|  | /* | 
|  | * xHCI host controller driver | 
|  | * | 
|  | * Copyright (C) 2008 Intel Corp. | 
|  | * | 
|  | * Author: Sarah Sharp | 
|  | * Some code borrowed from the Linux EHCI driver. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but | 
|  | * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | 
|  | * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
|  | * for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software Foundation, | 
|  | * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/usb.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/dmapool.h> | 
|  |  | 
|  | #include "xhci.h" | 
|  |  | 
|  | /* | 
|  | * Allocates a generic ring segment from the ring pool, sets the dma address, | 
|  | * initializes the segment to zero, and sets the private next pointer to NULL. | 
|  | * | 
|  | * Section 4.11.1.1: | 
|  | * "All components of all Command and Transfer TRBs shall be initialized to '0'" | 
|  | */ | 
|  | static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags) | 
|  | { | 
|  | struct xhci_segment *seg; | 
|  | dma_addr_t	dma; | 
|  |  | 
|  | seg = kzalloc(sizeof *seg, flags); | 
|  | if (!seg) | 
|  | return NULL; | 
|  | xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg); | 
|  |  | 
|  | seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma); | 
|  | if (!seg->trbs) { | 
|  | kfree(seg); | 
|  | return NULL; | 
|  | } | 
|  | xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n", | 
|  | seg->trbs, (unsigned long long)dma); | 
|  |  | 
|  | memset(seg->trbs, 0, SEGMENT_SIZE); | 
|  | seg->dma = dma; | 
|  | seg->next = NULL; | 
|  |  | 
|  | return seg; | 
|  | } | 
|  |  | 
|  | static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) | 
|  | { | 
|  | if (seg->trbs) { | 
|  | xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n", | 
|  | seg->trbs, (unsigned long long)seg->dma); | 
|  | dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); | 
|  | seg->trbs = NULL; | 
|  | } | 
|  | xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg); | 
|  | kfree(seg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make the prev segment point to the next segment. | 
|  | * | 
|  | * Change the last TRB in the prev segment to be a Link TRB which points to the | 
|  | * DMA address of the next segment.  The caller needs to set any Link TRB | 
|  | * related flags, such as End TRB, Toggle Cycle, and no snoop. | 
|  | */ | 
|  | static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev, | 
|  | struct xhci_segment *next, bool link_trbs, bool isoc) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | if (!prev || !next) | 
|  | return; | 
|  | prev->next = next; | 
|  | if (link_trbs) { | 
|  | prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = | 
|  | cpu_to_le64(next->dma); | 
|  |  | 
|  | /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ | 
|  | val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control); | 
|  | val &= ~TRB_TYPE_BITMASK; | 
|  | val |= TRB_TYPE(TRB_LINK); | 
|  | /* Always set the chain bit with 0.95 hardware */ | 
|  | /* Set chain bit for isoc rings on AMD 0.96 host */ | 
|  | if (xhci_link_trb_quirk(xhci) || | 
|  | (isoc && (xhci->quirks & XHCI_AMD_0x96_HOST))) | 
|  | val |= TRB_CHAIN; | 
|  | prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val); | 
|  | } | 
|  | xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n", | 
|  | (unsigned long long)prev->dma, | 
|  | (unsigned long long)next->dma); | 
|  | } | 
|  |  | 
|  | /* XXX: Do we need the hcd structure in all these functions? */ | 
|  | void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) | 
|  | { | 
|  | struct xhci_segment *seg; | 
|  | struct xhci_segment *first_seg; | 
|  |  | 
|  | if (!ring) | 
|  | return; | 
|  | if (ring->first_seg) { | 
|  | first_seg = ring->first_seg; | 
|  | seg = first_seg->next; | 
|  | xhci_dbg(xhci, "Freeing ring at %p\n", ring); | 
|  | while (seg != first_seg) { | 
|  | struct xhci_segment *next = seg->next; | 
|  | xhci_segment_free(xhci, seg); | 
|  | seg = next; | 
|  | } | 
|  | xhci_segment_free(xhci, first_seg); | 
|  | ring->first_seg = NULL; | 
|  | } | 
|  | kfree(ring); | 
|  | } | 
|  |  | 
|  | static void xhci_initialize_ring_info(struct xhci_ring *ring) | 
|  | { | 
|  | /* The ring is empty, so the enqueue pointer == dequeue pointer */ | 
|  | ring->enqueue = ring->first_seg->trbs; | 
|  | ring->enq_seg = ring->first_seg; | 
|  | ring->dequeue = ring->enqueue; | 
|  | ring->deq_seg = ring->first_seg; | 
|  | /* The ring is initialized to 0. The producer must write 1 to the cycle | 
|  | * bit to handover ownership of the TRB, so PCS = 1.  The consumer must | 
|  | * compare CCS to the cycle bit to check ownership, so CCS = 1. | 
|  | */ | 
|  | ring->cycle_state = 1; | 
|  | /* Not necessary for new rings, but needed for re-initialized rings */ | 
|  | ring->enq_updates = 0; | 
|  | ring->deq_updates = 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Create a new ring with zero or more segments. | 
|  | * | 
|  | * Link each segment together into a ring. | 
|  | * Set the end flag and the cycle toggle bit on the last segment. | 
|  | * See section 4.9.1 and figures 15 and 16. | 
|  | */ | 
|  | static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, | 
|  | unsigned int num_segs, bool link_trbs, bool isoc, gfp_t flags) | 
|  | { | 
|  | struct xhci_ring	*ring; | 
|  | struct xhci_segment	*prev; | 
|  |  | 
|  | ring = kzalloc(sizeof *(ring), flags); | 
|  | xhci_dbg(xhci, "Allocating ring at %p\n", ring); | 
|  | if (!ring) | 
|  | return NULL; | 
|  |  | 
|  | INIT_LIST_HEAD(&ring->td_list); | 
|  | if (num_segs == 0) | 
|  | return ring; | 
|  |  | 
|  | ring->first_seg = xhci_segment_alloc(xhci, flags); | 
|  | if (!ring->first_seg) | 
|  | goto fail; | 
|  | num_segs--; | 
|  |  | 
|  | prev = ring->first_seg; | 
|  | while (num_segs > 0) { | 
|  | struct xhci_segment	*next; | 
|  |  | 
|  | next = xhci_segment_alloc(xhci, flags); | 
|  | if (!next) | 
|  | goto fail; | 
|  | xhci_link_segments(xhci, prev, next, link_trbs, isoc); | 
|  |  | 
|  | prev = next; | 
|  | num_segs--; | 
|  | } | 
|  | xhci_link_segments(xhci, prev, ring->first_seg, link_trbs, isoc); | 
|  |  | 
|  | if (link_trbs) { | 
|  | /* See section 4.9.2.1 and 6.4.4.1 */ | 
|  | prev->trbs[TRBS_PER_SEGMENT-1].link.control |= | 
|  | cpu_to_le32(LINK_TOGGLE); | 
|  | xhci_dbg(xhci, "Wrote link toggle flag to" | 
|  | " segment %p (virtual), 0x%llx (DMA)\n", | 
|  | prev, (unsigned long long)prev->dma); | 
|  | } | 
|  | xhci_initialize_ring_info(ring); | 
|  | return ring; | 
|  |  | 
|  | fail: | 
|  | xhci_ring_free(xhci, ring); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci, | 
|  | struct xhci_virt_device *virt_dev, | 
|  | unsigned int ep_index) | 
|  | { | 
|  | int rings_cached; | 
|  |  | 
|  | rings_cached = virt_dev->num_rings_cached; | 
|  | if (rings_cached < XHCI_MAX_RINGS_CACHED) { | 
|  | virt_dev->ring_cache[rings_cached] = | 
|  | virt_dev->eps[ep_index].ring; | 
|  | virt_dev->num_rings_cached++; | 
|  | xhci_dbg(xhci, "Cached old ring, " | 
|  | "%d ring%s cached\n", | 
|  | virt_dev->num_rings_cached, | 
|  | (virt_dev->num_rings_cached > 1) ? "s" : ""); | 
|  | } else { | 
|  | xhci_ring_free(xhci, virt_dev->eps[ep_index].ring); | 
|  | xhci_dbg(xhci, "Ring cache full (%d rings), " | 
|  | "freeing ring\n", | 
|  | virt_dev->num_rings_cached); | 
|  | } | 
|  | virt_dev->eps[ep_index].ring = NULL; | 
|  | } | 
|  |  | 
|  | /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue | 
|  | * pointers to the beginning of the ring. | 
|  | */ | 
|  | static void xhci_reinit_cached_ring(struct xhci_hcd *xhci, | 
|  | struct xhci_ring *ring, bool isoc) | 
|  | { | 
|  | struct xhci_segment	*seg = ring->first_seg; | 
|  | do { | 
|  | memset(seg->trbs, 0, | 
|  | sizeof(union xhci_trb)*TRBS_PER_SEGMENT); | 
|  | /* All endpoint rings have link TRBs */ | 
|  | xhci_link_segments(xhci, seg, seg->next, 1, isoc); | 
|  | seg = seg->next; | 
|  | } while (seg != ring->first_seg); | 
|  | xhci_initialize_ring_info(ring); | 
|  | /* td list should be empty since all URBs have been cancelled, | 
|  | * but just in case... | 
|  | */ | 
|  | INIT_LIST_HEAD(&ring->td_list); | 
|  | } | 
|  |  | 
|  | #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32) | 
|  |  | 
|  | static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, | 
|  | int type, gfp_t flags) | 
|  | { | 
|  | struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags); | 
|  | if (!ctx) | 
|  | return NULL; | 
|  |  | 
|  | BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)); | 
|  | ctx->type = type; | 
|  | ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; | 
|  | if (type == XHCI_CTX_TYPE_INPUT) | 
|  | ctx->size += CTX_SIZE(xhci->hcc_params); | 
|  |  | 
|  | ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma); | 
|  | memset(ctx->bytes, 0, ctx->size); | 
|  | return ctx; | 
|  | } | 
|  |  | 
|  | static void xhci_free_container_ctx(struct xhci_hcd *xhci, | 
|  | struct xhci_container_ctx *ctx) | 
|  | { | 
|  | if (!ctx) | 
|  | return; | 
|  | dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma); | 
|  | kfree(ctx); | 
|  | } | 
|  |  | 
|  | struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci, | 
|  | struct xhci_container_ctx *ctx) | 
|  | { | 
|  | BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT); | 
|  | return (struct xhci_input_control_ctx *)ctx->bytes; | 
|  | } | 
|  |  | 
|  | struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, | 
|  | struct xhci_container_ctx *ctx) | 
|  | { | 
|  | if (ctx->type == XHCI_CTX_TYPE_DEVICE) | 
|  | return (struct xhci_slot_ctx *)ctx->bytes; | 
|  |  | 
|  | return (struct xhci_slot_ctx *) | 
|  | (ctx->bytes + CTX_SIZE(xhci->hcc_params)); | 
|  | } | 
|  |  | 
|  | struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, | 
|  | struct xhci_container_ctx *ctx, | 
|  | unsigned int ep_index) | 
|  | { | 
|  | /* increment ep index by offset of start of ep ctx array */ | 
|  | ep_index++; | 
|  | if (ctx->type == XHCI_CTX_TYPE_INPUT) | 
|  | ep_index++; | 
|  |  | 
|  | return (struct xhci_ep_ctx *) | 
|  | (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); | 
|  | } | 
|  |  | 
|  |  | 
|  | /***************** Streams structures manipulation *************************/ | 
|  |  | 
|  | static void xhci_free_stream_ctx(struct xhci_hcd *xhci, | 
|  | unsigned int num_stream_ctxs, | 
|  | struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) | 
|  | { | 
|  | struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); | 
|  |  | 
|  | if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE) | 
