|  | /* | 
|  | * xHCI host controller driver | 
|  | * | 
|  | * Copyright (C) 2008 Intel Corp. | 
|  | * | 
|  | * Author: Sarah Sharp | 
|  | * Some code borrowed from the Linux EHCI driver. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but | 
|  | * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | 
|  | * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
|  | * for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software Foundation, | 
|  | * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/pci.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/log2.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/moduleparam.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include "xhci.h" | 
|  |  | 
|  | #define DRIVER_AUTHOR "Sarah Sharp" | 
|  | #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" | 
|  |  | 
|  | /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ | 
|  | static int link_quirk; | 
|  | module_param(link_quirk, int, S_IRUGO | S_IWUSR); | 
|  | MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); | 
|  |  | 
|  | /* TODO: copied from ehci-hcd.c - can this be refactored? */ | 
|  | /* | 
|  | * handshake - spin reading hc until handshake completes or fails | 
|  | * @ptr: address of hc register to be read | 
|  | * @mask: bits to look at in result of read | 
|  | * @done: value of those bits when handshake succeeds | 
|  | * @usec: timeout in microseconds | 
|  | * | 
|  | * Returns negative errno, or zero on success | 
|  | * | 
|  | * Success happens when the "mask" bits have the specified value (hardware | 
|  | * handshake done).  There are two failure modes:  "usec" have passed (major | 
|  | * hardware flakeout), or the register reads as all-ones (hardware removed). | 
|  | */ | 
|  | static int handshake(struct xhci_hcd *xhci, void __iomem *ptr, | 
|  | u32 mask, u32 done, int usec) | 
|  | { | 
|  | u32	result; | 
|  |  | 
|  | do { | 
|  | result = xhci_readl(xhci, ptr); | 
|  | if (result == ~(u32)0)		/* card removed */ | 
|  | return -ENODEV; | 
|  | result &= mask; | 
|  | if (result == done) | 
|  | return 0; | 
|  | udelay(1); | 
|  | usec--; | 
|  | } while (usec > 0); | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Disable interrupts and begin the xHCI halting process. | 
|  | */ | 
|  | void xhci_quiesce(struct xhci_hcd *xhci) | 
|  | { | 
|  | u32 halted; | 
|  | u32 cmd; | 
|  | u32 mask; | 
|  |  | 
|  | mask = ~(XHCI_IRQS); | 
|  | halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT; | 
|  | if (!halted) | 
|  | mask &= ~CMD_RUN; | 
|  |  | 
|  | cmd = xhci_readl(xhci, &xhci->op_regs->command); | 
|  | cmd &= mask; | 
|  | xhci_writel(xhci, cmd, &xhci->op_regs->command); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Force HC into halt state. | 
|  | * | 
|  | * Disable any IRQs and clear the run/stop bit. | 
|  | * HC will complete any current and actively pipelined transactions, and | 
|  | * should halt within 16 ms of the run/stop bit being cleared. | 
|  | * Read HC Halted bit in the status register to see when the HC is finished. | 
|  | */ | 
|  | int xhci_halt(struct xhci_hcd *xhci) | 
|  | { | 
|  | int ret; | 
|  | xhci_dbg(xhci, "// Halt the HC\n"); | 
|  | xhci_quiesce(xhci); | 
|  |  | 
|  | ret = handshake(xhci, &xhci->op_regs->status, | 
|  | STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); | 
|  | if (!ret) | 
|  | xhci->xhc_state |= XHCI_STATE_HALTED; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the run bit and wait for the host to be running. | 
|  | */ | 
|  | static int xhci_start(struct xhci_hcd *xhci) | 
|  | { | 
|  | u32 temp; | 
|  | int ret; | 
|  |  | 
|  | temp = xhci_readl(xhci, &xhci->op_regs->command); | 
|  | temp |= (CMD_RUN); | 
|  | xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n", | 
|  | temp); | 
|  | xhci_writel(xhci, temp, &xhci->op_regs->command); | 
|  |  | 
|  | /* | 
|  | * Wait for the HCHalted Status bit to be 0 to indicate the host is | 
|  | * running. | 
|  | */ | 
|  | ret = handshake(xhci, &xhci->op_regs->status, | 
|  | STS_HALT, 0, XHCI_MAX_HALT_USEC); | 
|  | if (ret == -ETIMEDOUT) | 
|  | xhci_err(xhci, "Host took too long to start, " | 
|  | "waited %u microseconds.\n", | 
|  | XHCI_MAX_HALT_USEC); | 
|  | if (!ret) | 
|  | xhci->xhc_state &= ~XHCI_STATE_HALTED; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reset a halted HC. | 
|  | * | 
|  | * This resets pipelines, timers, counters, state machines, etc. | 
|  | * Transactions will be terminated immediately, and operational registers | 
|  | * will be set to their defaults. | 
|  | */ | 
|  | int xhci_reset(struct xhci_hcd *xhci) | 
|  | { | 
|  | u32 command; | 
|  | u32 state; | 
|  | int ret; | 
|  |  | 
|  | state = xhci_readl(xhci, &xhci->op_regs->status); | 
|  | if ((state & STS_HALT) == 0) { | 
|  | xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | xhci_dbg(xhci, "// Reset the HC\n"); | 
|  | command = xhci_readl(xhci, &xhci->op_regs->command); | 
|  | command |= CMD_RESET; | 
|  | xhci_writel(xhci, command, &xhci->op_regs->command); | 
|  |  | 
|  | ret = handshake(xhci, &xhci->op_regs->command, | 
|  | CMD_RESET, 0, 250 * 1000); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n"); | 
|  | /* | 
|  | * xHCI cannot write to any doorbells or operational registers other | 
|  | * than status until the "Controller Not Ready" flag is cleared. | 
|  | */ | 
|  | return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PCI | 
|  | static int xhci_free_msi(struct xhci_hcd *xhci) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!xhci->msix_entries) | 
|  | return -EINVAL; | 
|  |  | 
|  | for (i = 0; i < xhci->msix_count; i++) | 
|  | if (xhci->msix_entries[i].vector) | 
|  | free_irq(xhci->msix_entries[i].vector, | 
|  | xhci_to_hcd(xhci)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set up MSI | 
|  | */ | 
|  | static int xhci_setup_msi(struct xhci_hcd *xhci) | 
|  | { | 
|  | int ret; | 
|  | struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); | 
|  |  | 
|  | ret = pci_enable_msi(pdev); | 
|  | if (ret) { | 
|  | xhci_err(xhci, "failed to allocate MSI entry\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq, | 
|  | 0, "xhci_hcd", xhci_to_hcd(xhci)); | 
|  | if (ret) { | 
|  | xhci_err(xhci, "disable MSI interrupt\n"); | 
|  | pci_disable_msi(pdev); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free IRQs | 
|  | * free all IRQs request | 
|  | */ | 
|  | static void xhci_free_irq(struct xhci_hcd *xhci) | 
|  | { | 
|  | struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); | 
|  | int ret; | 
|  |  | 
|  | /* return if using legacy interrupt */ | 
|  | if (xhci_to_hcd(xhci)->irq >= 0) | 
|  | return; | 
|  |  | 
|  | ret = xhci_free_msi(xhci); | 
|  | if (!ret) | 
|  | return; | 
|  | if (pdev->irq >= 0) | 
|  | free_irq(pdev->irq, xhci_to_hcd(xhci)); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set up MSI-X | 
|  | */ | 
|  | static int xhci_setup_msix(struct xhci_hcd *xhci) | 
|  | { | 
|  | int i, ret = 0; | 
|  | struct usb_hcd *hcd = xhci_to_hcd(xhci); | 
|  | struct pci_dev *pdev = to_pci_dev(hcd->self.controller); | 
|  |  | 
|  | /* | 
|  | * calculate number of msi-x vectors supported. | 
|  | * - HCS_MAX_INTRS: the max number of interrupts the host can handle, | 
|  | *   with max number of interrupters based on the xhci HCSPARAMS1. | 
|  | * - num_online_cpus: maximum msi-x vectors per CPUs core. | 
|  | *   Add additional 1 vector to ensure always available interrupt. | 
|  | */ | 
|  | xhci->msix_count = min(num_online_cpus() + 1, | 
|  | HCS_MAX_INTRS(xhci->hcs_params1)); | 
|  |  | 
|  | xhci->msix_entries = | 
|  | kmalloc((sizeof(struct msix_entry))*xhci->msix_count, | 
|  | GFP_KERNEL); | 
|  | if (!xhci->msix_entries) { | 
|  | xhci_err(xhci, "Failed to allocate MSI-X entries\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < xhci->msix_count; i++) { | 
|  | xhci->msix_entries[i].entry = i; | 
|  | xhci->msix_entries[i].vector = 0; | 
|  | } | 
|  |  | 
|  | ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count); | 
|  | if (ret) { | 
|  | xhci_err(xhci, "Failed to enable MSI-X\n"); | 
|  | goto free_entries; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < xhci->msix_count; i++) { | 
|  | ret = request_irq(xhci->msix_entries[i].vector, | 
|  | (irq_handler_t)xhci_msi_irq, | 
|  | 0, "xhci_hcd", xhci_to_hcd(xhci)); | 
|  | if (ret) | 
|  | goto disable_msix; | 
|  | } | 
|  |  | 
|  | hcd->msix_enabled = 1; | 
|  | return ret; | 
|  |  | 
|  | disable_msix: | 
|  | xhci_err(xhci, "disable MSI-X interrupt\n"); | 
|  | xhci_free_irq(xhci); | 
|  | pci_disable_msix(pdev); | 
|  | free_entries: | 
|  | kfree(xhci->msix_entries); | 
|  | xhci->msix_entries = NULL; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Free any IRQs and disable MSI-X */ | 
|  | static void xhci_cleanup_msix(struct xhci_hcd *xhci) | 
|  | { | 
|  | struct usb_hcd *hcd = xhci_to_hcd(xhci); | 
|  | struct pci_dev *pdev = to_pci_dev(hcd->self.controller); | 
|  |  | 
|  | xhci_free_irq(xhci); | 
|  |  | 
|  | if (xhci->msix_entries) { | 
|  | pci_disable_msix(pdev); | 
|  | kfree(xhci->msix_entries); | 
|  | xhci->msix_entries = NULL; | 
|  | } else { | 
|  | pci_disable_msi(pdev); | 
|  | } | 
|  |  | 
|  | hcd->msix_enabled = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void xhci_msix_sync_irqs(struct xhci_hcd *xhci) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (xhci->msix_entries) { | 
|  | for (i = 0; i < xhci->msix_count; i++) | 
|  | synchronize_irq(xhci->msix_entries[i].vector); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int xhci_try_enable_msi(struct usb_hcd *hcd) | 
|  | { | 
|  | struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
|  | struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Some Fresco Logic host controllers advertise MSI, but fail to | 
|  | * generate interrupts.  Don't even try to enable MSI. | 
|  | */ | 
|  | if (xhci->quirks & XHCI_BROKEN_MSI) | 
|  | return 0; | 
|  |  | 
|  | /* unregister the legacy interrupt */ | 
|  | if (hcd->irq) | 
|  | free_irq(hcd->irq, hcd); | 
|  | hcd->irq = -1; | 
|  |  | 
|  | ret = xhci_setup_msix(xhci); | 
|  | if (ret) | 
|  | /* fall back to msi*/ | 
|  | ret = xhci_setup_msi(xhci); | 
|  |  | 
|  | if (!ret) | 
|  | /* hcd->irq is -1, we have MSI */ | 
|  | return 0; | 
|  |  | 
|  | /* fall back to legacy interrupt*/ | 
|  | ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, | 
|  | hcd->irq_descr, hcd); | 
|  | if (ret) { | 
|  | xhci_err(xhci, "request interrupt %d failed\n", | 
|  | pdev->irq); | 
|  | return ret; | 
|  | } | 
|  | hcd->irq = pdev->irq; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static int xhci_try_enable_msi(struct usb_hcd *hcd) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void xhci_cleanup_msix(struct xhci_hcd *xhci) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void xhci_msix_sync_irqs(struct xhci_hcd *xhci) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Initialize memory for HCD and xHC (one-time init). | 
|  | * | 
|  | * Program the PAGESIZE register, initialize the device context array, create | 
|  | * device contexts (?), set up a command ring segment (or two?), create event | 
|  | * ring (one for now). | 
|  | */ | 
|  | int xhci_init(struct usb_hcd *hcd) | 
|  | { | 
|  | struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
|  | int retval = 0; | 
|  |  | 
|  | xhci_dbg(xhci, "xhci_init\n"); | 
|  | spin_lock_init(&xhci->lock); | 
|  | if (xhci->hci_version == 0x95 && link_quirk) { | 
|  | xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n"); | 
|  | xhci->quirks |= XHCI_LINK_TRB_QUIRK; | 
|  | } else { | 
|  | xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n"); | 
|  | } | 
|  | retval = xhci_mem_init(xhci, GFP_KERNEL); | 
|  | xhci_dbg(xhci, "Finished xhci_init\n"); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING | 
|  | static void xhci_event_ring_work(unsigned long arg) | 
|  | { | 
|  | unsigned long flags; | 
|  | int temp; | 
|  | u64 temp_64; | 
|  | struct xhci_hcd *xhci = (struct xhci_hcd *) arg; | 
|  | int i, j; | 
|  |  | 
|  | xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies); | 
|  |  | 
|  | spin_lock_irqsave(&xhci->lock, flags); | 
|  | temp = xhci_readl(xhci, &xhci->op_regs->status); | 
|  | xhci_dbg(xhci, "op reg status = 0x%x\n", temp); | 
|  | if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || | 
|  | (xhci->xhc_state & XHCI_STATE_HALTED)) { | 
|  | xhci_dbg(xhci, "HW died, polling stopped.\n"); | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); | 
|  | xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp); | 
|  | xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask); | 
|  | xhci->error_bitmask = 0; | 
|  | xhci_dbg(xhci, "Event ring:\n"); | 
|  | xhci_debug_segment(xhci, xhci->event_ring->deq_seg); | 
|  | xhci_dbg_ring_ptrs(xhci, xhci->event_ring); | 
|  | temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); | 
|  | temp_64 &= ~ERST_PTR_MASK; | 
|  | xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); | 
|  | xhci_dbg(xhci, "Command ring:\n"); | 
|  | xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg); | 
|  | xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); | 
|  | xhci_dbg_cmd_ptrs(xhci); | 
|  | for (i = 0; i < MAX_HC_SLOTS; ++i) { | 
|  | if (!xhci->devs[i]) | 
|  | continue; | 
|  | for (j = 0; j < 31; ++j) { | 
|  | xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]); | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  |  | 
|  | if (!xhci->zombie) | 
|  | mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ); | 
|  | else | 
|  | xhci_dbg(xhci, "Quit polling the event ring.\n"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int xhci_run_finished(struct xhci_hcd *xhci) | 
|  | { | 
|  | if (xhci_start(xhci)) { | 
|  | xhci_halt(xhci); | 
|  | return -ENODEV; | 
|  | } | 
|  | xhci->shared_hcd->state = HC_STATE_RUNNING; | 
|  |  | 
|  | if (xhci->quirks & XHCI_NEC_HOST) | 
|  | xhci_ring_cmd_db(xhci); | 
|  |  | 
|  | xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Start the HC after it was halted. | 
|  | * | 
|  | * This function is called by the USB core when the HC driver is added. | 
|  | * Its opposite is xhci_stop(). | 
|  | * | 
|  | * xhci_init() must be called once before this function can be called. | 
|  | * Reset the HC, enable device slot contexts, program DCBAAP, and | 
|  | * set command ring pointer and event ring pointer. | 
|  | * | 
|  | * Setup MSI-X vectors and enable interrupts. | 
|  | */ | 
|  | int xhci_run(struct usb_hcd *hcd) | 
|  | { | 
|  | u32 temp; | 
|  | u64 temp_64; | 
|  | int ret; | 
|  | struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
|  |  | 
|  | /* Start the xHCI host controller running only after the USB 2.0 roothub | 
|  | * is setup. | 
|  | */ | 
|  |  | 
|  | hcd->uses_new_polling = 1; | 
|  | if (!usb_hcd_is_primary_hcd(hcd)) | 
|  | return xhci_run_finished(xhci); | 
|  |  | 
|  | xhci_dbg(xhci, "xhci_run\n"); | 
|  |  | 
|  | ret = xhci_try_enable_msi(hcd); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING | 
|  | init_timer(&xhci->event_ring_timer); | 
|  | xhci->event_ring_timer.data = (unsigned long) xhci; | 
|  | xhci->event_ring_timer.function = xhci_event_ring_work; | 
|  | /* Poll the event ring */ | 
|  | xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ; | 
|  | xhci->zombie = 0; | 
|  | xhci_dbg(xhci, "Setting event ring polling timer\n"); | 
|  | add_timer(&xhci->event_ring_timer); | 
|  | #endif | 
|  |  | 
|  | xhci_dbg(xhci, "Command ring memory map follows:\n"); | 
|  | xhci_debug_ring(xhci, xhci->cmd_ring); | 
|  | xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); | 
|  | xhci_dbg_cmd_ptrs(xhci); | 
|  |  | 
|  | xhci_dbg(xhci, "ERST memory map follows:\n"); | 
|  | xhci_dbg_erst(xhci, &xhci->erst); | 
|  | xhci_dbg(xhci, "Event ring:\n"); | 
|  | xhci_debug_ring(xhci, xhci->event_ring); | 
|  | xhci_dbg_ring_ptrs(xhci, xhci->event_ring); | 
|  | temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); | 
|  | temp_64 &= ~ERST_PTR_MASK; | 
|  | xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); | 
|  |  | 
|  | xhci_dbg(xhci, "// Set the interrupt modulation register\n"); | 
|  | temp = xhci_readl(xhci, &xhci->ir_set->irq_control); | 
|  | temp &= ~ER_IRQ_INTERVAL_MASK; | 
|  | temp |= (u32) 160; | 
|  | xhci_writel(xhci, temp, &xhci->ir_set->irq_control); | 
|  |  | 
|  | /* Set the HCD state before we enable the irqs */ | 
|  | temp = xhci_readl(xhci, &xhci->op_regs->command); | 
|  | temp |= (CMD_EIE); | 
|  | xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n", | 
|  | temp); | 
|  | xhci_writel(xhci, temp, &xhci->op_regs->command); | 
|  |  | 
|  | temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); | 
|  | xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n", | 
|  | xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); | 
|  | xhci_writel(xhci, ER_IRQ_ENABLE(temp), | 
|  | &xhci->ir_set->irq_pending); | 
|  | xhci_print_ir_set(xhci, 0); | 
|  |  | 
|  | if (xhci->quirks & XHCI_NEC_HOST) | 
|  | xhci_queue_vendor_command(xhci, 0, 0, 0, | 
|  | TRB_TYPE(TRB_NEC_GET_FW)); | 
|  |  | 
|  | xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void xhci_only_stop_hcd(struct usb_hcd *hcd) | 
|  | { | 
|  | struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
|  |  | 
|  | spin_lock_irq(&xhci->lock); | 
|  | xhci_halt(xhci); | 
|  |  | 
|  | /* The shared_hcd is going to be deallocated shortly (the USB core only | 
|  | * calls this function when allocation fails in usb_add_hcd(), or | 
|  | * usb_remove_hcd() is called).  So we need to unset xHCI's pointer. | 
|  | */ | 
|  | xhci->shared_hcd = NULL; | 
|  | spin_unlock_irq(&xhci->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Stop xHCI driver. | 
|  | * | 
|  | * This function is called by the USB core when the HC driver is removed. | 
|  | * Its opposite is xhci_run(). | 
|  | * | 
|  | * Disable device contexts, disable IRQs, and quiesce the HC. | 
|  | * Reset the HC, finish any completed transactions, and cleanup memory. | 
|  | */ | 
|  | void xhci_stop(struct usb_hcd *hcd) | 
|  | { | 
|  | u32 temp; | 
|  | struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
|  |  | 
|  | if (!usb_hcd_is_primary_hcd(hcd)) { | 
|  | xhci_only_stop_hcd(xhci->shared_hcd); | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_lock_irq(&xhci->lock); | 
