one changed. | 
|  | */ | 
|  | func = cpqhp_slot_find(ctrl->bus, | 
|  | (hp_slot + ctrl->slot_device_offset), 0); | 
|  |  | 
|  | taskInfo = &(ctrl->event_queue[ctrl->next_event]); | 
|  | ctrl->next_event = (ctrl->next_event + 1) % 10; | 
|  | taskInfo->hp_slot = hp_slot; | 
|  |  | 
|  | rc++; | 
|  |  | 
|  | p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4)); | 
|  | if (!p_slot) | 
|  | return 0; | 
|  |  | 
|  | /* If the switch closed, must be a button | 
|  | * If not in button mode, nevermind | 
|  | */ | 
|  | if (func->switch_save && (ctrl->push_button == 1)) { | 
|  | temp_word = ctrl->ctrl_int_comp >> 16; | 
|  | temp_byte = (temp_word >> hp_slot) & 0x01; | 
|  | temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02; | 
|  |  | 
|  | if (temp_byte != func->presence_save) { | 
|  | /* | 
|  | * button Pressed (doesn't do anything) | 
|  | */ | 
|  | dbg("hp_slot %d button pressed\n", hp_slot); | 
|  | taskInfo->event_type = INT_BUTTON_PRESS; | 
|  | } else { | 
|  | /* | 
|  | * button Released - TAKE ACTION!!!! | 
|  | */ | 
|  | dbg("hp_slot %d button released\n", hp_slot); | 
|  | taskInfo->event_type = INT_BUTTON_RELEASE; | 
|  |  | 
|  | /* Cancel if we are still blinking */ | 
|  | if ((p_slot->state == BLINKINGON_STATE) | 
|  | || (p_slot->state == BLINKINGOFF_STATE)) { | 
|  | taskInfo->event_type = INT_BUTTON_CANCEL; | 
|  | dbg("hp_slot %d button cancel\n", hp_slot); | 
|  | } else if ((p_slot->state == POWERON_STATE) | 
|  | || (p_slot->state == POWEROFF_STATE)) { | 
|  | /* info(msg_button_ignore, p_slot->number); */ | 
|  | taskInfo->event_type = INT_BUTTON_IGNORE; | 
|  | dbg("hp_slot %d button ignore\n", hp_slot); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | /* Switch is open, assume a presence change | 
|  | * Save the presence state | 
|  | */ | 
|  | temp_word = ctrl->ctrl_int_comp >> 16; | 
|  | func->presence_save = (temp_word >> hp_slot) & 0x01; | 
|  | func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; | 
|  |  | 
|  | if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) || | 
|  | (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) { | 
|  | /* Present */ | 
|  | taskInfo->event_type = INT_PRESENCE_ON; | 
|  | } else { | 
|  | /* Not Present */ | 
|  | taskInfo->event_type = INT_PRESENCE_OFF; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  |  | 
|  | static u8 handle_power_fault(u8 change, struct controller * ctrl) | 
|  | { | 
|  | int hp_slot; | 
|  | u8 rc = 0; | 
|  | struct pci_func *func; | 
|  | struct event_info *taskInfo; | 
|  |  | 
|  | if (!change) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * power fault | 
|  | */ | 
|  |  | 
|  | info("power fault interrupt\n"); | 
|  |  | 
|  | for (hp_slot = 0; hp_slot < 6; hp_slot++) { | 
|  | if (change & (0x01 << hp_slot)) { | 
|  | /* | 
|  | * this one changed. | 
|  | */ | 
|  | func = cpqhp_slot_find(ctrl->bus, | 
|  | (hp_slot + ctrl->slot_device_offset), 0); | 
|  |  | 
|  | taskInfo = &(ctrl->event_queue[ctrl->next_event]); | 
|  | ctrl->next_event = (ctrl->next_event + 1) % 10; | 
|  | taskInfo->hp_slot = hp_slot; | 
|  |  | 
|  | rc++; | 
|  |  | 
|  | if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) { | 
|  | /* | 
|  | * power fault Cleared | 
|  | */ | 
|  | func->status = 0x00; | 
|  |  | 
|  | taskInfo->event_type = INT_POWER_FAULT_CLEAR; | 
|  | } else { | 
|  | /* | 
|  | * power fault | 
|  | */ | 
|  | taskInfo->event_type = INT_POWER_FAULT; | 
|  |  | 
|  | if (ctrl->rev < 4) { | 
|  | amber_LED_on (ctrl, hp_slot); | 
|  | green_LED_off (ctrl, hp_slot); | 
|  | set_SOGO (ctrl); | 
|  |  | 
|  | /* this is a fatal condition, we want | 
|  | * to crash the machine to protect from | 
|  | * data corruption. simulated_NMI | 
|  | * shouldn't ever return */ | 
|  | /* FIXME | 
|  | simulated_NMI(hp_slot, ctrl); */ | 
|  |  | 
|  | /* The following code causes a software | 
|  | * crash just in case simulated_NMI did | 
|  | * return */ | 
|  | /*FIXME | 
|  | panic(msg_power_fault); */ | 
|  | } else { | 
|  | /* set power fault status for this board */ | 
|  | func->status = 0xFF; | 
|  | info("power fault bit %x set\n", hp_slot); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * sort_by_size - sort nodes on the list by their length, smallest first. | 
|  | * @head: list to sort | 
|  | */ | 
|  | static int sort_by_size(struct pci_resource **head) | 
|  | { | 
|  | struct pci_resource *current_res; | 
|  | struct pci_resource *next_res; | 
|  | int out_of_order = 1; | 
|  |  | 
|  | if (!(*head)) | 
|  | return 1; | 
|  |  | 
|  | if (!((*head)->next)) | 
|  | return 0; | 
|  |  | 
|  | while (out_of_order) { | 
|  | out_of_order = 0; | 
|  |  | 
|  | /* Special case for swapping list head */ | 
|  | if (((*head)->next) && | 
|  | ((*head)->length > (*head)->next->length)) { | 
|  | out_of_order++; | 
|  | current_res = *head; | 
|  | *head = (*head)->next; | 
|  | current_res->next = (*head)->next; | 
|  | (*head)->next = current_res; | 
|  | } | 
|  |  | 
|  | current_res = *head; | 
|  |  | 
|  | while (current_res->next && current_res->next->next) { | 
|  | if (current_res->next->length > current_res->next->next->length) { | 
|  | out_of_order++; | 
|  | next_res = current_res->next; | 
|  | current_res->next = current_res->next->next; | 
|  | current_res = current_res->next; | 
|  | next_res->next = current_res->next; | 
|  | current_res->next = next_res; | 
|  | } else | 
|  | current_res = current_res->next; | 
|  | } | 
|  | }  /* End of out_of_order loop */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * sort_by_max_size - sort nodes on the list by their length, largest first. | 
|  | * @head: list to sort | 
|  | */ | 
|  | static int sort_by_max_size(struct pci_resource **head) | 
|  | { | 
|  | struct pci_resource *current_res; | 
|  | struct pci_resource *next_res; | 
|  | int out_of_order = 1; | 
|  |  | 
|  | if (!(*head)) | 
|  | return 1; | 
|  |  | 
|  | if (!((*head)->next)) | 
|  | return 0; | 
|  |  | 
|  | while (out_of_order) { | 
|  | out_of_order = 0; | 
|  |  | 
|  | /* Special case for swapping list head */ | 
|  | if (((*head)->next) && | 
|  | ((*head)->length < (*head)->next->length)) { | 
|  | out_of_order++; | 
|  | current_res = *head; | 
|  | *head = (*head)->next; | 
|  | current_res->next = (*head)->next; | 
|  | (*head)->next = current_res; | 
|  | } | 
|  |  | 
|  | current_res = *head; | 
|  |  | 
|  | while (current_res->next && current_res->next->next) { | 
|  | if (current_res->next->length < current_res->next->next->length) { | 
|  | out_of_order++; | 
|  | next_res = current_res->next; | 
|  | current_res->next = current_res->next->next; | 
|  | current_res = current_res->next; | 
|  | next_res->next = current_res->next; | 
|  | current_res->next = next_res; | 
|  | } else | 
|  | current_res = current_res->next; | 
|  | } | 
|  | }  /* End of out_of_order loop */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * do_pre_bridge_resource_split - find node of resources that are unused | 
|  | * @head: new list head | 
|  | * @orig_head: original list head | 
|  | * @alignment: max node size (?) | 
|  | */ | 
|  | static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head, | 
|  | struct pci_resource **orig_head, u32 alignment) | 
|  | { | 
|  | struct pci_resource *prevnode = NULL; | 
|  | struct pci_resource *node; | 
|  | struct pci_resource *split_node; | 
|  | u32 rc; | 
|  | u32 temp_dword; | 
|  | dbg("do_pre_bridge_resource_split\n"); | 
|  |  | 
|  | if (!(*head) || !(*orig_head)) | 
|  | return NULL; | 
|  |  | 
|  | rc = cpqhp_resource_sort_and_combine(head); | 
|  |  | 
|  | if (rc) | 
|  | return NULL; | 
|  |  | 
|  | if ((*head)->base != (*orig_head)->base) | 
|  | return NULL; | 
|  |  | 
|  | if ((*head)->length == (*orig_head)->length) | 
|  | return NULL; | 
|  |  | 
|  |  | 
|  | /* If we got here, there the bridge requires some of the resource, but | 
|  | * we may be able to split some off of the front | 
|  | */ | 
|  |  | 
|  | node = *head; | 
|  |  | 
|  | if (node->length & (alignment -1)) { | 
|  | /* this one isn't an aligned length, so we'll make a new entry | 
|  | * and split it up. | 
|  | */ | 
|  | split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); | 
|  |  | 
|  | if (!split_node) | 
|  | return NULL; | 
|  |  | 
|  | temp_dword = (node->length | (alignment-1)) + 1 - alignment; | 
|  |  | 
|  | split_node->base = node->base; | 
|  | split_node->length = temp_dword; | 
|  |  | 
|  | node->length -= temp_dword; | 
|  | node->base += split_node->length; | 
|  |  | 
|  | /* Put it in the list */ | 
|  | *head = split_node; | 
|  | split_node->next = node; | 
|  | } | 
|  |  | 
|  | if (node->length < alignment) | 
|  | return NULL; | 
|  |  | 
|  | /* Now unlink it */ | 
|  | if (*head == node) { | 
|  | *head = node->next; | 
|  | } else { | 
|  | prevnode = *head; | 
|  | while (prevnode->next != node) | 
|  | prevnode = prevnode->next; | 
|  |  | 
|  | prevnode->next = node->next; | 
|  | } | 
|  | node->next = NULL; | 
|  |  | 
|  | return node; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * do_bridge_resource_split - find one node of resources that aren't in use | 
|  | * @head: list head | 
|  | * @alignment: max node size (?) | 
|  | */ | 
|  | static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment) | 
|  | { | 
|  | struct pci_resource *prevnode = NULL; | 
|  | struct pci_resource *node; | 
|  | u32 rc; | 
|  | u32 temp_dword; | 
|  |  | 
|  | rc = cpqhp_resource_sort_and_combine(head); | 
|  |  | 
|  | if (rc) | 
|  | return NULL; | 
|  |  | 
|  | node = *head; | 
|  |  | 
|  | while (node->next) { | 
|  | prevnode = node; | 
|  | node = node->next; | 
|  | kfree(prevnode); | 
|  | } | 
|  |  | 
|  | if (node->length < alignment) | 
|  | goto error; | 
|  |  | 
|  | if (node->base & (alignment - 1)) { | 
|  | /* Short circuit if adjusted size is too small */ | 
|  | temp_dword = (node->base | (alignment-1)) + 1; | 
|  | if ((node->length - (temp_dword - node->base)) < alignment) | 
|  | goto error; | 
|  |  | 
|  | node->length -= (temp_dword - node->base); | 
|  | node->base = temp_dword; | 
|  | } | 
|  |  | 
|  | if (node->length & (alignment - 1)) | 
|  | /* There's stuff in use after this node */ | 
|  | goto error; | 
|  |  | 
|  | return node; | 
|  | error: | 
|  | kfree(node); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * get_io_resource - find first node of given size not in ISA aliasing window. | 
|  | * @head: list to search | 
|  | * @size: size of node to find, must be a power of two. | 
|  | * | 
|  | * Description: This function sorts the resource list by size and then returns | 
|  | * returns the first node of "size" length that is not in the ISA aliasing | 
|  | * window.  If it finds a node larger than "size" it will split it up. | 
|  | */ | 
|  | static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size) | 
|  | { | 
|  | struct pci_resource *prevnode; | 
|  | struct pci_resource *node; | 
|  | struct pci_resource *split_node; | 
|  | u32 temp_dword; | 
|  |  | 
|  | if (!(*head)) | 