|  | dma_free_coherent(&pdev->dev, | 
|  | sizeof(struct xhci_stream_ctx)*num_stream_ctxs, | 
|  | stream_ctx, dma); | 
|  | else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE) | 
|  | return dma_pool_free(xhci->small_streams_pool, | 
|  | stream_ctx, dma); | 
|  | else | 
|  | return dma_pool_free(xhci->medium_streams_pool, | 
|  | stream_ctx, dma); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The stream context array for each endpoint with bulk streams enabled can | 
|  | * vary in size, based on: | 
|  | *  - how many streams the endpoint supports, | 
|  | *  - the maximum primary stream array size the host controller supports, | 
|  | *  - and how many streams the device driver asks for. | 
|  | * | 
|  | * The stream context array must be a power of 2, and can be as small as | 
|  | * 64 bytes or as large as 1MB. | 
|  | */ | 
|  | static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, | 
|  | unsigned int num_stream_ctxs, dma_addr_t *dma, | 
|  | gfp_t mem_flags) | 
|  | { | 
|  | struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); | 
|  |  | 
|  | if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE) | 
|  | return dma_alloc_coherent(&pdev->dev, | 
|  | sizeof(struct xhci_stream_ctx)*num_stream_ctxs, | 
|  | dma, mem_flags); | 
|  | else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE) | 
|  | return dma_pool_alloc(xhci->small_streams_pool, | 
|  | mem_flags, dma); | 
|  | else | 
|  | return dma_pool_alloc(xhci->medium_streams_pool, | 
|  | mem_flags, dma); | 
|  | } | 
|  |  | 
|  | struct xhci_ring *xhci_dma_to_transfer_ring( | 
|  | struct xhci_virt_ep *ep, | 
|  | u64 address) | 
|  | { | 
|  | if (ep->ep_state & EP_HAS_STREAMS) | 
|  | return radix_tree_lookup(&ep->stream_info->trb_address_map, | 
|  | address >> SEGMENT_SHIFT); | 
|  | return ep->ring; | 
|  | } | 
|  |  | 
|  | /* Only use this when you know stream_info is valid */ | 
|  | #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING | 
|  | static struct xhci_ring *dma_to_stream_ring( | 
|  | struct xhci_stream_info *stream_info, | 
|  | u64 address) | 
|  | { | 
|  | return radix_tree_lookup(&stream_info->trb_address_map, | 
|  | address >> SEGMENT_SHIFT); | 
|  | } | 
|  | #endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */ | 
|  |  | 
|  | struct xhci_ring *xhci_stream_id_to_ring( | 
|  | struct xhci_virt_device *dev, | 
|  | unsigned int ep_index, | 
|  | unsigned int stream_id) | 
|  | { | 
|  | struct xhci_virt_ep *ep = &dev->eps[ep_index]; | 
|  |  | 
|  | if (stream_id == 0) | 
|  | return ep->ring; | 
|  | if (!ep->stream_info) | 
|  | return NULL; | 
|  |  | 
|  | if (stream_id > ep->stream_info->num_streams) | 
|  | return NULL; | 
|  | return ep->stream_info->stream_rings[stream_id]; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING | 
|  | static int xhci_test_radix_tree(struct xhci_hcd *xhci, | 
|  | unsigned int num_streams, | 
|  | struct xhci_stream_info *stream_info) | 
|  | { | 
|  | u32 cur_stream; | 
|  | struct xhci_ring *cur_ring; | 
|  | u64 addr; | 
|  |  | 
|  | for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { | 
|  | struct xhci_ring *mapped_ring; | 
|  | int trb_size = sizeof(union xhci_trb); | 
|  |  | 
|  | cur_ring = stream_info->stream_rings[cur_stream]; | 
|  | for (addr = cur_ring->first_seg->dma; | 
|  | addr < cur_ring->first_seg->dma + SEGMENT_SIZE; | 
|  | addr += trb_size) { | 
|  | mapped_ring = dma_to_stream_ring(stream_info, addr); | 
|  | if (cur_ring != mapped_ring) { | 
|  | xhci_warn(xhci, "WARN: DMA address 0x%08llx " | 
|  | "didn't map to stream ID %u; " | 
|  | "mapped to ring %p\n", | 
|  | (unsigned long long) addr, | 
|  | cur_stream, | 
|  | mapped_ring); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | /* One TRB after the end of the ring segment shouldn't return a | 
|  | * pointer to the current ring (although it may be a part of a | 
|  | * different ring). | 
|  | */ | 
|  | mapped_ring = dma_to_stream_ring(stream_info, addr); | 
|  | if (mapped_ring != cur_ring) { | 
|  | /* One TRB before should also fail */ | 
|  | addr = cur_ring->first_seg->dma - trb_size; | 
|  | mapped_ring = dma_to_stream_ring(stream_info, addr); | 
|  | } | 
|  | if (mapped_ring == cur_ring) { | 
|  | xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx " | 
|  | "mapped to valid stream ID %u; " | 
|  | "mapped ring = %p\n", | 
|  | (unsigned long long) addr, | 
|  | cur_stream, | 
|  | mapped_ring); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | #endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */ | 
|  |  | 
|  | /* | 
|  | * Change an endpoint's internal structure so it supports stream IDs.  The | 
|  | * number of requested streams includes stream 0, which cannot be used by device | 
|  | * drivers. | 
|  | * | 
|  | * The number of stream contexts in the stream context array may be bigger than | 
|  | * the number of streams the driver wants to use.  This is because the number of | 
|  | * stream context array entries must be a power of two. | 
|  | * | 
|  | * We need a radix tree for mapping physical addresses of TRBs to which stream | 
|  | * ID they belong to.  We need to do this because the host controller won't tell | 
|  | * us which stream ring the TRB came from.  We could store the stream ID in an | 
|  | * event data TRB, but that doesn't help us for the cancellation case, since the | 
|  | * endpoint may stop before it reaches that event data TRB. | 
|  | * | 
|  | * The radix tree maps the upper portion of the TRB DMA address to a ring | 
|  | * segment that has the same upper portion of DMA addresses.  For example, say I | 
|  | * have segments of size 1KB, that are always 64-byte aligned.  A segment may | 
|  | * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the | 
|  | * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to | 
|  | * pass the radix tree a key to get the right stream ID: | 
|  | * | 
|  | * 	0x10c90fff >> 10 = 0x43243 | 
|  | * 	0x10c912c0 >> 10 = 0x43244 | 
|  | * 	0x10c91400 >> 10 = 0x43245 | 
|  | * | 
|  | * Obviously, only those TRBs with DMA addresses that are within the segment | 
|  | * will make the radix tree return the stream ID for that ring. | 
|  | * | 
|  | * Caveats for the radix tree: | 
|  | * | 
|  | * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an | 
|  | * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be | 
|  | * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the | 
|  | * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit | 
|  | * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit | 
|  | * extended systems (where the DMA address can be bigger than 32-bits), | 
|  | * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that. | 
|  | */ | 
|  | struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, | 
|  | unsigned int num_stream_ctxs, | 
|  | unsigned int num_streams, gfp_t mem_flags) | 
|  | { | 
|  | struct xhci_stream_info *stream_info; | 
|  | u32 cur_stream; | 
|  | struct xhci_ring *cur_ring; | 
|  | unsigned long key; | 
|  | u64 addr; | 
|  | int ret; | 
|  |  | 
|  | xhci_dbg(xhci, "Allocating %u streams and %u " | 
|  | "stream context array entries.\n", | 
|  | num_streams, num_stream_ctxs); | 
|  | if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { | 
|  | xhci_dbg(xhci, "Command ring has no reserved TRBs available\n"); | 
|  | return NULL; | 
|  | } | 
|  | xhci->cmd_ring_reserved_trbs++; | 
|  |  | 
|  | stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags); | 
|  | if (!stream_info) | 
|  | goto cleanup_trbs; | 
|  |  | 
|  | stream_info->num_streams = num_streams; | 
|  | stream_info->num_stream_ctxs = num_stream_ctxs; | 
|  |  | 
|  | /* Initialize the array of virtual pointers to stream rings. */ | 
|  | stream_info->stream_rings = kzalloc( | 
|  | sizeof(struct xhci_ring *)*num_streams, | 
|  | mem_flags); | 
|  | if (!stream_info->stream_rings) | 
|  | goto cleanup_info; | 
|  |  | 
|  | /* Initialize the array of DMA addresses for stream rings for the HW. */ | 
|  | stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, | 
|  | num_stream_ctxs, &stream_info->ctx_array_dma, | 
|  | mem_flags); | 
|  | if (!stream_info->stream_ctx_array) | 
|  | goto cleanup_ctx; | 
|  | memset(stream_info->stream_ctx_array, 0, | 
|  | sizeof(struct xhci_stream_ctx)*num_stream_ctxs); | 
|  |  | 
|  | /* Allocate everything needed to free the stream rings later */ | 
|  | stream_info->free_streams_command = | 
|  | xhci_alloc_command(xhci, true, true, mem_flags); | 
|  | if (!stream_info->free_streams_command) | 
|  | goto cleanup_ctx; | 
|  |  | 
|  | INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); | 
|  |  | 
|  | /* Allocate rings for all the streams that the driver will use, | 
|  | * and add their segment DMA addresses to the radix tree. | 
|  | * Stream 0 is reserved. | 
|  | */ | 
|  | for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { | 
|  | stream_info->stream_rings[cur_stream] = | 
|  | xhci_ring_alloc(xhci, 1, true, false, mem_flags); | 
|  | cur_ring = stream_info->stream_rings[cur_stream]; | 
|  | if (!cur_ring) | 
|  | goto cleanup_rings; | 
|  | cur_ring->stream_id = cur_stream; | 
|  | /* Set deq ptr, cycle bit, and stream context type */ | 
|  | addr = cur_ring->first_seg->dma | | 
|  | SCT_FOR_CTX(SCT_PRI_TR) | | 
|  | cur_ring->cycle_state; | 
|  | stream_info->stream_ctx_array[cur_stream].stream_ring = | 
|  | cpu_to_le64(addr); | 
|  | xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", | 
|  | cur_stream, (unsigned long long) addr); | 
|  |  | 
|  | key = (unsigned long) | 
|  | (cur_ring->first_seg->dma >> SEGMENT_SHIFT); | 
|  | ret = radix_tree_insert(&stream_info->trb_address_map, | 
|  | key, cur_ring); | 
|  | if (ret) { | 
|  | xhci_ring_free(xhci, cur_ring); | 
|  | stream_info->stream_rings[cur_stream] = NULL; | 
|  | goto cleanup_rings; | 
|  | } | 
|  | } | 
|  | /* Leave the other unused stream ring pointers in the stream context | 
|  | * array initialized to zero.  This will cause the xHC to give us an | 
|  | * error if the device asks for a stream ID we don't have setup (if it | 
|  | * was any other way, the host controller would assume the ring is | 
|  | * "empty" and wait forever for data to be queued to that stream ID). | 
|  | */ | 
|  | #if XHCI_DEBUG | 
|  | /* Do a little test on the radix tree to make sure it returns the | 
|  | * correct values. | 
|  | */ | 
|  | if (xhci_test_radix_tree(xhci, num_streams, stream_info)) | 
|  | goto cleanup_rings; | 
|  | #endif | 
|  |  | 
|  | return stream_info; | 
|  |  | 
|  | cleanup_rings: | 
|  | for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { | 