|  | /* Make sure the xHC is halted for a USB3 roothub | 
|  | * (xhci_stop() could be called as part of failed init). | 
|  | */ | 
|  | xhci_halt(xhci); | 
|  | xhci_reset(xhci); | 
|  | spin_unlock_irq(&xhci->lock); | 
|  |  | 
|  | xhci_cleanup_msix(xhci); | 
|  |  | 
|  | #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING | 
|  | /* Tell the event ring poll function not to reschedule */ | 
|  | xhci->zombie = 1; | 
|  | del_timer_sync(&xhci->event_ring_timer); | 
|  | #endif | 
|  |  | 
|  | if (xhci->quirks & XHCI_AMD_PLL_FIX) | 
|  | usb_amd_dev_put(); | 
|  |  | 
|  | xhci_dbg(xhci, "// Disabling event ring interrupts\n"); | 
|  | temp = xhci_readl(xhci, &xhci->op_regs->status); | 
|  | xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); | 
|  | temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); | 
|  | xhci_writel(xhci, ER_IRQ_DISABLE(temp), | 
|  | &xhci->ir_set->irq_pending); | 
|  | xhci_print_ir_set(xhci, 0); | 
|  |  | 
|  | xhci_dbg(xhci, "cleaning up memory\n"); | 
|  | xhci_mem_cleanup(xhci); | 
|  | xhci_dbg(xhci, "xhci_stop completed - status = %x\n", | 
|  | xhci_readl(xhci, &xhci->op_regs->status)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Shutdown HC (not bus-specific) | 
|  | * | 
|  | * This is called when the machine is rebooting or halting.  We assume that the | 
|  | * machine will be powered off, and the HC's internal state will be reset. | 
|  | * Don't bother to free memory. | 
|  | * | 
|  | * This will only ever be called with the main usb_hcd (the USB3 roothub). | 
|  | */ | 
|  | void xhci_shutdown(struct usb_hcd *hcd) | 
|  | { | 
|  | struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
|  |  | 
|  | spin_lock_irq(&xhci->lock); | 
|  | xhci_halt(xhci); | 
|  | spin_unlock_irq(&xhci->lock); | 
|  |  | 
|  | xhci_cleanup_msix(xhci); | 
|  |  | 
|  | xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n", | 
|  | xhci_readl(xhci, &xhci->op_regs->status)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | static void xhci_save_registers(struct xhci_hcd *xhci) | 
|  | { | 
|  | xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command); | 
|  | xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification); | 
|  | xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); | 
|  | xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg); | 
|  | xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending); | 
|  | xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control); | 
|  | xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size); | 
|  | xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); | 
|  | xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); | 
|  | } | 
|  |  | 
|  | static void xhci_restore_registers(struct xhci_hcd *xhci) | 
|  | { | 
|  | xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command); | 
|  | xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification); | 
|  | xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); | 
|  | xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg); | 
|  | xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending); | 
|  | xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control); | 
|  | xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size); | 
|  | xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); | 
|  | } | 
|  |  | 
|  | static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) | 
|  | { | 
|  | u64	val_64; | 
|  |  | 
|  | /* step 2: initialize command ring buffer */ | 
|  | val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); | 
|  | val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | | 
|  | (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, | 
|  | xhci->cmd_ring->dequeue) & | 
|  | (u64) ~CMD_RING_RSVD_BITS) | | 
|  | xhci->cmd_ring->cycle_state; | 
|  | xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n", | 
|  | (long unsigned long) val_64); | 
|  | xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The whole command ring must be cleared to zero when we suspend the host. | 
|  | * | 
|  | * The host doesn't save the command ring pointer in the suspend well, so we | 
|  | * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte | 
|  | * aligned, because of the reserved bits in the command ring dequeue pointer | 
|  | * register.  Therefore, we can't just set the dequeue pointer back in the | 
|  | * middle of the ring (TRBs are 16-byte aligned). | 
|  | */ | 
|  | static void xhci_clear_command_ring(struct xhci_hcd *xhci) | 
|  | { | 
|  | struct xhci_ring *ring; | 
|  | struct xhci_segment *seg; | 
|  |  | 
|  | ring = xhci->cmd_ring; | 
|  | seg = ring->deq_seg; | 
|  | do { | 
|  | memset(seg->trbs, 0, SEGMENT_SIZE); | 
|  | seg = seg->next; | 
|  | } while (seg != ring->deq_seg); | 
|  |  | 
|  | /* Reset the software enqueue and dequeue pointers */ | 
|  | ring->deq_seg = ring->first_seg; | 
|  | ring->dequeue = ring->first_seg->trbs; | 
|  | ring->enq_seg = ring->deq_seg; | 
|  | ring->enqueue = ring->dequeue; | 
|  |  | 
|  | /* | 
|  | * Ring is now zeroed, so the HW should look for change of ownership | 
|  | * when the cycle bit is set to 1. | 
|  | */ | 
|  | ring->cycle_state = 1; | 
|  |  | 
|  | /* | 
|  | * Reset the hardware dequeue pointer. | 
|  | * Yes, this will need to be re-written after resume, but we're paranoid | 
|  | * and want to make sure the hardware doesn't access bogus memory | 
|  | * because, say, the BIOS or an SMI started the host without changing | 
|  | * the command ring pointers. | 
|  | */ | 
|  | xhci_set_cmd_ring_deq(xhci); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Stop HC (not bus-specific) | 
|  | * | 
|  | * This is called when the machine transition into S3/S4 mode. | 
|  | * | 
|  | */ | 
|  | int xhci_suspend(struct xhci_hcd *xhci) | 
|  | { | 
|  | int			rc = 0; | 
|  | struct usb_hcd		*hcd = xhci_to_hcd(xhci); | 
|  | u32			command; | 
|  |  | 
|  | spin_lock_irq(&xhci->lock); | 
|  | clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); | 
|  | clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); | 
|  | /* step 1: stop endpoint */ | 
|  | /* skipped assuming that port suspend has done */ | 
|  |  | 
|  | /* step 2: clear Run/Stop bit */ | 
|  | command = xhci_readl(xhci, &xhci->op_regs->command); | 
|  | command &= ~CMD_RUN; | 
|  | xhci_writel(xhci, command, &xhci->op_regs->command); | 
|  | if (handshake(xhci, &xhci->op_regs->status, | 
|  | STS_HALT, STS_HALT, 100*100)) { | 
|  | xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); | 
|  | spin_unlock_irq(&xhci->lock); | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  | xhci_clear_command_ring(xhci); | 
|  |  | 
|  | /* step 3: save registers */ | 
|  | xhci_save_registers(xhci); | 
|  |  | 
|  | /* step 4: set CSS flag */ | 
|  | command = xhci_readl(xhci, &xhci->op_regs->command); | 
|  | command |= CMD_CSS; | 
|  | xhci_writel(xhci, command, &xhci->op_regs->command); | 
|  | if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) { | 
|  | xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n"); | 
|  | spin_unlock_irq(&xhci->lock); | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  | spin_unlock_irq(&xhci->lock); | 
|  |  | 
|  | /* step 5: remove core well power */ | 
|  | /* synchronize irq when using MSI-X */ | 
|  | xhci_msix_sync_irqs(xhci); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * start xHC (not bus-specific) | 
|  | * | 
|  | * This is called when the machine transition from S3/S4 mode. | 
|  | * | 
|  | */ | 
|  | int xhci_resume(struct xhci_hcd *xhci, bool hibernated) | 
|  | { | 
|  | u32			command, temp = 0; | 
|  | struct usb_hcd		*hcd = xhci_to_hcd(xhci); | 
|  | struct usb_hcd		*secondary_hcd; | 
|  | int			retval = 0; | 
|  |  | 
|  | /* Wait a bit if either of the roothubs need to settle from the | 
|  | * transition into bus suspend. | 
|  | */ | 
|  | if (time_before(jiffies, xhci->bus_state[0].next_statechange) || | 
|  | time_before(jiffies, | 
|  | xhci->bus_state[1].next_statechange)) | 
|  | msleep(100); | 
|  |  | 
|  | set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); | 
|  | set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); | 
|  |  | 
|  | spin_lock_irq(&xhci->lock); | 
|  | if (xhci->quirks & XHCI_RESET_ON_RESUME) | 
|  | hibernated = true; | 
|  |  | 
|  | if (!hibernated) { | 
|  | /* step 1: restore register */ | 
|  | xhci_restore_registers(xhci); | 
|  | /* step 2: initialize command ring buffer */ | 
|  | xhci_set_cmd_ring_deq(xhci); | 
|  | /* step 3: restore state and start state*/ | 
|  | /* step 3: set CRS flag */ | 
|  | command = xhci_readl(xhci, &xhci->op_regs->command); | 
|  | command |= CMD_CRS; | 
|  | xhci_writel(xhci, command, &xhci->op_regs->command); | 
|  | if (handshake(xhci, &xhci->op_regs->status, | 
|  | STS_RESTORE, 0, 10*100)) { | 
|  | xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n"); | 
|  | spin_unlock_irq(&xhci->lock); | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  | temp = xhci_readl(xhci, &xhci->op_regs->status); | 
|  | } | 
|  |  | 
|  | /* If restore operation fails, re-initialize the HC during resume */ | 
|  | if ((temp & STS_SRE) || hibernated) { | 
|  | /* Let the USB core know _both_ roothubs lost power. */ | 
|  | usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); | 
|  | usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); | 
|  |  | 
|  | xhci_dbg(xhci, "Stop HCD\n"); | 
|  | xhci_halt(xhci); | 
|  | xhci_reset(xhci); | 
|  | spin_unlock_irq(&xhci->lock); | 
|  | xhci_cleanup_msix(xhci); | 
|  |  | 
|  | #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING | 
|  | /* Tell the event ring poll function not to reschedule */ | 
|  | xhci->zombie = 1; | 
|  | del_timer_sync(&xhci->event_ring_timer); | 
|  | #endif | 
|  |  | 
|  | xhci_dbg(xhci, "// Disabling event ring interrupts\n"); | 
|  | temp = xhci_readl(xhci, &xhci->op_regs->status); | 
|  | xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); | 
|  | temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); | 
|  | xhci_writel(xhci, ER_IRQ_DISABLE(temp), | 
|  | &xhci->ir_set->irq_pending); | 
|  | xhci_print_ir_set(xhci, 0); | 
|  |  | 
|  | xhci_dbg(xhci, "cleaning up memory\n"); | 
|  | xhci_mem_cleanup(xhci); | 
|  | xhci_dbg(xhci, "xhci_stop completed - status = %x\n", | 
|  | xhci_readl(xhci, &xhci->op_regs->status)); | 
|  |  | 
|  | /* USB core calls the PCI reinit and start functions twice: | 
|  | * first with the primary HCD, and then with the secondary HCD. | 
|  | * If we don't do the same, the host will never be started. | 
|  | */ | 
|  | if (!usb_hcd_is_primary_hcd(hcd)) | 
|  | secondary_hcd = hcd; | 
|  | else | 
|  | secondary_hcd = xhci->shared_hcd; | 
|  |  | 
|  | xhci_dbg(xhci, "Initialize the xhci_hcd\n"); | 
|  | retval = xhci_init(hcd->primary_hcd); | 
|  | if (retval) | 
|  | return retval; | 
|  | xhci_dbg(xhci, "Start the primary HCD\n"); | 
|  | retval = xhci_run(hcd->primary_hcd); | 
|  | if (!retval) { | 
|  | xhci_dbg(xhci, "Start the secondary HCD\n"); | 
|  | retval = xhci_run(secondary_hcd); | 
|  | } | 
|  | hcd->state = HC_STATE_SUSPENDED; | 
|  | xhci->shared_hcd->state = HC_STATE_SUSPENDED; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* step 4: set Run/Stop bit */ | 
|  | command = xhci_readl(xhci, &xhci->op_regs->command); | 
|  | command |= CMD_RUN; | 
|  | xhci_writel(xhci, command, &xhci->op_regs->command); | 
|  | handshake(xhci, &xhci->op_regs->status, STS_HALT, | 
|  | 0, 250 * 1000); | 
|  |  | 
|  | /* step 5: walk topology and initialize portsc, | 
|  | * portpmsc and portli | 
|  | */ | 
|  | /* this is done in bus_resume */ | 
|  |  | 
|  | /* step 6: restart each of the previously | 
|  | * Running endpoints by ringing their doorbells | 
|  | */ | 
|  |  | 
|  | spin_unlock_irq(&xhci->lock); | 
|  |  | 
|  | done: | 
|  | if (retval == 0) { | 
|  | usb_hcd_resume_root_hub(hcd); | 
|  | usb_hcd_resume_root_hub(xhci->shared_hcd); | 
|  | } | 
|  | return retval; | 
|  | } | 
|  | #endif	/* CONFIG_PM */ | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /** | 
|  | * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and | 
|  | * HCDs.  Find the index for an endpoint given its descriptor.  Use the return | 
|  | * value to right shift 1 for the bitmask. | 
|  | * | 
|  | * Index  = (epnum * 2) + direction - 1, | 
|  | * where direction = 0 for OUT, 1 for IN. | 
|  | * For control endpoints, the IN index is used (OUT index is unused), so | 
|  | * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) | 
|  | */ | 
|  | unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) | 
|  | { | 
|  | unsigned int index; | 
|  | if (usb_endpoint_xfer_control(desc)) | 
|  | index = (unsigned int) (usb_endpoint_num(desc)*2); | 
|  | else | 
|  | index = (unsigned int) (usb_endpoint_num(desc)*2) + | 
|  | (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; | 
|  | return index; | 
|  | } | 
|  |  | 
|  | /* Find the flag for this endpoint (for use in the control context).  Use the | 
|  | * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is | 
|  | * bit 1, etc. | 
|  | */ | 
|  | unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) | 
|  | { | 
|  | return 1 << (xhci_get_endpoint_index(desc) + 1); | 
|  | } | 
|  |  | 
|  | /* Find the flag for this endpoint (for use in the control context).  Use the | 
|  | * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is | 
|  | * bit 1, etc. | 
|  | */ | 
|  | unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) | 
|  | { | 
|  | return 1 << (ep_index + 1); | 
|  | } | 
|  |  | 
|  | /* Compute the last valid endpoint context index.  Basically, this is the | 
|  | * endpoint index plus one.  For slot contexts with more than valid endpoint, | 
|  | * we find the most significant bit set in the added contexts flags. | 
|  | * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 | 
|  | * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. | 
|  | */ | 
|  | unsigned int xhci_last_valid_endpoint(u32 added_ctxs) | 
|  | { | 
|  | return fls(added_ctxs) - 1; | 
|  | } | 
|  |  | 
|  | /* Returns 1 if the arguments are OK; | 
|  | * returns 0 this is a root hub; returns -EINVAL for NULL pointers. | 
|  | */ | 
|  | static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, | 
|  | struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, | 
|  | const char *func) { | 
|  | struct xhci_hcd	*xhci; | 
|  | struct xhci_virt_device	*virt_dev; | 
|  |  | 
|  | if (!hcd || (check_ep && !ep) || !udev) { | 
|  | printk(KERN_DEBUG "xHCI %s called with invalid args\n", | 
|  | func); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (!udev->parent) { | 
|  | printk(KERN_DEBUG "xHCI %s called for root hub\n", | 
|  | func); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | xhci = hcd_to_xhci(hcd); | 
|  | if (xhci->xhc_state & XHCI_STATE_HALTED) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (check_virt_dev) { | 
|  | if (!udev->slot_id || !xhci->devs[udev->slot_id]) { | 
|  | printk(KERN_DEBUG "xHCI %s called with unaddressed " | 
|  | "device\n", func); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | virt_dev = xhci->devs[udev->slot_id]; | 
|  | if (virt_dev->udev != udev) { | 
|  | printk(KERN_DEBUG "xHCI %s called with udev and " | 
|  | "virt_dev does not match\n", func); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int xhci_configure_endpoint(struct xhci_hcd *xhci, | 
|  | struct usb_device *udev, struct xhci_command *command, | 
|  | bool ctx_change, bool must_succeed); | 
|  |  | 
|  | /* | 
|  | * Full speed devices may have a max packet size greater than 8 bytes, but the | 
|  | * USB core doesn't know that until it reads the first 8 bytes of the | 
|  | * descriptor.  If the usb_device's max packet size changes after that point, | 
|  | * we need to issue an evaluate context command and wait on it. | 
|  | */ | 
|  | static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, | 
|  | unsigned int ep_index, struct urb *urb) | 
|  | { | 
|  | struct xhci_container_ctx *in_ctx; | 
|  | struct xhci_container_ctx *out_ctx; | 
|  | struct xhci_input_control_ctx *ctrl_ctx; | 
|  | struct xhci_ep_ctx *ep_ctx; | 
|  | int max_packet_size; | 
|  | int hw_max_packet_size; | 
|  | int ret = 0; | 
|  |  | 
|  | out_ctx = xhci->devs[slot_id]->out_ctx; | 
|  | ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); | 
|  | hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); | 
|  | max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); | 
|  | if (hw_max_packet_size != max_packet_size) { | 
|  | xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n"); | 
|  | xhci_dbg(xhci, "Max packet size in usb_device = %d\n", | 
|  | max_packet_size); | 
|  | xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n", | 
|  | hw_max_packet_size); | 
|  | xhci_dbg(xhci, "Issuing evaluate context command.\n"); | 
|  |  | 
|  | /* Set up the modified control endpoint 0 */ | 
|  | xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, | 
|  | xhci->devs[slot_id]->out_ctx, ep_index); | 
|  | in_ctx = xhci->devs[slot_id]->in_ctx; | 
|  | ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); | 
|  | ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); | 
|  | ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); | 
|  |  | 
|  | /* Set up the input context flags for the command */ | 
|  | /* FIXME: This won't work if a non-default control endpoint | 
|  | * changes max packet sizes. | 
|  | */ | 
|  | ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); | 
|  | ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); | 
|  | ctrl_ctx->drop_flags = 0; | 
|  |  | 
|  | xhci_dbg(xhci, "Slot %d input context\n", slot_id); | 
|  | xhci_dbg_ctx(xhci, in_ctx, ep_index); | 
|  | xhci_dbg(xhci, "Slot %d output context\n", slot_id); | 
|  | xhci_dbg_ctx(xhci, out_ctx, ep_index); | 
|  |  | 
|  | ret = xhci_configure_endpoint(xhci, urb->dev, NULL, | 
|  | true, false); | 
|  |  | 
|  | /* Clean up the input context for later use by bandwidth | 
|  | * functions. | 
|  | */ | 
|  | ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * non-error returns are a promise to giveback() the urb later | 
|  | * we drop ownership so next owner (or urb unlink) can get it | 
|  | */ | 
|  | int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) | 
|  | { | 
|  | struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