|  | return NULL; | 
|  |  | 
|  | if (cpqhp_resource_sort_and_combine(head)) | 
|  | return NULL; | 
|  |  | 
|  | if (sort_by_size(head)) | 
|  | return NULL; | 
|  |  | 
|  | for (node = *head; node; node = node->next) { | 
|  | if (node->length < size) | 
|  | continue; | 
|  |  | 
|  | if (node->base & (size - 1)) { | 
|  | /* this one isn't base aligned properly | 
|  | * so we'll make a new entry and split it up | 
|  | */ | 
|  | temp_dword = (node->base | (size-1)) + 1; | 
|  |  | 
|  | /* Short circuit if adjusted size is too small */ | 
|  | if ((node->length - (temp_dword - node->base)) < size) | 
|  | continue; | 
|  |  | 
|  | split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); | 
|  |  | 
|  | if (!split_node) | 
|  | return NULL; | 
|  |  | 
|  | split_node->base = node->base; | 
|  | split_node->length = temp_dword - node->base; | 
|  | node->base = temp_dword; | 
|  | node->length -= split_node->length; | 
|  |  | 
|  | /* Put it in the list */ | 
|  | split_node->next = node->next; | 
|  | node->next = split_node; | 
|  | } /* End of non-aligned base */ | 
|  |  | 
|  | /* Don't need to check if too small since we already did */ | 
|  | if (node->length > size) { | 
|  | /* this one is longer than we need | 
|  | * so we'll make a new entry and split it up | 
|  | */ | 
|  | split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); | 
|  |  | 
|  | if (!split_node) | 
|  | return NULL; | 
|  |  | 
|  | split_node->base = node->base + size; | 
|  | split_node->length = node->length - size; | 
|  | node->length = size; | 
|  |  | 
|  | /* Put it in the list */ | 
|  | split_node->next = node->next; | 
|  | node->next = split_node; | 
|  | }  /* End of too big on top end */ | 
|  |  | 
|  | /* For IO make sure it's not in the ISA aliasing space */ | 
|  | if (node->base & 0x300L) | 
|  | continue; | 
|  |  | 
|  | /* If we got here, then it is the right size | 
|  | * Now take it out of the list and break | 
|  | */ | 
|  | if (*head == node) { | 
|  | *head = node->next; | 
|  | } else { | 
|  | prevnode = *head; | 
|  | while (prevnode->next != node) | 
|  | prevnode = prevnode->next; | 
|  |  | 
|  | prevnode->next = node->next; | 
|  | } | 
|  | node->next = NULL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return node; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * get_max_resource - get largest node which has at least the given size. | 
|  | * @head: the list to search the node in | 
|  | * @size: the minimum size of the node to find | 
|  | * | 
|  | * Description: Gets the largest node that is at least "size" big from the | 
|  | * list pointed to by head.  It aligns the node on top and bottom | 
|  | * to "size" alignment before returning it. | 
|  | */ | 
|  | static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size) | 
|  | { | 
|  | struct pci_resource *max; | 
|  | struct pci_resource *temp; | 
|  | struct pci_resource *split_node; | 
|  | u32 temp_dword; | 
|  |  | 
|  | if (cpqhp_resource_sort_and_combine(head)) | 
|  | return NULL; | 
|  |  | 
|  | if (sort_by_max_size(head)) | 
|  | return NULL; | 
|  |  | 
|  | for (max = *head; max; max = max->next) { | 
|  | /* If not big enough we could probably just bail, | 
|  | * instead we'll continue to the next. | 
|  | */ | 
|  | if (max->length < size) | 
|  | continue; | 
|  |  | 
|  | if (max->base & (size - 1)) { | 
|  | /* this one isn't base aligned properly | 
|  | * so we'll make a new entry and split it up | 
|  | */ | 
|  | temp_dword = (max->base | (size-1)) + 1; | 
|  |  | 
|  | /* Short circuit if adjusted size is too small */ | 
|  | if ((max->length - (temp_dword - max->base)) < size) | 
|  | continue; | 
|  |  | 
|  | split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); | 
|  |  | 
|  | if (!split_node) | 
|  | return NULL; | 
|  |  | 
|  | split_node->base = max->base; | 
|  | split_node->length = temp_dword - max->base; | 
|  | max->base = temp_dword; | 
|  | max->length -= split_node->length; | 
|  |  | 
|  | split_node->next = max->next; | 
|  | max->next = split_node; | 
|  | } | 
|  |  | 
|  | if ((max->base + max->length) & (size - 1)) { | 
|  | /* this one isn't end aligned properly at the top | 
|  | * so we'll make a new entry and split it up | 
|  | */ | 
|  | split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); | 
|  |  | 
|  | if (!split_node) | 
|  | return NULL; | 
|  | temp_dword = ((max->base + max->length) & ~(size - 1)); | 
|  | split_node->base = temp_dword; | 
|  | split_node->length = max->length + max->base | 
|  | - split_node->base; | 
|  | max->length -= split_node->length; | 
|  |  | 
|  | split_node->next = max->next; | 
|  | max->next = split_node; | 
|  | } | 
|  |  | 
|  | /* Make sure it didn't shrink too much when we aligned it */ | 
|  | if (max->length < size) | 
|  | continue; | 
|  |  | 
|  | /* Now take it out of the list */ | 
|  | temp = *head; | 
|  | if (temp == max) { | 
|  | *head = max->next; | 
|  | } else { | 
|  | while (temp && temp->next != max) { | 
|  | temp = temp->next; | 
|  | } | 
|  |  | 
|  | temp->next = max->next; | 
|  | } | 
|  |  | 
|  | max->next = NULL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return max; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * get_resource - find resource of given size and split up larger ones. | 
|  | * @head: the list to search for resources | 
|  | * @size: the size limit to use | 
|  | * | 
|  | * Description: This function sorts the resource list by size and then | 
|  | * returns the first node of "size" length.  If it finds a node | 
|  | * larger than "size" it will split it up. | 
|  | * | 
|  | * size must be a power of two. | 
|  | */ | 
|  | static struct pci_resource *get_resource(struct pci_resource **head, u32 size) | 
|  | { | 
|  | struct pci_resource *prevnode; | 
|  | struct pci_resource *node; | 
|  | struct pci_resource *split_node; | 
|  | u32 temp_dword; | 
|  |  | 
|  | if (cpqhp_resource_sort_and_combine(head)) | 
|  | return NULL; | 
|  |  | 
|  | if (sort_by_size(head)) | 
|  | return NULL; | 
|  |  | 
|  | for (node = *head; node; node = node->next) { | 
|  | dbg("%s: req_size =%x node=%p, base=%x, length=%x\n", | 
|  | __func__, size, node, node->base, node->length); | 
|  | if (node->length < size) | 
|  | continue; | 
|  |  | 
|  | if (node->base & (size - 1)) { | 
|  | dbg("%s: not aligned\n", __func__); | 
|  | /* this one isn't base aligned properly | 
|  | * so we'll make a new entry and split it up | 
|  | */ | 
|  | temp_dword = (node->base | (size-1)) + 1; | 
|  |  | 
|  | /* Short circuit if adjusted size is too small */ | 
|  | if ((node->length - (temp_dword - node->base)) < size) | 
|  | continue; | 
|  |  | 
|  | split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); | 
|  |  | 
|  | if (!split_node) | 
|  | return NULL; | 
|  |  | 
|  | split_node->base = node->base; | 
|  | split_node->length = temp_dword - node->base; | 
|  | node->base = temp_dword; | 
|  | node->length -= split_node->length; | 
|  |  | 
|  | split_node->next = node->next; | 
|  | node->next = split_node; | 
|  | } /* End of non-aligned base */ | 
|  |  | 
|  | /* Don't need to check if too small since we already did */ | 
|  | if (node->length > size) { | 
|  | dbg("%s: too big\n", __func__); | 
|  | /* this one is longer than we need | 
|  | * so we'll make a new entry and split it up | 
|  | */ | 
|  | split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); | 
|  |  | 
|  | if (!split_node) | 
|  | return NULL; | 
|  |  | 
|  | split_node->base = node->base + size; | 
|  | split_node->length = node->length - size; | 
|  | node->length = size; | 
|  |  | 
|  | /* Put it in the list */ | 
|  | split_node->next = node->next; | 
|  | node->next = split_node; | 
|  | }  /* End of too big on top end */ | 
|  |  | 
|  | dbg("%s: got one!!!\n", __func__); | 
|  | /* If we got here, then it is the right size | 
|  | * Now take it out of the list */ | 
|  | if (*head == node) { | 
|  | *head = node->next; | 
|  | } else { | 
|  | prevnode = *head; | 
|  | while (prevnode->next != node) | 
|  | prevnode = prevnode->next; | 
|  |  | 
|  | prevnode->next = node->next; | 
|  | } | 
|  | node->next = NULL; | 
|  | break; | 
|  | } | 
|  | return node; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up | 
|  | * @head: the list to sort and clean up | 
|  | * | 
|  | * Description: Sorts all of the nodes in the list in ascending order by | 
|  | * their base addresses.  Also does garbage collection by | 
|  | * combining adjacent nodes. | 
|  | * | 
|  | * Returns %0 if success. | 
|  | */ | 
|  | int cpqhp_resource_sort_and_combine(struct pci_resource **head) | 
|  | { | 
|  | struct pci_resource *node1; | 
|  | struct pci_resource *node2; | 
|  | int out_of_order = 1; | 
|  |  | 
|  | dbg("%s: head = %p, *head = %p\n", __func__, head, *head); | 
|  |  | 
|  | if (!(*head)) | 
|  | return 1; | 
|  |  | 
|  | dbg("*head->next = %p\n",(*head)->next); | 
|  |  | 
|  | if (!(*head)->next) | 
|  | return 0;	/* only one item on the list, already sorted! */ | 
|  |  | 
|  | dbg("*head->base = 0x%x\n",(*head)->base); | 
|  | dbg("*head->next->base = 0x%x\n",(*head)->next->base); | 
|  | while (out_of_order) { | 
|  | out_of_order = 0; | 
|  |  | 
|  | /* Special case for swapping list head */ | 
|  | if (((*head)->next) && | 
|  | ((*head)->base > (*head)->next->base)) { | 
|  | node1 = *head; | 
|  | (*head) = (*head)->next; | 
|  | node1->next = (*head)->next; | 
|  | (*head)->next = node1; | 
|  | out_of_order++; | 
|  | } | 
|  |  | 
|  | node1 = (*head); | 
|  |  | 
|  | while (node1->next && node1->next->next) { | 
|  | if (node1->next->base > node1->next->next->base) { | 
|  | out_of_order++; | 
|  | node2 = node1->next; | 
|  | node1->next = node1->next->next; | 
|  | node1 = node1->next; | 
|  | node2->next = node1->next; | 
|  | node1->next = node2; | 
|  | } else | 
|  | node1 = node1->next; | 
|  | } | 
|  | }  /* End of out_of_order loop */ | 
|  |  | 
|  | node1 = *head; | 
|  |  | 
|  | while (node1 && node1->next) { | 
|  | if ((node1->base + node1->length) == node1->next->base) { | 
|  | /* Combine */ | 
|  | dbg("8..\n"); | 
|  | node1->length += node1->next->length; | 
|  | node2 = node1->next; | 
|  | node1->next = node1->next->next; | 
|  | kfree(node2); | 
|  | } else | 
|  | node1 = node1->next; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data) | 
|  | { | 
|  | struct controller *ctrl = data; | 
|  | u8 schedule_flag = 0; | 
|  | u8 reset; | 
|  | u16 misc; | 
|  | u32 Diff; | 
|  | u32 temp_dword; | 
|  |  | 
|  |  | 
|  | misc = readw(ctrl->hpc_reg + MISC); | 
|  | /* | 
|  | * Check to see if it was our interrupt | 
|  | */ | 
|  | if (!(misc & 0x000C)) { | 
|  | return IRQ_NONE; | 
|  | } | 
|  |  | 
|  | if (misc & 0x0004) { | 
|  | /* | 
|  | * Serial Output interrupt Pending | 
|  | */ | 
|  |  | 
|  | /* Clear the interrupt */ | 
|  | misc |= 0x0004; | 
|  | writew(misc, ctrl->hpc_reg + MISC); | 
|  |  | 
|  | /* Read to clear posted writes */ | 
|  | misc = readw(ctrl->hpc_reg + MISC); | 
|  |  | 