|  | cur_ring = stream_info->stream_rings[cur_stream]; | 
|  | if (cur_ring) { | 
|  | addr = cur_ring->first_seg->dma; | 
|  | radix_tree_delete(&stream_info->trb_address_map, | 
|  | addr >> SEGMENT_SHIFT); | 
|  | xhci_ring_free(xhci, cur_ring); | 
|  | stream_info->stream_rings[cur_stream] = NULL; | 
|  | } | 
|  | } | 
|  | xhci_free_command(xhci, stream_info->free_streams_command); | 
|  | cleanup_ctx: | 
|  | kfree(stream_info->stream_rings); | 
|  | cleanup_info: | 
|  | kfree(stream_info); | 
|  | cleanup_trbs: | 
|  | xhci->cmd_ring_reserved_trbs--; | 
|  | return NULL; | 
|  | } | 
|  | /* | 
|  | * Sets the MaxPStreams field and the Linear Stream Array field. | 
|  | * Sets the dequeue pointer to the stream context array. | 
|  | */ | 
|  | void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, | 
|  | struct xhci_ep_ctx *ep_ctx, | 
|  | struct xhci_stream_info *stream_info) | 
|  | { | 
|  | u32 max_primary_streams; | 
|  | /* MaxPStreams is the number of stream context array entries, not the | 
|  | * number we're actually using.  Must be in 2^(MaxPstreams + 1) format. | 
|  | * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. | 
|  | */ | 
|  | max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; | 
|  | xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n", | 
|  | 1 << (max_primary_streams + 1)); | 
|  | ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); | 
|  | ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) | 
|  | | EP_HAS_LSA); | 
|  | ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sets the MaxPStreams field and the Linear Stream Array field to 0. | 
|  | * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, | 
|  | * not at the beginning of the ring). | 
|  | */ | 
|  | void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci, | 
|  | struct xhci_ep_ctx *ep_ctx, | 
|  | struct xhci_virt_ep *ep) | 
|  | { | 
|  | dma_addr_t addr; | 
|  | ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA)); | 
|  | addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); | 
|  | ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state); | 
|  | } | 
|  |  | 
|  | /* Frees all stream contexts associated with the endpoint, | 
|  | * | 
|  | * Caller should fix the endpoint context streams fields. | 
|  | */ | 
|  | void xhci_free_stream_info(struct xhci_hcd *xhci, | 
|  | struct xhci_stream_info *stream_info) | 
|  | { | 
|  | int cur_stream; | 
|  | struct xhci_ring *cur_ring; | 
|  | dma_addr_t addr; | 
|  |  | 
|  | if (!stream_info) | 
|  | return; | 
|  |  | 
|  | for (cur_stream = 1; cur_stream < stream_info->num_streams; | 
|  | cur_stream++) { | 
|  | cur_ring = stream_info->stream_rings[cur_stream]; | 
|  | if (cur_ring) { | 
|  | addr = cur_ring->first_seg->dma; | 
|  | radix_tree_delete(&stream_info->trb_address_map, | 
|  | addr >> SEGMENT_SHIFT); | 
|  | xhci_ring_free(xhci, cur_ring); | 
|  | stream_info->stream_rings[cur_stream] = NULL; | 
|  | } | 
|  | } | 
|  | xhci_free_command(xhci, stream_info->free_streams_command); | 
|  | xhci->cmd_ring_reserved_trbs--; | 
|  | if (stream_info->stream_ctx_array) | 
|  | xhci_free_stream_ctx(xhci, | 
|  | stream_info->num_stream_ctxs, | 
|  | stream_info->stream_ctx_array, | 
|  | stream_info->ctx_array_dma); | 
|  |  | 
|  | if (stream_info) | 
|  | kfree(stream_info->stream_rings); | 
|  | kfree(stream_info); | 
|  | } | 
|  |  | 
|  |  | 
|  | /***************** Device context manipulation *************************/ | 
|  |  | 
|  | static void xhci_init_endpoint_timer(struct xhci_hcd *xhci, | 
|  | struct xhci_virt_ep *ep) | 
|  | { | 
|  | init_timer(&ep->stop_cmd_timer); | 
|  | ep->stop_cmd_timer.data = (unsigned long) ep; | 
|  | ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog; | 
|  | ep->xhci = xhci; | 
|  | } | 
|  |  | 
|  | static void xhci_free_tt_info(struct xhci_hcd *xhci, | 
|  | struct xhci_virt_device *virt_dev, | 
|  | int slot_id) | 
|  | { | 
|  | struct list_head *tt; | 
|  | struct list_head *tt_list_head; | 
|  | struct list_head *tt_next; | 
|  | struct xhci_tt_bw_info *tt_info; | 
|  |  | 
|  | /* If the device never made it past the Set Address stage, | 
|  | * it may not have the real_port set correctly. | 
|  | */ | 
|  | if (virt_dev->real_port == 0 || | 
|  | virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { | 
|  | xhci_dbg(xhci, "Bad real port.\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts); | 
|  | if (list_empty(tt_list_head)) | 
|  | return; | 
|  |  | 
|  | list_for_each(tt, tt_list_head) { | 
|  | tt_info = list_entry(tt, struct xhci_tt_bw_info, tt_list); | 
|  | if (tt_info->slot_id == slot_id) | 
|  | break; | 
|  | } | 
|  | /* Cautionary measure in case the hub was disconnected before we | 
|  | * stored the TT information. | 
|  | */ | 
|  | if (tt_info->slot_id != slot_id) | 
|  | return; | 
|  |  | 
|  | tt_next = tt->next; | 
|  | tt_info = list_entry(tt, struct xhci_tt_bw_info, | 
|  | tt_list); | 
|  | /* Multi-TT hubs will have more than one entry */ | 
|  | do { | 
|  | list_del(tt); | 
|  | kfree(tt_info); | 
|  | tt = tt_next; | 
|  | if (list_empty(tt_list_head)) | 
|  | break; | 
|  | tt_next = tt->next; | 
|  | tt_info = list_entry(tt, struct xhci_tt_bw_info, | 
|  | tt_list); | 
|  | } while (tt_info->slot_id == slot_id); | 
|  | } | 
|  |  | 
|  | int xhci_alloc_tt_info(struct xhci_hcd *xhci, | 
|  | struct xhci_virt_device *virt_dev, | 
|  | struct usb_device *hdev, | 
|  | struct usb_tt *tt, gfp_t mem_flags) | 
|  | { | 
|  | struct xhci_tt_bw_info		*tt_info; | 
|  | unsigned int			num_ports; | 
|  | int				i, j; | 
|  |  | 
|  | if (!tt->multi) | 
|  | num_ports = 1; | 
|  | else | 
|  | num_ports = hdev->maxchild; | 
|  |  | 
|  | for (i = 0; i < num_ports; i++, tt_info++) { | 
|  | struct xhci_interval_bw_table *bw_table; | 
|  |  | 
|  | tt_info = kzalloc(sizeof(*tt_info), mem_flags); | 
|  | if (!tt_info) | 
|  | goto free_tts; | 
|  | INIT_LIST_HEAD(&tt_info->tt_list); | 
|  | list_add(&tt_info->tt_list, | 
|  | &xhci->rh_bw[virt_dev->real_port - 1].tts); | 
|  | tt_info->slot_id = virt_dev->udev->slot_id; | 
|  | if (tt->multi) | 
|  | tt_info->ttport = i+1; | 
|  | bw_table = &tt_info->bw_table; | 
|  | for (j = 0; j < XHCI_MAX_INTERVAL; j++) | 
|  | INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | free_tts: | 
|  | xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* All the xhci_tds in the ring's TD list should be freed at this point. | 
|  | * Should be called with xhci->lock held if there is any chance the TT lists | 
|  | * will be manipulated by the configure endpoint, allocate device, or update | 
|  | * hub functions while this function is removing the TT entries from the list. | 
|  | */ | 
|  | void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) | 
|  | { | 
|  | struct xhci_virt_device *dev; | 
|  | int i; | 
|  | int old_active_eps = 0; | 
|  |  | 
|  | /* Slot ID 0 is reserved */ | 
|  | if (slot_id == 0 || !xhci->devs[slot_id]) | 
|  | return; | 
|  |  | 
|  | dev = xhci->devs[slot_id]; | 
|  | xhci->dcbaa->dev_context_ptrs[slot_id] = 0; | 
|  | if (!dev) | 
|  | return; | 
|  |  | 
|  | if (dev->tt_info) | 
|  | old_active_eps = dev->tt_info->active_eps; | 
|  |  | 
|  | for (i = 0; i < 31; ++i) { | 
|  | if (dev->eps[i].ring) | 
|  | xhci_ring_free(xhci, dev->eps[i].ring); | 
|  | if (dev->eps[i].stream_info) | 
|  | xhci_free_stream_info(xhci, | 
|  | dev->eps[i].stream_info); | 
|  | /* Endpoints on the TT/root port lists should have been removed | 
|  | * when usb_disable_device() was called for the device. | 
|  | * We can't drop them anyway, because the udev might have gone | 
|  | * away by this point, and we can't tell what speed it was. | 
|  | */ | 
|  | if (!list_empty(&dev->eps[i].bw_endpoint_list)) | 
|  | xhci_warn(xhci, "Slot %u endpoint %u " | 
|  | "not removed from BW list!\n", | 
|  | slot_id, i); | 
|  | } | 
|  | /* If this is a hub, free the TT(s) from the TT list */ | 
|  | xhci_free_tt_info(xhci, dev, slot_id); | 
|  | /* If necessary, update the number of active TTs on this root port */ | 
|  | xhci_update_tt_active_eps(xhci, dev, old_active_eps); | 
|  |  | 
|  | if (dev->ring_cache) { | 
|  | for (i = 0; i < dev->num_rings_cached; i++) | 
|  | xhci_ring_free(xhci, dev->ring_cache[i]); | 
|  | kfree(dev->ring_cache); | 
|  | } | 
|  |  | 
|  | if (dev->in_ctx) | 
|  | xhci_free_container_ctx(xhci, dev->in_ctx); | 
|  | if (dev->out_ctx) | 
|  | xhci_free_container_ctx(xhci, dev->out_ctx); | 
|  |  | 
|  | kfree(xhci->devs[slot_id]); | 
|  | xhci->devs[slot_id] = NULL; | 
|  | } | 
|  |  | 
|  | int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, | 
|  | struct usb_device *udev, gfp_t flags) | 
|  | { | 
|  | struct xhci_virt_device *dev; | 
|  | int i; | 
|  |  | 
|  | /* Slot ID 0 is reserved */ | 
|  | if (slot_id == 0 || xhci->devs[slot_id]) { | 
|  | xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags); | 
|  | if (!xhci->devs[slot_id]) | 
|  | return 0; | 
|  | dev = xhci->devs[slot_id]; | 
|  |  | 
|  | /* Allocate the (output) device context that will be used in the HC. */ | 
|  | dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); | 
|  | if (!dev->out_ctx) | 
|  | goto fail; | 
|  |  | 
|  | xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id, | 
|  | (unsigned long long)dev->out_ctx->dma); | 
|  |  | 
|  | /* Allocate the (input) device context for address device command */ | 
|  | dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); | 
|  | if (!dev->in_ctx) | 
|  | goto fail; | 
|  |  | 
|  | xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id, | 
|  | (unsigned long long)dev->in_ctx->dma); | 
|  |  | 
|  | /* Initialize the cancellation list and watchdog timers for each ep */ | 
|  | for (i = 0; i < 31; i++) { | 
|  | xhci_init_endpoint_timer(xhci, &dev->eps[i]); | 
|  | INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list); | 
|  | INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list); | 
|  | } | 
|  |  | 
|  | /* Allocate endpoint 0 ring */ | 
|  | dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, false, flags); | 
|  | if (!dev->eps[0].ring) | 
|  | goto fail; | 
|  |  | 
|  | /* Allocate pointers to the ring cache */ | 
|  | dev->ring_cache = kzalloc( | 
|  | sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED, | 
|  | flags); | 
|  | if (!dev->ring_cache) | 
|  | goto fail; | 
|  | dev->num_rings_cached = 0; | 
|  |  | 
|  | init_completion(&dev->cmd_completion); | 
|  | INIT_LIST_HEAD(&dev->cmd_list); | 
|  | dev->udev = udev; | 
|  |  | 
|  | /* Point to output device context in dcbaa. */ | 
|  | xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma); | 