|  | struct xhci_td *buffer; | 
|  | unsigned long flags; | 
|  | int ret = 0; | 
|  | unsigned int slot_id, ep_index; | 
|  | struct urb_priv	*urb_priv; | 
|  | int size, i; | 
|  |  | 
|  | if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, | 
|  | true, true, __func__) <= 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | slot_id = urb->dev->slot_id; | 
|  | ep_index = xhci_get_endpoint_index(&urb->ep->desc); | 
|  |  | 
|  | if (!HCD_HW_ACCESSIBLE(hcd)) { | 
|  | if (!in_interrupt()) | 
|  | xhci_dbg(xhci, "urb submitted during PCI suspend\n"); | 
|  | ret = -ESHUTDOWN; | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | if (usb_endpoint_xfer_isoc(&urb->ep->desc)) | 
|  | size = urb->number_of_packets; | 
|  | else | 
|  | size = 1; | 
|  |  | 
|  | urb_priv = kzalloc(sizeof(struct urb_priv) + | 
|  | size * sizeof(struct xhci_td *), mem_flags); | 
|  | if (!urb_priv) | 
|  | return -ENOMEM; | 
|  |  | 
|  | buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); | 
|  | if (!buffer) { | 
|  | kfree(urb_priv); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < size; i++) { | 
|  | urb_priv->td[i] = buffer; | 
|  | buffer++; | 
|  | } | 
|  |  | 
|  | urb_priv->length = size; | 
|  | urb_priv->td_cnt = 0; | 
|  | urb->hcpriv = urb_priv; | 
|  |  | 
|  | if (usb_endpoint_xfer_control(&urb->ep->desc)) { | 
|  | /* Check to see if the max packet size for the default control | 
|  | * endpoint changed during FS device enumeration | 
|  | */ | 
|  | if (urb->dev->speed == USB_SPEED_FULL) { | 
|  | ret = xhci_check_maxpacket(xhci, slot_id, | 
|  | ep_index, urb); | 
|  | if (ret < 0) { | 
|  | xhci_urb_free_priv(xhci, urb_priv); | 
|  | urb->hcpriv = NULL; | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* We have a spinlock and interrupts disabled, so we must pass | 
|  | * atomic context to this function, which may allocate memory. | 
|  | */ | 
|  | spin_lock_irqsave(&xhci->lock, flags); | 
|  | if (xhci->xhc_state & XHCI_STATE_DYING) | 
|  | goto dying; | 
|  | ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, | 
|  | slot_id, ep_index); | 
|  | if (ret) | 
|  | goto free_priv; | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  | } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { | 
|  | spin_lock_irqsave(&xhci->lock, flags); | 
|  | if (xhci->xhc_state & XHCI_STATE_DYING) | 
|  | goto dying; | 
|  | if (xhci->devs[slot_id]->eps[ep_index].ep_state & | 
|  | EP_GETTING_STREAMS) { | 
|  | xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " | 
|  | "is transitioning to using streams.\n"); | 
|  | ret = -EINVAL; | 
|  | } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & | 
|  | EP_GETTING_NO_STREAMS) { | 
|  | xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " | 
|  | "is transitioning to " | 
|  | "not having streams.\n"); | 
|  | ret = -EINVAL; | 
|  | } else { | 
|  | ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, | 
|  | slot_id, ep_index); | 
|  | } | 
|  | if (ret) | 
|  | goto free_priv; | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  | } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { | 
|  | spin_lock_irqsave(&xhci->lock, flags); | 
|  | if (xhci->xhc_state & XHCI_STATE_DYING) | 
|  | goto dying; | 
|  | ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, | 
|  | slot_id, ep_index); | 
|  | if (ret) | 
|  | goto free_priv; | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  | } else { | 
|  | spin_lock_irqsave(&xhci->lock, flags); | 
|  | if (xhci->xhc_state & XHCI_STATE_DYING) | 
|  | goto dying; | 
|  | ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, | 
|  | slot_id, ep_index); | 
|  | if (ret) | 
|  | goto free_priv; | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  | } | 
|  | exit: | 
|  | return ret; | 
|  | dying: | 
|  | xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " | 
|  | "non-responsive xHCI host.\n", | 
|  | urb->ep->desc.bEndpointAddress, urb); | 
|  | ret = -ESHUTDOWN; | 
|  | free_priv: | 
|  | xhci_urb_free_priv(xhci, urb_priv); | 
|  | urb->hcpriv = NULL; | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Get the right ring for the given URB. | 
|  | * If the endpoint supports streams, boundary check the URB's stream ID. | 
|  | * If the endpoint doesn't support streams, return the singular endpoint ring. | 
|  | */ | 
|  | static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, | 
|  | struct urb *urb) | 
|  | { | 
|  | unsigned int slot_id; | 
|  | unsigned int ep_index; | 
|  | unsigned int stream_id; | 
|  | struct xhci_virt_ep *ep; | 
|  |  | 
|  | slot_id = urb->dev->slot_id; | 
|  | ep_index = xhci_get_endpoint_index(&urb->ep->desc); | 
|  | stream_id = urb->stream_id; | 
|  | ep = &xhci->devs[slot_id]->eps[ep_index]; | 
|  | /* Common case: no streams */ | 
|  | if (!(ep->ep_state & EP_HAS_STREAMS)) | 
|  | return ep->ring; | 
|  |  | 
|  | if (stream_id == 0) { | 
|  | xhci_warn(xhci, | 
|  | "WARN: Slot ID %u, ep index %u has streams, " | 
|  | "but URB has no stream ID.\n", | 
|  | slot_id, ep_index); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (stream_id < ep->stream_info->num_streams) | 
|  | return ep->stream_info->stream_rings[stream_id]; | 
|  |  | 
|  | xhci_warn(xhci, | 
|  | "WARN: Slot ID %u, ep index %u has " | 
|  | "stream IDs 1 to %u allocated, " | 
|  | "but stream ID %u is requested.\n", | 
|  | slot_id, ep_index, | 
|  | ep->stream_info->num_streams - 1, | 
|  | stream_id); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop | 
|  | * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC | 
|  | * should pick up where it left off in the TD, unless a Set Transfer Ring | 
|  | * Dequeue Pointer is issued. | 
|  | * | 
|  | * The TRBs that make up the buffers for the canceled URB will be "removed" from | 
|  | * the ring.  Since the ring is a contiguous structure, they can't be physically | 
|  | * removed.  Instead, there are two options: | 
|  | * | 
|  | *  1) If the HC is in the middle of processing the URB to be canceled, we | 
|  | *     simply move the ring's dequeue pointer past those TRBs using the Set | 
|  | *     Transfer Ring Dequeue Pointer command.  This will be the common case, | 
|  | *     when drivers timeout on the last submitted URB and attempt to cancel. | 
|  | * | 
|  | *  2) If the HC is in the middle of a different TD, we turn the TRBs into a | 
|  | *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The | 
|  | *     HC will need to invalidate the any TRBs it has cached after the stop | 
|  | *     endpoint command, as noted in the xHCI 0.95 errata. | 
|  | * | 
|  | *  3) The TD may have completed by the time the Stop Endpoint Command | 
|  | *     completes, so software needs to handle that case too. | 
|  | * | 
|  | * This function should protect against the TD enqueueing code ringing the | 
|  | * doorbell while this code is waiting for a Stop Endpoint command to complete. | 
|  | * It also needs to account for multiple cancellations on happening at the same | 
|  | * time for the same endpoint. | 
|  | * | 
|  | * Note that this function can be called in any context, or so says | 
|  | * usb_hcd_unlink_urb() | 
|  | */ | 
|  | int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) | 
|  | { | 
|  | unsigned long flags; | 
|  | int ret, i; | 
|  | u32 temp; | 
|  | struct xhci_hcd *xhci; | 
|  | struct urb_priv	*urb_priv; | 
|  | struct xhci_td *td; | 
|  | unsigned int ep_index; | 
|  | struct xhci_ring *ep_ring; | 
|  | struct xhci_virt_ep *ep; | 
|  |  | 
|  | xhci = hcd_to_xhci(hcd); | 
|  | spin_lock_irqsave(&xhci->lock, flags); | 
|  | /* Make sure the URB hasn't completed or been unlinked already */ | 
|  | ret = usb_hcd_check_unlink_urb(hcd, urb, status); | 
|  | if (ret || !urb->hcpriv) | 
|  | goto done; | 
|  | temp = xhci_readl(xhci, &xhci->op_regs->status); | 
|  | if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { | 
|  | xhci_dbg(xhci, "HW died, freeing TD.\n"); | 
|  | urb_priv = urb->hcpriv; | 
|  | for (i = urb_priv->td_cnt; i < urb_priv->length; i++) { | 
|  | td = urb_priv->td[i]; | 
|  | if (!list_empty(&td->td_list)) | 
|  | list_del_init(&td->td_list); | 
|  | if (!list_empty(&td->cancelled_td_list)) | 
|  | list_del_init(&td->cancelled_td_list); | 
|  | } | 
|  |  | 
|  | usb_hcd_unlink_urb_from_ep(hcd, urb); | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  | usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); | 
|  | xhci_urb_free_priv(xhci, urb_priv); | 
|  | return ret; | 
|  | } | 
|  | if ((xhci->xhc_state & XHCI_STATE_DYING) || | 
|  | (xhci->xhc_state & XHCI_STATE_HALTED)) { | 
|  | xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on " | 
|  | "non-responsive xHCI host.\n", | 
|  | urb->ep->desc.bEndpointAddress, urb); | 
|  | /* Let the stop endpoint command watchdog timer (which set this | 
|  | * state) finish cleaning up the endpoint TD lists.  We must | 
|  | * have caught it in the middle of dropping a lock and giving | 
|  | * back an URB. | 
|  | */ | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | xhci_dbg(xhci, "Cancel URB %p\n", urb); | 
|  | xhci_dbg(xhci, "Event ring:\n"); | 
|  | xhci_debug_ring(xhci, xhci->event_ring); | 
|  | ep_index = xhci_get_endpoint_index(&urb->ep->desc); | 
|  | ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; | 
|  | ep_ring = xhci_urb_to_transfer_ring(xhci, urb); | 
|  | if (!ep_ring) { | 
|  | ret = -EINVAL; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | xhci_dbg(xhci, "Endpoint ring:\n"); | 
|  | xhci_debug_ring(xhci, ep_ring); | 
|  |  | 
|  | urb_priv = urb->hcpriv; | 
|  |  | 
|  | for (i = urb_priv->td_cnt; i < urb_priv->length; i++) { | 
|  | td = urb_priv->td[i]; | 
|  | list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); | 
|  | } | 
|  |  | 
|  | /* Queue a stop endpoint command, but only if this is | 
|  | * the first cancellation to be handled. | 
|  | */ | 
|  | if (!(ep->ep_state & EP_HALT_PENDING)) { | 
|  | ep->ep_state |= EP_HALT_PENDING; | 
|  | ep->stop_cmds_pending++; | 
|  | ep->stop_cmd_timer.expires = jiffies + | 
|  | XHCI_STOP_EP_CMD_TIMEOUT * HZ; | 
|  | add_timer(&ep->stop_cmd_timer); | 
|  | xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0); | 
|  | xhci_ring_cmd_db(xhci); | 
|  | } | 
|  | done: | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Drop an endpoint from a new bandwidth configuration for this device. | 
|  | * Only one call to this function is allowed per endpoint before | 
|  | * check_bandwidth() or reset_bandwidth() must be called. | 
|  | * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will | 
|  | * add the endpoint to the schedule with possibly new parameters denoted by a | 
|  | * different endpoint descriptor in usb_host_endpoint. | 
|  | * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is | 
|  | * not allowed. | 
|  | * | 
|  | * The USB core will not allow URBs to be queued to an endpoint that is being | 
|  | * disabled, so there's no need for mutual exclusion to protect | 
|  | * the xhci->devs[slot_id] structure. | 
|  | */ | 
|  | int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, | 
|  | struct usb_host_endpoint *ep) | 
|  | { | 
|  | struct xhci_hcd *xhci; | 
|  | struct xhci_container_ctx *in_ctx, *out_ctx; | 
|  | struct xhci_input_control_ctx *ctrl_ctx; | 
|  | struct xhci_slot_ctx *slot_ctx; | 
|  | unsigned int last_ctx; | 
|  | unsigned int ep_index; | 
|  | struct xhci_ep_ctx *ep_ctx; | 
|  | u32 drop_flag; | 
|  | u32 new_add_flags, new_drop_flags, new_slot_info; | 
|  | int ret; | 
|  |  | 
|  | ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); | 
|  | if (ret <= 0) | 
|  | return ret; | 
|  | xhci = hcd_to_xhci(hcd); | 
|  | if (xhci->xhc_state & XHCI_STATE_DYING) | 
|  | return -ENODEV; | 
|  |  | 
|  | xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); | 
|  | drop_flag = xhci_get_endpoint_flag(&ep->desc); | 
|  | if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { | 
|  | xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", | 
|  | __func__, drop_flag); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | in_ctx = xhci->devs[udev->slot_id]->in_ctx; | 
|  | out_ctx = xhci->devs[udev->slot_id]->out_ctx; | 
|  | ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); | 
|  | ep_index = xhci_get_endpoint_index(&ep->desc); | 
|  | ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); | 
|  | /* If the HC already knows the endpoint is disabled, | 
|  | * or the HCD has noted it is disabled, ignore this request | 
|  | */ | 
|  | if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == | 
|  | cpu_to_le32(EP_STATE_DISABLED)) || | 
|  | le32_to_cpu(ctrl_ctx->drop_flags) & | 
|  | xhci_get_endpoint_flag(&ep->desc)) { | 
|  | xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", | 
|  | __func__, ep); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); | 
|  | new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); | 
|  |  | 
|  | ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); | 
|  | new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); | 
|  |  | 
|  | last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)); | 
|  | slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); | 
|  | /* Update the last valid endpoint context, if we deleted the last one */ | 
|  | if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) > | 
|  | LAST_CTX(last_ctx)) { | 
|  | slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); | 
|  | slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); | 
|  | } | 
|  | new_slot_info = le32_to_cpu(slot_ctx->dev_info); | 
|  |  | 
|  | xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); | 
|  |  | 
|  | xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", | 
|  | (unsigned int) ep->desc.bEndpointAddress, | 
|  | udev->slot_id, | 
|  | (unsigned int) new_drop_flags, | 
|  | (unsigned int) new_add_flags, | 
|  | (unsigned int) new_slot_info); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Add an endpoint to a new possible bandwidth configuration for this device. | 
|  | * Only one call to this function is allowed per endpoint before | 
|  | * check_bandwidth() or reset_bandwidth() must be called. | 
|  | * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will | 
|  | * add the endpoint to the schedule with possibly new parameters denoted by a | 
|  | * different endpoint descriptor in usb_host_endpoint. | 
|  | * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is | 
|  | * not allowed. | 
|  | * | 
|  | * The USB core will not allow URBs to be queued to an endpoint until the | 
|  | * configuration or alt setting is installed in the device, so there's no need | 
|  | * for mutual exclusion to protect the xhci->devs[slot_id] structure. | 
|  | */ | 
|  | int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, | 
|  | struct usb_host_endpoint *ep) | 
|  | { | 
|  | struct xhci_hcd *xhci; | 
|  | struct xhci_container_ctx *in_ctx, *out_ctx; | 
|  | unsigned int ep_index; | 
|  | struct xhci_ep_ctx *ep_ctx; | 
|  | struct xhci_slot_ctx *slot_ctx; | 
|  | struct xhci_input_control_ctx *ctrl_ctx; | 
|  | u32 added_ctxs; | 
|  | unsigned int last_ctx; | 
|  | u32 new_add_flags, new_drop_flags, new_slot_info; | 
|  | struct xhci_virt_device *virt_dev; | 
|  | int ret = 0; | 
|  |  | 
|  | ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); | 
|  | if (ret <= 0) { | 
|  | /* So we won't queue a reset ep command for a root hub */ | 
|  | ep->hcpriv = NULL; | 
|  | return ret; | 
|  | } | 
|  | xhci = hcd_to_xhci(hcd); | 
|  | if (xhci->xhc_state & XHCI_STATE_DYING) | 
|  | return -ENODEV; | 
|  |  | 
|  | added_ctxs = xhci_get_endpoint_flag(&ep->desc); | 
|  | last_ctx = xhci_last_valid_endpoint(added_ctxs); | 
|  | if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { | 
|  | /* FIXME when we have to issue an evaluate endpoint command to | 
|  | * deal with ep0 max packet size changing once we get the | 
|  | * descriptors | 
|  | */ | 
|  | xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", | 
|  | __func__, added_ctxs); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | virt_dev = xhci->devs[udev->slot_id]; | 
|  | in_ctx = virt_dev->in_ctx; | 
|  | out_ctx = virt_dev->out_ctx; | 
|  | ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); | 
|  | ep_index = xhci_get_endpoint_index(&ep->desc); | 
|  | ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); | 
|  |  | 
|  | /* If this endpoint is already in use, and the upper layers are trying | 
|  | * to add it again without dropping it, reject the addition. | 
|  | */ | 
|  | if (virt_dev->eps[ep_index].ring && | 
|  | !(le32_to_cpu(ctrl_ctx->drop_flags) & | 
|  | xhci_get_endpoint_flag(&ep->desc))) { | 
|  | xhci_warn(xhci, "Trying to add endpoint 0x%x " | 
|  | "without dropping it.\n", | 
|  | (unsigned int) ep->desc.bEndpointAddress); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* If the HCD has already noted the endpoint is enabled, | 
|  | * ignore this request. | 
|  | */ | 
|  | if (le32_to_cpu(ctrl_ctx->add_flags) & | 
|  | xhci_get_endpoint_flag(&ep->desc)) { | 
|  | xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", | 
|  | __func__, ep); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Configuration and alternate setting changes must be done in | 
|  | * process context, not interrupt context (or so documenation | 
|  | * for usb_set_interface() and usb_set_configuration() claim). | 
|  | */ | 
|  | if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { | 
|  | dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", | 
|  | __func__, ep->desc.bEndpointAddress); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); | 
|  | new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); | 
|  |  | 
|  | /* If xhci_endpoint_disable() was called for this endpoint, but the | 
|  | * xHC hasn't been notified yet through the check_bandwidth() call, | 
|  | * this re-adds a new state for the endpoint from the new endpoint | 
|  | * descriptors.  We must drop and re-add this endpoint, so we leave the | 
|  | * drop flags alone. | 
|  | */ | 
|  | new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); | 
|  |  | 
|  | slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); | 
|  | /* Update the last valid endpoint context, if we just added one past */ | 
|  | if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) < | 
|  | LAST_CTX(last_ctx)) { | 