|  | dbg ("%s - waking up\n", __func__); | 
|  | wake_up_interruptible(&ctrl->queue); | 
|  | } | 
|  |  | 
|  | if (misc & 0x0008) { | 
|  | /* General-interrupt-input interrupt Pending */ | 
|  | Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp; | 
|  |  | 
|  | ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); | 
|  |  | 
|  | /* Clear the interrupt */ | 
|  | writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR); | 
|  |  | 
|  | /* Read it back to clear any posted writes */ | 
|  | temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); | 
|  |  | 
|  | if (!Diff) | 
|  | /* Clear all interrupts */ | 
|  | writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR); | 
|  |  | 
|  | schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl); | 
|  | schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl); | 
|  | schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl); | 
|  | } | 
|  |  | 
|  | reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE); | 
|  | if (reset & 0x40) { | 
|  | /* Bus reset has completed */ | 
|  | reset &= 0xCF; | 
|  | writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE); | 
|  | reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE); | 
|  | wake_up_interruptible(&ctrl->queue); | 
|  | } | 
|  |  | 
|  | if (schedule_flag) { | 
|  | wake_up_process(cpqhp_event_thread); | 
|  | dbg("Waking even thread"); | 
|  | } | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * cpqhp_slot_create - Creates a node and adds it to the proper bus. | 
|  | * @busnumber: bus where new node is to be located | 
|  | * | 
|  | * Returns pointer to the new node or %NULL if unsuccessful. | 
|  | */ | 
|  | struct pci_func *cpqhp_slot_create(u8 busnumber) | 
|  | { | 
|  | struct pci_func *new_slot; | 
|  | struct pci_func *next; | 
|  |  | 
|  | new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL); | 
|  | if (new_slot == NULL) | 
|  | return new_slot; | 
|  |  | 
|  | new_slot->next = NULL; | 
|  | new_slot->configured = 1; | 
|  |  | 
|  | if (cpqhp_slot_list[busnumber] == NULL) { | 
|  | cpqhp_slot_list[busnumber] = new_slot; | 
|  | } else { | 
|  | next = cpqhp_slot_list[busnumber]; | 
|  | while (next->next != NULL) | 
|  | next = next->next; | 
|  | next->next = new_slot; | 
|  | } | 
|  | return new_slot; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * slot_remove - Removes a node from the linked list of slots. | 
|  | * @old_slot: slot to remove | 
|  | * | 
|  | * Returns %0 if successful, !0 otherwise. | 
|  | */ | 
|  | static int slot_remove(struct pci_func * old_slot) | 
|  | { | 
|  | struct pci_func *next; | 
|  |  | 
|  | if (old_slot == NULL) | 
|  | return 1; | 
|  |  | 
|  | next = cpqhp_slot_list[old_slot->bus]; | 
|  | if (next == NULL) | 
|  | return 1; | 
|  |  | 
|  | if (next == old_slot) { | 
|  | cpqhp_slot_list[old_slot->bus] = old_slot->next; | 
|  | cpqhp_destroy_board_resources(old_slot); | 
|  | kfree(old_slot); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | while ((next->next != old_slot) && (next->next != NULL)) | 
|  | next = next->next; | 
|  |  | 
|  | if (next->next == old_slot) { | 
|  | next->next = old_slot->next; | 
|  | cpqhp_destroy_board_resources(old_slot); | 
|  | kfree(old_slot); | 
|  | return 0; | 
|  | } else | 
|  | return 2; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * bridge_slot_remove - Removes a node from the linked list of slots. | 
|  | * @bridge: bridge to remove | 
|  | * | 
|  | * Returns %0 if successful, !0 otherwise. | 
|  | */ | 
|  | static int bridge_slot_remove(struct pci_func *bridge) | 
|  | { | 
|  | u8 subordinateBus, secondaryBus; | 
|  | u8 tempBus; | 
|  | struct pci_func *next; | 
|  |  | 
|  | secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF; | 
|  | subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF; | 
|  |  | 
|  | for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) { | 
|  | next = cpqhp_slot_list[tempBus]; | 
|  |  | 
|  | while (!slot_remove(next)) | 
|  | next = cpqhp_slot_list[tempBus]; | 
|  | } | 
|  |  | 
|  | next = cpqhp_slot_list[bridge->bus]; | 
|  |  | 
|  | if (next == NULL) | 
|  | return 1; | 
|  |  | 
|  | if (next == bridge) { | 
|  | cpqhp_slot_list[bridge->bus] = bridge->next; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | while ((next->next != bridge) && (next->next != NULL)) | 
|  | next = next->next; | 
|  |  | 
|  | if (next->next != bridge) | 
|  | return 2; | 
|  | next->next = bridge->next; | 
|  | out: | 
|  | kfree(bridge); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed | 
|  | * @bus: bus to find | 
|  | * @device: device to find | 
|  | * @index: is %0 for first function found, %1 for the second... | 
|  | * | 
|  | * Returns pointer to the node if successful, %NULL otherwise. | 
|  | */ | 
|  | struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index) | 
|  | { | 
|  | int found = -1; | 
|  | struct pci_func *func; | 
|  |  | 
|  | func = cpqhp_slot_list[bus]; | 
|  |  | 
|  | if ((func == NULL) || ((func->device == device) && (index == 0))) | 
|  | return func; | 
|  |  | 
|  | if (func->device == device) | 
|  | found++; | 
|  |  | 
|  | while (func->next != NULL) { | 
|  | func = func->next; | 
|  |  | 
|  | if (func->device == device) | 
|  | found++; | 
|  |  | 
|  | if (found == index) | 
|  | return func; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* DJZ: I don't think is_bridge will work as is. | 
|  | * FIXME */ | 
|  | static int is_bridge(struct pci_func * func) | 
|  | { | 
|  | /* Check the header type */ | 
|  | if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01) | 
|  | return 1; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * set_controller_speed - set the frequency and/or mode of a specific controller segment. | 
|  | * @ctrl: controller to change frequency/mode for. | 
|  | * @adapter_speed: the speed of the adapter we want to match. | 
|  | * @hp_slot: the slot number where the adapter is installed. | 
|  | * | 
|  | * Returns %0 if we successfully change frequency and/or mode to match the | 
|  | * adapter speed. | 
|  | */ | 
|  | static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot) | 
|  | { | 
|  | struct slot *slot; | 
|  | struct pci_bus *bus = ctrl->pci_bus; | 
|  | u8 reg; | 
|  | u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER); | 
|  | u16 reg16; | 
|  | u32 leds = readl(ctrl->hpc_reg + LED_CONTROL); | 
|  |  | 
|  | if (bus->cur_bus_speed == adapter_speed) | 
|  | return 0; | 
|  |  | 
|  | /* We don't allow freq/mode changes if we find another adapter running | 
|  | * in another slot on this controller | 
|  | */ | 
|  | for(slot = ctrl->slot; slot; slot = slot->next) { | 
|  | if (slot->device == (hp_slot + ctrl->slot_device_offset)) | 
|  | continue; | 
|  | if (!slot->hotplug_slot || !slot->hotplug_slot->info) | 
|  | continue; | 
|  | if (slot->hotplug_slot->info->adapter_status == 0) | 
|  | continue; | 
|  | /* If another adapter is running on the same segment but at a | 
|  | * lower speed/mode, we allow the new adapter to function at | 
|  | * this rate if supported | 
|  | */ | 
|  | if (bus->cur_bus_speed < adapter_speed) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* If the controller doesn't support freq/mode changes and the | 
|  | * controller is running at a higher mode, we bail | 
|  | */ | 
|  | if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability)) | 
|  | return 1; | 
|  |  | 
|  | /* But we allow the adapter to run at a lower rate if possible */ | 
|  | if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability)) | 
|  | return 0; | 
|  |  | 
|  | /* We try to set the max speed supported by both the adapter and | 
|  | * controller | 
|  | */ | 
|  | if (bus->max_bus_speed < adapter_speed) { | 
|  | if (bus->cur_bus_speed == bus->max_bus_speed) | 
|  | return 0; | 
|  | adapter_speed = bus->max_bus_speed; | 
|  | } | 
|  |  | 
|  | writel(0x0L, ctrl->hpc_reg + LED_CONTROL); | 
|  | writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE); | 
|  |  | 
|  | set_SOGO(ctrl); | 
|  | wait_for_ctrl_irq(ctrl); | 
|  |  | 
|  | if (adapter_speed != PCI_SPEED_133MHz_PCIX) | 
|  | reg = 0xF5; | 
|  | else | 
|  | reg = 0xF4; | 
|  | pci_write_config_byte(ctrl->pci_dev, 0x41, reg); | 
|  |  | 
|  | reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ); | 
|  | reg16 &= ~0x000F; | 
|  | switch(adapter_speed) { | 
|  | case(PCI_SPEED_133MHz_PCIX): | 
|  | reg = 0x75; | 
|  | reg16 |= 0xB; | 
|  | break; | 
|  | case(PCI_SPEED_100MHz_PCIX): | 
|  | reg = 0x74; | 
|  | reg16 |= 0xA; | 
|  | break; | 
|  | case(PCI_SPEED_66MHz_PCIX): | 
|  | reg = 0x73; | 
|  | reg16 |= 0x9; | 
|  | break; | 
|  | case(PCI_SPEED_66MHz): | 
|  | reg = 0x73; | 
|  | reg16 |= 0x1; | 
|  | break; | 
|  | default: /* 33MHz PCI 2.2 */ | 
|  | reg = 0x71; | 
|  | break; | 
|  |  | 
|  | } | 
|  | reg16 |= 0xB << 12; | 
|  | writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ); | 
|  |  | 
|  | mdelay(5); | 
|  |  | 
|  | /* Reenable interrupts */ | 
|  | writel(0, ctrl->hpc_reg + INT_MASK); | 
|  |  | 
|  | pci_write_config_byte(ctrl->pci_dev, 0x41, reg); | 
|  |  | 
|  | /* Restart state machine */ | 
|  | reg = ~0xF; | 
|  | pci_read_config_byte(ctrl->pci_dev, 0x43, ®); | 
|  | pci_write_config_byte(ctrl->pci_dev, 0x43, reg); | 
|  |  | 
|  | /* Only if mode change...*/ | 
|  | if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) || | 
|  | ((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz))) | 
|  | set_SOGO(ctrl); | 
|  |  | 
|  | wait_for_ctrl_irq(ctrl); | 
|  | mdelay(1100); | 
|  |  | 
|  | /* Restore LED/Slot state */ | 
|  | writel(leds, ctrl->hpc_reg + LED_CONTROL); | 
|  | writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE); | 
|  |  | 
|  | set_SOGO(ctrl); | 
|  | wait_for_ctrl_irq(ctrl); | 
|  |  | 
|  | bus->cur_bus_speed = adapter_speed; | 
|  | slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); | 
|  |  | 
|  | info("Successfully changed frequency/mode for adapter in slot %d\n", | 
|  | slot->number); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* the following routines constitute the bulk of the | 
|  | * hotplug controller logic | 
|  | */ | 
|  |  | 
|  |  | 
|  | /** | 
|  | * board_replaced - Called after a board has been replaced in the system. | 
|  | * @func: PCI device/function information | 
|  | * @ctrl: hotplug controller | 
|  | * | 
|  | * This is only used if we don't have resources for hot add. | 
|  | * Turns power on for the board. | 
|  | * Checks to see if board is the same. | 
|  | * If board is same, reconfigures it. | 
|  | * If board isn't same, turns it back off. | 
|  | */ | 
|  | static u32 board_replaced(struct pci_func *func, struct controller *ctrl) | 
|  | { | 
|  | struct pci_bus *bus = ctrl->pci_bus; | 
|  | u8 hp_slot; | 
|  | u8 temp_byte; | 
|  | u8 adapter_speed; | 
|  | u32 rc = 0; | 
|  |  | 
|  | hp_slot = func->device - ctrl->slot_device_offset; | 
|  |  | 
|  | /* | 
|  | * The switch is open. | 
|  | */ | 
|  | if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot)) | 
|  | rc = INTERLOCK_OPEN; | 