|  | xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", | 
|  | slot_id, | 
|  | &xhci->dcbaa->dev_context_ptrs[slot_id], | 
|  | le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id])); | 
|  |  | 
|  | return 1; | 
|  | fail: | 
|  | xhci_free_virt_device(xhci, slot_id); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, | 
|  | struct usb_device *udev) | 
|  | { | 
|  | struct xhci_virt_device *virt_dev; | 
|  | struct xhci_ep_ctx	*ep0_ctx; | 
|  | struct xhci_ring	*ep_ring; | 
|  |  | 
|  | virt_dev = xhci->devs[udev->slot_id]; | 
|  | ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); | 
|  | ep_ring = virt_dev->eps[0].ring; | 
|  | /* | 
|  | * FIXME we don't keep track of the dequeue pointer very well after a | 
|  | * Set TR dequeue pointer, so we're setting the dequeue pointer of the | 
|  | * host to our enqueue pointer.  This should only be called after a | 
|  | * configured device has reset, so all control transfers should have | 
|  | * been completed or cancelled before the reset. | 
|  | */ | 
|  | ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg, | 
|  | ep_ring->enqueue) | 
|  | | ep_ring->cycle_state); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The xHCI roothub may have ports of differing speeds in any order in the port | 
|  | * status registers.  xhci->port_array provides an array of the port speed for | 
|  | * each offset into the port status registers. | 
|  | * | 
|  | * The xHCI hardware wants to know the roothub port number that the USB device | 
|  | * is attached to (or the roothub port its ancestor hub is attached to).  All we | 
|  | * know is the index of that port under either the USB 2.0 or the USB 3.0 | 
|  | * roothub, but that doesn't give us the real index into the HW port status | 
|  | * registers.  Scan through the xHCI roothub port array, looking for the Nth | 
|  | * entry of the correct port speed.  Return the port number of that entry. | 
|  | */ | 
|  | static u32 xhci_find_real_port_number(struct xhci_hcd *xhci, | 
|  | struct usb_device *udev) | 
|  | { | 
|  | struct usb_device *top_dev; | 
|  | unsigned int num_similar_speed_ports; | 
|  | unsigned int faked_port_num; | 
|  | int i; | 
|  |  | 
|  | for (top_dev = udev; top_dev->parent && top_dev->parent->parent; | 
|  | top_dev = top_dev->parent) | 
|  | /* Found device below root hub */; | 
|  | faked_port_num = top_dev->portnum; | 
|  | for (i = 0, num_similar_speed_ports = 0; | 
|  | i < HCS_MAX_PORTS(xhci->hcs_params1); i++) { | 
|  | u8 port_speed = xhci->port_array[i]; | 
|  |  | 
|  | /* | 
|  | * Skip ports that don't have known speeds, or have duplicate | 
|  | * Extended Capabilities port speed entries. | 
|  | */ | 
|  | if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and | 
|  | * 1.1 ports are under the USB 2.0 hub.  If the port speed | 
|  | * matches the device speed, it's a similar speed port. | 
|  | */ | 
|  | if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER)) | 
|  | num_similar_speed_ports++; | 
|  | if (num_similar_speed_ports == faked_port_num) | 
|  | /* Roothub ports are numbered from 1 to N */ | 
|  | return i+1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Setup an xHCI virtual device for a Set Address command */ | 
|  | int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) | 
|  | { | 
|  | struct xhci_virt_device *dev; | 
|  | struct xhci_ep_ctx	*ep0_ctx; | 
|  | struct xhci_slot_ctx    *slot_ctx; | 
|  | u32			port_num; | 
|  | struct usb_device *top_dev; | 
|  |  | 
|  | dev = xhci->devs[udev->slot_id]; | 
|  | /* Slot ID 0 is reserved */ | 
|  | if (udev->slot_id == 0 || !dev) { | 
|  | xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", | 
|  | udev->slot_id); | 
|  | return -EINVAL; | 
|  | } | 
|  | ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); | 
|  | slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); | 
|  |  | 
|  | /* 3) Only the control endpoint is valid - one endpoint context */ | 
|  | slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route); | 
|  | switch (udev->speed) { | 
|  | case USB_SPEED_SUPER: | 
|  | slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); | 
|  | break; | 
|  | case USB_SPEED_HIGH: | 
|  | slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); | 
|  | break; | 
|  | case USB_SPEED_FULL: | 
|  | slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); | 
|  | break; | 
|  | case USB_SPEED_LOW: | 
|  | slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); | 
|  | break; | 
|  | case USB_SPEED_WIRELESS: | 
|  | xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); | 
|  | return -EINVAL; | 
|  | break; | 
|  | default: | 
|  | /* Speed was set earlier, this shouldn't happen. */ | 
|  | BUG(); | 
|  | } | 
|  | /* Find the root hub port this device is under */ | 
|  | port_num = xhci_find_real_port_number(xhci, udev); | 
|  | if (!port_num) | 
|  | return -EINVAL; | 
|  | slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num)); | 
|  | /* Set the port number in the virtual_device to the faked port number */ | 
|  | for (top_dev = udev; top_dev->parent && top_dev->parent->parent; | 
|  | top_dev = top_dev->parent) | 
|  | /* Found device below root hub */; | 
|  | dev->fake_port = top_dev->portnum; | 
|  | dev->real_port = port_num; | 
|  | xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num); | 
|  | xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port); | 
|  |  | 
|  | /* Find the right bandwidth table that this device will be a part of. | 
|  | * If this is a full speed device attached directly to a root port (or a | 
|  | * decendent of one), it counts as a primary bandwidth domain, not a | 
|  | * secondary bandwidth domain under a TT.  An xhci_tt_info structure | 
|  | * will never be created for the HS root hub. | 
|  | */ | 
|  | if (!udev->tt || !udev->tt->hub->parent) { | 
|  | dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table; | 
|  | } else { | 
|  | struct xhci_root_port_bw_info *rh_bw; | 
|  | struct xhci_tt_bw_info *tt_bw; | 
|  |  | 
|  | rh_bw = &xhci->rh_bw[port_num - 1]; | 
|  | /* Find the right TT. */ | 
|  | list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) { | 
|  | if (tt_bw->slot_id != udev->tt->hub->slot_id) | 
|  | continue; | 
|  |  | 
|  | if (!dev->udev->tt->multi || | 
|  | (udev->tt->multi && | 
|  | tt_bw->ttport == dev->udev->ttport)) { | 
|  | dev->bw_table = &tt_bw->bw_table; | 
|  | dev->tt_info = tt_bw; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!dev->tt_info) | 
|  | xhci_warn(xhci, "WARN: Didn't find a matching TT\n"); | 
|  | } | 
|  |  | 
|  | /* Is this a LS/FS device under an external HS hub? */ | 
|  | if (udev->tt && udev->tt->hub->parent) { | 
|  | slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id | | 
|  | (udev->ttport << 8)); | 
|  | if (udev->tt->multi) | 
|  | slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); | 
|  | } | 
|  | xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); | 
|  | xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); | 
|  |  | 
|  | /* Step 4 - ring already allocated */ | 
|  | /* Step 5 */ | 
|  | ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); | 
|  | /* | 
|  | * XXX: Not sure about wireless USB devices. | 
|  | */ | 
|  | switch (udev->speed) { | 
|  | case USB_SPEED_SUPER: | 
|  | ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512)); | 
|  | break; | 
|  | case USB_SPEED_HIGH: | 
|  | /* USB core guesses at a 64-byte max packet first for FS devices */ | 
|  | case USB_SPEED_FULL: | 
|  | ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64)); | 
|  | break; | 
|  | case USB_SPEED_LOW: | 
|  | ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8)); | 
|  | break; | 
|  | case USB_SPEED_WIRELESS: | 
|  | xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); | 
|  | return -EINVAL; | 
|  | break; | 
|  | default: | 
|  | /* New speed? */ | 
|  | BUG(); | 
|  | } | 
|  | /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ | 
|  | ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3)); | 
|  |  | 
|  | ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma | | 
|  | dev->eps[0].ring->cycle_state); | 
|  |  | 
|  | /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert interval expressed as 2^(bInterval - 1) == interval into | 
|  | * straight exponent value 2^n == interval. | 
|  | * | 
|  | */ | 
|  | static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, | 
|  | struct usb_host_endpoint *ep) | 
|  | { | 
|  | unsigned int interval; | 
|  |  | 
|  | interval = clamp_val(ep->desc.bInterval, 1, 16) - 1; | 
|  | if (interval != ep->desc.bInterval - 1) | 
|  | dev_warn(&udev->dev, | 
|  | "ep %#x - rounding interval to %d %sframes\n", | 
|  | ep->desc.bEndpointAddress, | 
|  | 1 << interval, | 
|  | udev->speed == USB_SPEED_FULL ? "" : "micro"); | 
|  |  | 
|  | if (udev->speed == USB_SPEED_FULL) { | 
|  | /* | 
|  | * Full speed isoc endpoints specify interval in frames, | 
|  | * not microframes. We are using microframes everywhere, | 
|  | * so adjust accordingly. | 
|  | */ | 
|  | interval += 3;	/* 1 frame = 2^3 uframes */ | 
|  | } | 
|  |  | 
|  | return interval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert bInterval expressed in frames (in 1-255 range) to exponent of | 
|  | * microframes, rounded down to nearest power of 2. | 
|  | */ | 
|  | static unsigned int xhci_parse_frame_interval(struct usb_device *udev, | 
|  | struct usb_host_endpoint *ep) | 
|  | { | 
|  | unsigned int interval; | 
|  |  | 
|  | interval = fls(8 * ep->desc.bInterval) - 1; | 
|  | interval = clamp_val(interval, 3, 10); | 
|  | if ((1 << interval) != 8 * ep->desc.bInterval) | 
|  | dev_warn(&udev->dev, | 
|  | "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n", | 
|  | ep->desc.bEndpointAddress, | 
|  | 1 << interval, | 
|  | 8 * ep->desc.bInterval); | 
|  |  | 
|  | return interval; | 
|  | } | 
|  |  | 
|  | /* Return the polling or NAK interval. | 
|  | * | 
|  | * The polling interval is expressed in "microframes".  If xHCI's Interval field | 
|  | * is set to N, it will service the endpoint every 2^(Interval)*125us. | 
|  | * | 
|  | * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval | 
|  | * is set to 0. | 
|  | */ | 
|  | static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, | 
|  | struct usb_host_endpoint *ep) | 
|  | { | 
|  | unsigned int interval = 0; | 
|  |  | 
|  | switch (udev->speed) { | 
|  | case USB_SPEED_HIGH: | 
|  | /* Max NAK rate */ | 
|  | if (usb_endpoint_xfer_control(&ep->desc) || | 
|  | usb_endpoint_xfer_bulk(&ep->desc)) { | 
|  | interval = ep->desc.bInterval; | 
|  | break; | 
|  | } | 
|  | /* Fall through - SS and HS isoc/int have same decoding */ | 