|  | slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); | 
|  | slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); | 
|  | } | 
|  | new_slot_info = le32_to_cpu(slot_ctx->dev_info); | 
|  |  | 
|  | /* Store the usb_device pointer for later use */ | 
|  | ep->hcpriv = udev; | 
|  |  | 
|  | xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", | 
|  | (unsigned int) ep->desc.bEndpointAddress, | 
|  | udev->slot_id, | 
|  | (unsigned int) new_drop_flags, | 
|  | (unsigned int) new_add_flags, | 
|  | (unsigned int) new_slot_info); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) | 
|  | { | 
|  | struct xhci_input_control_ctx *ctrl_ctx; | 
|  | struct xhci_ep_ctx *ep_ctx; | 
|  | struct xhci_slot_ctx *slot_ctx; | 
|  | int i; | 
|  |  | 
|  | /* When a device's add flag and drop flag are zero, any subsequent | 
|  | * configure endpoint command will leave that endpoint's state | 
|  | * untouched.  Make sure we don't leave any old state in the input | 
|  | * endpoint contexts. | 
|  | */ | 
|  | ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); | 
|  | ctrl_ctx->drop_flags = 0; | 
|  | ctrl_ctx->add_flags = 0; | 
|  | slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); | 
|  | slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); | 
|  | /* Endpoint 0 is always valid */ | 
|  | slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); | 
|  | for (i = 1; i < 31; ++i) { | 
|  | ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); | 
|  | ep_ctx->ep_info = 0; | 
|  | ep_ctx->ep_info2 = 0; | 
|  | ep_ctx->deq = 0; | 
|  | ep_ctx->tx_info = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, | 
|  | struct usb_device *udev, u32 *cmd_status) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | switch (*cmd_status) { | 
|  | case COMP_ENOMEM: | 
|  | dev_warn(&udev->dev, "Not enough host controller resources " | 
|  | "for new device state.\n"); | 
|  | ret = -ENOMEM; | 
|  | /* FIXME: can we allocate more resources for the HC? */ | 
|  | break; | 
|  | case COMP_BW_ERR: | 
|  | dev_warn(&udev->dev, "Not enough bandwidth " | 
|  | "for new device state.\n"); | 
|  | ret = -ENOSPC; | 
|  | /* FIXME: can we go back to the old state? */ | 
|  | break; | 
|  | case COMP_TRB_ERR: | 
|  | /* the HCD set up something wrong */ | 
|  | dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " | 
|  | "add flag = 1, " | 
|  | "and endpoint is not disabled.\n"); | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | case COMP_DEV_ERR: | 
|  | dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint " | 
|  | "configure command.\n"); | 
|  | ret = -ENODEV; | 
|  | break; | 
|  | case COMP_SUCCESS: | 
|  | dev_dbg(&udev->dev, "Successful Endpoint Configure command\n"); | 
|  | ret = 0; | 
|  | break; | 
|  | default: | 
|  | xhci_err(xhci, "ERROR: unexpected command completion " | 
|  | "code 0x%x.\n", *cmd_status); | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int xhci_evaluate_context_result(struct xhci_hcd *xhci, | 
|  | struct usb_device *udev, u32 *cmd_status) | 
|  | { | 
|  | int ret; | 
|  | struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; | 
|  |  | 
|  | switch (*cmd_status) { | 
|  | case COMP_EINVAL: | 
|  | dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate " | 
|  | "context command.\n"); | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | case COMP_EBADSLT: | 
|  | dev_warn(&udev->dev, "WARN: slot not enabled for" | 
|  | "evaluate context command.\n"); | 
|  | case COMP_CTX_STATE: | 
|  | dev_warn(&udev->dev, "WARN: invalid context state for " | 
|  | "evaluate context command.\n"); | 
|  | xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | case COMP_DEV_ERR: | 
|  | dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate " | 
|  | "context command.\n"); | 
|  | ret = -ENODEV; | 
|  | break; | 
|  | case COMP_MEL_ERR: | 
|  | /* Max Exit Latency too large error */ | 
|  | dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | case COMP_SUCCESS: | 
|  | dev_dbg(&udev->dev, "Successful evaluate context command\n"); | 
|  | ret = 0; | 
|  | break; | 
|  | default: | 
|  | xhci_err(xhci, "ERROR: unexpected command completion " | 
|  | "code 0x%x.\n", *cmd_status); | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, | 
|  | struct xhci_container_ctx *in_ctx) | 
|  | { | 
|  | struct xhci_input_control_ctx *ctrl_ctx; | 
|  | u32 valid_add_flags; | 
|  | u32 valid_drop_flags; | 
|  |  | 
|  | ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); | 
|  | /* Ignore the slot flag (bit 0), and the default control endpoint flag | 
|  | * (bit 1).  The default control endpoint is added during the Address | 
|  | * Device command and is never removed until the slot is disabled. | 
|  | */ | 
|  | valid_add_flags = ctrl_ctx->add_flags >> 2; | 
|  | valid_drop_flags = ctrl_ctx->drop_flags >> 2; | 
|  |  | 
|  | /* Use hweight32 to count the number of ones in the add flags, or | 
|  | * number of endpoints added.  Don't count endpoints that are changed | 
|  | * (both added and dropped). | 
|  | */ | 
|  | return hweight32(valid_add_flags) - | 
|  | hweight32(valid_add_flags & valid_drop_flags); | 
|  | } | 
|  |  | 
|  | static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, | 
|  | struct xhci_container_ctx *in_ctx) | 
|  | { | 
|  | struct xhci_input_control_ctx *ctrl_ctx; | 
|  | u32 valid_add_flags; | 
|  | u32 valid_drop_flags; | 
|  |  | 
|  | ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); | 
|  | valid_add_flags = ctrl_ctx->add_flags >> 2; | 
|  | valid_drop_flags = ctrl_ctx->drop_flags >> 2; | 
|  |  | 
|  | return hweight32(valid_drop_flags) - | 
|  | hweight32(valid_add_flags & valid_drop_flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to reserve the new number of endpoints before the configure endpoint | 
|  | * command completes.  We can't subtract the dropped endpoints from the number | 
|  | * of active endpoints until the command completes because we can oversubscribe | 
|  | * the host in this case: | 
|  | * | 
|  | *  - the first configure endpoint command drops more endpoints than it adds | 
|  | *  - a second configure endpoint command that adds more endpoints is queued | 
|  | *  - the first configure endpoint command fails, so the config is unchanged | 
|  | *  - the second command may succeed, even though there isn't enough resources | 
|  | * | 
|  | * Must be called with xhci->lock held. | 
|  | */ | 
|  | static int xhci_reserve_host_resources(struct xhci_hcd *xhci, | 
|  | struct xhci_container_ctx *in_ctx) | 
|  | { | 
|  | u32 added_eps; | 
|  |  | 
|  | added_eps = xhci_count_num_new_endpoints(xhci, in_ctx); | 
|  | if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { | 
|  | xhci_dbg(xhci, "Not enough ep ctxs: " | 
|  | "%u active, need to add %u, limit is %u.\n", | 
|  | xhci->num_active_eps, added_eps, | 
|  | xhci->limit_active_eps); | 
|  | return -ENOMEM; | 
|  | } | 
|  | xhci->num_active_eps += added_eps; | 
|  | xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps, | 
|  | xhci->num_active_eps); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The configure endpoint was failed by the xHC for some other reason, so we | 
|  | * need to revert the resources that failed configuration would have used. | 
|  | * | 
|  | * Must be called with xhci->lock held. | 
|  | */ | 
|  | static void xhci_free_host_resources(struct xhci_hcd *xhci, | 
|  | struct xhci_container_ctx *in_ctx) | 
|  | { | 
|  | u32 num_failed_eps; | 
|  |  | 
|  | num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx); | 
|  | xhci->num_active_eps -= num_failed_eps; | 
|  | xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n", | 
|  | num_failed_eps, | 
|  | xhci->num_active_eps); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now that the command has completed, clean up the active endpoint count by | 
|  | * subtracting out the endpoints that were dropped (but not changed). | 
|  | * | 
|  | * Must be called with xhci->lock held. | 
|  | */ | 
|  | static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, | 
|  | struct xhci_container_ctx *in_ctx) | 
|  | { | 
|  | u32 num_dropped_eps; | 
|  |  | 
|  | num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx); | 
|  | xhci->num_active_eps -= num_dropped_eps; | 
|  | if (num_dropped_eps) | 
|  | xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n", | 
|  | num_dropped_eps, | 
|  | xhci->num_active_eps); | 
|  | } | 
|  |  | 
|  | unsigned int xhci_get_block_size(struct usb_device *udev) | 
|  | { | 
|  | switch (udev->speed) { | 
|  | case USB_SPEED_LOW: | 
|  | case USB_SPEED_FULL: | 
|  | return FS_BLOCK; | 
|  | case USB_SPEED_HIGH: | 
|  | return HS_BLOCK; | 
|  | case USB_SPEED_SUPER: | 
|  | return SS_BLOCK; | 
|  | case USB_SPEED_UNKNOWN: | 
|  | case USB_SPEED_WIRELESS: | 
|  | default: | 
|  | /* Should never happen */ | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) | 
|  | { | 
|  | if (interval_bw->overhead[LS_OVERHEAD_TYPE]) | 
|  | return LS_OVERHEAD; | 
|  | if (interval_bw->overhead[FS_OVERHEAD_TYPE]) | 
|  | return FS_OVERHEAD; | 
|  | return HS_OVERHEAD; | 
|  | } | 
|  |  | 
|  | /* If we are changing a LS/FS device under a HS hub, | 
|  | * make sure (if we are activating a new TT) that the HS bus has enough | 
|  | * bandwidth for this new TT. | 
|  | */ | 
|  | static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, | 
|  | struct xhci_virt_device *virt_dev, | 
|  | int old_active_eps) | 
|  | { | 
|  | struct xhci_interval_bw_table *bw_table; | 
|  | struct xhci_tt_bw_info *tt_info; | 
|  |  | 
|  | /* Find the bandwidth table for the root port this TT is attached to. */ | 
|  | bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; | 
|  | tt_info = virt_dev->tt_info; | 
|  | /* If this TT already had active endpoints, the bandwidth for this TT | 
|  | * has already been added.  Removing all periodic endpoints (and thus | 
|  | * making the TT enactive) will only decrease the bandwidth used. | 
|  | */ | 
|  | if (old_active_eps) | 
|  | return 0; | 
|  | if (old_active_eps == 0 && tt_info->active_eps != 0) { | 
|  | if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) | 
|  | return -ENOMEM; | 
|  | return 0; | 
|  | } | 
|  | /* Not sure why we would have no new active endpoints... | 
|  | * | 
|  | * Maybe because of an Evaluate Context change for a hub update or a | 
|  | * control endpoint 0 max packet size change? | 
|  | * FIXME: skip the bandwidth calculation in that case. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int xhci_check_ss_bw(struct xhci_hcd *xhci, | 
|  | struct xhci_virt_device *virt_dev) | 
|  | { | 
|  | unsigned int bw_reserved; | 
|  |  | 
|  | bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); | 
|  | if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); | 
|  | if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This algorithm is a very conservative estimate of the worst-case scheduling | 
|  | * scenario for any one interval.  The hardware dynamically schedules the | 
|  | * packets, so we can't tell which microframe could be the limiting factor in | 
|  | * the bandwidth scheduling.  This only takes into account periodic endpoints. | 
|  | * | 
|  | * Obviously, we can't solve an NP complete problem to find the minimum worst | 
|  | * case scenario.  Instead, we come up with an estimate that is no less than | 
|  | * the worst case bandwidth used for any one microframe, but may be an | 
|  | * over-estimate. | 
|  | * | 
|  | * We walk the requirements for each endpoint by interval, starting with the | 
|  | * smallest interval, and place packets in the schedule where there is only one | 
|  | * possible way to schedule packets for that interval.  In order to simplify | 
|  | * this algorithm, we record the largest max packet size for each interval, and | 
|  | * assume all packets will be that size. | 
|  | * | 
|  | * For interval 0, we obviously must schedule all packets for each interval. | 
|  | * The bandwidth for interval 0 is just the amount of data to be transmitted | 
|  | * (the sum of all max ESIT payload sizes, plus any overhead per packet times | 
|  | * the number of packets). | 
|  | * | 
|  | * For interval 1, we have two possible microframes to schedule those packets | 
|  | * in.  For this algorithm, if we can schedule the same number of packets for | 
|  | * each possible scheduling opportunity (each microframe), we will do so.  The | 
|  | * remaining number of packets will be saved to be transmitted in the gaps in | 
|  | * the next interval's scheduling sequence. | 
|  | * | 
|  | * As we move those remaining packets to be scheduled with interval 2 packets, | 
|  | * we have to double the number of remaining packets to transmit.  This is | 
|  | * because the intervals are actually powers of 2, and we would be transmitting | 
|  | * the previous interval's packets twice in this interval.  We also have to be | 
|  | * sure that when we look at the largest max packet size for this interval, we | 
|  | * also look at the largest max packet size for the remaining packets and take | 
|  | * the greater of the two. | 
|  | * | 
|  | * The algorithm continues to evenly distribute packets in each scheduling | 
|  | * opportunity, and push the remaining packets out, until we get to the last | 
|  | * interval.  Then those packets and their associated overhead are just added | 
|  | * to the bandwidth used. | 
|  | */ | 
|  | static int xhci_check_bw_table(struct xhci_hcd *xhci, | 
|  | struct xhci_virt_device *virt_dev, | 
|  | int old_active_eps) | 
|  | { | 
|  | unsigned int bw_reserved; | 
|  | unsigned int max_bandwidth; | 
|  | unsigned int bw_used; | 
|  | unsigned int block_size; | 
|  | struct xhci_interval_bw_table *bw_table; | 
|  | unsigned int packet_size = 0; | 
|  | unsigned int overhead = 0; | 
|  | unsigned int packets_transmitted = 0; | 
|  | unsigned int packets_remaining = 0; | 
|  | unsigned int i; | 
|  |  | 
|  | if (virt_dev->udev->speed == USB_SPEED_SUPER) | 
|  | return xhci_check_ss_bw(xhci, virt_dev); | 
|  |  | 
|  | if (virt_dev->udev->speed == USB_SPEED_HIGH) { | 
|  | max_bandwidth = HS_BW_LIMIT; | 
|  | /* Convert percent of bus BW reserved to blocks reserved */ | 
|  | bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); | 
|  | } else { | 
|  | max_bandwidth = FS_BW_LIMIT; | 
|  | bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); | 
|  | } | 
|  |  | 
|  | bw_table = virt_dev->bw_table; | 
|  | /* We need to translate the max packet size and max ESIT payloads into | 
|  | * the units the hardware uses. | 
|  | */ | 
|  | block_size = xhci_get_block_size(virt_dev->udev); | 
|  |  | 
|  | /* If we are manipulating a LS/FS device under a HS hub, double check | 
|  | * that the HS bus has enough bandwidth if we are activing a new TT. | 
|  | */ | 
|  | if (virt_dev->tt_info) { | 
|  | xhci_dbg(xhci, "Recalculating BW for rootport %u\n", | 
|  | virt_dev->real_port); | 
|  | if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { | 
|  | xhci_warn(xhci, "Not enough bandwidth on HS bus for " | 
|  | "newly activated TT.\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n", | 
|  | virt_dev->tt_info->slot_id, | 
|  | virt_dev->tt_info->ttport); | 
|  | } else { | 
|  | xhci_dbg(xhci, "Recalculating BW for rootport %u\n", | 
|  | virt_dev->real_port); | 
|  | } | 
|  |  | 
|  | /* Add in how much bandwidth will be used for interval zero, or the | 
|  | * rounded max ESIT payload + number of packets * largest overhead. | 
|  | */ | 
|  | bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + | 
|  | bw_table->interval_bw[0].num_packets * | 
|  | xhci_get_largest_overhead(&bw_table->interval_bw[0]); | 
|  |  | 
|  | for (i = 1; i < XHCI_MAX_INTERVAL; i++) { | 
|  | unsigned int bw_added; | 
|  | unsigned int largest_mps; | 
|  | unsigned int interval_overhead; | 
|  |  | 
|  | /* | 
|  | * How many packets could we transmit in this interval? | 
|  | * If packets didn't fit in the previous interval, we will need | 
|  | * to transmit that many packets twice within this interval. | 
|  | */ | 
|  | packets_remaining = 2 * packets_remaining + | 
|  | bw_table->interval_bw[i].num_packets; | 
|  |  | 
|  | /* Find the largest max packet size of this or the previous | 
|  | * interval. | 
|  | */ | 
|  | if (list_empty(&bw_table->interval_bw[i].endpoints)) | 
|  | largest_mps = 0; | 
|  | else { | 
|  | struct xhci_virt_ep *virt_ep; | 
|  | struct list_head *ep_entry; | 
|  |  | 
|  | ep_entry = bw_table->interval_bw[i].endpoints.next; | 
|  | virt_ep = list_entry(ep_entry, | 
|  | struct xhci_virt_ep, bw_endpoint_list); | 
|  | /* Convert to blocks, rounding up */ | 
|  | largest_mps = DIV_ROUND_UP( | 
|  | virt_ep->bw_info.max_packet_size, | 
|  | block_size); | 
|  | } | 
|  | if (largest_mps > packet_size) | 
|  | packet_size = largest_mps; | 
|  |  | 
|  | /* Use the larger overhead of this or the previous interval. */ | 
|  | interval_overhead = xhci_get_largest_overhead( | 
|  | &bw_table->interval_bw[i]); | 
|  | if (interval_overhead > overhead) | 
|  | overhead = interval_overhead; | 
|  |  | 
|  | /* How many packets can we evenly distribute across | 
|  | * (1 << (i + 1)) possible scheduling opportunities? | 
|  | */ | 
|  | packets_transmitted = packets_remaining >> (i + 1); | 
|  |  | 
|  | /* Add in the bandwidth used for those scheduled packets */ | 
|  | bw_added = packets_transmitted * (overhead + packet_size); | 
|  |  | 
|  | /* How many packets do we have remaining to transmit? */ | 
|  | packets_remaining = packets_remaining % (1 << (i + 1)); | 
|  |  | 
|  | /* What largest max packet size should those packets have? */ | 
|  | /* If we've transmitted all packets, don't carry over the | 
|  | * largest packet size. | 
|  | */ | 
|  | if (packets_remaining == 0) { | 
|  | packet_size = 0; | 
|  | overhead = 0; | 
|  | } else if (packets_transmitted > 0) { | 
|  | /* Otherwise if we do have remaining packets, and we've | 
|  | * scheduled some packets in this interval, take the | 
|  | * largest max packet size from endpoints with this | 
|  | * interval. | 
|  | */ | 
|  | packet_size = largest_mps; | 
|  | overhead = interval_overhead; | 
|  | } | 
|  | /* Otherwise carry over packet_size and overhead from the last | 
|  | * time we had a remainder. | 
|  | */ | 
|  | bw_used += bw_added; | 
|  | if (bw_used > max_bandwidth) { | 
|  | xhci_warn(xhci, "Not enough bandwidth. " | 