|  | /* | 
|  | * The board is already on | 
|  | */ | 
|  | else if (is_slot_enabled (ctrl, hp_slot)) | 
|  | rc = CARD_FUNCTIONING; | 
|  | else { | 
|  | mutex_lock(&ctrl->crit_sect); | 
|  |  | 
|  | /* turn on board without attaching to the bus */ | 
|  | enable_slot_power (ctrl, hp_slot); | 
|  |  | 
|  | set_SOGO(ctrl); | 
|  |  | 
|  | /* Wait for SOBS to be unset */ | 
|  | wait_for_ctrl_irq (ctrl); | 
|  |  | 
|  | /* Change bits in slot power register to force another shift out | 
|  | * NOTE: this is to work around the timer bug */ | 
|  | temp_byte = readb(ctrl->hpc_reg + SLOT_POWER); | 
|  | writeb(0x00, ctrl->hpc_reg + SLOT_POWER); | 
|  | writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER); | 
|  |  | 
|  | set_SOGO(ctrl); | 
|  |  | 
|  | /* Wait for SOBS to be unset */ | 
|  | wait_for_ctrl_irq (ctrl); | 
|  |  | 
|  | adapter_speed = get_adapter_speed(ctrl, hp_slot); | 
|  | if (bus->cur_bus_speed != adapter_speed) | 
|  | if (set_controller_speed(ctrl, adapter_speed, hp_slot)) | 
|  | rc = WRONG_BUS_FREQUENCY; | 
|  |  | 
|  | /* turn off board without attaching to the bus */ | 
|  | disable_slot_power (ctrl, hp_slot); | 
|  |  | 
|  | set_SOGO(ctrl); | 
|  |  | 
|  | /* Wait for SOBS to be unset */ | 
|  | wait_for_ctrl_irq (ctrl); | 
|  |  | 
|  | mutex_unlock(&ctrl->crit_sect); | 
|  |  | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | mutex_lock(&ctrl->crit_sect); | 
|  |  | 
|  | slot_enable (ctrl, hp_slot); | 
|  | green_LED_blink (ctrl, hp_slot); | 
|  |  | 
|  | amber_LED_off (ctrl, hp_slot); | 
|  |  | 
|  | set_SOGO(ctrl); | 
|  |  | 
|  | /* Wait for SOBS to be unset */ | 
|  | wait_for_ctrl_irq (ctrl); | 
|  |  | 
|  | mutex_unlock(&ctrl->crit_sect); | 
|  |  | 
|  | /* Wait for ~1 second because of hot plug spec */ | 
|  | long_delay(1*HZ); | 
|  |  | 
|  | /* Check for a power fault */ | 
|  | if (func->status == 0xFF) { | 
|  | /* power fault occurred, but it was benign */ | 
|  | rc = POWER_FAILURE; | 
|  | func->status = 0; | 
|  | } else | 
|  | rc = cpqhp_valid_replace(ctrl, func); | 
|  |  | 
|  | if (!rc) { | 
|  | /* It must be the same board */ | 
|  |  | 
|  | rc = cpqhp_configure_board(ctrl, func); | 
|  |  | 
|  | /* If configuration fails, turn it off | 
|  | * Get slot won't work for devices behind | 
|  | * bridges, but in this case it will always be | 
|  | * called for the "base" bus/dev/func of an | 
|  | * adapter. | 
|  | */ | 
|  |  | 
|  | mutex_lock(&ctrl->crit_sect); | 
|  |  | 
|  | amber_LED_on (ctrl, hp_slot); | 
|  | green_LED_off (ctrl, hp_slot); | 
|  | slot_disable (ctrl, hp_slot); | 
|  |  | 
|  | set_SOGO(ctrl); | 
|  |  | 
|  | /* Wait for SOBS to be unset */ | 
|  | wait_for_ctrl_irq (ctrl); | 
|  |  | 
|  | mutex_unlock(&ctrl->crit_sect); | 
|  |  | 
|  | if (rc) | 
|  | return rc; | 
|  | else | 
|  | return 1; | 
|  |  | 
|  | } else { | 
|  | /* Something is wrong | 
|  |  | 
|  | * Get slot won't work for devices behind bridges, but | 
|  | * in this case it will always be called for the "base" | 
|  | * bus/dev/func of an adapter. | 
|  | */ | 
|  |  | 
|  | mutex_lock(&ctrl->crit_sect); | 
|  |  | 
|  | amber_LED_on (ctrl, hp_slot); | 
|  | green_LED_off (ctrl, hp_slot); | 
|  | slot_disable (ctrl, hp_slot); | 
|  |  | 
|  | set_SOGO(ctrl); | 
|  |  | 
|  | /* Wait for SOBS to be unset */ | 
|  | wait_for_ctrl_irq (ctrl); | 
|  |  | 
|  | mutex_unlock(&ctrl->crit_sect); | 
|  | } | 
|  |  | 
|  | } | 
|  | return rc; | 
|  |  | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * board_added - Called after a board has been added to the system. | 
|  | * @func: PCI device/function info | 
|  | * @ctrl: hotplug controller | 
|  | * | 
|  | * Turns power on for the board. | 
|  | * Configures board. | 
|  | */ | 
|  | static u32 board_added(struct pci_func *func, struct controller *ctrl) | 
|  | { | 
|  | u8 hp_slot; | 
|  | u8 temp_byte; | 
|  | u8 adapter_speed; | 
|  | int index; | 
|  | u32 temp_register = 0xFFFFFFFF; | 
|  | u32 rc = 0; | 
|  | struct pci_func *new_slot = NULL; | 
|  | struct pci_bus *bus = ctrl->pci_bus; | 
|  | struct slot *p_slot; | 
|  | struct resource_lists res_lists; | 
|  |  | 
|  | hp_slot = func->device - ctrl->slot_device_offset; | 
|  | dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n", | 
|  | __func__, func->device, ctrl->slot_device_offset, hp_slot); | 
|  |  | 
|  | mutex_lock(&ctrl->crit_sect); | 
|  |  | 
|  | /* turn on board without attaching to the bus */ | 
|  | enable_slot_power(ctrl, hp_slot); | 
|  |  | 
|  | set_SOGO(ctrl); | 
|  |  | 
|  | /* Wait for SOBS to be unset */ | 
|  | wait_for_ctrl_irq (ctrl); | 
|  |  | 
|  | /* Change bits in slot power register to force another shift out | 
|  | * NOTE: this is to work around the timer bug | 
|  | */ | 
|  | temp_byte = readb(ctrl->hpc_reg + SLOT_POWER); | 
|  | writeb(0x00, ctrl->hpc_reg + SLOT_POWER); | 
|  | writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER); | 
|  |  | 
|  | set_SOGO(ctrl); | 
|  |  | 
|  | /* Wait for SOBS to be unset */ | 
|  | wait_for_ctrl_irq (ctrl); | 
|  |  | 
|  | adapter_speed = get_adapter_speed(ctrl, hp_slot); | 
|  | if (bus->cur_bus_speed != adapter_speed) | 
|  | if (set_controller_speed(ctrl, adapter_speed, hp_slot)) | 
|  | rc = WRONG_BUS_FREQUENCY; | 
|  |  | 
|  | /* turn off board without attaching to the bus */ | 
|  | disable_slot_power (ctrl, hp_slot); | 
|  |  | 
|  | set_SOGO(ctrl); | 
|  |  | 
|  | /* Wait for SOBS to be unset */ | 
|  | wait_for_ctrl_irq(ctrl); | 
|  |  | 
|  | mutex_unlock(&ctrl->crit_sect); | 
|  |  | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); | 
|  |  | 
|  | /* turn on board and blink green LED */ | 
|  |  | 
|  | dbg("%s: before down\n", __func__); | 
|  | mutex_lock(&ctrl->crit_sect); | 
|  | dbg("%s: after down\n", __func__); | 
|  |  | 
|  | dbg("%s: before slot_enable\n", __func__); | 
|  | slot_enable (ctrl, hp_slot); | 
|  |  | 
|  | dbg("%s: before green_LED_blink\n", __func__); | 
|  | green_LED_blink (ctrl, hp_slot); | 
|  |  | 
|  | dbg("%s: before amber_LED_blink\n", __func__); | 
|  | amber_LED_off (ctrl, hp_slot); | 
|  |  | 
|  | dbg("%s: before set_SOGO\n", __func__); | 
|  | set_SOGO(ctrl); | 
|  |  | 
|  | /* Wait for SOBS to be unset */ | 
|  | dbg("%s: before wait_for_ctrl_irq\n", __func__); | 
|  | wait_for_ctrl_irq (ctrl); | 
|  | dbg("%s: after wait_for_ctrl_irq\n", __func__); | 
|  |  | 
|  | dbg("%s: before up\n", __func__); | 
|  | mutex_unlock(&ctrl->crit_sect); | 
|  | dbg("%s: after up\n", __func__); | 
|  |  | 
|  | /* Wait for ~1 second because of hot plug spec */ | 
|  | dbg("%s: before long_delay\n", __func__); | 
|  | long_delay(1*HZ); | 
|  | dbg("%s: after long_delay\n", __func__); | 
|  |  | 
|  | dbg("%s: func status = %x\n", __func__, func->status); | 
|  | /* Check for a power fault */ | 
|  | if (func->status == 0xFF) { | 
|  | /* power fault occurred, but it was benign */ | 
|  | temp_register = 0xFFFFFFFF; | 
|  | dbg("%s: temp register set to %x by power fault\n", __func__, temp_register); | 
|  | rc = POWER_FAILURE; | 
|  | func->status = 0; | 
|  | } else { | 
|  | /* Get vendor/device ID u32 */ | 
|  | ctrl->pci_bus->number = func->bus; | 
|  | rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register); | 
|  | dbg("%s: pci_read_config_dword returns %d\n", __func__, rc); | 
|  | dbg("%s: temp_register is %x\n", __func__, temp_register); | 
|  |  | 
|  | if (rc != 0) { | 
|  | /* Something's wrong here */ | 
|  | temp_register = 0xFFFFFFFF; | 
|  | dbg("%s: temp register set to %x by error\n", __func__, temp_register); | 
|  | } | 
|  | /* Preset return code.  It will be changed later if things go okay. */ | 
|  | rc = NO_ADAPTER_PRESENT; | 
|  | } | 
|  |  | 
|  | /* All F's is an empty slot or an invalid board */ | 
|  | if (temp_register != 0xFFFFFFFF) { | 
|  | res_lists.io_head = ctrl->io_head; | 
|  | res_lists.mem_head = ctrl->mem_head; | 
|  | res_lists.p_mem_head = ctrl->p_mem_head; | 
|  | res_lists.bus_head = ctrl->bus_head; | 
|  | res_lists.irqs = NULL; | 
|  |  | 
|  | rc = configure_new_device(ctrl, func, 0, &res_lists); | 
|  |  | 
|  | dbg("%s: back from configure_new_device\n", __func__); | 
|  | ctrl->io_head = res_lists.io_head; | 
|  | ctrl->mem_head = res_lists.mem_head; | 
|  | ctrl->p_mem_head = res_lists.p_mem_head; | 
|  | ctrl->bus_head = res_lists.bus_head; | 
|  |  | 
|  | cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); | 
|  | cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); | 
|  | cpqhp_resource_sort_and_combine(&(ctrl->io_head)); | 
|  | cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); | 
|  |  | 
|  | if (rc) { | 
|  | mutex_lock(&ctrl->crit_sect); | 
|  |  | 
|  | amber_LED_on (ctrl, hp_slot); | 
|  | green_LED_off (ctrl, hp_slot); | 
|  | slot_disable (ctrl, hp_slot); | 
|  |  | 
|  | set_SOGO(ctrl); | 
|  |  | 
|  | /* Wait for SOBS to be unset */ | 
|  | wait_for_ctrl_irq (ctrl); | 
|  |  | 
|  | mutex_unlock(&ctrl->crit_sect); | 
|  | return rc; | 
|  | } else { | 
|  | cpqhp_save_slot_config(ctrl, func); | 
|  | } | 
|  |  | 
|  |  | 
|  | func->status = 0; | 
|  | func->switch_save = 0x10; | 
|  | func->is_a_board = 0x01; | 
|  |  | 
|  | /* next, we will instantiate the linux pci_dev structures (with | 
|  | * appropriate driver notification, if already present) */ | 
|  | dbg("%s: configure linux pci_dev structure\n", __func__); | 
|  | index = 0; | 
|  | do { | 
|  | new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++); | 
|  | if (new_slot && !new_slot->pci_dev) | 
|  | cpqhp_configure_device(ctrl, new_slot); | 
|  | } while (new_slot); | 
|  |  | 
|  | mutex_lock(&ctrl->crit_sect); | 
|  |  | 
|  | green_LED_on (ctrl, hp_slot); | 
|  |  | 
|  | set_SOGO(ctrl); | 
|  |  | 
|  | /* Wait for SOBS to be unset */ | 
|  | wait_for_ctrl_irq (ctrl); | 
|  |  | 
|  | mutex_unlock(&ctrl->crit_sect); | 
|  | } else { | 
|  | mutex_lock(&ctrl->crit_sect); | 
|  |  | 
|  | amber_LED_on (ctrl, hp_slot); | 
|  | green_LED_off (ctrl, hp_slot); | 
|  | slot_disable (ctrl, hp_slot); | 
|  |  | 
|  | set_SOGO(ctrl); | 
|  |  | 
|  | /* Wait for SOBS to be unset */ | 
|  | wait_for_ctrl_irq (ctrl); | 
|  |  | 
|  | mutex_unlock(&ctrl->crit_sect); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * remove_board - Turns off slot and LEDs | 
|  | * @func: PCI device/function info | 
|  | * @replace_flag: whether replacing or adding a new device | 
|  | * @ctrl: target controller | 
|  | */ | 
|  | static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl) | 
|  | { | 
|  | int index; | 
|  | u8 skip = 0; | 
|  | u8 device; | 
|  | u8 hp_slot; | 
|  | u8 temp_byte; | 
|  | u32 rc; | 
|  | struct resource_lists res_lists; | 
|  | struct pci_func *temp_func; | 
|  |  | 
|  | if (cpqhp_unconfigure_device(func)) | 
|  | return 1; | 
|  |  | 
|  | device = func->device; | 
|  |  | 
|  | hp_slot = func->device - ctrl->slot_device_offset; | 
|  | dbg("In %s, hp_slot = %d\n", __func__, hp_slot); | 
|  |  | 
|  | /* When we get here, it is safe to change base address registers. | 
|  | * We will attempt to save the base address register lengths */ | 