|  |  | 
|  | case USB_SPEED_SUPER: | 
|  | if (usb_endpoint_xfer_int(&ep->desc) || | 
|  | usb_endpoint_xfer_isoc(&ep->desc)) { | 
|  | interval = xhci_parse_exponent_interval(udev, ep); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case USB_SPEED_FULL: | 
|  | if (usb_endpoint_xfer_isoc(&ep->desc)) { | 
|  | interval = xhci_parse_exponent_interval(udev, ep); | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * Fall through for interrupt endpoint interval decoding | 
|  | * since it uses the same rules as low speed interrupt | 
|  | * endpoints. | 
|  | */ | 
|  |  | 
|  | case USB_SPEED_LOW: | 
|  | if (usb_endpoint_xfer_int(&ep->desc) || | 
|  | usb_endpoint_xfer_isoc(&ep->desc)) { | 
|  |  | 
|  | interval = xhci_parse_frame_interval(udev, ep); | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | return EP_INTERVAL(interval); | 
|  | } | 
|  |  | 
|  | /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. | 
|  | * High speed endpoint descriptors can define "the number of additional | 
|  | * transaction opportunities per microframe", but that goes in the Max Burst | 
|  | * endpoint context field. | 
|  | */ | 
|  | static u32 xhci_get_endpoint_mult(struct usb_device *udev, | 
|  | struct usb_host_endpoint *ep) | 
|  | { | 
|  | if (udev->speed != USB_SPEED_SUPER || | 
|  | !usb_endpoint_xfer_isoc(&ep->desc)) | 
|  | return 0; | 
|  | return ep->ss_ep_comp.bmAttributes; | 
|  | } | 
|  |  | 
|  | static u32 xhci_get_endpoint_type(struct usb_device *udev, | 
|  | struct usb_host_endpoint *ep) | 
|  | { | 
|  | int in; | 
|  | u32 type; | 
|  |  | 
|  | in = usb_endpoint_dir_in(&ep->desc); | 
|  | if (usb_endpoint_xfer_control(&ep->desc)) { | 
|  | type = EP_TYPE(CTRL_EP); | 
|  | } else if (usb_endpoint_xfer_bulk(&ep->desc)) { | 
|  | if (in) | 
|  | type = EP_TYPE(BULK_IN_EP); | 
|  | else | 
|  | type = EP_TYPE(BULK_OUT_EP); | 
|  | } else if (usb_endpoint_xfer_isoc(&ep->desc)) { | 
|  | if (in) | 
|  | type = EP_TYPE(ISOC_IN_EP); | 
|  | else | 
|  | type = EP_TYPE(ISOC_OUT_EP); | 
|  | } else if (usb_endpoint_xfer_int(&ep->desc)) { | 
|  | if (in) | 
|  | type = EP_TYPE(INT_IN_EP); | 
|  | else | 
|  | type = EP_TYPE(INT_OUT_EP); | 
|  | } else { | 
|  | BUG(); | 
|  | } | 
|  | return type; | 
|  | } | 
|  |  | 
|  | /* Return the maximum endpoint service interval time (ESIT) payload. | 
|  | * Basically, this is the maxpacket size, multiplied by the burst size | 
|  | * and mult size. | 
|  | */ | 
|  | static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci, | 
|  | struct usb_device *udev, | 
|  | struct usb_host_endpoint *ep) | 
|  | { | 
|  | int max_burst; | 
|  | int max_packet; | 
|  |  | 
|  | /* Only applies for interrupt or isochronous endpoints */ | 
|  | if (usb_endpoint_xfer_control(&ep->desc) || | 
|  | usb_endpoint_xfer_bulk(&ep->desc)) | 
|  | return 0; | 
|  |  | 
|  | if (udev->speed == USB_SPEED_SUPER) | 
|  | return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); | 
|  |  | 
|  | max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc)); | 
|  | max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11; | 
|  | /* A 0 in max burst means 1 transfer per ESIT */ | 
|  | return max_packet * (max_burst + 1); | 
|  | } | 
|  |  | 
|  | /* Set up an endpoint with one ring segment.  Do not allocate stream rings. | 
|  | * Drivers will have to call usb_alloc_streams() to do that. | 
|  | */ | 
|  | int xhci_endpoint_init(struct xhci_hcd *xhci, | 
|  | struct xhci_virt_device *virt_dev, | 
|  | struct usb_device *udev, | 
|  | struct usb_host_endpoint *ep, | 
|  | gfp_t mem_flags) | 
|  | { | 
|  | unsigned int ep_index; | 
|  | struct xhci_ep_ctx *ep_ctx; | 
|  | struct xhci_ring *ep_ring; | 
|  | unsigned int max_packet; | 
|  | unsigned int max_burst; | 
|  | u32 max_esit_payload; | 
|  |  | 
|  | ep_index = xhci_get_endpoint_index(&ep->desc); | 
|  | ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); | 
|  |  | 
|  | /* Set up the endpoint ring */ | 
|  | /* | 
|  | * Isochronous endpoint ring needs bigger size because one isoc URB | 
|  | * carries multiple packets and it will insert multiple tds to the | 
|  | * ring. | 
|  | * This should be replaced with dynamic ring resizing in the future. | 
|  | */ | 
|  | if (usb_endpoint_xfer_isoc(&ep->desc)) | 
|  | virt_dev->eps[ep_index].new_ring = | 
|  | xhci_ring_alloc(xhci, 8, true, true, mem_flags); | 
|  | else | 
|  | virt_dev->eps[ep_index].new_ring = | 
|  | xhci_ring_alloc(xhci, 1, true, false, mem_flags); | 
|  | if (!virt_dev->eps[ep_index].new_ring) { | 
|  | /* Attempt to use the ring cache */ | 
|  | if (virt_dev->num_rings_cached == 0) | 
|  | return -ENOMEM; | 
|  | virt_dev->eps[ep_index].new_ring = | 
|  | virt_dev->ring_cache[virt_dev->num_rings_cached]; | 
|  | virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL; | 
|  | virt_dev->num_rings_cached--; | 
|  | xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring, | 
|  | usb_endpoint_xfer_isoc(&ep->desc) ? true : false); | 
|  | } | 
|  | virt_dev->eps[ep_index].skip = false; | 
|  | ep_ring = virt_dev->eps[ep_index].new_ring; | 
|  | ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state); | 
|  |  | 
|  | ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep) | 
|  | | EP_MULT(xhci_get_endpoint_mult(udev, ep))); | 
|  |  | 
|  | /* FIXME dig Mult and streams info out of ep companion desc */ | 
|  |  | 
|  | /* Allow 3 retries for everything but isoc; | 
|  | * CErr shall be set to 0 for Isoch endpoints. | 
|  | */ | 
|  | if (!usb_endpoint_xfer_isoc(&ep->desc)) | 
|  | ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3)); | 
|  | else | 
|  | ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0)); | 
|  |  | 
|  | ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep)); | 
|  |  | 
|  | /* Set the max packet size and max burst */ | 
|  | switch (udev->speed) { | 
|  | case USB_SPEED_SUPER: | 
|  | max_packet = usb_endpoint_maxp(&ep->desc); | 
|  | ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet)); | 
|  | /* dig out max burst from ep companion desc */ | 
|  | max_packet = ep->ss_ep_comp.bMaxBurst; | 
|  | ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet)); | 
|  | break; | 
|  | case USB_SPEED_HIGH: | 
|  | /* bits 11:12 specify the number of additional transaction | 
|  | * opportunities per microframe (USB 2.0, section 9.6.6) | 
|  | */ | 
|  | if (usb_endpoint_xfer_isoc(&ep->desc) || | 
|  | usb_endpoint_xfer_int(&ep->desc)) { | 
|  | max_burst = (usb_endpoint_maxp(&ep->desc) | 
|  | & 0x1800) >> 11; | 
|  | ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst)); | 
|  | } | 
|  | /* Fall through */ | 
|  | case USB_SPEED_FULL: | 
|  | case USB_SPEED_LOW: | 
|  | max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc)); | 
|  | ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet)); | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep); | 
|  | ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload)); | 
|  |  | 
|  | /* | 
|  | * XXX no idea how to calculate the average TRB buffer length for bulk | 
|  | * endpoints, as the driver gives us no clue how big each scatter gather | 
|  | * list entry (or buffer) is going to be. | 
|  | * | 
|  | * For isochronous and interrupt endpoints, we set it to the max | 
|  | * available, until we have new API in the USB core to allow drivers to | 
|  | * declare how much bandwidth they actually need. | 
|  | * | 
|  | * Normally, it would be calculated by taking the total of the buffer | 
|  | * lengths in the TD and then dividing by the number of TRBs in a TD, | 
|  | * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't | 
|  | * use Event Data TRBs, and we don't chain in a link TRB on short | 
|  | * transfers, we're basically dividing by 1. | 
|  | * | 
|  | * xHCI 1.0 specification indicates that the Average TRB Length should | 
|  | * be set to 8 for control endpoints. | 
|  | */ | 
|  | if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100) | 
|  | ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8)); | 
|  | else | 
|  | ep_ctx->tx_info |= | 
|  | cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload)); | 
|  |  | 
|  | /* FIXME Debug endpoint context */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void xhci_endpoint_zero(struct xhci_hcd *xhci, | 
|  | struct xhci_virt_device *virt_dev, | 
|  | struct usb_host_endpoint *ep) | 
|  | { | 
|  | unsigned int ep_index; | 
|  | struct xhci_ep_ctx *ep_ctx; | 
|  |  | 
|  | ep_index = xhci_get_endpoint_index(&ep->desc); | 
|  | ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); | 
|  |  | 
|  | ep_ctx->ep_info = 0; | 
|  | ep_ctx->ep_info2 = 0; | 
|  | ep_ctx->deq = 0; | 
|  | ep_ctx->tx_info = 0; | 
|  | /* Don't free the endpoint ring until the set interface or configuration | 
|  | * request succeeds. | 
|  | */ | 
|  | } | 
|  |  | 
|  | void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info) | 
|  | { | 
|  | bw_info->ep_interval = 0; | 
|  | bw_info->mult = 0; | 
|  | bw_info->num_packets = 0; | 
|  | bw_info->max_packet_size = 0; | 
|  | bw_info->type = 0; | 
|  | bw_info->max_esit_payload = 0; | 
|  | } | 
|  |  | 
|  | void xhci_update_bw_info(struct xhci_hcd *xhci, | 
|  | struct xhci_container_ctx *in_ctx, | 
|  | struct xhci_input_control_ctx *ctrl_ctx, | 
|  | struct xhci_virt_device *virt_dev) | 
|  | { | 
|  | struct xhci_bw_info *bw_info; | 
|  | struct xhci_ep_ctx *ep_ctx; | 
|  | unsigned int ep_type; | 
|  | int i; | 
|  |  | 
|  | for (i = 1; i < 31; ++i) { | 
|  | bw_info = &virt_dev->eps[i].bw_info; | 
|  |  | 
|  | /* We can't tell what endpoint type is being dropped, but | 
|  | * unconditionally clearing the bandwidth info for non-periodic | 
|  | * endpoints should be harmless because the info will never be | 
|  | * set in the first place. | 
|  | */ | 
|  | if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) { | 
|  | /* Dropped endpoint */ | 
|  | xhci_clear_endpoint_bw_info(bw_info); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (EP_IS_ADDED(ctrl_ctx, i)) { | 
|  | ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i); | 
|  | ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); | 
|  |  | 
|  | /* Ignore non-periodic endpoints */ | 
|  | if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && | 
|  | ep_type != ISOC_IN_EP && | 
|  | ep_type != INT_IN_EP) | 
|  | continue; | 
|  |  | 
|  | /* Added or changed endpoint */ | 
|  | bw_info->ep_interval = CTX_TO_EP_INTERVAL( | 
|  | le32_to_cpu(ep_ctx->ep_info)); | 
|  | /* Number of packets and mult are zero-based in the | 
|  | * input context, but we want one-based for the | 
|  | * interval table. | 
|  | */ | 