|  | "Proposed: %u, Max: %u\n", | 
|  | bw_used, max_bandwidth); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Ok, we know we have some packets left over after even-handedly | 
|  | * scheduling interval 15.  We don't know which microframes they will | 
|  | * fit into, so we over-schedule and say they will be scheduled every | 
|  | * microframe. | 
|  | */ | 
|  | if (packets_remaining > 0) | 
|  | bw_used += overhead + packet_size; | 
|  |  | 
|  | if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { | 
|  | unsigned int port_index = virt_dev->real_port - 1; | 
|  |  | 
|  | /* OK, we're manipulating a HS device attached to a | 
|  | * root port bandwidth domain.  Include the number of active TTs | 
|  | * in the bandwidth used. | 
|  | */ | 
|  | bw_used += TT_HS_OVERHEAD * | 
|  | xhci->rh_bw[port_index].num_active_tts; | 
|  | } | 
|  |  | 
|  | xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, " | 
|  | "Available: %u " "percent\n", | 
|  | bw_used, max_bandwidth, bw_reserved, | 
|  | (max_bandwidth - bw_used - bw_reserved) * 100 / | 
|  | max_bandwidth); | 
|  |  | 
|  | bw_used += bw_reserved; | 
|  | if (bw_used > max_bandwidth) { | 
|  | xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", | 
|  | bw_used, max_bandwidth); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | bw_table->bw_used = bw_used; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool xhci_is_async_ep(unsigned int ep_type) | 
|  | { | 
|  | return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && | 
|  | ep_type != ISOC_IN_EP && | 
|  | ep_type != INT_IN_EP); | 
|  | } | 
|  |  | 
|  | static bool xhci_is_sync_in_ep(unsigned int ep_type) | 
|  | { | 
|  | return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP); | 
|  | } | 
|  |  | 
|  | static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) | 
|  | { | 
|  | unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); | 
|  |  | 
|  | if (ep_bw->ep_interval == 0) | 
|  | return SS_OVERHEAD_BURST + | 
|  | (ep_bw->mult * ep_bw->num_packets * | 
|  | (SS_OVERHEAD + mps)); | 
|  | return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * | 
|  | (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), | 
|  | 1 << ep_bw->ep_interval); | 
|  |  | 
|  | } | 
|  |  | 
|  | void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, | 
|  | struct xhci_bw_info *ep_bw, | 
|  | struct xhci_interval_bw_table *bw_table, | 
|  | struct usb_device *udev, | 
|  | struct xhci_virt_ep *virt_ep, | 
|  | struct xhci_tt_bw_info *tt_info) | 
|  | { | 
|  | struct xhci_interval_bw	*interval_bw; | 
|  | int normalized_interval; | 
|  |  | 
|  | if (xhci_is_async_ep(ep_bw->type)) | 
|  | return; | 
|  |  | 
|  | if (udev->speed == USB_SPEED_SUPER) { | 
|  | if (xhci_is_sync_in_ep(ep_bw->type)) | 
|  | xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= | 
|  | xhci_get_ss_bw_consumed(ep_bw); | 
|  | else | 
|  | xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= | 
|  | xhci_get_ss_bw_consumed(ep_bw); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* SuperSpeed endpoints never get added to intervals in the table, so | 
|  | * this check is only valid for HS/FS/LS devices. | 
|  | */ | 
|  | if (list_empty(&virt_ep->bw_endpoint_list)) | 
|  | return; | 
|  | /* For LS/FS devices, we need to translate the interval expressed in | 
|  | * microframes to frames. | 
|  | */ | 
|  | if (udev->speed == USB_SPEED_HIGH) | 
|  | normalized_interval = ep_bw->ep_interval; | 
|  | else | 
|  | normalized_interval = ep_bw->ep_interval - 3; | 
|  |  | 
|  | if (normalized_interval == 0) | 
|  | bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; | 
|  | interval_bw = &bw_table->interval_bw[normalized_interval]; | 
|  | interval_bw->num_packets -= ep_bw->num_packets; | 
|  | switch (udev->speed) { | 
|  | case USB_SPEED_LOW: | 
|  | interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; | 
|  | break; | 
|  | case USB_SPEED_FULL: | 
|  | interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; | 
|  | break; | 
|  | case USB_SPEED_HIGH: | 
|  | interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; | 
|  | break; | 
|  | case USB_SPEED_SUPER: | 
|  | case USB_SPEED_UNKNOWN: | 
|  | case USB_SPEED_WIRELESS: | 
|  | /* Should never happen because only LS/FS/HS endpoints will get | 
|  | * added to the endpoint list. | 
|  | */ | 
|  | return; | 
|  | } | 
|  | if (tt_info) | 
|  | tt_info->active_eps -= 1; | 
|  | list_del_init(&virt_ep->bw_endpoint_list); | 
|  | } | 
|  |  | 
|  | static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, | 
|  | struct xhci_bw_info *ep_bw, | 
|  | struct xhci_interval_bw_table *bw_table, | 
|  | struct usb_device *udev, | 
|  | struct xhci_virt_ep *virt_ep, | 
|  | struct xhci_tt_bw_info *tt_info) | 
|  | { | 
|  | struct xhci_interval_bw	*interval_bw; | 
|  | struct xhci_virt_ep *smaller_ep; | 
|  | int normalized_interval; | 
|  |  | 
|  | if (xhci_is_async_ep(ep_bw->type)) | 
|  | return; | 
|  |  | 
|  | if (udev->speed == USB_SPEED_SUPER) { | 
|  | if (xhci_is_sync_in_ep(ep_bw->type)) | 
|  | xhci->devs[udev->slot_id]->bw_table->ss_bw_in += | 
|  | xhci_get_ss_bw_consumed(ep_bw); | 
|  | else | 
|  | xhci->devs[udev->slot_id]->bw_table->ss_bw_out += | 
|  | xhci_get_ss_bw_consumed(ep_bw); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* For LS/FS devices, we need to translate the interval expressed in | 
|  | * microframes to frames. | 
|  | */ | 
|  | if (udev->speed == USB_SPEED_HIGH) | 
|  | normalized_interval = ep_bw->ep_interval; | 
|  | else | 
|  | normalized_interval = ep_bw->ep_interval - 3; | 
|  |  | 
|  | if (normalized_interval == 0) | 
|  | bw_table->interval0_esit_payload += ep_bw->max_esit_payload; | 
|  | interval_bw = &bw_table->interval_bw[normalized_interval]; | 
|  | interval_bw->num_packets += ep_bw->num_packets; | 
|  | switch (udev->speed) { | 
|  | case USB_SPEED_LOW: | 
|  | interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; | 
|  | break; | 
|  | case USB_SPEED_FULL: | 
|  | interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; | 
|  | break; | 
|  | case USB_SPEED_HIGH: | 
|  | interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; | 
|  | break; | 
|  | case USB_SPEED_SUPER: | 
|  | case USB_SPEED_UNKNOWN: | 
|  | case USB_SPEED_WIRELESS: | 
|  | /* Should never happen because only LS/FS/HS endpoints will get | 
|  | * added to the endpoint list. | 
|  | */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (tt_info) | 
|  | tt_info->active_eps += 1; | 
|  | /* Insert the endpoint into the list, largest max packet size first. */ | 
|  | list_for_each_entry(smaller_ep, &interval_bw->endpoints, | 
|  | bw_endpoint_list) { | 
|  | if (ep_bw->max_packet_size >= | 
|  | smaller_ep->bw_info.max_packet_size) { | 
|  | /* Add the new ep before the smaller endpoint */ | 
|  | list_add_tail(&virt_ep->bw_endpoint_list, | 
|  | &smaller_ep->bw_endpoint_list); | 
|  | return; | 
|  | } | 
|  | } | 
|  | /* Add the new endpoint at the end of the list. */ | 
|  | list_add_tail(&virt_ep->bw_endpoint_list, | 
|  | &interval_bw->endpoints); | 
|  | } | 
|  |  | 
|  | void xhci_update_tt_active_eps(struct xhci_hcd *xhci, | 
|  | struct xhci_virt_device *virt_dev, | 
|  | int old_active_eps) | 
|  | { | 
|  | struct xhci_root_port_bw_info *rh_bw_info; | 
|  | if (!virt_dev->tt_info) | 
|  | return; | 
|  |  | 
|  | rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; | 
|  | if (old_active_eps == 0 && | 
|  | virt_dev->tt_info->active_eps != 0) { | 
|  | rh_bw_info->num_active_tts += 1; | 
|  | rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; | 
|  | } else if (old_active_eps != 0 && | 
|  | virt_dev->tt_info->active_eps == 0) { | 
|  | rh_bw_info->num_active_tts -= 1; | 
|  | rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, | 
|  | struct xhci_virt_device *virt_dev, | 
|  | struct xhci_container_ctx *in_ctx) | 
|  | { | 
|  | struct xhci_bw_info ep_bw_info[31]; | 
|  | int i; | 
|  | struct xhci_input_control_ctx *ctrl_ctx; | 
|  | int old_active_eps = 0; | 
|  |  | 
|  | if (virt_dev->tt_info) | 
|  | old_active_eps = virt_dev->tt_info->active_eps; | 
|  |  | 
|  | ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); | 
|  |  | 
|  | for (i = 0; i < 31; i++) { | 
|  | if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) | 
|  | continue; | 
|  |  | 
|  | /* Make a copy of the BW info in case we need to revert this */ | 
|  | memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, | 
|  | sizeof(ep_bw_info[i])); | 
|  | /* Drop the endpoint from the interval table if the endpoint is | 
|  | * being dropped or changed. | 
|  | */ | 
|  | if (EP_IS_DROPPED(ctrl_ctx, i)) | 
|  | xhci_drop_ep_from_interval_table(xhci, | 
|  | &virt_dev->eps[i].bw_info, | 
|  | virt_dev->bw_table, | 
|  | virt_dev->udev, | 
|  | &virt_dev->eps[i], | 
|  | virt_dev->tt_info); | 
|  | } | 
|  | /* Overwrite the information stored in the endpoints' bw_info */ | 
|  | xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); | 
|  | for (i = 0; i < 31; i++) { | 
|  | /* Add any changed or added endpoints to the interval table */ | 
|  | if (EP_IS_ADDED(ctrl_ctx, i)) | 
|  | xhci_add_ep_to_interval_table(xhci, | 
|  | &virt_dev->eps[i].bw_info, | 
|  | virt_dev->bw_table, | 
|  | virt_dev->udev, | 
|  | &virt_dev->eps[i], | 
|  | virt_dev->tt_info); | 
|  | } | 
|  |  | 
|  | if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { | 
|  | /* Ok, this fits in the bandwidth we have. | 
|  | * Update the number of active TTs. | 
|  | */ | 
|  | xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* We don't have enough bandwidth for this, revert the stored info. */ | 
|  | for (i = 0; i < 31; i++) { | 
|  | if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) | 
|  | continue; | 
|  |  | 
|  | /* Drop the new copies of any added or changed endpoints from | 
|  | * the interval table. | 
|  | */ | 
|  | if (EP_IS_ADDED(ctrl_ctx, i)) { | 
|  | xhci_drop_ep_from_interval_table(xhci, | 
|  | &virt_dev->eps[i].bw_info, | 
|  | virt_dev->bw_table, | 
|  | virt_dev->udev, | 
|  | &virt_dev->eps[i], | 
|  | virt_dev->tt_info); | 
|  | } | 
|  | /* Revert the endpoint back to its old information */ | 
|  | memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], | 
|  | sizeof(ep_bw_info[i])); | 
|  | /* Add any changed or dropped endpoints back into the table */ | 
|  | if (EP_IS_DROPPED(ctrl_ctx, i)) | 
|  | xhci_add_ep_to_interval_table(xhci, | 
|  | &virt_dev->eps[i].bw_info, | 
|  | virt_dev->bw_table, | 
|  | virt_dev->udev, | 
|  | &virt_dev->eps[i], | 
|  | virt_dev->tt_info); | 
|  | } | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Issue a configure endpoint command or evaluate context command | 
|  | * and wait for it to finish. | 
|  | */ | 
|  | static int xhci_configure_endpoint(struct xhci_hcd *xhci, | 
|  | struct usb_device *udev, | 
|  | struct xhci_command *command, | 
|  | bool ctx_change, bool must_succeed) | 
|  | { | 
|  | int ret; | 
|  | int timeleft; | 
|  | unsigned long flags; | 
|  | struct xhci_container_ctx *in_ctx; | 
|  | struct completion *cmd_completion; | 
|  | u32 *cmd_status; | 
|  | struct xhci_virt_device *virt_dev; | 
|  |  | 
|  | spin_lock_irqsave(&xhci->lock, flags); | 
|  | virt_dev = xhci->devs[udev->slot_id]; | 
|  |  | 
|  | if (command) | 
|  | in_ctx = command->in_ctx; | 
|  | else | 
|  | in_ctx = virt_dev->in_ctx; | 
|  |  | 
|  | if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && | 
|  | xhci_reserve_host_resources(xhci, in_ctx)) { | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  | xhci_warn(xhci, "Not enough host resources, " | 
|  | "active endpoint contexts = %u\n", | 
|  | xhci->num_active_eps); | 
|  | return -ENOMEM; | 
|  | } | 
|  | if ((xhci->quirks & XHCI_SW_BW_CHECKING) && | 
|  | xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) { | 
|  | if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) | 
|  | xhci_free_host_resources(xhci, in_ctx); | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  | xhci_warn(xhci, "Not enough bandwidth\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (command) { | 
|  | cmd_completion = command->completion; | 
|  | cmd_status = &command->status; | 
|  | command->command_trb = xhci->cmd_ring->enqueue; | 
|  |  | 
|  | /* Enqueue pointer can be left pointing to the link TRB, | 
|  | * we must handle that | 
|  | */ | 
|  | if (TRB_TYPE_LINK_LE32(command->command_trb->link.control)) | 
|  | command->command_trb = | 
|  | xhci->cmd_ring->enq_seg->next->trbs; | 
|  |  | 
|  | list_add_tail(&command->cmd_list, &virt_dev->cmd_list); | 
|  | } else { | 
|  | cmd_completion = &virt_dev->cmd_completion; | 
|  | cmd_status = &virt_dev->cmd_status; | 
|  | } | 
|  | init_completion(cmd_completion); | 
|  |  | 
|  | if (!ctx_change) | 
|  | ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma, | 
|  | udev->slot_id, must_succeed); | 
|  | else | 
|  | ret = xhci_queue_evaluate_context(xhci, in_ctx->dma, | 
|  | udev->slot_id); | 
|  | if (ret < 0) { | 
|  | if (command) | 
|  | list_del(&command->cmd_list); | 
|  | if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) | 
|  | xhci_free_host_resources(xhci, in_ctx); | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  | xhci_dbg(xhci, "FIXME allocate a new ring segment\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | xhci_ring_cmd_db(xhci); | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  |  | 
|  | /* Wait for the configure endpoint command to complete */ | 
|  | timeleft = wait_for_completion_interruptible_timeout( | 
|  | cmd_completion, | 
|  | USB_CTRL_SET_TIMEOUT); | 
|  | if (timeleft <= 0) { | 
|  | xhci_warn(xhci, "%s while waiting for %s command\n", | 
|  | timeleft == 0 ? "Timeout" : "Signal", | 
|  | ctx_change == 0 ? | 
|  | "configure endpoint" : | 
|  | "evaluate context"); | 
|  | /* FIXME cancel the configure endpoint command */ | 
|  | return -ETIME; | 
|  | } | 
|  |  | 
|  | if (!ctx_change) | 
|  | ret = xhci_configure_endpoint_result(xhci, udev, cmd_status); | 
|  | else | 
|  | ret = xhci_evaluate_context_result(xhci, udev, cmd_status); | 
|  |  | 
|  | if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { | 
|  | spin_lock_irqsave(&xhci->lock, flags); | 
|  | /* If the command failed, remove the reserved resources. | 
|  | * Otherwise, clean up the estimate to include dropped eps. | 
|  | */ | 
|  | if (ret) | 
|  | xhci_free_host_resources(xhci, in_ctx); | 
|  | else | 
|  | xhci_finish_resource_reservation(xhci, in_ctx); | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Called after one or more calls to xhci_add_endpoint() or | 
|  | * xhci_drop_endpoint().  If this call fails, the USB core is expected | 
|  | * to call xhci_reset_bandwidth(). | 
|  | * | 
|  | * Since we are in the middle of changing either configuration or | 
|  | * installing a new alt setting, the USB core won't allow URBs to be | 
|  | * enqueued for any endpoint on the old config or interface.  Nothing | 
|  | * else should be touching the xhci->devs[slot_id] structure, so we | 
|  | * don't need to take the xhci->lock for manipulating that. | 
|  | */ | 
|  | int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) | 
|  | { | 
|  | int i; | 
|  | int ret = 0; | 
|  | struct xhci_hcd *xhci; | 
|  | struct xhci_virt_device	*virt_dev; | 
|  | struct xhci_input_control_ctx *ctrl_ctx; | 
|  | struct xhci_slot_ctx *slot_ctx; | 
|  |  | 
|  | ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); | 
|  | if (ret <= 0) | 
|  | return ret; | 
|  | xhci = hcd_to_xhci(hcd); | 
|  | if (xhci->xhc_state & XHCI_STATE_DYING) | 
|  | return -ENODEV; | 
|  |  | 
|  | xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); | 
|  | virt_dev = xhci->devs[udev->slot_id]; | 
|  |  | 
|  | /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ | 
|  | ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); | 
|  | ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); | 
|  | ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); | 
|  | ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); | 
|  |  | 
|  | /* Don't issue the command if there's no endpoints to update. */ | 
|  | if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && | 
|  | ctrl_ctx->drop_flags == 0) | 
|  | return 0; | 
|  |  | 
|  | xhci_dbg(xhci, "New Input Control Context:\n"); | 
|  | slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); | 
|  | xhci_dbg_ctx(xhci, virt_dev->in_ctx, | 
|  | LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); | 
|  |  | 
|  | ret = xhci_configure_endpoint(xhci, udev, NULL, | 
|  | false, false); | 
|  | if (ret) { | 
|  | /* Callee should call reset_bandwidth() */ | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); | 
|  | xhci_dbg_ctx(xhci, virt_dev->out_ctx, | 
|  | LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); | 
|  |  | 
|  | /* Free any rings that were dropped, but not changed. */ | 
|  | for (i = 1; i < 31; ++i) { | 
|  | if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && | 
|  | !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) | 
|  | xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); | 
|  | } | 
|  | xhci_zero_in_ctx(xhci, virt_dev); | 
|  | /* | 
|  | * Install any rings for completely new endpoints or changed endpoints, | 
|  | * and free or cache any old rings from changed endpoints. | 
|  | */ | 
|  | for (i = 1; i < 31; ++i) { | 
|  | if (!virt_dev->eps[i].new_ring) | 
|  | continue; | 
|  | /* Only cache or free the old ring if it exists. | 
|  | * It may not if this is the first add of an endpoint. | 
|  | */ | 
|  | if (virt_dev->eps[i].ring) { | 
|  | xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); | 
|  | } | 
|  | virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; | 
|  | virt_dev->eps[i].new_ring = NULL; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) | 
|  | { | 
|  | struct xhci_hcd *xhci; | 
|  | struct xhci_virt_device	*virt_dev; | 
|  | int i, ret; | 
|  |  | 
|  | ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); | 
|  | if (ret <= 0) | 
|  | return; | 
|  | xhci = hcd_to_xhci(hcd); | 
|  |  | 
|  | xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); | 
|  | virt_dev = xhci->devs[udev->slot_id]; | 
|  | /* Free any rings allocated for added endpoints */ | 
|  | for (i = 0; i < 31; ++i) { | 
|  | if (virt_dev->eps[i].new_ring) { | 