|  | if (replace_flag || !ctrl->add_support) | 
|  | rc = cpqhp_save_base_addr_length(ctrl, func); | 
|  | else if (!func->bus_head && !func->mem_head && | 
|  | !func->p_mem_head && !func->io_head) { | 
|  | /* Here we check to see if we've saved any of the board's | 
|  | * resources already.  If so, we'll skip the attempt to | 
|  | * determine what's being used. */ | 
|  | index = 0; | 
|  | temp_func = cpqhp_slot_find(func->bus, func->device, index++); | 
|  | while (temp_func) { | 
|  | if (temp_func->bus_head || temp_func->mem_head | 
|  | || temp_func->p_mem_head || temp_func->io_head) { | 
|  | skip = 1; | 
|  | break; | 
|  | } | 
|  | temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++); | 
|  | } | 
|  |  | 
|  | if (!skip) | 
|  | rc = cpqhp_save_used_resources(ctrl, func); | 
|  | } | 
|  | /* Change status to shutdown */ | 
|  | if (func->is_a_board) | 
|  | func->status = 0x01; | 
|  | func->configured = 0; | 
|  |  | 
|  | mutex_lock(&ctrl->crit_sect); | 
|  |  | 
|  | green_LED_off (ctrl, hp_slot); | 
|  | slot_disable (ctrl, hp_slot); | 
|  |  | 
|  | set_SOGO(ctrl); | 
|  |  | 
|  | /* turn off SERR for slot */ | 
|  | temp_byte = readb(ctrl->hpc_reg + SLOT_SERR); | 
|  | temp_byte &= ~(0x01 << hp_slot); | 
|  | writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR); | 
|  |  | 
|  | /* Wait for SOBS to be unset */ | 
|  | wait_for_ctrl_irq (ctrl); | 
|  |  | 
|  | mutex_unlock(&ctrl->crit_sect); | 
|  |  | 
|  | if (!replace_flag && ctrl->add_support) { | 
|  | while (func) { | 
|  | res_lists.io_head = ctrl->io_head; | 
|  | res_lists.mem_head = ctrl->mem_head; | 
|  | res_lists.p_mem_head = ctrl->p_mem_head; | 
|  | res_lists.bus_head = ctrl->bus_head; | 
|  |  | 
|  | cpqhp_return_board_resources(func, &res_lists); | 
|  |  | 
|  | ctrl->io_head = res_lists.io_head; | 
|  | ctrl->mem_head = res_lists.mem_head; | 
|  | ctrl->p_mem_head = res_lists.p_mem_head; | 
|  | ctrl->bus_head = res_lists.bus_head; | 
|  |  | 
|  | cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); | 
|  | cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); | 
|  | cpqhp_resource_sort_and_combine(&(ctrl->io_head)); | 
|  | cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); | 
|  |  | 
|  | if (is_bridge(func)) { | 
|  | bridge_slot_remove(func); | 
|  | } else | 
|  | slot_remove(func); | 
|  |  | 
|  | func = cpqhp_slot_find(ctrl->bus, device, 0); | 
|  | } | 
|  |  | 
|  | /* Setup slot structure with entry for empty slot */ | 
|  | func = cpqhp_slot_create(ctrl->bus); | 
|  |  | 
|  | if (func == NULL) | 
|  | return 1; | 
|  |  | 
|  | func->bus = ctrl->bus; | 
|  | func->device = device; | 
|  | func->function = 0; | 
|  | func->configured = 0; | 
|  | func->switch_save = 0x10; | 
|  | func->is_a_board = 0; | 
|  | func->p_task_event = NULL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void pushbutton_helper_thread(unsigned long data) | 
|  | { | 
|  | pushbutton_pending = data; | 
|  | wake_up_process(cpqhp_event_thread); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* this is the main worker thread */ | 
|  | static int event_thread(void* data) | 
|  | { | 
|  | struct controller *ctrl; | 
|  |  | 
|  | while (1) { | 
|  | dbg("!!!!event_thread sleeping\n"); | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | schedule(); | 
|  |  | 
|  | if (kthread_should_stop()) | 
|  | break; | 
|  | /* Do stuff here */ | 
|  | if (pushbutton_pending) | 
|  | cpqhp_pushbutton_thread(pushbutton_pending); | 
|  | else | 
|  | for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next) | 
|  | interrupt_event_handler(ctrl); | 
|  | } | 
|  | dbg("event_thread signals exit\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int cpqhp_event_start_thread(void) | 
|  | { | 
|  | cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event"); | 
|  | if (IS_ERR(cpqhp_event_thread)) { | 
|  | err ("Can't start up our event thread\n"); | 
|  | return PTR_ERR(cpqhp_event_thread); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | void cpqhp_event_stop_thread(void) | 
|  | { | 
|  | kthread_stop(cpqhp_event_thread); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int update_slot_info(struct controller *ctrl, struct slot *slot) | 
|  | { | 
|  | struct hotplug_slot_info *info; | 
|  | int result; | 
|  |  | 
|  | info = kmalloc(sizeof(*info), GFP_KERNEL); | 
|  | if (!info) | 
|  | return -ENOMEM; | 
|  |  | 
|  | info->power_status = get_slot_enabled(ctrl, slot); | 
|  | info->attention_status = cpq_get_attention_status(ctrl, slot); | 
|  | info->latch_status = cpq_get_latch_status(ctrl, slot); | 
|  | info->adapter_status = get_presence_status(ctrl, slot); | 
|  | result = pci_hp_change_slot_info(slot->hotplug_slot, info); | 
|  | kfree (info); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static void interrupt_event_handler(struct controller *ctrl) | 
|  | { | 
|  | int loop = 0; | 
|  | int change = 1; | 
|  | struct pci_func *func; | 
|  | u8 hp_slot; | 
|  | struct slot *p_slot; | 
|  |  | 
|  | while (change) { | 
|  | change = 0; | 
|  |  | 
|  | for (loop = 0; loop < 10; loop++) { | 
|  | /* dbg("loop %d\n", loop); */ | 
|  | if (ctrl->event_queue[loop].event_type != 0) { | 
|  | hp_slot = ctrl->event_queue[loop].hp_slot; | 
|  |  | 
|  | func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0); | 
|  | if (!func) | 
|  | return; | 
|  |  | 
|  | p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); | 
|  | if (!p_slot) | 
|  | return; | 
|  |  | 
|  | dbg("hp_slot %d, func %p, p_slot %p\n", | 
|  | hp_slot, func, p_slot); | 
|  |  | 
|  | if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) { | 
|  | dbg("button pressed\n"); | 
|  | } else if (ctrl->event_queue[loop].event_type == | 
|  | INT_BUTTON_CANCEL) { | 
|  | dbg("button cancel\n"); | 
|  | del_timer(&p_slot->task_event); | 
|  |  | 
|  | mutex_lock(&ctrl->crit_sect); | 
|  |  | 
|  | if (p_slot->state == BLINKINGOFF_STATE) { | 
|  | /* slot is on */ | 
|  | dbg("turn on green LED\n"); | 
|  | green_LED_on (ctrl, hp_slot); | 
|  | } else if (p_slot->state == BLINKINGON_STATE) { | 
|  | /* slot is off */ | 
|  | dbg("turn off green LED\n"); | 
|  | green_LED_off (ctrl, hp_slot); | 
|  | } | 
|  |  | 
|  | info(msg_button_cancel, p_slot->number); | 
|  |  | 
|  | p_slot->state = STATIC_STATE; | 
|  |  | 
|  | amber_LED_off (ctrl, hp_slot); | 
|  |  | 
|  | set_SOGO(ctrl); | 
|  |  | 
|  | /* Wait for SOBS to be unset */ | 
|  | wait_for_ctrl_irq (ctrl); | 
|  |  | 
|  | mutex_unlock(&ctrl->crit_sect); | 
|  | } | 
|  | /*** button Released (No action on press...) */ | 
|  | else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) { | 
|  | dbg("button release\n"); | 
|  |  | 
|  | if (is_slot_enabled (ctrl, hp_slot)) { | 
|  | dbg("slot is on\n"); | 
|  | p_slot->state = BLINKINGOFF_STATE; | 
|  | info(msg_button_off, p_slot->number); | 
|  | } else { | 
|  | dbg("slot is off\n"); | 
|  | p_slot->state = BLINKINGON_STATE; | 
|  | info(msg_button_on, p_slot->number); | 
|  | } | 
|  | mutex_lock(&ctrl->crit_sect); | 
|  |  | 
|  | dbg("blink green LED and turn off amber\n"); | 
|  |  | 
|  | amber_LED_off (ctrl, hp_slot); | 
|  | green_LED_blink (ctrl, hp_slot); | 
|  |  | 
|  | set_SOGO(ctrl); | 
|  |  | 
|  | /* Wait for SOBS to be unset */ | 
|  | wait_for_ctrl_irq (ctrl); | 
|  |  | 
|  | mutex_unlock(&ctrl->crit_sect); | 
|  | init_timer(&p_slot->task_event); | 
|  | p_slot->hp_slot = hp_slot; | 
|  | p_slot->ctrl = ctrl; | 
|  | /*					p_slot->physical_slot = physical_slot; */ | 
|  | p_slot->task_event.expires = jiffies + 5 * HZ;   /* 5 second delay */ | 
|  | p_slot->task_event.function = pushbutton_helper_thread; | 
|  | p_slot->task_event.data = (u32) p_slot; | 
|  |  | 
|  | dbg("add_timer p_slot = %p\n", p_slot); | 
|  | add_timer(&p_slot->task_event); | 
|  | } | 
|  | /***********POWER FAULT */ | 
|  | else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) { | 
|  | dbg("power fault\n"); | 
|  | } else { | 
|  | /* refresh notification */ | 
|  | if (p_slot) | 
|  | update_slot_info(ctrl, p_slot); | 
|  | } | 
|  |  | 
|  | ctrl->event_queue[loop].event_type = 0; | 
|  |  | 
|  | change = 1; | 
|  | } | 
|  | }		/* End of FOR loop */ | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * cpqhp_pushbutton_thread - handle pushbutton events | 
|  | * @slot: target slot (struct) | 
|  | * | 
|  | * Scheduled procedure to handle blocking stuff for the pushbuttons. | 
|  | * Handles all pending events and exits. | 
|  | */ | 
|  | void cpqhp_pushbutton_thread(unsigned long slot) | 
|  | { | 
|  | u8 hp_slot; | 
|  | u8 device; | 
|  | struct pci_func *func; | 
|  | struct slot *p_slot = (struct slot *) slot; | 
|  | struct controller *ctrl = (struct controller *) p_slot->ctrl; | 
|  |  | 
|  | pushbutton_pending = 0; | 
|  | hp_slot = p_slot->hp_slot; | 
|  |  | 
|  | device = p_slot->device; | 
|  |  | 
|  | if (is_slot_enabled(ctrl, hp_slot)) { | 
|  | p_slot->state = POWEROFF_STATE; | 
|  | /* power Down board */ | 
|  | func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0); | 
|  | dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl); | 
|  | if (!func) { | 
|  | dbg("Error! func NULL in %s\n", __func__); | 
|  | return ; | 
|  | } | 
|  |  | 
|  | if (cpqhp_process_SS(ctrl, func) != 0) { | 
|  | amber_LED_on(ctrl, hp_slot); | 
|  | green_LED_on(ctrl, hp_slot); | 
|  |  | 
|  | set_SOGO(ctrl); | 
|  |  | 
|  | /* Wait for SOBS to be unset */ | 
|  | wait_for_ctrl_irq(ctrl); | 
|  | } | 
|  |  | 
|  | p_slot->state = STATIC_STATE; | 
|  | } else { | 
|  | p_slot->state = POWERON_STATE; | 
|  | /* slot is off */ | 
|  |  | 
|  | func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0); | 
|  | dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl); | 
|  | if (!func) { | 
|  | dbg("Error! func NULL in %s\n", __func__); | 
|  | return ; | 
|  | } | 
|  |  | 
|  | if (ctrl != NULL) { | 
|  | if (cpqhp_process_SI(ctrl, func) != 0) { | 
|  | amber_LED_on(ctrl, hp_slot); | 
|  | green_LED_off(ctrl, hp_slot); | 
|  |  | 
|  | set_SOGO(ctrl); | 
|  |  | 
|  | /* Wait for SOBS to be unset */ | 
|  | wait_for_ctrl_irq (ctrl); | 
|  | } | 
|  | } | 
|  |  | 
|  | p_slot->state = STATIC_STATE; | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  |  | 
|  | int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func) | 
|  | { | 
|  | u8 device, hp_slot; | 
|  | u16 temp_word; | 
|  | u32 tempdword; | 
|  | int rc; | 
|  | struct slot* p_slot; | 
|  | int physical_slot = 0; | 
|  |  | 
|  | tempdword = 0; | 
|  |  | 
|  | device = func->device; | 
|  | hp_slot = device - ctrl->slot_device_offset; | 
|  | p_slot = cpqhp_find_slot(ctrl, device); | 
|  | if (p_slot) | 
|  | physical_slot = p_slot->number; | 
|  |  | 
|  | /* Check to see if the interlock is closed */ | 
|  | tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); | 
|  |  | 
|  | if (tempdword & (0x01 << hp_slot)) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (func->is_a_board) { | 
|  | rc = board_replaced(func, ctrl); | 
|  | } else { | 
|  | /* add board */ | 