|  | bw_info->mult = CTX_TO_EP_MULT( | 
|  | le32_to_cpu(ep_ctx->ep_info)) + 1; | 
|  | bw_info->num_packets = CTX_TO_MAX_BURST( | 
|  | le32_to_cpu(ep_ctx->ep_info2)) + 1; | 
|  | bw_info->max_packet_size = MAX_PACKET_DECODED( | 
|  | le32_to_cpu(ep_ctx->ep_info2)); | 
|  | bw_info->type = ep_type; | 
|  | bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD( | 
|  | le32_to_cpu(ep_ctx->tx_info)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. | 
|  | * Useful when you want to change one particular aspect of the endpoint and then | 
|  | * issue a configure endpoint command. | 
|  | */ | 
|  | void xhci_endpoint_copy(struct xhci_hcd *xhci, | 
|  | struct xhci_container_ctx *in_ctx, | 
|  | struct xhci_container_ctx *out_ctx, | 
|  | unsigned int ep_index) | 
|  | { | 
|  | struct xhci_ep_ctx *out_ep_ctx; | 
|  | struct xhci_ep_ctx *in_ep_ctx; | 
|  |  | 
|  | out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); | 
|  | in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); | 
|  |  | 
|  | in_ep_ctx->ep_info = out_ep_ctx->ep_info; | 
|  | in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; | 
|  | in_ep_ctx->deq = out_ep_ctx->deq; | 
|  | in_ep_ctx->tx_info = out_ep_ctx->tx_info; | 
|  | } | 
|  |  | 
|  | /* Copy output xhci_slot_ctx to the input xhci_slot_ctx. | 
|  | * Useful when you want to change one particular aspect of the endpoint and then | 
|  | * issue a configure endpoint command.  Only the context entries field matters, | 
|  | * but we'll copy the whole thing anyway. | 
|  | */ | 
|  | void xhci_slot_copy(struct xhci_hcd *xhci, | 
|  | struct xhci_container_ctx *in_ctx, | 
|  | struct xhci_container_ctx *out_ctx) | 
|  | { | 
|  | struct xhci_slot_ctx *in_slot_ctx; | 
|  | struct xhci_slot_ctx *out_slot_ctx; | 
|  |  | 
|  | in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); | 
|  | out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx); | 
|  |  | 
|  | in_slot_ctx->dev_info = out_slot_ctx->dev_info; | 
|  | in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; | 
|  | in_slot_ctx->tt_info = out_slot_ctx->tt_info; | 
|  | in_slot_ctx->dev_state = out_slot_ctx->dev_state; | 
|  | } | 
|  |  | 
|  | /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ | 
|  | static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) | 
|  | { | 
|  | int i; | 
|  | struct device *dev = xhci_to_hcd(xhci)->self.controller; | 
|  | int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); | 
|  |  | 
|  | xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp); | 
|  |  | 
|  | if (!num_sp) | 
|  | return 0; | 
|  |  | 
|  | xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags); | 
|  | if (!xhci->scratchpad) | 
|  | goto fail_sp; | 
|  |  | 
|  | xhci->scratchpad->sp_array = dma_alloc_coherent(dev, | 
|  | num_sp * sizeof(u64), | 
|  | &xhci->scratchpad->sp_dma, flags); | 
|  | if (!xhci->scratchpad->sp_array) | 
|  | goto fail_sp2; | 
|  |  | 
|  | xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags); | 
|  | if (!xhci->scratchpad->sp_buffers) | 
|  | goto fail_sp3; | 
|  |  | 
|  | xhci->scratchpad->sp_dma_buffers = | 
|  | kzalloc(sizeof(dma_addr_t) * num_sp, flags); | 
|  |  | 
|  | if (!xhci->scratchpad->sp_dma_buffers) | 
|  | goto fail_sp4; | 
|  |  | 
|  | xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma); | 
|  | for (i = 0; i < num_sp; i++) { | 
|  | dma_addr_t dma; | 
|  | void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma, | 
|  | flags); | 
|  | if (!buf) | 
|  | goto fail_sp5; | 
|  |  | 
|  | xhci->scratchpad->sp_array[i] = dma; | 
|  | xhci->scratchpad->sp_buffers[i] = buf; | 
|  | xhci->scratchpad->sp_dma_buffers[i] = dma; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail_sp5: | 
|  | for (i = i - 1; i >= 0; i--) { | 
|  | dma_free_coherent(dev, xhci->page_size, | 
|  | xhci->scratchpad->sp_buffers[i], | 
|  | xhci->scratchpad->sp_dma_buffers[i]); | 
|  | } | 
|  | kfree(xhci->scratchpad->sp_dma_buffers); | 
|  |  | 
|  | fail_sp4: | 
|  | kfree(xhci->scratchpad->sp_buffers); | 
|  |  | 
|  | fail_sp3: | 
|  | dma_free_coherent(dev, num_sp * sizeof(u64), | 
|  | xhci->scratchpad->sp_array, | 
|  | xhci->scratchpad->sp_dma); | 
|  |  | 
|  | fail_sp2: | 
|  | kfree(xhci->scratchpad); | 
|  | xhci->scratchpad = NULL; | 
|  |  | 
|  | fail_sp: | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static void scratchpad_free(struct xhci_hcd *xhci) | 
|  | { | 
|  | int num_sp; | 
|  | int i; | 
|  | struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); | 
|  |  | 
|  | if (!xhci->scratchpad) | 
|  | return; | 
|  |  | 
|  | num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); | 
|  |  | 
|  | for (i = 0; i < num_sp; i++) { | 
|  | dma_free_coherent(&pdev->dev, xhci->page_size, | 
|  | xhci->scratchpad->sp_buffers[i], | 
|  | xhci->scratchpad->sp_dma_buffers[i]); | 
|  | } | 
|  | kfree(xhci->scratchpad->sp_dma_buffers); | 
|  | kfree(xhci->scratchpad->sp_buffers); | 
|  | dma_free_coherent(&pdev->dev, num_sp * sizeof(u64), | 
|  | xhci->scratchpad->sp_array, | 
|  | xhci->scratchpad->sp_dma); | 
|  | kfree(xhci->scratchpad); | 
|  | xhci->scratchpad = NULL; | 
|  | } | 
|  |  | 
|  | struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, | 
|  | bool allocate_in_ctx, bool allocate_completion, | 
|  | gfp_t mem_flags) | 
|  | { | 
|  | struct xhci_command *command; | 
|  |  | 
|  | command = kzalloc(sizeof(*command), mem_flags); | 
|  | if (!command) | 
|  | return NULL; | 
|  |  | 
|  | if (allocate_in_ctx) { | 
|  | command->in_ctx = | 
|  | xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, | 
|  | mem_flags); | 
|  | if (!command->in_ctx) { | 
|  | kfree(command); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (allocate_completion) { | 
|  | command->completion = | 
|  | kzalloc(sizeof(struct completion), mem_flags); | 
|  | if (!command->completion) { | 
|  | xhci_free_container_ctx(xhci, command->in_ctx); | 
|  | kfree(command); | 
|  | return NULL; | 
|  | } | 
|  | init_completion(command->completion); | 
|  | } | 
|  |  | 
|  | command->status = 0; | 
|  | INIT_LIST_HEAD(&command->cmd_list); | 
|  | return command; | 
|  | } | 
|  |  | 
|  | void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv) | 
|  | { | 
|  | if (urb_priv) { | 
|  | kfree(urb_priv->td[0]); | 
|  | kfree(urb_priv); | 
|  | } | 
|  | } | 
|  |  | 
|  | void xhci_free_command(struct xhci_hcd *xhci, | 
|  | struct xhci_command *command) | 
|  | { | 
|  | xhci_free_container_ctx(xhci, | 
|  | command->in_ctx); | 
|  | kfree(command->completion); | 
|  | kfree(command); | 
|  | } | 
|  |  | 
|  | void xhci_mem_cleanup(struct xhci_hcd *xhci) | 
|  | { | 
|  | struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); | 
|  | struct dev_info	*dev_info, *next; | 
|  | unsigned long	flags; | 
|  | int size; | 
|  | int i; | 
|  |  | 
|  | /* Free the Event Ring Segment Table and the actual Event Ring */ | 
|  | if (xhci->ir_set) { | 
|  | xhci_writel(xhci, 0, &xhci->ir_set->erst_size); | 
|  | xhci_write_64(xhci, 0, &xhci->ir_set->erst_base); | 
|  | xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue); | 
|  | } | 
|  | size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries); | 
|  | if (xhci->erst.entries) | 
|  | dma_free_coherent(&pdev->dev, size, | 
|  | xhci->erst.entries, xhci->erst.erst_dma_addr); | 
|  | xhci->erst.entries = NULL; | 
|  | xhci_dbg(xhci, "Freed ERST\n"); | 
|  | if (xhci->event_ring) | 
|  | xhci_ring_free(xhci, xhci->event_ring); | 
|  | xhci->event_ring = NULL; | 
|  | xhci_dbg(xhci, "Freed event ring\n"); | 
|  |  | 
|  | xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); | 
|  | if (xhci->cmd_ring) | 
|  | xhci_ring_free(xhci, xhci->cmd_ring); | 
|  | xhci->cmd_ring = NULL; | 
|  | xhci_dbg(xhci, "Freed command ring\n"); | 
|  |  | 
|  | for (i = 1; i < MAX_HC_SLOTS; ++i) | 
|  | xhci_free_virt_device(xhci, i); | 
|  |  | 
|  | if (xhci->segment_pool) | 
|  | dma_pool_destroy(xhci->segment_pool); | 
|  | xhci->segment_pool = NULL; | 
|  | xhci_dbg(xhci, "Freed segment pool\n"); | 
|  |  | 
|  | if (xhci->device_pool) | 
|  | dma_pool_destroy(xhci->device_pool); | 
|  | xhci->device_pool = NULL; | 
|  | xhci_dbg(xhci, "Freed device context pool\n"); | 
|  |  | 
|  | if (xhci->small_streams_pool) | 
|  | dma_pool_destroy(xhci->small_streams_pool); | 
|  | xhci->small_streams_pool = NULL; | 
|  | xhci_dbg(xhci, "Freed small stream array pool\n"); | 
|  |  | 
|  | if (xhci->medium_streams_pool) | 
|  | dma_pool_destroy(xhci->medium_streams_pool); | 
|  | xhci->medium_streams_pool = NULL; | 
|  | xhci_dbg(xhci, "Freed medium stream array pool\n"); | 
|  |  | 
|  | xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); | 
|  | if (xhci->dcbaa) | 
|  | dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa), | 
|  | xhci->dcbaa, xhci->dcbaa->dma); | 
|  | xhci->dcbaa = NULL; | 
|  |  | 
|  | scratchpad_free(xhci); | 
|  |  | 
|  | spin_lock_irqsave(&xhci->lock, flags); | 
|  | list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) { | 
|  | list_del(&dev_info->list); | 
|  | kfree(dev_info); | 
|  | } | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  |  | 
|  | xhci->num_usb2_ports = 0; | 
|  | xhci->num_usb3_ports = 0; | 
|  | kfree(xhci->usb2_ports); | 
|  | kfree(xhci->usb3_ports); | 
|  | kfree(xhci->port_array); | 
|  | kfree(xhci->rh_bw); | 
|  |  | 
|  | xhci->page_size = 0; | 
|  | xhci->page_shift = 0; | 
|  | xhci->bus_state[0].bus_suspended = 0; | 
|  | xhci->bus_state[1].bus_suspended = 0; | 
|  | } | 
|  |  | 
|  | static int xhci_test_trb_in_td(struct xhci_hcd *xhci, | 
|  | struct xhci_segment *input_seg, | 
|  | union xhci_trb *start_trb, | 
|  | union xhci_trb *end_trb, | 
|  | dma_addr_t input_dma, | 
|  | struct xhci_segment *result_seg, | 
|  | char *test_name, int test_number) | 
|  | { | 
|  | unsigned long long start_dma; | 
|  | unsigned long long end_dma; | 
|  | struct xhci_segment *seg; | 
|  |  | 
|  | start_dma = xhci_trb_virt_to_dma(input_seg, start_trb); | 
|  | end_dma = xhci_trb_virt_to_dma(input_seg, end_trb); | 
|  |  | 
|  | seg = trb_in_td(input_seg, start_trb, end_trb, input_dma); | 
|  | if (seg != result_seg) { | 
|  | xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n", | 
|  | test_name, test_number); | 
|  | xhci_warn(xhci, "Tested TRB math w/ seg %p and " | 
|  | "input DMA 0x%llx\n", | 
|  | input_seg, | 
|  | (unsigned long long) input_dma); | 
|  | xhci_warn(xhci, "starting TRB %p (0x%llx DMA), " | 
|  | "ending TRB %p (0x%llx DMA)\n", | 
|  | start_trb, start_dma, | 
|  | end_trb, end_dma); | 
|  | xhci_warn(xhci, "Expected seg %p, got seg %p\n", | 
|  | result_seg, seg); | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */ | 