|  | xhci_ring_free(xhci, virt_dev->eps[i].new_ring); | 
|  | virt_dev->eps[i].new_ring = NULL; | 
|  | } | 
|  | } | 
|  | xhci_zero_in_ctx(xhci, virt_dev); | 
|  | } | 
|  |  | 
|  | static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, | 
|  | struct xhci_container_ctx *in_ctx, | 
|  | struct xhci_container_ctx *out_ctx, | 
|  | u32 add_flags, u32 drop_flags) | 
|  | { | 
|  | struct xhci_input_control_ctx *ctrl_ctx; | 
|  | ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); | 
|  | ctrl_ctx->add_flags = cpu_to_le32(add_flags); | 
|  | ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); | 
|  | xhci_slot_copy(xhci, in_ctx, out_ctx); | 
|  | ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); | 
|  |  | 
|  | xhci_dbg(xhci, "Input Context:\n"); | 
|  | xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); | 
|  | } | 
|  |  | 
|  | static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, | 
|  | unsigned int slot_id, unsigned int ep_index, | 
|  | struct xhci_dequeue_state *deq_state) | 
|  | { | 
|  | struct xhci_container_ctx *in_ctx; | 
|  | struct xhci_ep_ctx *ep_ctx; | 
|  | u32 added_ctxs; | 
|  | dma_addr_t addr; | 
|  |  | 
|  | xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, | 
|  | xhci->devs[slot_id]->out_ctx, ep_index); | 
|  | in_ctx = xhci->devs[slot_id]->in_ctx; | 
|  | ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); | 
|  | addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, | 
|  | deq_state->new_deq_ptr); | 
|  | if (addr == 0) { | 
|  | xhci_warn(xhci, "WARN Cannot submit config ep after " | 
|  | "reset ep command\n"); | 
|  | xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", | 
|  | deq_state->new_deq_seg, | 
|  | deq_state->new_deq_ptr); | 
|  | return; | 
|  | } | 
|  | ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); | 
|  |  | 
|  | added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); | 
|  | xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, | 
|  | xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs); | 
|  | } | 
|  |  | 
|  | void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, | 
|  | struct usb_device *udev, unsigned int ep_index) | 
|  | { | 
|  | struct xhci_dequeue_state deq_state; | 
|  | struct xhci_virt_ep *ep; | 
|  |  | 
|  | xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n"); | 
|  | ep = &xhci->devs[udev->slot_id]->eps[ep_index]; | 
|  | /* We need to move the HW's dequeue pointer past this TD, | 
|  | * or it will attempt to resend it on the next doorbell ring. | 
|  | */ | 
|  | xhci_find_new_dequeue_state(xhci, udev->slot_id, | 
|  | ep_index, ep->stopped_stream, ep->stopped_td, | 
|  | &deq_state); | 
|  |  | 
|  | /* HW with the reset endpoint quirk will use the saved dequeue state to | 
|  | * issue a configure endpoint command later. | 
|  | */ | 
|  | if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { | 
|  | xhci_dbg(xhci, "Queueing new dequeue state\n"); | 
|  | xhci_queue_new_dequeue_state(xhci, udev->slot_id, | 
|  | ep_index, ep->stopped_stream, &deq_state); | 
|  | } else { | 
|  | /* Better hope no one uses the input context between now and the | 
|  | * reset endpoint completion! | 
|  | * XXX: No idea how this hardware will react when stream rings | 
|  | * are enabled. | 
|  | */ | 
|  | xhci_dbg(xhci, "Setting up input context for " | 
|  | "configure endpoint command\n"); | 
|  | xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, | 
|  | ep_index, &deq_state); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Deal with stalled endpoints.  The core should have sent the control message | 
|  | * to clear the halt condition.  However, we need to make the xHCI hardware | 
|  | * reset its sequence number, since a device will expect a sequence number of | 
|  | * zero after the halt condition is cleared. | 
|  | * Context: in_interrupt | 
|  | */ | 
|  | void xhci_endpoint_reset(struct usb_hcd *hcd, | 
|  | struct usb_host_endpoint *ep) | 
|  | { | 
|  | struct xhci_hcd *xhci; | 
|  | struct usb_device *udev; | 
|  | unsigned int ep_index; | 
|  | unsigned long flags; | 
|  | int ret; | 
|  | struct xhci_virt_ep *virt_ep; | 
|  |  | 
|  | xhci = hcd_to_xhci(hcd); | 
|  | udev = (struct usb_device *) ep->hcpriv; | 
|  | /* Called with a root hub endpoint (or an endpoint that wasn't added | 
|  | * with xhci_add_endpoint() | 
|  | */ | 
|  | if (!ep->hcpriv) | 
|  | return; | 
|  | ep_index = xhci_get_endpoint_index(&ep->desc); | 
|  | virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index]; | 
|  | if (!virt_ep->stopped_td) { | 
|  | xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n", | 
|  | ep->desc.bEndpointAddress); | 
|  | return; | 
|  | } | 
|  | if (usb_endpoint_xfer_control(&ep->desc)) { | 
|  | xhci_dbg(xhci, "Control endpoint stall already handled.\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | xhci_dbg(xhci, "Queueing reset endpoint command\n"); | 
|  | spin_lock_irqsave(&xhci->lock, flags); | 
|  | ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index); | 
|  | /* | 
|  | * Can't change the ring dequeue pointer until it's transitioned to the | 
|  | * stopped state, which is only upon a successful reset endpoint | 
|  | * command.  Better hope that last command worked! | 
|  | */ | 
|  | if (!ret) { | 
|  | xhci_cleanup_stalled_ring(xhci, udev, ep_index); | 
|  | kfree(virt_ep->stopped_td); | 
|  | xhci_ring_cmd_db(xhci); | 
|  | } | 
|  | virt_ep->stopped_td = NULL; | 
|  | virt_ep->stopped_trb = NULL; | 
|  | virt_ep->stopped_stream = 0; | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  |  | 
|  | if (ret) | 
|  | xhci_warn(xhci, "FIXME allocate a new ring segment\n"); | 
|  | } | 
|  |  | 
|  | static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, | 
|  | struct usb_device *udev, struct usb_host_endpoint *ep, | 
|  | unsigned int slot_id) | 
|  | { | 
|  | int ret; | 
|  | unsigned int ep_index; | 
|  | unsigned int ep_state; | 
|  |  | 
|  | if (!ep) | 
|  | return -EINVAL; | 
|  | ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); | 
|  | if (ret <= 0) | 
|  | return -EINVAL; | 
|  | if (ep->ss_ep_comp.bmAttributes == 0) { | 
|  | xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" | 
|  | " descriptor for ep 0x%x does not support streams\n", | 
|  | ep->desc.bEndpointAddress); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ep_index = xhci_get_endpoint_index(&ep->desc); | 
|  | ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; | 
|  | if (ep_state & EP_HAS_STREAMS || | 
|  | ep_state & EP_GETTING_STREAMS) { | 
|  | xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " | 
|  | "already has streams set up.\n", | 
|  | ep->desc.bEndpointAddress); | 
|  | xhci_warn(xhci, "Send email to xHCI maintainer and ask for " | 
|  | "dynamic stream context array reallocation.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { | 
|  | xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " | 
|  | "endpoint 0x%x; URBs are pending.\n", | 
|  | ep->desc.bEndpointAddress); | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, | 
|  | unsigned int *num_streams, unsigned int *num_stream_ctxs) | 
|  | { | 
|  | unsigned int max_streams; | 
|  |  | 
|  | /* The stream context array size must be a power of two */ | 
|  | *num_stream_ctxs = roundup_pow_of_two(*num_streams); | 
|  | /* | 
|  | * Find out how many primary stream array entries the host controller | 
|  | * supports.  Later we may use secondary stream arrays (similar to 2nd | 
|  | * level page entries), but that's an optional feature for xHCI host | 
|  | * controllers. xHCs must support at least 4 stream IDs. | 
|  | */ | 
|  | max_streams = HCC_MAX_PSA(xhci->hcc_params); | 
|  | if (*num_stream_ctxs > max_streams) { | 
|  | xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", | 
|  | max_streams); | 
|  | *num_stream_ctxs = max_streams; | 
|  | *num_streams = max_streams; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Returns an error code if one of the endpoint already has streams. | 
|  | * This does not change any data structures, it only checks and gathers | 
|  | * information. | 
|  | */ | 
|  | static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, | 
|  | struct usb_device *udev, | 
|  | struct usb_host_endpoint **eps, unsigned int num_eps, | 
|  | unsigned int *num_streams, u32 *changed_ep_bitmask) | 
|  | { | 
|  | unsigned int max_streams; | 
|  | unsigned int endpoint_flag; | 
|  | int i; | 
|  | int ret; | 
|  |  | 
|  | for (i = 0; i < num_eps; i++) { | 
|  | ret = xhci_check_streams_endpoint(xhci, udev, | 
|  | eps[i], udev->slot_id); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | max_streams = USB_SS_MAX_STREAMS( | 
|  | eps[i]->ss_ep_comp.bmAttributes); | 
|  | if (max_streams < (*num_streams - 1)) { | 
|  | xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", | 
|  | eps[i]->desc.bEndpointAddress, | 
|  | max_streams); | 
|  | *num_streams = max_streams+1; | 
|  | } | 
|  |  | 
|  | endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); | 
|  | if (*changed_ep_bitmask & endpoint_flag) | 
|  | return -EINVAL; | 
|  | *changed_ep_bitmask |= endpoint_flag; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, | 
|  | struct usb_device *udev, | 
|  | struct usb_host_endpoint **eps, unsigned int num_eps) | 
|  | { | 
|  | u32 changed_ep_bitmask = 0; | 
|  | unsigned int slot_id; | 
|  | unsigned int ep_index; | 
|  | unsigned int ep_state; | 
|  | int i; | 
|  |  | 
|  | slot_id = udev->slot_id; | 
|  | if (!xhci->devs[slot_id]) | 
|  | return 0; | 
|  |  | 
|  | for (i = 0; i < num_eps; i++) { | 
|  | ep_index = xhci_get_endpoint_index(&eps[i]->desc); | 
|  | ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; | 
|  | /* Are streams already being freed for the endpoint? */ | 
|  | if (ep_state & EP_GETTING_NO_STREAMS) { | 
|  | xhci_warn(xhci, "WARN Can't disable streams for " | 
|  | "endpoint 0x%x\n, " | 
|  | "streams are being disabled already.", | 
|  | eps[i]->desc.bEndpointAddress); | 
|  | return 0; | 
|  | } | 
|  | /* Are there actually any streams to free? */ | 
|  | if (!(ep_state & EP_HAS_STREAMS) && | 
|  | !(ep_state & EP_GETTING_STREAMS)) { | 
|  | xhci_warn(xhci, "WARN Can't disable streams for " | 
|  | "endpoint 0x%x\n, " | 
|  | "streams are already disabled!", | 
|  | eps[i]->desc.bEndpointAddress); | 
|  | xhci_warn(xhci, "WARN xhci_free_streams() called " | 
|  | "with non-streams endpoint\n"); | 
|  | return 0; | 
|  | } | 
|  | changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); | 
|  | } | 
|  | return changed_ep_bitmask; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The USB device drivers use this function (though the HCD interface in USB | 
|  | * core) to prepare a set of bulk endpoints to use streams.  Streams are used to | 
|  | * coordinate mass storage command queueing across multiple endpoints (basically | 
|  | * a stream ID == a task ID). | 
|  | * | 
|  | * Setting up streams involves allocating the same size stream context array | 
|  | * for each endpoint and issuing a configure endpoint command for all endpoints. | 
|  | * | 
|  | * Don't allow the call to succeed if one endpoint only supports one stream | 
|  | * (which means it doesn't support streams at all). | 
|  | * | 
|  | * Drivers may get less stream IDs than they asked for, if the host controller | 
|  | * hardware or endpoints claim they can't support the number of requested | 
|  | * stream IDs. | 
|  | */ | 
|  | int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, | 
|  | struct usb_host_endpoint **eps, unsigned int num_eps, | 
|  | unsigned int num_streams, gfp_t mem_flags) | 
|  | { | 
|  | int i, ret; | 
|  | struct xhci_hcd *xhci; | 
|  | struct xhci_virt_device *vdev; | 
|  | struct xhci_command *config_cmd; | 
|  | unsigned int ep_index; | 
|  | unsigned int num_stream_ctxs; | 
|  | unsigned long flags; | 
|  | u32 changed_ep_bitmask = 0; | 
|  |  | 
|  | if (!eps) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Add one to the number of streams requested to account for | 
|  | * stream 0 that is reserved for xHCI usage. | 
|  | */ | 
|  | num_streams += 1; | 
|  | xhci = hcd_to_xhci(hcd); | 
|  | xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", | 
|  | num_streams); | 
|  |  | 
|  | config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); | 
|  | if (!config_cmd) { | 
|  | xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Check to make sure all endpoints are not already configured for | 
|  | * streams.  While we're at it, find the maximum number of streams that | 
|  | * all the endpoints will support and check for duplicate endpoints. | 
|  | */ | 
|  | spin_lock_irqsave(&xhci->lock, flags); | 
|  | ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, | 
|  | num_eps, &num_streams, &changed_ep_bitmask); | 
|  | if (ret < 0) { | 
|  | xhci_free_command(xhci, config_cmd); | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  | return ret; | 
|  | } | 
|  | if (num_streams <= 1) { | 
|  | xhci_warn(xhci, "WARN: endpoints can't handle " | 
|  | "more than one stream.\n"); | 
|  | xhci_free_command(xhci, config_cmd); | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  | return -EINVAL; | 
|  | } | 
|  | vdev = xhci->devs[udev->slot_id]; | 
|  | /* Mark each endpoint as being in transition, so | 
|  | * xhci_urb_enqueue() will reject all URBs. | 
|  | */ | 
|  | for (i = 0; i < num_eps; i++) { | 
|  | ep_index = xhci_get_endpoint_index(&eps[i]->desc); | 
|  | vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; | 
|  | } | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  |  | 
|  | /* Setup internal data structures and allocate HW data structures for | 
|  | * streams (but don't install the HW structures in the input context | 
|  | * until we're sure all memory allocation succeeded). | 
|  | */ | 
|  | xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); | 
|  | xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", | 
|  | num_stream_ctxs, num_streams); | 
|  |  | 
|  | for (i = 0; i < num_eps; i++) { | 
|  | ep_index = xhci_get_endpoint_index(&eps[i]->desc); | 
|  | vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, | 
|  | num_stream_ctxs, | 
|  | num_streams, mem_flags); | 
|  | if (!vdev->eps[ep_index].stream_info) | 
|  | goto cleanup; | 
|  | /* Set maxPstreams in endpoint context and update deq ptr to | 
|  | * point to stream context array. FIXME | 
|  | */ | 
|  | } | 
|  |  | 
|  | /* Set up the input context for a configure endpoint command. */ | 
|  | for (i = 0; i < num_eps; i++) { | 
|  | struct xhci_ep_ctx *ep_ctx; | 
|  |  | 
|  | ep_index = xhci_get_endpoint_index(&eps[i]->desc); | 
|  | ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); | 
|  |  | 
|  | xhci_endpoint_copy(xhci, config_cmd->in_ctx, | 
|  | vdev->out_ctx, ep_index); | 
|  | xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, | 
|  | vdev->eps[ep_index].stream_info); | 
|  | } | 
|  | /* Tell the HW to drop its old copy of the endpoint context info | 
|  | * and add the updated copy from the input context. | 
|  | */ | 
|  | xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, | 
|  | vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask); | 
|  |  | 
|  | /* Issue and wait for the configure endpoint command */ | 
|  | ret = xhci_configure_endpoint(xhci, udev, config_cmd, | 
|  | false, false); | 
|  |  | 
|  | /* xHC rejected the configure endpoint command for some reason, so we | 
|  | * leave the old ring intact and free our internal streams data | 
|  | * structure. | 
|  | */ | 
|  | if (ret < 0) | 
|  | goto cleanup; | 
|  |  | 
|  | spin_lock_irqsave(&xhci->lock, flags); | 
|  | for (i = 0; i < num_eps; i++) { | 
|  | ep_index = xhci_get_endpoint_index(&eps[i]->desc); | 
|  | vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; | 
|  | xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", | 
|  | udev->slot_id, ep_index); | 
|  | vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; | 
|  | } | 
|  | xhci_free_command(xhci, config_cmd); | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  |  | 
|  | /* Subtract 1 for stream 0, which drivers can't use */ | 
|  | return num_streams - 1; | 
|  |  | 
|  | cleanup: | 
|  | /* If it didn't work, free the streams! */ | 
|  | for (i = 0; i < num_eps; i++) { | 
|  | ep_index = xhci_get_endpoint_index(&eps[i]->desc); | 
|  | xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); | 
|  | vdev->eps[ep_index].stream_info = NULL; | 
|  | /* FIXME Unset maxPstreams in endpoint context and | 
|  | * update deq ptr to point to normal string ring. | 
|  | */ | 
|  | vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; | 
|  | vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; | 
|  | xhci_endpoint_zero(xhci, vdev, eps[i]); | 
|  | } | 
|  | xhci_free_command(xhci, config_cmd); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Transition the endpoint from using streams to being a "normal" endpoint | 
|  | * without streams. | 
|  | * | 
|  | * Modify the endpoint context state, submit a configure endpoint command, | 
|  | * and free all endpoint rings for streams if that completes successfully. | 
|  | */ | 
|  | int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, | 
|  | struct usb_host_endpoint **eps, unsigned int num_eps, | 
|  | gfp_t mem_flags) | 
|  | { | 
|  | int i, ret; | 
|  | struct xhci_hcd *xhci; | 
|  | struct xhci_virt_device *vdev; | 
|  | struct xhci_command *command; | 
|  | unsigned int ep_index; | 
|  | unsigned long flags; | 
|  | u32 changed_ep_bitmask; | 
|  |  | 
|  | xhci = hcd_to_xhci(hcd); | 
|  | vdev = xhci->devs[udev->slot_id]; | 
|  |  | 
|  | /* Set up a configure endpoint command to remove the streams rings */ | 
|  | spin_lock_irqsave(&xhci->lock, flags); | 
|  | changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, | 
|  | udev, eps, num_eps); | 
|  | if (changed_ep_bitmask == 0) { | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Use the xhci_command structure from the first endpoint.  We may have | 
|  | * allocated too many, but the driver may call xhci_free_streams() for | 
|  | * each endpoint it grouped into one call to xhci_alloc_streams(). | 
|  | */ | 
|  | ep_index = xhci_get_endpoint_index(&eps[0]->desc); | 
|  | command = vdev->eps[ep_index].stream_info->free_streams_command; | 
|  | for (i = 0; i < num_eps; i++) { | 
|  | struct xhci_ep_ctx *ep_ctx; | 
|  |  | 