|  | slot_remove(func); | 
|  |  | 
|  | func = cpqhp_slot_create(ctrl->bus); | 
|  | if (func == NULL) | 
|  | return 1; | 
|  |  | 
|  | func->bus = ctrl->bus; | 
|  | func->device = device; | 
|  | func->function = 0; | 
|  | func->configured = 0; | 
|  | func->is_a_board = 1; | 
|  |  | 
|  | /* We have to save the presence info for these slots */ | 
|  | temp_word = ctrl->ctrl_int_comp >> 16; | 
|  | func->presence_save = (temp_word >> hp_slot) & 0x01; | 
|  | func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; | 
|  |  | 
|  | if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { | 
|  | func->switch_save = 0; | 
|  | } else { | 
|  | func->switch_save = 0x10; | 
|  | } | 
|  |  | 
|  | rc = board_added(func, ctrl); | 
|  | if (rc) { | 
|  | if (is_bridge(func)) { | 
|  | bridge_slot_remove(func); | 
|  | } else | 
|  | slot_remove(func); | 
|  |  | 
|  | /* Setup slot structure with entry for empty slot */ | 
|  | func = cpqhp_slot_create(ctrl->bus); | 
|  |  | 
|  | if (func == NULL) | 
|  | return 1; | 
|  |  | 
|  | func->bus = ctrl->bus; | 
|  | func->device = device; | 
|  | func->function = 0; | 
|  | func->configured = 0; | 
|  | func->is_a_board = 0; | 
|  |  | 
|  | /* We have to save the presence info for these slots */ | 
|  | temp_word = ctrl->ctrl_int_comp >> 16; | 
|  | func->presence_save = (temp_word >> hp_slot) & 0x01; | 
|  | func->presence_save |= | 
|  | (temp_word >> (hp_slot + 7)) & 0x02; | 
|  |  | 
|  | if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { | 
|  | func->switch_save = 0; | 
|  | } else { | 
|  | func->switch_save = 0x10; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rc) { | 
|  | dbg("%s: rc = %d\n", __func__, rc); | 
|  | } | 
|  |  | 
|  | if (p_slot) | 
|  | update_slot_info(ctrl, p_slot); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  |  | 
|  | int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func) | 
|  | { | 
|  | u8 device, class_code, header_type, BCR; | 
|  | u8 index = 0; | 
|  | u8 replace_flag; | 
|  | u32 rc = 0; | 
|  | unsigned int devfn; | 
|  | struct slot* p_slot; | 
|  | struct pci_bus *pci_bus = ctrl->pci_bus; | 
|  | int physical_slot=0; | 
|  |  | 
|  | device = func->device; | 
|  | func = cpqhp_slot_find(ctrl->bus, device, index++); | 
|  | p_slot = cpqhp_find_slot(ctrl, device); | 
|  | if (p_slot) { | 
|  | physical_slot = p_slot->number; | 
|  | } | 
|  |  | 
|  | /* Make sure there are no video controllers here */ | 
|  | while (func && !rc) { | 
|  | pci_bus->number = func->bus; | 
|  | devfn = PCI_DEVFN(func->device, func->function); | 
|  |  | 
|  | /* Check the Class Code */ | 
|  | rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | if (class_code == PCI_BASE_CLASS_DISPLAY) { | 
|  | /* Display/Video adapter (not supported) */ | 
|  | rc = REMOVE_NOT_SUPPORTED; | 
|  | } else { | 
|  | /* See if it's a bridge */ | 
|  | rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* If it's a bridge, check the VGA Enable bit */ | 
|  | if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { | 
|  | rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* If the VGA Enable bit is set, remove isn't | 
|  | * supported */ | 
|  | if (BCR & PCI_BRIDGE_CTL_VGA) | 
|  | rc = REMOVE_NOT_SUPPORTED; | 
|  | } | 
|  | } | 
|  |  | 
|  | func = cpqhp_slot_find(ctrl->bus, device, index++); | 
|  | } | 
|  |  | 
|  | func = cpqhp_slot_find(ctrl->bus, device, 0); | 
|  | if ((func != NULL) && !rc) { | 
|  | /* FIXME: Replace flag should be passed into process_SS */ | 
|  | replace_flag = !(ctrl->add_support); | 
|  | rc = remove_board(func, replace_flag, ctrl); | 
|  | } else if (!rc) { | 
|  | rc = 1; | 
|  | } | 
|  |  | 
|  | if (p_slot) | 
|  | update_slot_info(ctrl, p_slot); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * switch_leds - switch the leds, go from one site to the other. | 
|  | * @ctrl: controller to use | 
|  | * @num_of_slots: number of slots to use | 
|  | * @work_LED: LED control value | 
|  | * @direction: 1 to start from the left side, 0 to start right. | 
|  | */ | 
|  | static void switch_leds(struct controller *ctrl, const int num_of_slots, | 
|  | u32 *work_LED, const int direction) | 
|  | { | 
|  | int loop; | 
|  |  | 
|  | for (loop = 0; loop < num_of_slots; loop++) { | 
|  | if (direction) | 
|  | *work_LED = *work_LED >> 1; | 
|  | else | 
|  | *work_LED = *work_LED << 1; | 
|  | writel(*work_LED, ctrl->hpc_reg + LED_CONTROL); | 
|  |  | 
|  | set_SOGO(ctrl); | 
|  |  | 
|  | /* Wait for SOGO interrupt */ | 
|  | wait_for_ctrl_irq(ctrl); | 
|  |  | 
|  | /* Get ready for next iteration */ | 
|  | long_delay((2*HZ)/10); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cpqhp_hardware_test - runs hardware tests | 
|  | * @ctrl: target controller | 
|  | * @test_num: the number written to the "test" file in sysfs. | 
|  | * | 
|  | * For hot plug ctrl folks to play with. | 
|  | */ | 
|  | int cpqhp_hardware_test(struct controller *ctrl, int test_num) | 
|  | { | 
|  | u32 save_LED; | 
|  | u32 work_LED; | 
|  | int loop; | 
|  | int num_of_slots; | 
|  |  | 
|  | num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f; | 
|  |  | 
|  | switch (test_num) { | 
|  | case 1: | 
|  | /* Do stuff here! */ | 
|  |  | 
|  | /* Do that funky LED thing */ | 
|  | /* so we can restore them later */ | 
|  | save_LED = readl(ctrl->hpc_reg + LED_CONTROL); | 
|  | work_LED = 0x01010101; | 
|  | switch_leds(ctrl, num_of_slots, &work_LED, 0); | 
|  | switch_leds(ctrl, num_of_slots, &work_LED, 1); | 
|  | switch_leds(ctrl, num_of_slots, &work_LED, 0); | 
|  | switch_leds(ctrl, num_of_slots, &work_LED, 1); | 
|  |  | 
|  | work_LED = 0x01010000; | 
|  | writel(work_LED, ctrl->hpc_reg + LED_CONTROL); | 
|  | switch_leds(ctrl, num_of_slots, &work_LED, 0); | 
|  | switch_leds(ctrl, num_of_slots, &work_LED, 1); | 
|  | work_LED = 0x00000101; | 
|  | writel(work_LED, ctrl->hpc_reg + LED_CONTROL); | 
|  | switch_leds(ctrl, num_of_slots, &work_LED, 0); | 
|  | switch_leds(ctrl, num_of_slots, &work_LED, 1); | 
|  |  | 
|  | work_LED = 0x01010000; | 
|  | writel(work_LED, ctrl->hpc_reg + LED_CONTROL); | 
|  | for (loop = 0; loop < num_of_slots; loop++) { | 
|  | set_SOGO(ctrl); | 
|  |  | 
|  | /* Wait for SOGO interrupt */ | 
|  | wait_for_ctrl_irq (ctrl); | 
|  |  | 
|  | /* Get ready for next iteration */ | 
|  | long_delay((3*HZ)/10); | 
|  | work_LED = work_LED >> 16; | 
|  | writel(work_LED, ctrl->hpc_reg + LED_CONTROL); | 
|  |  | 
|  | set_SOGO(ctrl); | 
|  |  | 
|  | /* Wait for SOGO interrupt */ | 
|  | wait_for_ctrl_irq (ctrl); | 
|  |  | 
|  | /* Get ready for next iteration */ | 
|  | long_delay((3*HZ)/10); | 
|  | work_LED = work_LED << 16; | 
|  | writel(work_LED, ctrl->hpc_reg + LED_CONTROL); | 
|  | work_LED = work_LED << 1; | 
|  | writel(work_LED, ctrl->hpc_reg + LED_CONTROL); | 
|  | } | 
|  |  | 
|  | /* put it back the way it was */ | 
|  | writel(save_LED, ctrl->hpc_reg + LED_CONTROL); | 
|  |  | 
|  | set_SOGO(ctrl); | 
|  |  | 
|  | /* Wait for SOBS to be unset */ | 
|  | wait_for_ctrl_irq (ctrl); | 
|  | break; | 
|  | case 2: | 
|  | /* Do other stuff here! */ | 
|  | break; | 
|  | case 3: | 
|  | /* and more... */ | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * configure_new_device - Configures the PCI header information of one board. | 
|  | * @ctrl: pointer to controller structure | 
|  | * @func: pointer to function structure | 
|  | * @behind_bridge: 1 if this is a recursive call, 0 if not | 
|  | * @resources: pointer to set of resource lists | 
|  | * | 
|  | * Returns 0 if success. | 
|  | */ | 
|  | static u32 configure_new_device(struct controller * ctrl, struct pci_func * func, | 
|  | u8 behind_bridge, struct resource_lists * resources) | 
|  | { | 
|  | u8 temp_byte, function, max_functions, stop_it; | 
|  | int rc; | 
|  | u32 ID; | 
|  | struct pci_func *new_slot; | 
|  | int index; | 
|  |  | 
|  | new_slot = func; | 
|  |  | 
|  | dbg("%s\n", __func__); | 
|  | /* Check for Multi-function device */ | 
|  | ctrl->pci_bus->number = func->bus; | 
|  | rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte); | 
|  | if (rc) { | 
|  | dbg("%s: rc = %d\n", __func__, rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | if (temp_byte & 0x80)	/* Multi-function device */ | 
|  | max_functions = 8; | 
|  | else | 
|  | max_functions = 1; | 
|  |  | 
|  | function = 0; | 
|  |  | 
|  | do { | 
|  | rc = configure_new_function(ctrl, new_slot, behind_bridge, resources); | 
|  |  | 
|  | if (rc) { | 
|  | dbg("configure_new_function failed %d\n",rc); | 
|  | index = 0; | 
|  |  | 
|  | while (new_slot) { | 
|  | new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++); | 
|  |  | 
|  | if (new_slot) | 
|  | cpqhp_return_board_resources(new_slot, resources); | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | function++; | 
|  |  | 
|  | stop_it = 0; | 
|  |  | 
|  | /* The following loop skips to the next present function | 
|  | * and creates a board structure */ | 
|  |  | 
|  | while ((function < max_functions) && (!stop_it)) { | 
|  | pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID); | 
|  |  | 
|  | if (ID == 0xFFFFFFFF) { | 
|  | function++; | 
|  | } else { | 
|  | /* Setup slot structure. */ | 
|  | new_slot = cpqhp_slot_create(func->bus); | 
|  |  | 
|  | if (new_slot == NULL) | 
|  | return 1; | 
|  |  | 
|  | new_slot->bus = func->bus; | 
|  | new_slot->device = func->device; | 
|  | new_slot->function = function; | 
|  | new_slot->is_a_board = 1; | 
|  | new_slot->status = 0; | 
|  |  | 
|  | stop_it++; | 
|  | } | 
|  | } | 
|  |  | 
|  | } while (function < max_functions); | 
|  | dbg("returning from configure_new_device\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Configuration logic that involves the hotplug data structures and | 
|  | * their bookkeeping | 
|  | */ | 
|  |  | 
|  |  | 
|  | /** | 
|  | * configure_new_function - Configures the PCI header information of one device | 
|  | * @ctrl: pointer to controller structure | 
|  | * @func: pointer to function structure | 
|  | * @behind_bridge: 1 if this is a recursive call, 0 if not | 
|  | * @resources: pointer to set of resource lists | 
|  | * | 
|  | * Calls itself recursively for bridged devices. | 
|  | * Returns 0 if success. | 
|  | */ | 
|  | static int configure_new_function(struct controller *ctrl, struct pci_func *func, | 
|  | u8 behind_bridge, | 
|  | struct resource_lists *resources) | 
|  | { | 
|  | int cloop; | 
|  | u8 IRQ = 0; | 
|  | u8 temp_byte; | 
|  | u8 device; | 
|  | u8 class_code; | 
|  | u16 command; | 
|  | u16 temp_word; | 
|  | u32 temp_dword; | 
|  | u32 rc; | 
|  | u32 temp_register; | 
|  | u32 base; | 
|  | u32 ID; | 
|  | unsigned int devfn; | 
|  | struct pci_resource *mem_node; | 
|  | struct pci_resource *p_mem_node; | 
|  | struct pci_resource *io_node; | 
|  | struct pci_resource *bus_node; | 
|  | struct pci_resource *hold_mem_node; | 
|  | struct pci_resource *hold_p_mem_node; | 
|  | struct pci_resource *hold_IO_node; | 
|  | struct pci_resource *hold_bus_node; | 
|  | struct irq_mapping irqs; | 
|  | struct pci_func *new_slot; | 