|  | static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags) | 
|  | { | 
|  | struct { | 
|  | dma_addr_t		input_dma; | 
|  | struct xhci_segment	*result_seg; | 
|  | } simple_test_vector [] = { | 
|  | /* A zeroed DMA field should fail */ | 
|  | { 0, NULL }, | 
|  | /* One TRB before the ring start should fail */ | 
|  | { xhci->event_ring->first_seg->dma - 16, NULL }, | 
|  | /* One byte before the ring start should fail */ | 
|  | { xhci->event_ring->first_seg->dma - 1, NULL }, | 
|  | /* Starting TRB should succeed */ | 
|  | { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg }, | 
|  | /* Ending TRB should succeed */ | 
|  | { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16, | 
|  | xhci->event_ring->first_seg }, | 
|  | /* One byte after the ring end should fail */ | 
|  | { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL }, | 
|  | /* One TRB after the ring end should fail */ | 
|  | { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL }, | 
|  | /* An address of all ones should fail */ | 
|  | { (dma_addr_t) (~0), NULL }, | 
|  | }; | 
|  | struct { | 
|  | struct xhci_segment	*input_seg; | 
|  | union xhci_trb		*start_trb; | 
|  | union xhci_trb		*end_trb; | 
|  | dma_addr_t		input_dma; | 
|  | struct xhci_segment	*result_seg; | 
|  | } complex_test_vector [] = { | 
|  | /* Test feeding a valid DMA address from a different ring */ | 
|  | {	.input_seg = xhci->event_ring->first_seg, | 
|  | .start_trb = xhci->event_ring->first_seg->trbs, | 
|  | .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], | 
|  | .input_dma = xhci->cmd_ring->first_seg->dma, | 
|  | .result_seg = NULL, | 
|  | }, | 
|  | /* Test feeding a valid end TRB from a different ring */ | 
|  | {	.input_seg = xhci->event_ring->first_seg, | 
|  | .start_trb = xhci->event_ring->first_seg->trbs, | 
|  | .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], | 
|  | .input_dma = xhci->cmd_ring->first_seg->dma, | 
|  | .result_seg = NULL, | 
|  | }, | 
|  | /* Test feeding a valid start and end TRB from a different ring */ | 
|  | {	.input_seg = xhci->event_ring->first_seg, | 
|  | .start_trb = xhci->cmd_ring->first_seg->trbs, | 
|  | .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], | 
|  | .input_dma = xhci->cmd_ring->first_seg->dma, | 
|  | .result_seg = NULL, | 
|  | }, | 
|  | /* TRB in this ring, but after this TD */ | 
|  | {	.input_seg = xhci->event_ring->first_seg, | 
|  | .start_trb = &xhci->event_ring->first_seg->trbs[0], | 
|  | .end_trb = &xhci->event_ring->first_seg->trbs[3], | 
|  | .input_dma = xhci->event_ring->first_seg->dma + 4*16, | 
|  | .result_seg = NULL, | 
|  | }, | 
|  | /* TRB in this ring, but before this TD */ | 
|  | {	.input_seg = xhci->event_ring->first_seg, | 
|  | .start_trb = &xhci->event_ring->first_seg->trbs[3], | 
|  | .end_trb = &xhci->event_ring->first_seg->trbs[6], | 
|  | .input_dma = xhci->event_ring->first_seg->dma + 2*16, | 
|  | .result_seg = NULL, | 
|  | }, | 
|  | /* TRB in this ring, but after this wrapped TD */ | 
|  | {	.input_seg = xhci->event_ring->first_seg, | 
|  | .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], | 
|  | .end_trb = &xhci->event_ring->first_seg->trbs[1], | 
|  | .input_dma = xhci->event_ring->first_seg->dma + 2*16, | 
|  | .result_seg = NULL, | 
|  | }, | 
|  | /* TRB in this ring, but before this wrapped TD */ | 
|  | {	.input_seg = xhci->event_ring->first_seg, | 
|  | .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], | 
|  | .end_trb = &xhci->event_ring->first_seg->trbs[1], | 
|  | .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16, | 
|  | .result_seg = NULL, | 
|  | }, | 
|  | /* TRB not in this ring, and we have a wrapped TD */ | 
|  | {	.input_seg = xhci->event_ring->first_seg, | 
|  | .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], | 
|  | .end_trb = &xhci->event_ring->first_seg->trbs[1], | 
|  | .input_dma = xhci->cmd_ring->first_seg->dma + 2*16, | 
|  | .result_seg = NULL, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | unsigned int num_tests; | 
|  | int i, ret; | 
|  |  | 
|  | num_tests = ARRAY_SIZE(simple_test_vector); | 
|  | for (i = 0; i < num_tests; i++) { | 
|  | ret = xhci_test_trb_in_td(xhci, | 
|  | xhci->event_ring->first_seg, | 
|  | xhci->event_ring->first_seg->trbs, | 
|  | &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], | 
|  | simple_test_vector[i].input_dma, | 
|  | simple_test_vector[i].result_seg, | 
|  | "Simple", i); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | num_tests = ARRAY_SIZE(complex_test_vector); | 
|  | for (i = 0; i < num_tests; i++) { | 
|  | ret = xhci_test_trb_in_td(xhci, | 
|  | complex_test_vector[i].input_seg, | 
|  | complex_test_vector[i].start_trb, | 
|  | complex_test_vector[i].end_trb, | 
|  | complex_test_vector[i].input_dma, | 
|  | complex_test_vector[i].result_seg, | 
|  | "Complex", i); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  | xhci_dbg(xhci, "TRB math tests passed.\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void xhci_set_hc_event_deq(struct xhci_hcd *xhci) | 
|  | { | 
|  | u64 temp; | 
|  | dma_addr_t deq; | 
|  |  | 
|  | deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, | 
|  | xhci->event_ring->dequeue); | 
|  | if (deq == 0 && !in_interrupt()) | 
|  | xhci_warn(xhci, "WARN something wrong with SW event ring " | 
|  | "dequeue ptr.\n"); | 
|  | /* Update HC event ring dequeue pointer */ | 
|  | temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); | 
|  | temp &= ERST_PTR_MASK; | 
|  | /* Don't clear the EHB bit (which is RW1C) because | 
|  | * there might be more events to service. | 
|  | */ | 
|  | temp &= ~ERST_EHB; | 
|  | xhci_dbg(xhci, "// Write event ring dequeue pointer, " | 
|  | "preserving EHB bit\n"); | 
|  | xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp, | 
|  | &xhci->ir_set->erst_dequeue); | 
|  | } | 
|  |  | 
|  | static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, | 
|  | __le32 __iomem *addr, u8 major_revision) | 
|  | { | 
|  | u32 temp, port_offset, port_count; | 
|  | int i; | 
|  |  | 
|  | if (major_revision > 0x03) { | 
|  | xhci_warn(xhci, "Ignoring unknown port speed, " | 
|  | "Ext Cap %p, revision = 0x%x\n", | 
|  | addr, major_revision); | 
|  | /* Ignoring port protocol we can't understand. FIXME */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Port offset and count in the third dword, see section 7.2 */ | 
|  | temp = xhci_readl(xhci, addr + 2); | 
|  | port_offset = XHCI_EXT_PORT_OFF(temp); | 
|  | port_count = XHCI_EXT_PORT_COUNT(temp); | 
|  | xhci_dbg(xhci, "Ext Cap %p, port offset = %u, " | 
|  | "count = %u, revision = 0x%x\n", | 
|  | addr, port_offset, port_count, major_revision); | 
|  | /* Port count includes the current port offset */ | 
|  | if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) | 
|  | /* WTF? "Valid values are ‘1’ to MaxPorts" */ | 
|  | return; | 
|  |  | 
|  | /* Check the host's USB2 LPM capability */ | 
|  | if ((xhci->hci_version == 0x96) && (major_revision != 0x03) && | 
|  | (temp & XHCI_L1C)) { | 
|  | xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n"); | 
|  | xhci->sw_lpm_support = 1; | 
|  | } | 
|  |  | 
|  | if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) { | 
|  | xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n"); | 
|  | xhci->sw_lpm_support = 1; | 
|  | if (temp & XHCI_HLC) { | 
|  | xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n"); | 
|  | xhci->hw_lpm_support = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | port_offset--; | 
|  | for (i = port_offset; i < (port_offset + port_count); i++) { | 
|  | /* Duplicate entry.  Ignore the port if the revisions differ. */ | 
|  | if (xhci->port_array[i] != 0) { | 
|  | xhci_warn(xhci, "Duplicate port entry, Ext Cap %p," | 
|  | " port %u\n", addr, i); | 
|  | xhci_warn(xhci, "Port was marked as USB %u, " | 
|  | "duplicated as USB %u\n", | 
|  | xhci->port_array[i], major_revision); | 
|  | /* Only adjust the roothub port counts if we haven't | 
|  | * found a similar duplicate. | 
|  | */ | 
|  | if (xhci->port_array[i] != major_revision && | 
|  | xhci->port_array[i] != DUPLICATE_ENTRY) { | 
|  | if (xhci->port_array[i] == 0x03) | 
|  | xhci->num_usb3_ports--; | 
|  | else | 
|  | xhci->num_usb2_ports--; | 
|  | xhci->port_array[i] = DUPLICATE_ENTRY; | 
|  | } | 
|  | /* FIXME: Should we disable the port? */ | 
|  | continue; | 
|  | } | 
|  | xhci->port_array[i] = major_revision; | 
|  | if (major_revision == 0x03) | 
|  | xhci->num_usb3_ports++; | 
|  | else | 
|  | xhci->num_usb2_ports++; | 
|  | } | 
|  | /* FIXME: Should we disable ports not in the Extended Capabilities? */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that | 
|  | * specify what speeds each port is supposed to be.  We can't count on the port | 
|  | * speed bits in the PORTSC register being correct until a device is connected, | 
|  | * but we need to set up the two fake roothubs with the correct number of USB | 
|  | * 3.0 and USB 2.0 ports at host controller initialization time. | 
|  | */ | 
|  | static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) | 
|  | { | 
|  | __le32 __iomem *addr; | 
|  | u32 offset; | 
|  | unsigned int num_ports; | 
|  | int i, j, port_index; | 
|  |  | 
|  | addr = &xhci->cap_regs->hcc_params; | 
|  | offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr)); | 
|  | if (offset == 0) { | 
|  | xhci_err(xhci, "No Extended Capability registers, " | 
|  | "unable to set up roothub.\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | num_ports = HCS_MAX_PORTS(xhci->hcs_params1); | 
|  | xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags); | 
|  | if (!xhci->port_array) | 
|  | return -ENOMEM; | 
|  |  | 
|  | xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags); | 
|  | if (!xhci->rh_bw) | 
|  | return -ENOMEM; | 
|  | for (i = 0; i < num_ports; i++) { | 
|  | struct xhci_interval_bw_table *bw_table; | 
|  |  | 
|  | INIT_LIST_HEAD(&xhci->rh_bw[i].tts); | 
|  | bw_table = &xhci->rh_bw[i].bw_table; | 
|  | for (j = 0; j < XHCI_MAX_INTERVAL; j++) | 
|  | INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For whatever reason, the first capability offset is from the | 
|  | * capability register base, not from the HCCPARAMS register. | 
|  | * See section 5.3.6 for offset calculation. | 
|  | */ | 
|  | addr = &xhci->cap_regs->hc_capbase + offset; | 
|  | while (1) { | 
|  | u32 cap_id; | 
|  |  | 
|  | cap_id = xhci_readl(xhci, addr); | 
|  | if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL) | 
|  | xhci_add_in_port(xhci, num_ports, addr, | 
|  | (u8) XHCI_EXT_PORT_MAJOR(cap_id)); | 