|  | ep_index = xhci_get_endpoint_index(&eps[i]->desc); | 
|  | ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); | 
|  | xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= | 
|  | EP_GETTING_NO_STREAMS; | 
|  |  | 
|  | xhci_endpoint_copy(xhci, command->in_ctx, | 
|  | vdev->out_ctx, ep_index); | 
|  | xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx, | 
|  | &vdev->eps[ep_index]); | 
|  | } | 
|  | xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, | 
|  | vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask); | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  |  | 
|  | /* Issue and wait for the configure endpoint command, | 
|  | * which must succeed. | 
|  | */ | 
|  | ret = xhci_configure_endpoint(xhci, udev, command, | 
|  | false, true); | 
|  |  | 
|  | /* xHC rejected the configure endpoint command for some reason, so we | 
|  | * leave the streams rings intact. | 
|  | */ | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | spin_lock_irqsave(&xhci->lock, flags); | 
|  | for (i = 0; i < num_eps; i++) { | 
|  | ep_index = xhci_get_endpoint_index(&eps[i]->desc); | 
|  | xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); | 
|  | vdev->eps[ep_index].stream_info = NULL; | 
|  | /* FIXME Unset maxPstreams in endpoint context and | 
|  | * update deq ptr to point to normal string ring. | 
|  | */ | 
|  | vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; | 
|  | vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; | 
|  | } | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Deletes endpoint resources for endpoints that were active before a Reset | 
|  | * Device command, or a Disable Slot command.  The Reset Device command leaves | 
|  | * the control endpoint intact, whereas the Disable Slot command deletes it. | 
|  | * | 
|  | * Must be called with xhci->lock held. | 
|  | */ | 
|  | void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, | 
|  | struct xhci_virt_device *virt_dev, bool drop_control_ep) | 
|  | { | 
|  | int i; | 
|  | unsigned int num_dropped_eps = 0; | 
|  | unsigned int drop_flags = 0; | 
|  |  | 
|  | for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { | 
|  | if (virt_dev->eps[i].ring) { | 
|  | drop_flags |= 1 << i; | 
|  | num_dropped_eps++; | 
|  | } | 
|  | } | 
|  | xhci->num_active_eps -= num_dropped_eps; | 
|  | if (num_dropped_eps) | 
|  | xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, " | 
|  | "%u now active.\n", | 
|  | num_dropped_eps, drop_flags, | 
|  | xhci->num_active_eps); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This submits a Reset Device Command, which will set the device state to 0, | 
|  | * set the device address to 0, and disable all the endpoints except the default | 
|  | * control endpoint.  The USB core should come back and call | 
|  | * xhci_address_device(), and then re-set up the configuration.  If this is | 
|  | * called because of a usb_reset_and_verify_device(), then the old alternate | 
|  | * settings will be re-installed through the normal bandwidth allocation | 
|  | * functions. | 
|  | * | 
|  | * Wait for the Reset Device command to finish.  Remove all structures | 
|  | * associated with the endpoints that were disabled.  Clear the input device | 
|  | * structure?  Cache the rings?  Reset the control endpoint 0 max packet size? | 
|  | * | 
|  | * If the virt_dev to be reset does not exist or does not match the udev, | 
|  | * it means the device is lost, possibly due to the xHC restore error and | 
|  | * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to | 
|  | * re-allocate the device. | 
|  | */ | 
|  | int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) | 
|  | { | 
|  | int ret, i; | 
|  | unsigned long flags; | 
|  | struct xhci_hcd *xhci; | 
|  | unsigned int slot_id; | 
|  | struct xhci_virt_device *virt_dev; | 
|  | struct xhci_command *reset_device_cmd; | 
|  | int timeleft; | 
|  | int last_freed_endpoint; | 
|  | struct xhci_slot_ctx *slot_ctx; | 
|  | int old_active_eps = 0; | 
|  |  | 
|  | ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); | 
|  | if (ret <= 0) | 
|  | return ret; | 
|  | xhci = hcd_to_xhci(hcd); | 
|  | slot_id = udev->slot_id; | 
|  | virt_dev = xhci->devs[slot_id]; | 
|  | if (!virt_dev) { | 
|  | xhci_dbg(xhci, "The device to be reset with slot ID %u does " | 
|  | "not exist. Re-allocate the device\n", slot_id); | 
|  | ret = xhci_alloc_dev(hcd, udev); | 
|  | if (ret == 1) | 
|  | return 0; | 
|  | else | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (virt_dev->udev != udev) { | 
|  | /* If the virt_dev and the udev does not match, this virt_dev | 
|  | * may belong to another udev. | 
|  | * Re-allocate the device. | 
|  | */ | 
|  | xhci_dbg(xhci, "The device to be reset with slot ID %u does " | 
|  | "not match the udev. Re-allocate the device\n", | 
|  | slot_id); | 
|  | ret = xhci_alloc_dev(hcd, udev); | 
|  | if (ret == 1) | 
|  | return 0; | 
|  | else | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* If device is not setup, there is no point in resetting it */ | 
|  | slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); | 
|  | if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == | 
|  | SLOT_STATE_DISABLED) | 
|  | return 0; | 
|  |  | 
|  | xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); | 
|  | /* Allocate the command structure that holds the struct completion. | 
|  | * Assume we're in process context, since the normal device reset | 
|  | * process has to wait for the device anyway.  Storage devices are | 
|  | * reset as part of error handling, so use GFP_NOIO instead of | 
|  | * GFP_KERNEL. | 
|  | */ | 
|  | reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); | 
|  | if (!reset_device_cmd) { | 
|  | xhci_dbg(xhci, "Couldn't allocate command structure.\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Attempt to submit the Reset Device command to the command ring */ | 
|  | spin_lock_irqsave(&xhci->lock, flags); | 
|  | reset_device_cmd->command_trb = xhci->cmd_ring->enqueue; | 
|  |  | 
|  | /* Enqueue pointer can be left pointing to the link TRB, | 
|  | * we must handle that | 
|  | */ | 
|  | if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control)) | 
|  | reset_device_cmd->command_trb = | 
|  | xhci->cmd_ring->enq_seg->next->trbs; | 
|  |  | 
|  | list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list); | 
|  | ret = xhci_queue_reset_device(xhci, slot_id); | 
|  | if (ret) { | 
|  | xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); | 
|  | list_del(&reset_device_cmd->cmd_list); | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  | goto command_cleanup; | 
|  | } | 
|  | xhci_ring_cmd_db(xhci); | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  |  | 
|  | /* Wait for the Reset Device command to finish */ | 
|  | timeleft = wait_for_completion_interruptible_timeout( | 
|  | reset_device_cmd->completion, | 
|  | USB_CTRL_SET_TIMEOUT); | 
|  | if (timeleft <= 0) { | 
|  | xhci_warn(xhci, "%s while waiting for reset device command\n", | 
|  | timeleft == 0 ? "Timeout" : "Signal"); | 
|  | spin_lock_irqsave(&xhci->lock, flags); | 
|  | /* The timeout might have raced with the event ring handler, so | 
|  | * only delete from the list if the item isn't poisoned. | 
|  | */ | 
|  | if (reset_device_cmd->cmd_list.next != LIST_POISON1) | 
|  | list_del(&reset_device_cmd->cmd_list); | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  | ret = -ETIME; | 
|  | goto command_cleanup; | 
|  | } | 
|  |  | 
|  | /* The Reset Device command can't fail, according to the 0.95/0.96 spec, | 
|  | * unless we tried to reset a slot ID that wasn't enabled, | 
|  | * or the device wasn't in the addressed or configured state. | 
|  | */ | 
|  | ret = reset_device_cmd->status; | 
|  | switch (ret) { | 
|  | case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ | 
|  | case COMP_CTX_STATE: /* 0.96 completion code for same thing */ | 
|  | xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n", | 
|  | slot_id, | 
|  | xhci_get_slot_state(xhci, virt_dev->out_ctx)); | 
|  | xhci_info(xhci, "Not freeing device rings.\n"); | 
|  | /* Don't treat this as an error.  May change my mind later. */ | 
|  | ret = 0; | 
|  | goto command_cleanup; | 
|  | case COMP_SUCCESS: | 
|  | xhci_dbg(xhci, "Successful reset device command.\n"); | 
|  | break; | 
|  | default: | 
|  | if (xhci_is_vendor_info_code(xhci, ret)) | 
|  | break; | 
|  | xhci_warn(xhci, "Unknown completion code %u for " | 
|  | "reset device command.\n", ret); | 
|  | ret = -EINVAL; | 
|  | goto command_cleanup; | 
|  | } | 
|  |  | 
|  | /* Free up host controller endpoint resources */ | 
|  | if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { | 
|  | spin_lock_irqsave(&xhci->lock, flags); | 
|  | /* Don't delete the default control endpoint resources */ | 
|  | xhci_free_device_endpoint_resources(xhci, virt_dev, false); | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  | } | 
|  |  | 
|  | /* Everything but endpoint 0 is disabled, so free or cache the rings. */ | 
|  | last_freed_endpoint = 1; | 
|  | for (i = 1; i < 31; ++i) { | 
|  | struct xhci_virt_ep *ep = &virt_dev->eps[i]; | 
|  |  | 
|  | if (ep->ep_state & EP_HAS_STREAMS) { | 
|  | xhci_free_stream_info(xhci, ep->stream_info); | 
|  | ep->stream_info = NULL; | 
|  | ep->ep_state &= ~EP_HAS_STREAMS; | 
|  | } | 
|  |  | 
|  | if (ep->ring) { | 
|  | xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); | 
|  | last_freed_endpoint = i; | 
|  | } | 
|  | if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) | 
|  | xhci_drop_ep_from_interval_table(xhci, | 
|  | &virt_dev->eps[i].bw_info, | 
|  | virt_dev->bw_table, | 
|  | udev, | 
|  | &virt_dev->eps[i], | 
|  | virt_dev->tt_info); | 
|  | xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); | 
|  | } | 
|  | /* If necessary, update the number of active TTs on this root port */ | 
|  | xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); | 
|  |  | 
|  | xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); | 
|  | xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); | 
|  | ret = 0; | 
|  |  | 
|  | command_cleanup: | 
|  | xhci_free_command(xhci, reset_device_cmd); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * At this point, the struct usb_device is about to go away, the device has | 
|  | * disconnected, and all traffic has been stopped and the endpoints have been | 
|  | * disabled.  Free any HC data structures associated with that device. | 
|  | */ | 
|  | void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) | 
|  | { | 
|  | struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
|  | struct xhci_virt_device *virt_dev; | 
|  | unsigned long flags; | 
|  | u32 state; | 
|  | int i, ret; | 
|  |  | 
|  | ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); | 
|  | /* If the host is halted due to driver unload, we still need to free the | 
|  | * device. | 
|  | */ | 
|  | if (ret <= 0 && ret != -ENODEV) | 
|  | return; | 
|  |  | 
|  | virt_dev = xhci->devs[udev->slot_id]; | 
|  |  | 
|  | /* Stop any wayward timer functions (which may grab the lock) */ | 
|  | for (i = 0; i < 31; ++i) { | 
|  | virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; | 
|  | del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); | 
|  | } | 
|  |  | 
|  | if (udev->usb2_hw_lpm_enabled) { | 
|  | xhci_set_usb2_hardware_lpm(hcd, udev, 0); | 
|  | udev->usb2_hw_lpm_enabled = 0; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&xhci->lock, flags); | 
|  | /* Don't disable the slot if the host controller is dead. */ | 
|  | state = xhci_readl(xhci, &xhci->op_regs->status); | 
|  | if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || | 
|  | (xhci->xhc_state & XHCI_STATE_HALTED)) { | 
|  | xhci_free_virt_device(xhci, udev->slot_id); | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) { | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  | xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); | 
|  | return; | 
|  | } | 
|  | xhci_ring_cmd_db(xhci); | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  | /* | 
|  | * Event command completion handler will free any data structures | 
|  | * associated with the slot.  XXX Can free sleep? | 
|  | */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Checks if we have enough host controller resources for the default control | 
|  | * endpoint. | 
|  | * | 
|  | * Must be called with xhci->lock held. | 
|  | */ | 
|  | static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) | 
|  | { | 
|  | if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { | 
|  | xhci_dbg(xhci, "Not enough ep ctxs: " | 
|  | "%u active, need to add 1, limit is %u.\n", | 
|  | xhci->num_active_eps, xhci->limit_active_eps); | 
|  | return -ENOMEM; | 
|  | } | 
|  | xhci->num_active_eps += 1; | 
|  | xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n", | 
|  | xhci->num_active_eps); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Returns 0 if the xHC ran out of device slots, the Enable Slot command | 
|  | * timed out, or allocating memory failed.  Returns 1 on success. | 
|  | */ | 
|  | int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) | 
|  | { | 
|  | struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
|  | unsigned long flags; | 
|  | int timeleft; | 
|  | int ret; | 
|  |  | 
|  | spin_lock_irqsave(&xhci->lock, flags); | 
|  | ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0); | 
|  | if (ret) { | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  | xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); | 
|  | return 0; | 
|  | } | 
|  | xhci_ring_cmd_db(xhci); | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  |  | 
|  | /* XXX: how much time for xHC slot assignment? */ | 
|  | timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, | 
|  | USB_CTRL_SET_TIMEOUT); | 
|  | if (timeleft <= 0) { | 
|  | xhci_warn(xhci, "%s while waiting for a slot\n", | 
|  | timeleft == 0 ? "Timeout" : "Signal"); | 
|  | /* FIXME cancel the enable slot request */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!xhci->slot_id) { | 
|  | xhci_err(xhci, "Error while assigning device slot ID\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { | 
|  | spin_lock_irqsave(&xhci->lock, flags); | 
|  | ret = xhci_reserve_host_control_ep_resources(xhci); | 
|  | if (ret) { | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  | xhci_warn(xhci, "Not enough host resources, " | 
|  | "active endpoint contexts = %u\n", | 
|  | xhci->num_active_eps); | 
|  | goto disable_slot; | 
|  | } | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  | } | 
|  | /* Use GFP_NOIO, since this function can be called from | 
|  | * xhci_discover_or_reset_device(), which may be called as part of | 
|  | * mass storage driver error handling. | 
|  | */ | 
|  | if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) { | 
|  | xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); | 
|  | goto disable_slot; | 
|  | } | 
|  | udev->slot_id = xhci->slot_id; | 
|  | /* Is this a LS or FS device under a HS hub? */ | 
|  | /* Hub or peripherial? */ | 
|  | return 1; | 
|  |  | 
|  | disable_slot: | 
|  | /* Disable slot, if we can do it without mem alloc */ | 
|  | spin_lock_irqsave(&xhci->lock, flags); | 
|  | if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) | 
|  | xhci_ring_cmd_db(xhci); | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Issue an Address Device command (which will issue a SetAddress request to | 
|  | * the device). | 
|  | * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so | 
|  | * we should only issue and wait on one address command at the same time. | 
|  | * | 
|  | * We add one to the device address issued by the hardware because the USB core | 
|  | * uses address 1 for the root hubs (even though they're not really devices). | 
|  | */ | 
|  | int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) | 
|  | { | 
|  | unsigned long flags; | 
|  | int timeleft; | 
|  | struct xhci_virt_device *virt_dev; | 
|  | int ret = 0; | 
|  | struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
|  | struct xhci_slot_ctx *slot_ctx; | 
|  | struct xhci_input_control_ctx *ctrl_ctx; | 
|  | u64 temp_64; | 
|  |  | 
|  | if (!udev->slot_id) { | 
|  | xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | virt_dev = xhci->devs[udev->slot_id]; | 
|  |  | 
|  | if (WARN_ON(!virt_dev)) { | 
|  | /* | 
|  | * In plug/unplug torture test with an NEC controller, | 
|  | * a zero-dereference was observed once due to virt_dev = 0. | 
|  | * Print useful debug rather than crash if it is observed again! | 
|  | */ | 
|  | xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", | 
|  | udev->slot_id); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); | 
|  | /* | 
|  | * If this is the first Set Address since device plug-in or | 
|  | * virt_device realloaction after a resume with an xHCI power loss, | 
|  | * then set up the slot context. | 
|  | */ | 
|  | if (!slot_ctx->dev_info) | 
|  | xhci_setup_addressable_virt_dev(xhci, udev); | 
|  | /* Otherwise, update the control endpoint ring enqueue pointer. */ | 
|  | else | 
|  | xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); | 
|  | ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); | 
|  | ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); | 
|  | ctrl_ctx->drop_flags = 0; | 
|  |  | 
|  | xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); | 
|  | xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); | 
|  |  | 
|  | spin_lock_irqsave(&xhci->lock, flags); | 
|  | ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma, | 
|  | udev->slot_id); | 
|  | if (ret) { | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  | xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); | 
|  | return ret; | 
|  | } | 
|  | xhci_ring_cmd_db(xhci); | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  |  | 
|  | /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ | 
|  | timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, | 
|  | USB_CTRL_SET_TIMEOUT); | 
|  | /* FIXME: From section 4.3.4: "Software shall be responsible for timing | 
|  | * the SetAddress() "recovery interval" required by USB and aborting the | 
|  | * command on a timeout. | 
|  | */ | 
|  | if (timeleft <= 0) { | 
|  | xhci_warn(xhci, "%s while waiting for address device command\n", | 
|  | timeleft == 0 ? "Timeout" : "Signal"); | 