|  | struct pci_bus *pci_bus; | 
|  | struct resource_lists temp_resources; | 
|  |  | 
|  | pci_bus = ctrl->pci_bus; | 
|  | pci_bus->number = func->bus; | 
|  | devfn = PCI_DEVFN(func->device, func->function); | 
|  |  | 
|  | /* Check for Bridge */ | 
|  | rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { | 
|  | /* set Primary bus */ | 
|  | dbg("set Primary bus = %d\n", func->bus); | 
|  | rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* find range of busses to use */ | 
|  | dbg("find ranges of buses to use\n"); | 
|  | bus_node = get_max_resource(&(resources->bus_head), 1); | 
|  |  | 
|  | /* If we don't have any busses to allocate, we can't continue */ | 
|  | if (!bus_node) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* set Secondary bus */ | 
|  | temp_byte = bus_node->base; | 
|  | dbg("set Secondary bus = %d\n", bus_node->base); | 
|  | rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* set subordinate bus */ | 
|  | temp_byte = bus_node->base + bus_node->length - 1; | 
|  | dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1); | 
|  | rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* set subordinate Latency Timer and base Latency Timer */ | 
|  | temp_byte = 0x40; | 
|  | rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte); | 
|  | if (rc) | 
|  | return rc; | 
|  | rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* set Cache Line size */ | 
|  | temp_byte = 0x08; | 
|  | rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* Setup the IO, memory, and prefetchable windows */ | 
|  | io_node = get_max_resource(&(resources->io_head), 0x1000); | 
|  | if (!io_node) | 
|  | return -ENOMEM; | 
|  | mem_node = get_max_resource(&(resources->mem_head), 0x100000); | 
|  | if (!mem_node) | 
|  | return -ENOMEM; | 
|  | p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000); | 
|  | if (!p_mem_node) | 
|  | return -ENOMEM; | 
|  | dbg("Setup the IO, memory, and prefetchable windows\n"); | 
|  | dbg("io_node\n"); | 
|  | dbg("(base, len, next) (%x, %x, %p)\n", io_node->base, | 
|  | io_node->length, io_node->next); | 
|  | dbg("mem_node\n"); | 
|  | dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base, | 
|  | mem_node->length, mem_node->next); | 
|  | dbg("p_mem_node\n"); | 
|  | dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base, | 
|  | p_mem_node->length, p_mem_node->next); | 
|  |  | 
|  | /* set up the IRQ info */ | 
|  | if (!resources->irqs) { | 
|  | irqs.barber_pole = 0; | 
|  | irqs.interrupt[0] = 0; | 
|  | irqs.interrupt[1] = 0; | 
|  | irqs.interrupt[2] = 0; | 
|  | irqs.interrupt[3] = 0; | 
|  | irqs.valid_INT = 0; | 
|  | } else { | 
|  | irqs.barber_pole = resources->irqs->barber_pole; | 
|  | irqs.interrupt[0] = resources->irqs->interrupt[0]; | 
|  | irqs.interrupt[1] = resources->irqs->interrupt[1]; | 
|  | irqs.interrupt[2] = resources->irqs->interrupt[2]; | 
|  | irqs.interrupt[3] = resources->irqs->interrupt[3]; | 
|  | irqs.valid_INT = resources->irqs->valid_INT; | 
|  | } | 
|  |  | 
|  | /* set up resource lists that are now aligned on top and bottom | 
|  | * for anything behind the bridge. */ | 
|  | temp_resources.bus_head = bus_node; | 
|  | temp_resources.io_head = io_node; | 
|  | temp_resources.mem_head = mem_node; | 
|  | temp_resources.p_mem_head = p_mem_node; | 
|  | temp_resources.irqs = &irqs; | 
|  |  | 
|  | /* Make copies of the nodes we are going to pass down so that | 
|  | * if there is a problem,we can just use these to free resources | 
|  | */ | 
|  | hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL); | 
|  | hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL); | 
|  | hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL); | 
|  | hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL); | 
|  |  | 
|  | if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) { | 
|  | kfree(hold_bus_node); | 
|  | kfree(hold_IO_node); | 
|  | kfree(hold_mem_node); | 
|  | kfree(hold_p_mem_node); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource)); | 
|  |  | 
|  | bus_node->base += 1; | 
|  | bus_node->length -= 1; | 
|  | bus_node->next = NULL; | 
|  |  | 
|  | /* If we have IO resources copy them and fill in the bridge's | 
|  | * IO range registers */ | 
|  | if (io_node) { | 
|  | memcpy(hold_IO_node, io_node, sizeof(struct pci_resource)); | 
|  | io_node->next = NULL; | 
|  |  | 
|  | /* set IO base and Limit registers */ | 
|  | temp_byte = io_node->base >> 8; | 
|  | rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte); | 
|  |  | 
|  | temp_byte = (io_node->base + io_node->length - 1) >> 8; | 
|  | rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte); | 
|  | } else { | 
|  | kfree(hold_IO_node); | 
|  | hold_IO_node = NULL; | 
|  | } | 
|  |  | 
|  | /* If we have memory resources copy them and fill in the | 
|  | * bridge's memory range registers.  Otherwise, fill in the | 
|  | * range registers with values that disable them. */ | 
|  | if (mem_node) { | 
|  | memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource)); | 
|  | mem_node->next = NULL; | 
|  |  | 
|  | /* set Mem base and Limit registers */ | 
|  | temp_word = mem_node->base >> 16; | 
|  | rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word); | 
|  |  | 
|  | temp_word = (mem_node->base + mem_node->length - 1) >> 16; | 
|  | rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); | 
|  | } else { | 
|  | temp_word = 0xFFFF; | 
|  | rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word); | 
|  |  | 
|  | temp_word = 0x0000; | 
|  | rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); | 
|  |  | 
|  | kfree(hold_mem_node); | 
|  | hold_mem_node = NULL; | 
|  | } | 
|  |  | 
|  | memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource)); | 
|  | p_mem_node->next = NULL; | 
|  |  | 
|  | /* set Pre Mem base and Limit registers */ | 
|  | temp_word = p_mem_node->base >> 16; | 
|  | rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word); | 
|  |  | 
|  | temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16; | 
|  | rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); | 
|  |  | 
|  | /* Adjust this to compensate for extra adjustment in first loop | 
|  | */ | 
|  | irqs.barber_pole--; | 
|  |  | 
|  | rc = 0; | 
|  |  | 
|  | /* Here we actually find the devices and configure them */ | 
|  | for (device = 0; (device <= 0x1F) && !rc; device++) { | 
|  | irqs.barber_pole = (irqs.barber_pole + 1) & 0x03; | 
|  |  | 
|  | ID = 0xFFFFFFFF; | 
|  | pci_bus->number = hold_bus_node->base; | 
|  | pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID); | 
|  | pci_bus->number = func->bus; | 
|  |  | 
|  | if (ID != 0xFFFFFFFF) {	  /*  device present */ | 
|  | /* Setup slot structure. */ | 
|  | new_slot = cpqhp_slot_create(hold_bus_node->base); | 
|  |  | 
|  | if (new_slot == NULL) { | 
|  | rc = -ENOMEM; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | new_slot->bus = hold_bus_node->base; | 
|  | new_slot->device = device; | 
|  | new_slot->function = 0; | 
|  | new_slot->is_a_board = 1; | 
|  | new_slot->status = 0; | 
|  |  | 
|  | rc = configure_new_device(ctrl, new_slot, 1, &temp_resources); | 
|  | dbg("configure_new_device rc=0x%x\n",rc); | 
|  | }	/* End of IF (device in slot?) */ | 
|  | }		/* End of FOR loop */ | 
|  |  | 
|  | if (rc) | 
|  | goto free_and_out; | 
|  | /* save the interrupt routing information */ | 
|  | if (resources->irqs) { | 
|  | resources->irqs->interrupt[0] = irqs.interrupt[0]; | 
|  | resources->irqs->interrupt[1] = irqs.interrupt[1]; | 
|  | resources->irqs->interrupt[2] = irqs.interrupt[2]; | 
|  | resources->irqs->interrupt[3] = irqs.interrupt[3]; | 
|  | resources->irqs->valid_INT = irqs.valid_INT; | 
|  | } else if (!behind_bridge) { | 
|  | /* We need to hook up the interrupts here */ | 
|  | for (cloop = 0; cloop < 4; cloop++) { | 
|  | if (irqs.valid_INT & (0x01 << cloop)) { | 
|  | rc = cpqhp_set_irq(func->bus, func->device, | 
|  | cloop + 1, irqs.interrupt[cloop]); | 
|  | if (rc) | 
|  | goto free_and_out; | 
|  | } | 
|  | }	/* end of for loop */ | 
|  | } | 
|  | /* Return unused bus resources | 
|  | * First use the temporary node to store information for | 
|  | * the board */ | 
|  | if (hold_bus_node && bus_node && temp_resources.bus_head) { | 
|  | hold_bus_node->length = bus_node->base - hold_bus_node->base; | 
|  |  | 
|  | hold_bus_node->next = func->bus_head; | 
|  | func->bus_head = hold_bus_node; | 
|  |  | 
|  | temp_byte = temp_resources.bus_head->base - 1; | 
|  |  | 
|  | /* set subordinate bus */ | 
|  | rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); | 
|  |  | 
|  | if (temp_resources.bus_head->length == 0) { | 
|  | kfree(temp_resources.bus_head); | 
|  | temp_resources.bus_head = NULL; | 
|  | } else { | 
|  | return_resource(&(resources->bus_head), temp_resources.bus_head); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If we have IO space available and there is some left, | 
|  | * return the unused portion */ | 
|  | if (hold_IO_node && temp_resources.io_head) { | 
|  | io_node = do_pre_bridge_resource_split(&(temp_resources.io_head), | 
|  | &hold_IO_node, 0x1000); | 
|  |  | 
|  | /* Check if we were able to split something off */ | 
|  | if (io_node) { | 
|  | hold_IO_node->base = io_node->base + io_node->length; | 
|  |  | 
|  | temp_byte = (hold_IO_node->base) >> 8; | 
|  | rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte); | 
|  |  | 
|  | return_resource(&(resources->io_head), io_node); | 
|  | } | 
|  |  | 
|  | io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000); | 
|  |  | 
|  | /* Check if we were able to split something off */ | 
|  | if (io_node) { | 
|  | /* First use the temporary node to store | 
|  | * information for the board */ | 
|  | hold_IO_node->length = io_node->base - hold_IO_node->base; | 
|  |  | 
|  | /* If we used any, add it to the board's list */ | 
|  | if (hold_IO_node->length) { | 
|  | hold_IO_node->next = func->io_head; | 
|  | func->io_head = hold_IO_node; | 
|  |  | 
|  | temp_byte = (io_node->base - 1) >> 8; | 
|  | rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte); | 
|  |  | 
|  | return_resource(&(resources->io_head), io_node); | 
|  | } else { | 
|  | /* it doesn't need any IO */ | 
|  | temp_word = 0x0000; | 
|  | rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word); | 
|  |  | 
|  | return_resource(&(resources->io_head), io_node); | 
|  | kfree(hold_IO_node); | 
|  | } | 
|  | } else { | 
|  | /* it used most of the range */ | 
|  | hold_IO_node->next = func->io_head; | 
|  | func->io_head = hold_IO_node; | 
|  | } | 
|  | } else if (hold_IO_node) { | 
|  | /* it used the whole range */ | 
|  | hold_IO_node->next = func->io_head; | 
|  | func->io_head = hold_IO_node; | 
|  | } | 
|  | /* If we have memory space available and there is some left, | 
|  | * return the unused portion */ | 
|  | if (hold_mem_node && temp_resources.mem_head) { | 
|  | mem_node = do_pre_bridge_resource_split(&(temp_resources.  mem_head), | 
|  | &hold_mem_node, 0x100000); | 
|  |  | 
|  | /* Check if we were able to split something off */ | 