|  | offset = XHCI_EXT_CAPS_NEXT(cap_id); | 
|  | if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports) | 
|  | == num_ports) | 
|  | break; | 
|  | /* | 
|  | * Once you're into the Extended Capabilities, the offset is | 
|  | * always relative to the register holding the offset. | 
|  | */ | 
|  | addr += offset; | 
|  | } | 
|  |  | 
|  | if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) { | 
|  | xhci_warn(xhci, "No ports on the roothubs?\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n", | 
|  | xhci->num_usb2_ports, xhci->num_usb3_ports); | 
|  |  | 
|  | /* Place limits on the number of roothub ports so that the hub | 
|  | * descriptors aren't longer than the USB core will allocate. | 
|  | */ | 
|  | if (xhci->num_usb3_ports > 15) { | 
|  | xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n"); | 
|  | xhci->num_usb3_ports = 15; | 
|  | } | 
|  | if (xhci->num_usb2_ports > USB_MAXCHILDREN) { | 
|  | xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n", | 
|  | USB_MAXCHILDREN); | 
|  | xhci->num_usb2_ports = USB_MAXCHILDREN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note we could have all USB 3.0 ports, or all USB 2.0 ports. | 
|  | * Not sure how the USB core will handle a hub with no ports... | 
|  | */ | 
|  | if (xhci->num_usb2_ports) { | 
|  | xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)* | 
|  | xhci->num_usb2_ports, flags); | 
|  | if (!xhci->usb2_ports) | 
|  | return -ENOMEM; | 
|  |  | 
|  | port_index = 0; | 
|  | for (i = 0; i < num_ports; i++) { | 
|  | if (xhci->port_array[i] == 0x03 || | 
|  | xhci->port_array[i] == 0 || | 
|  | xhci->port_array[i] == DUPLICATE_ENTRY) | 
|  | continue; | 
|  |  | 
|  | xhci->usb2_ports[port_index] = | 
|  | &xhci->op_regs->port_status_base + | 
|  | NUM_PORT_REGS*i; | 
|  | xhci_dbg(xhci, "USB 2.0 port at index %u, " | 
|  | "addr = %p\n", i, | 
|  | xhci->usb2_ports[port_index]); | 
|  | port_index++; | 
|  | if (port_index == xhci->num_usb2_ports) | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (xhci->num_usb3_ports) { | 
|  | xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)* | 
|  | xhci->num_usb3_ports, flags); | 
|  | if (!xhci->usb3_ports) | 
|  | return -ENOMEM; | 
|  |  | 
|  | port_index = 0; | 
|  | for (i = 0; i < num_ports; i++) | 
|  | if (xhci->port_array[i] == 0x03) { | 
|  | xhci->usb3_ports[port_index] = | 
|  | &xhci->op_regs->port_status_base + | 
|  | NUM_PORT_REGS*i; | 
|  | xhci_dbg(xhci, "USB 3.0 port at index %u, " | 
|  | "addr = %p\n", i, | 
|  | xhci->usb3_ports[port_index]); | 
|  | port_index++; | 
|  | if (port_index == xhci->num_usb3_ports) | 
|  | break; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) | 
|  | { | 
|  | dma_addr_t	dma; | 
|  | struct device	*dev = xhci_to_hcd(xhci)->self.controller; | 
|  | unsigned int	val, val2; | 
|  | u64		val_64; | 
|  | struct xhci_segment	*seg; | 
|  | u32 page_size; | 
|  | int i; | 
|  |  | 
|  | page_size = xhci_readl(xhci, &xhci->op_regs->page_size); | 
|  | xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size); | 
|  | for (i = 0; i < 16; i++) { | 
|  | if ((0x1 & page_size) != 0) | 
|  | break; | 
|  | page_size = page_size >> 1; | 
|  | } | 
|  | if (i < 16) | 
|  | xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024); | 
|  | else | 
|  | xhci_warn(xhci, "WARN: no supported page size\n"); | 
|  | /* Use 4K pages, since that's common and the minimum the HC supports */ | 
|  | xhci->page_shift = 12; | 
|  | xhci->page_size = 1 << xhci->page_shift; | 
|  | xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024); | 
|  |  | 
|  | /* | 
|  | * Program the Number of Device Slots Enabled field in the CONFIG | 
|  | * register with the max value of slots the HC can handle. | 
|  | */ | 
|  | val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1)); | 
|  | xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n", | 
|  | (unsigned int) val); | 
|  | val2 = xhci_readl(xhci, &xhci->op_regs->config_reg); | 
|  | val |= (val2 & ~HCS_SLOTS_MASK); | 
|  | xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n", | 
|  | (unsigned int) val); | 
|  | xhci_writel(xhci, val, &xhci->op_regs->config_reg); | 
|  |  | 
|  | /* | 
|  | * Section 5.4.8 - doorbell array must be | 
|  | * "physically contiguous and 64-byte (cache line) aligned". | 
|  | */ | 
|  | xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, | 
|  | GFP_KERNEL); | 
|  | if (!xhci->dcbaa) | 
|  | goto fail; | 
|  | memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa)); | 
|  | xhci->dcbaa->dma = dma; | 
|  | xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n", | 
|  | (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa); | 
|  | xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr); | 
|  |  | 
|  | /* | 
|  | * Initialize the ring segment pool.  The ring must be a contiguous | 
|  | * structure comprised of TRBs.  The TRBs must be 16 byte aligned, | 
|  | * however, the command ring segment needs 64-byte aligned segments, | 
|  | * so we pick the greater alignment need. | 
|  | */ | 
|  | xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, | 
|  | SEGMENT_SIZE, 64, xhci->page_size); | 
|  |  | 
|  | /* See Table 46 and Note on Figure 55 */ | 
|  | xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, | 
|  | 2112, 64, xhci->page_size); | 
|  | if (!xhci->segment_pool || !xhci->device_pool) | 
|  | goto fail; | 
|  |  | 
|  | /* Linear stream context arrays don't have any boundary restrictions, | 
|  | * and only need to be 16-byte aligned. | 
|  | */ | 
|  | xhci->small_streams_pool = | 
|  | dma_pool_create("xHCI 256 byte stream ctx arrays", | 
|  | dev, SMALL_STREAM_ARRAY_SIZE, 16, 0); | 
|  | xhci->medium_streams_pool = | 
|  | dma_pool_create("xHCI 1KB stream ctx arrays", | 
|  | dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0); | 
|  | /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE | 
|  | * will be allocated with dma_alloc_coherent() | 
|  | */ | 
|  |  | 
|  | if (!xhci->small_streams_pool || !xhci->medium_streams_pool) | 
|  | goto fail; | 
|  |  | 
|  | /* Set up the command ring to have one segments for now. */ | 
|  | xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, false, flags); | 
|  | if (!xhci->cmd_ring) | 
|  | goto fail; | 
|  | xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring); | 
|  | xhci_dbg(xhci, "First segment DMA is 0x%llx\n", | 
|  | (unsigned long long)xhci->cmd_ring->first_seg->dma); | 
|  |  | 
|  | /* Set the address in the Command Ring Control register */ | 
|  | val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); | 
|  | val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | | 
|  | (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) | | 
|  | xhci->cmd_ring->cycle_state; | 
|  | xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val); | 
|  | xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); | 
|  | xhci_dbg_cmd_ptrs(xhci); | 
|  |  | 
|  | val = xhci_readl(xhci, &xhci->cap_regs->db_off); | 
|  | val &= DBOFF_MASK; | 
|  | xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x" | 
|  | " from cap regs base addr\n", val); | 
|  | xhci->dba = (void __iomem *) xhci->cap_regs + val; | 
|  | xhci_dbg_regs(xhci); | 
|  | xhci_print_run_regs(xhci); | 
|  | /* Set ir_set to interrupt register set 0 */ | 
|  | xhci->ir_set = &xhci->run_regs->ir_set[0]; | 
|  |  | 
|  | /* | 
|  | * Event ring setup: Allocate a normal ring, but also setup | 
|  | * the event ring segment table (ERST).  Section 4.9.3. | 
|  | */ | 
|  | xhci_dbg(xhci, "// Allocating event ring\n"); | 
|  | xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, false, | 
|  | flags); | 
|  | if (!xhci->event_ring) | 
|  | goto fail; | 
|  | if (xhci_check_trb_in_td_math(xhci, flags) < 0) | 
|  | goto fail; | 
|  |  | 
|  | xhci->erst.entries = dma_alloc_coherent(dev, | 
|  | sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma, | 
|  | GFP_KERNEL); | 
|  | if (!xhci->erst.entries) | 
|  | goto fail; | 
|  | xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n", | 
|  | (unsigned long long)dma); | 
|  |  | 
|  | memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS); | 
|  | xhci->erst.num_entries = ERST_NUM_SEGS; | 
|  | xhci->erst.erst_dma_addr = dma; | 
|  | xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n", | 
|  | xhci->erst.num_entries, | 
|  | xhci->erst.entries, | 
|  | (unsigned long long)xhci->erst.erst_dma_addr); | 
|  |  | 
|  | /* set ring base address and size for each segment table entry */ | 
|  | for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) { | 
|  | struct xhci_erst_entry *entry = &xhci->erst.entries[val]; | 
|  | entry->seg_addr = cpu_to_le64(seg->dma); | 
|  | entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); | 
|  | entry->rsvd = 0; | 
|  | seg = seg->next; | 
|  | } | 
|  |  | 
|  | /* set ERST count with the number of entries in the segment table */ | 
|  | val = xhci_readl(xhci, &xhci->ir_set->erst_size); | 
|  | val &= ERST_SIZE_MASK; | 
|  | val |= ERST_NUM_SEGS; | 
|  | xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n", | 
|  | val); | 
|  | xhci_writel(xhci, val, &xhci->ir_set->erst_size); | 
|  |  | 
|  | xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n"); | 
|  | /* set the segment table base address */ | 
|  | xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n", | 
|  | (unsigned long long)xhci->erst.erst_dma_addr); | 
|  | val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base); | 
|  | val_64 &= ERST_PTR_MASK; | 
|  | val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK); | 
|  | xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base); | 
|  |  | 
|  | /* Set the event ring dequeue address */ | 
|  | xhci_set_hc_event_deq(xhci); | 
|  | xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n"); | 
|  | xhci_print_ir_set(xhci, 0); | 
|  |  | 
|  | /* | 
|  | * XXX: Might need to set the Interrupter Moderation Register to | 
|  | * something other than the default (~1ms minimum between interrupts). | 
|  | * See section 5.5.1.2. | 
|  | */ | 
|  | init_completion(&xhci->addr_dev); | 
|  | for (i = 0; i < MAX_HC_SLOTS; ++i) | 
|  | xhci->devs[i] = NULL; | 
|  | for (i = 0; i < USB_MAXCHILDREN; ++i) { | 
|  | xhci->bus_state[0].resume_done[i] = 0; | 
|  | xhci->bus_state[1].resume_done[i] = 0; | 
|  | } | 
|  |  | 
|  | if (scratchpad_alloc(xhci, flags)) | 
|  | goto fail; | 
|  | if (xhci_setup_port_arrays(xhci, flags)) | 
|  | goto fail; | 
|  |  | 
|  | INIT_LIST_HEAD(&xhci->lpm_failed_devs); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | xhci_warn(xhci, "Couldn't initialize memory\n"); | 
|  | xhci_mem_cleanup(xhci); | 
|  | return -ENOMEM; | 
|  | } |