|  | /* FIXME cancel the address device command */ | 
|  | return -ETIME; | 
|  | } | 
|  |  | 
|  | switch (virt_dev->cmd_status) { | 
|  | case COMP_CTX_STATE: | 
|  | case COMP_EBADSLT: | 
|  | xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n", | 
|  | udev->slot_id); | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | case COMP_TX_ERR: | 
|  | dev_warn(&udev->dev, "Device not responding to set address.\n"); | 
|  | ret = -EPROTO; | 
|  | break; | 
|  | case COMP_DEV_ERR: | 
|  | dev_warn(&udev->dev, "ERROR: Incompatible device for address " | 
|  | "device command.\n"); | 
|  | ret = -ENODEV; | 
|  | break; | 
|  | case COMP_SUCCESS: | 
|  | xhci_dbg(xhci, "Successful Address Device command\n"); | 
|  | break; | 
|  | default: | 
|  | xhci_err(xhci, "ERROR: unexpected command completion " | 
|  | "code 0x%x.\n", virt_dev->cmd_status); | 
|  | xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); | 
|  | xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  | temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); | 
|  | xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64); | 
|  | xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n", | 
|  | udev->slot_id, | 
|  | &xhci->dcbaa->dev_context_ptrs[udev->slot_id], | 
|  | (unsigned long long) | 
|  | le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); | 
|  | xhci_dbg(xhci, "Output Context DMA address = %#08llx\n", | 
|  | (unsigned long long)virt_dev->out_ctx->dma); | 
|  | xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); | 
|  | xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); | 
|  | xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); | 
|  | xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); | 
|  | /* | 
|  | * USB core uses address 1 for the roothubs, so we add one to the | 
|  | * address given back to us by the HC. | 
|  | */ | 
|  | slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); | 
|  | /* Use kernel assigned address for devices; store xHC assigned | 
|  | * address locally. */ | 
|  | virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK) | 
|  | + 1; | 
|  | /* Zero the input context control for later use */ | 
|  | ctrl_ctx->add_flags = 0; | 
|  | ctrl_ctx->drop_flags = 0; | 
|  |  | 
|  | xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_USB_SUSPEND | 
|  |  | 
|  | /* BESL to HIRD Encoding array for USB2 LPM */ | 
|  | static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, | 
|  | 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; | 
|  |  | 
|  | /* Calculate HIRD/BESL for USB2 PORTPMSC*/ | 
|  | static int xhci_calculate_hird_besl(int u2del, bool use_besl) | 
|  | { | 
|  | int hird; | 
|  |  | 
|  | if (use_besl) { | 
|  | for (hird = 0; hird < 16; hird++) { | 
|  | if (xhci_besl_encoding[hird] >= u2del) | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | if (u2del <= 50) | 
|  | hird = 0; | 
|  | else | 
|  | hird = (u2del - 51) / 75 + 1; | 
|  |  | 
|  | if (hird > 15) | 
|  | hird = 15; | 
|  | } | 
|  |  | 
|  | return hird; | 
|  | } | 
|  |  | 
|  | static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd, | 
|  | struct usb_device *udev) | 
|  | { | 
|  | struct xhci_hcd	*xhci = hcd_to_xhci(hcd); | 
|  | struct dev_info	*dev_info; | 
|  | __le32 __iomem	**port_array; | 
|  | __le32 __iomem	*addr, *pm_addr; | 
|  | u32		temp, dev_id; | 
|  | unsigned int	port_num; | 
|  | unsigned long	flags; | 
|  | int		u2del, hird; | 
|  | int		ret; | 
|  |  | 
|  | if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support || | 
|  | !udev->lpm_capable) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* we only support lpm for non-hub device connected to root hub yet */ | 
|  | if (!udev->parent || udev->parent->parent || | 
|  | udev->descriptor.bDeviceClass == USB_CLASS_HUB) | 
|  | return -EINVAL; | 
|  |  | 
|  | spin_lock_irqsave(&xhci->lock, flags); | 
|  |  | 
|  | /* Look for devices in lpm_failed_devs list */ | 
|  | dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 | | 
|  | le16_to_cpu(udev->descriptor.idProduct); | 
|  | list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) { | 
|  | if (dev_info->dev_id == dev_id) { | 
|  | ret = -EINVAL; | 
|  | goto finish; | 
|  | } | 
|  | } | 
|  |  | 
|  | port_array = xhci->usb2_ports; | 
|  | port_num = udev->portnum - 1; | 
|  |  | 
|  | if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) { | 
|  | xhci_dbg(xhci, "invalid port number %d\n", udev->portnum); | 
|  | ret = -EINVAL; | 
|  | goto finish; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Test USB 2.0 software LPM. | 
|  | * FIXME: some xHCI 1.0 hosts may implement a new register to set up | 
|  | * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1 | 
|  | * in the June 2011 errata release. | 
|  | */ | 
|  | xhci_dbg(xhci, "test port %d software LPM\n", port_num); | 
|  | /* | 
|  | * Set L1 Device Slot and HIRD/BESL. | 
|  | * Check device's USB 2.0 extension descriptor to determine whether | 
|  | * HIRD or BESL shoule be used. See USB2.0 LPM errata. | 
|  | */ | 
|  | pm_addr = port_array[port_num] + 1; | 
|  | u2del = HCS_U2_LATENCY(xhci->hcs_params3); | 
|  | if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2)) | 
|  | hird = xhci_calculate_hird_besl(u2del, 1); | 
|  | else | 
|  | hird = xhci_calculate_hird_besl(u2del, 0); | 
|  |  | 
|  | temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird); | 
|  | xhci_writel(xhci, temp, pm_addr); | 
|  |  | 
|  | /* Set port link state to U2(L1) */ | 
|  | addr = port_array[port_num]; | 
|  | xhci_set_link_state(xhci, port_array, port_num, XDEV_U2); | 
|  |  | 
|  | /* wait for ACK */ | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  | msleep(10); | 
|  | spin_lock_irqsave(&xhci->lock, flags); | 
|  |  | 
|  | /* Check L1 Status */ | 
|  | ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125); | 
|  | if (ret != -ETIMEDOUT) { | 
|  | /* enter L1 successfully */ | 
|  | temp = xhci_readl(xhci, addr); | 
|  | xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n", | 
|  | port_num, temp); | 
|  | ret = 0; | 
|  | } else { | 
|  | temp = xhci_readl(xhci, pm_addr); | 
|  | xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n", | 
|  | port_num, temp & PORT_L1S_MASK); | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Resume the port */ | 
|  | xhci_set_link_state(xhci, port_array, port_num, XDEV_U0); | 
|  |  | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  | msleep(10); | 
|  | spin_lock_irqsave(&xhci->lock, flags); | 
|  |  | 
|  | /* Clear PLC */ | 
|  | xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC); | 
|  |  | 
|  | /* Check PORTSC to make sure the device is in the right state */ | 
|  | if (!ret) { | 
|  | temp = xhci_readl(xhci, addr); | 
|  | xhci_dbg(xhci, "resumed port %d status 0x%x\n",	port_num, temp); | 
|  | if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) || | 
|  | (temp & PORT_PLS_MASK) != XDEV_U0) { | 
|  | xhci_dbg(xhci, "port L1 resume fail\n"); | 
|  | ret = -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ret) { | 
|  | /* Insert dev to lpm_failed_devs list */ | 
|  | xhci_warn(xhci, "device LPM test failed, may disconnect and " | 
|  | "re-enumerate\n"); | 
|  | dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC); | 
|  | if (!dev_info) { | 
|  | ret = -ENOMEM; | 
|  | goto finish; | 
|  | } | 
|  | dev_info->dev_id = dev_id; | 
|  | INIT_LIST_HEAD(&dev_info->list); | 
|  | list_add(&dev_info->list, &xhci->lpm_failed_devs); | 
|  | } else { | 
|  | xhci_ring_device(xhci, udev->slot_id); | 
|  | } | 
|  |  | 
|  | finish: | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, | 
|  | struct usb_device *udev, int enable) | 
|  | { | 
|  | struct xhci_hcd	*xhci = hcd_to_xhci(hcd); | 
|  | __le32 __iomem	**port_array; | 
|  | __le32 __iomem	*pm_addr; | 
|  | u32		temp; | 
|  | unsigned int	port_num; | 
|  | unsigned long	flags; | 
|  | int		u2del, hird; | 
|  |  | 
|  | if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support || | 
|  | !udev->lpm_capable) | 
|  | return -EPERM; | 
|  |  | 
|  | if (!udev->parent || udev->parent->parent || | 
|  | udev->descriptor.bDeviceClass == USB_CLASS_HUB) | 
|  | return -EPERM; | 
|  |  | 
|  | if (udev->usb2_hw_lpm_capable != 1) | 
|  | return -EPERM; | 
|  |  | 
|  | spin_lock_irqsave(&xhci->lock, flags); | 
|  |  | 
|  | port_array = xhci->usb2_ports; | 
|  | port_num = udev->portnum - 1; | 
|  | pm_addr = port_array[port_num] + 1; | 
|  | temp = xhci_readl(xhci, pm_addr); | 
|  |  | 
|  | xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", | 
|  | enable ? "enable" : "disable", port_num); | 
|  |  | 
|  | u2del = HCS_U2_LATENCY(xhci->hcs_params3); | 
|  | if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2)) | 
|  | hird = xhci_calculate_hird_besl(u2del, 1); | 
|  | else | 
|  | hird = xhci_calculate_hird_besl(u2del, 0); | 
|  |  | 
|  | if (enable) { | 
|  | temp &= ~PORT_HIRD_MASK; | 
|  | temp |= PORT_HIRD(hird) | PORT_RWE; | 
|  | xhci_writel(xhci, temp, pm_addr); | 
|  | temp = xhci_readl(xhci, pm_addr); | 
|  | temp |= PORT_HLE; | 
|  | xhci_writel(xhci, temp, pm_addr); | 
|  | } else { | 
|  | temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK); | 
|  | xhci_writel(xhci, temp, pm_addr); | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) | 
|  | { | 
|  | struct xhci_hcd	*xhci = hcd_to_xhci(hcd); | 
|  | int		ret; | 
|  |  | 
|  | ret = xhci_usb2_software_lpm_test(hcd, udev); | 
|  | if (!ret) { | 
|  | xhci_dbg(xhci, "software LPM test succeed\n"); | 
|  | if (xhci->hw_lpm_support == 1) { | 
|  | udev->usb2_hw_lpm_capable = 1; | 
|  | ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1); | 
|  | if (!ret) | 
|  | udev->usb2_hw_lpm_enabled = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, | 
|  | struct usb_device *udev, int enable) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_USB_SUSPEND */ | 
|  |  | 
|  | /* Once a hub descriptor is fetched for a device, we need to update the xHC's | 
|  | * internal data structures for the device. | 
|  | */ | 
|  | int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, | 
|  | struct usb_tt *tt, gfp_t mem_flags) | 
|  | { | 
|  | struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
|  | struct xhci_virt_device *vdev; | 
|  | struct xhci_command *config_cmd; | 
|  | struct xhci_input_control_ctx *ctrl_ctx; | 
|  | struct xhci_slot_ctx *slot_ctx; | 
|  | unsigned long flags; | 
|  | unsigned think_time; | 
|  | int ret; | 
|  |  | 
|  | /* Ignore root hubs */ | 
|  | if (!hdev->parent) | 
|  | return 0; | 
|  |  | 
|  | vdev = xhci->devs[hdev->slot_id]; | 
|  | if (!vdev) { | 
|  | xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); | 
|  | if (!config_cmd) { | 
|  | xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&xhci->lock, flags); | 
|  | if (hdev->speed == USB_SPEED_HIGH && | 
|  | xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { | 
|  | xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); | 
|  | xhci_free_command(xhci, config_cmd); | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); | 
|  | ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); | 
|  | ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); | 
|  | slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); | 
|  | slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); | 
|  | if (tt->multi) | 
|  | slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); | 
|  | if (xhci->hci_version > 0x95) { | 
|  | xhci_dbg(xhci, "xHCI version %x needs hub " | 
|  | "TT think time and number of ports\n", | 
|  | (unsigned int) xhci->hci_version); | 
|  | slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); | 
|  | /* Set TT think time - convert from ns to FS bit times. | 
|  | * 0 = 8 FS bit times, 1 = 16 FS bit times, | 
|  | * 2 = 24 FS bit times, 3 = 32 FS bit times. | 
|  | * | 
|  | * xHCI 1.0: this field shall be 0 if the device is not a | 
|  | * High-spped hub. | 
|  | */ | 
|  | think_time = tt->think_time; | 
|  | if (think_time != 0) | 
|  | think_time = (think_time / 666) - 1; | 
|  | if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) | 
|  | slot_ctx->tt_info |= | 
|  | cpu_to_le32(TT_THINK_TIME(think_time)); | 
|  | } else { | 
|  | xhci_dbg(xhci, "xHCI version %x doesn't need hub " | 
|  | "TT think time or number of ports\n", | 
|  | (unsigned int) xhci->hci_version); | 
|  | } | 
|  | slot_ctx->dev_state = 0; | 
|  | spin_unlock_irqrestore(&xhci->lock, flags); | 
|  |  | 
|  | xhci_dbg(xhci, "Set up %s for hub device.\n", | 
|  | (xhci->hci_version > 0x95) ? | 
|  | "configure endpoint" : "evaluate context"); | 
|  | xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); | 
|  | xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); | 
|  |  | 
|  | /* Issue and wait for the configure endpoint or | 
|  | * evaluate context command. | 
|  | */ | 
|  | if (xhci->hci_version > 0x95) | 
|  | ret = xhci_configure_endpoint(xhci, hdev, config_cmd, | 
|  | false, false); | 
|  | else | 
|  | ret = xhci_configure_endpoint(xhci, hdev, config_cmd, | 
|  | true, false); | 
|  |  | 
|  | xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); | 
|  | xhci_dbg_ctx(xhci, vdev->out_ctx, 0); | 
|  |  | 
|  | xhci_free_command(xhci, config_cmd); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int xhci_get_frame(struct usb_hcd *hcd) | 
|  | { | 
|  | struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
|  | /* EHCI mods by the periodic size.  Why? */ | 
|  | return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3; | 
|  | } | 
|  |  | 
|  | int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) | 
|  | { | 
|  | struct xhci_hcd		*xhci; | 
|  | struct device		*dev = hcd->self.controller; | 
|  | int			retval; | 
|  | u32			temp; | 
|  |  | 
|  | hcd->self.sg_tablesize = TRBS_PER_SEGMENT - 2; | 
|  |  | 
|  | if (usb_hcd_is_primary_hcd(hcd)) { | 
|  | xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL); | 
|  | if (!xhci) | 
|  | return -ENOMEM; | 
|  | *((struct xhci_hcd **) hcd->hcd_priv) = xhci; | 
|  | xhci->main_hcd = hcd; | 
|  | /* Mark the first roothub as being USB 2.0. | 
|  | * The xHCI driver will register the USB 3.0 roothub. | 
|  | */ | 
|  | hcd->speed = HCD_USB2; | 
|  | hcd->self.root_hub->speed = USB_SPEED_HIGH; | 
|  | /* | 
|  | * USB 2.0 roothub under xHCI has an integrated TT, | 
|  | * (rate matching hub) as opposed to having an OHCI/UHCI | 
|  | * companion controller. | 
|  | */ | 
|  | hcd->has_tt = 1; | 
|  | } else { | 
|  | /* xHCI private pointer was set in xhci_pci_probe for the second | 
|  | * registered roothub. | 
|  | */ | 
|  | xhci = hcd_to_xhci(hcd); | 
|  | temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params); | 
|  | if (HCC_64BIT_ADDR(temp)) { | 
|  | xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); | 
|  | dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64)); | 
|  | } else { | 
|  | dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32)); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | xhci->cap_regs = hcd->regs; | 
|  | xhci->op_regs = hcd->regs + | 
|  | HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase)); | 
|  | xhci->run_regs = hcd->regs + | 
|  | (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK); | 
|  | /* Cache read-only capability registers */ | 
|  | xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1); | 
|  | xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2); | 
|  | xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3); | 
|  | xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase); | 
|  | xhci->hci_version = HC_VERSION(xhci->hcc_params); | 
|  | xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params); | 
|  | xhci_print_registers(xhci); | 
|  |  | 
|  | get_quirks(dev, xhci); | 
|  |  | 
|  | /* Make sure the HC is halted. */ | 
|  | retval = xhci_halt(xhci); | 
|  | if (retval) | 
|  | goto error; | 
|  |  | 
|  | xhci_dbg(xhci, "Resetting HCD\n"); | 
|  | /* Reset the internal HC memory state and registers. */ | 
|  | retval = xhci_reset(xhci); | 
|  | if (retval) | 
|  | goto error; | 
|  | xhci_dbg(xhci, "Reset complete\n"); | 
|  |  | 
|  | temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params); | 
|  | if (HCC_64BIT_ADDR(temp)) { | 
|  | xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); | 
|  | dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64)); | 
|  | } else { | 
|  | dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32)); | 
|  | } | 
|  |  | 
|  | xhci_dbg(xhci, "Calling HCD init\n"); | 
|  | /* Initialize HCD and host controller data structures. */ | 
|  | retval = xhci_init(hcd); | 
|  | if (retval) | 
|  | goto error; | 
|  | xhci_dbg(xhci, "Called HCD init\n"); | 
|  | return 0; | 
|  | error: | 
|  | kfree(xhci); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | MODULE_DESCRIPTION(DRIVER_DESC); | 
|  | MODULE_AUTHOR(DRIVER_AUTHOR); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | static int __init xhci_hcd_init(void) | 
|  | { | 
|  | int retval; | 
|  |  | 
|  | retval = xhci_register_pci(); | 
|  | if (retval < 0) { | 
|  | printk(KERN_DEBUG "Problem registering PCI driver."); | 
|  | return retval; | 
|  | } | 
|  | /* | 
|  | * Check the compiler generated sizes of structures that must be laid | 
|  | * out in specific ways for hardware access. | 
|  | */ | 
|  | BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); | 
|  | BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); | 
|  | BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); | 
|  | /* xhci_device_control has eight fields, and also | 
|  | * embeds one xhci_slot_ctx and 31 xhci_ep_ctx | 
|  | */ | 
|  | BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); | 
|  | BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); | 
|  | BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); | 
|  | BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8); | 
|  | BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); | 
|  | /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ | 
|  | BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); | 
|  | BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); | 
|  | return 0; | 
|  | } | 
|  | module_init(xhci_hcd_init); | 
|  |  | 
|  | static void __exit xhci_hcd_cleanup(void) | 
|  | { | 
|  | xhci_unregister_pci(); | 
|  | } | 
|  | module_exit(xhci_hcd_cleanup); |