|  | if (mem_node) { | 
|  | hold_mem_node->base = mem_node->base + mem_node->length; | 
|  |  | 
|  | temp_word = (hold_mem_node->base) >> 16; | 
|  | rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word); | 
|  |  | 
|  | return_resource(&(resources->mem_head), mem_node); | 
|  | } | 
|  |  | 
|  | mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000); | 
|  |  | 
|  | /* Check if we were able to split something off */ | 
|  | if (mem_node) { | 
|  | /* First use the temporary node to store | 
|  | * information for the board */ | 
|  | hold_mem_node->length = mem_node->base - hold_mem_node->base; | 
|  |  | 
|  | if (hold_mem_node->length) { | 
|  | hold_mem_node->next = func->mem_head; | 
|  | func->mem_head = hold_mem_node; | 
|  |  | 
|  | /* configure end address */ | 
|  | temp_word = (mem_node->base - 1) >> 16; | 
|  | rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); | 
|  |  | 
|  | /* Return unused resources to the pool */ | 
|  | return_resource(&(resources->mem_head), mem_node); | 
|  | } else { | 
|  | /* it doesn't need any Mem */ | 
|  | temp_word = 0x0000; | 
|  | rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); | 
|  |  | 
|  | return_resource(&(resources->mem_head), mem_node); | 
|  | kfree(hold_mem_node); | 
|  | } | 
|  | } else { | 
|  | /* it used most of the range */ | 
|  | hold_mem_node->next = func->mem_head; | 
|  | func->mem_head = hold_mem_node; | 
|  | } | 
|  | } else if (hold_mem_node) { | 
|  | /* it used the whole range */ | 
|  | hold_mem_node->next = func->mem_head; | 
|  | func->mem_head = hold_mem_node; | 
|  | } | 
|  | /* If we have prefetchable memory space available and there | 
|  | * is some left at the end, return the unused portion */ | 
|  | if (hold_p_mem_node && temp_resources.p_mem_head) { | 
|  | p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head), | 
|  | &hold_p_mem_node, 0x100000); | 
|  |  | 
|  | /* Check if we were able to split something off */ | 
|  | if (p_mem_node) { | 
|  | hold_p_mem_node->base = p_mem_node->base + p_mem_node->length; | 
|  |  | 
|  | temp_word = (hold_p_mem_node->base) >> 16; | 
|  | rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word); | 
|  |  | 
|  | return_resource(&(resources->p_mem_head), p_mem_node); | 
|  | } | 
|  |  | 
|  | p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000); | 
|  |  | 
|  | /* Check if we were able to split something off */ | 
|  | if (p_mem_node) { | 
|  | /* First use the temporary node to store | 
|  | * information for the board */ | 
|  | hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base; | 
|  |  | 
|  | /* If we used any, add it to the board's list */ | 
|  | if (hold_p_mem_node->length) { | 
|  | hold_p_mem_node->next = func->p_mem_head; | 
|  | func->p_mem_head = hold_p_mem_node; | 
|  |  | 
|  | temp_word = (p_mem_node->base - 1) >> 16; | 
|  | rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); | 
|  |  | 
|  | return_resource(&(resources->p_mem_head), p_mem_node); | 
|  | } else { | 
|  | /* it doesn't need any PMem */ | 
|  | temp_word = 0x0000; | 
|  | rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); | 
|  |  | 
|  | return_resource(&(resources->p_mem_head), p_mem_node); | 
|  | kfree(hold_p_mem_node); | 
|  | } | 
|  | } else { | 
|  | /* it used the most of the range */ | 
|  | hold_p_mem_node->next = func->p_mem_head; | 
|  | func->p_mem_head = hold_p_mem_node; | 
|  | } | 
|  | } else if (hold_p_mem_node) { | 
|  | /* it used the whole range */ | 
|  | hold_p_mem_node->next = func->p_mem_head; | 
|  | func->p_mem_head = hold_p_mem_node; | 
|  | } | 
|  | /* We should be configuring an IRQ and the bridge's base address | 
|  | * registers if it needs them.  Although we have never seen such | 
|  | * a device */ | 
|  |  | 
|  | /* enable card */ | 
|  | command = 0x0157;	/* = PCI_COMMAND_IO | | 
|  | *   PCI_COMMAND_MEMORY | | 
|  | *   PCI_COMMAND_MASTER | | 
|  | *   PCI_COMMAND_INVALIDATE | | 
|  | *   PCI_COMMAND_PARITY | | 
|  | *   PCI_COMMAND_SERR */ | 
|  | rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command); | 
|  |  | 
|  | /* set Bridge Control Register */ | 
|  | command = 0x07;		/* = PCI_BRIDGE_CTL_PARITY | | 
|  | *   PCI_BRIDGE_CTL_SERR | | 
|  | *   PCI_BRIDGE_CTL_NO_ISA */ | 
|  | rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command); | 
|  | } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) { | 
|  | /* Standard device */ | 
|  | rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code); | 
|  |  | 
|  | if (class_code == PCI_BASE_CLASS_DISPLAY) { | 
|  | /* Display (video) adapter (not supported) */ | 
|  | return DEVICE_TYPE_NOT_SUPPORTED; | 
|  | } | 
|  | /* Figure out IO and memory needs */ | 
|  | for (cloop = 0x10; cloop <= 0x24; cloop += 4) { | 
|  | temp_register = 0xFFFFFFFF; | 
|  |  | 
|  | dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop); | 
|  | rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register); | 
|  |  | 
|  | rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register); | 
|  | dbg("CND: base = 0x%x\n", temp_register); | 
|  |  | 
|  | if (temp_register) {	  /* If this register is implemented */ | 
|  | if ((temp_register & 0x03L) == 0x01) { | 
|  | /* Map IO */ | 
|  |  | 
|  | /* set base = amount of IO space */ | 
|  | base = temp_register & 0xFFFFFFFC; | 
|  | base = ~base + 1; | 
|  |  | 
|  | dbg("CND:      length = 0x%x\n", base); | 
|  | io_node = get_io_resource(&(resources->io_head), base); | 
|  | dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n", | 
|  | io_node->base, io_node->length, io_node->next); | 
|  | dbg("func (%p) io_head (%p)\n", func, func->io_head); | 
|  |  | 
|  | /* allocate the resource to the board */ | 
|  | if (io_node) { | 
|  | base = io_node->base; | 
|  |  | 
|  | io_node->next = func->io_head; | 
|  | func->io_head = io_node; | 
|  | } else | 
|  | return -ENOMEM; | 
|  | } else if ((temp_register & 0x0BL) == 0x08) { | 
|  | /* Map prefetchable memory */ | 
|  | base = temp_register & 0xFFFFFFF0; | 
|  | base = ~base + 1; | 
|  |  | 
|  | dbg("CND:      length = 0x%x\n", base); | 
|  | p_mem_node = get_resource(&(resources->p_mem_head), base); | 
|  |  | 
|  | /* allocate the resource to the board */ | 
|  | if (p_mem_node) { | 
|  | base = p_mem_node->base; | 
|  |  | 
|  | p_mem_node->next = func->p_mem_head; | 
|  | func->p_mem_head = p_mem_node; | 
|  | } else | 
|  | return -ENOMEM; | 
|  | } else if ((temp_register & 0x0BL) == 0x00) { | 
|  | /* Map memory */ | 
|  | base = temp_register & 0xFFFFFFF0; | 
|  | base = ~base + 1; | 
|  |  | 
|  | dbg("CND:      length = 0x%x\n", base); | 
|  | mem_node = get_resource(&(resources->mem_head), base); | 
|  |  | 
|  | /* allocate the resource to the board */ | 
|  | if (mem_node) { | 
|  | base = mem_node->base; | 
|  |  | 
|  | mem_node->next = func->mem_head; | 
|  | func->mem_head = mem_node; | 
|  | } else | 
|  | return -ENOMEM; | 
|  | } else if ((temp_register & 0x0BL) == 0x04) { | 
|  | /* Map memory */ | 
|  | base = temp_register & 0xFFFFFFF0; | 
|  | base = ~base + 1; | 
|  |  | 
|  | dbg("CND:      length = 0x%x\n", base); | 
|  | mem_node = get_resource(&(resources->mem_head), base); | 
|  |  | 
|  | /* allocate the resource to the board */ | 
|  | if (mem_node) { | 
|  | base = mem_node->base; | 
|  |  | 
|  | mem_node->next = func->mem_head; | 
|  | func->mem_head = mem_node; | 
|  | } else | 
|  | return -ENOMEM; | 
|  | } else if ((temp_register & 0x0BL) == 0x06) { | 
|  | /* Those bits are reserved, we can't handle this */ | 
|  | return 1; | 
|  | } else { | 
|  | /* Requesting space below 1M */ | 
|  | return NOT_ENOUGH_RESOURCES; | 
|  | } | 
|  |  | 
|  | rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base); | 
|  |  | 
|  | /* Check for 64-bit base */ | 
|  | if ((temp_register & 0x07L) == 0x04) { | 
|  | cloop += 4; | 
|  |  | 
|  | /* Upper 32 bits of address always zero | 
|  | * on today's systems */ | 
|  | /* FIXME this is probably not true on | 
|  | * Alpha and ia64??? */ | 
|  | base = 0; | 
|  | rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base); | 
|  | } | 
|  | } | 
|  | }		/* End of base register loop */ | 
|  | if (cpqhp_legacy_mode) { | 
|  | /* Figure out which interrupt pin this function uses */ | 
|  | rc = pci_bus_read_config_byte (pci_bus, devfn, | 
|  | PCI_INTERRUPT_PIN, &temp_byte); | 
|  |  | 
|  | /* If this function needs an interrupt and we are behind | 
|  | * a bridge and the pin is tied to something that's | 
|  | * alread mapped, set this one the same */ | 
|  | if (temp_byte && resources->irqs && | 
|  | (resources->irqs->valid_INT & | 
|  | (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) { | 
|  | /* We have to share with something already set up */ | 
|  | IRQ = resources->irqs->interrupt[(temp_byte + | 
|  | resources->irqs->barber_pole - 1) & 0x03]; | 
|  | } else { | 
|  | /* Program IRQ based on card type */ | 
|  | rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code); | 
|  |  | 
|  | if (class_code == PCI_BASE_CLASS_STORAGE) | 
|  | IRQ = cpqhp_disk_irq; | 
|  | else | 
|  | IRQ = cpqhp_nic_irq; | 
|  | } | 
|  |  | 
|  | /* IRQ Line */ | 
|  | rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ); | 
|  | } | 
|  |  | 
|  | if (!behind_bridge) { | 
|  | rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ); | 
|  | if (rc) | 
|  | return 1; | 
|  | } else { | 
|  | /* TBD - this code may also belong in the other clause | 
|  | * of this If statement */ | 
|  | resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ; | 
|  | resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03; | 
|  | } | 
|  |  | 
|  | /* Latency Timer */ | 
|  | temp_byte = 0x40; | 
|  | rc = pci_bus_write_config_byte(pci_bus, devfn, | 
|  | PCI_LATENCY_TIMER, temp_byte); | 
|  |  | 
|  | /* Cache Line size */ | 
|  | temp_byte = 0x08; | 
|  | rc = pci_bus_write_config_byte(pci_bus, devfn, | 
|  | PCI_CACHE_LINE_SIZE, temp_byte); | 
|  |  | 
|  | /* disable ROM base Address */ | 
|  | temp_dword = 0x00L; | 
|  | rc = pci_bus_write_config_word(pci_bus, devfn, | 
|  | PCI_ROM_ADDRESS, temp_dword); | 
|  |  | 
|  | /* enable card */ | 
|  | temp_word = 0x0157;	/* = PCI_COMMAND_IO | | 
|  | *   PCI_COMMAND_MEMORY | | 
|  | *   PCI_COMMAND_MASTER | | 
|  | *   PCI_COMMAND_INVALIDATE | | 
|  | *   PCI_COMMAND_PARITY | | 
|  | *   PCI_COMMAND_SERR */ | 
|  | rc = pci_bus_write_config_word (pci_bus, devfn, | 
|  | PCI_COMMAND, temp_word); | 
|  | } else {		/* End of Not-A-Bridge else */ | 
|  | /* It's some strange type of PCI adapter (Cardbus?) */ | 
|  | return DEVICE_TYPE_NOT_SUPPORTED; | 
|  | } | 
|  |  | 
|  | func->configured = 1; | 
|  |  | 
|  | return 0; | 
|  | free_and_out: | 
|  | cpqhp_destroy_resource_list (&temp_resources); | 
|  |  | 
|  | return_resource(&(resources-> bus_head), hold_bus_node); | 
|  | return_resource(&(resources-> io_head), hold_IO_node); | 
|  | return_resource(&(resources-> mem_head), hold_mem_node); | 
|  | return_resource(&(resources-> p_mem_head), hold_p_mem_node); | 
|  | return rc; | 
|  | } |