| /* | 
 |  * This file is part of UBIFS. | 
 |  * | 
 |  * Copyright (C) 2006-2008 Nokia Corporation. | 
 |  * Copyright (C) 2006, 2007 University of Szeged, Hungary | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify it | 
 |  * under the terms of the GNU General Public License version 2 as published by | 
 |  * the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, but WITHOUT | 
 |  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 |  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
 |  * more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License along with | 
 |  * this program; if not, write to the Free Software Foundation, Inc., 51 | 
 |  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | 
 |  * | 
 |  * Authors: Artem Bityutskiy (Битюцкий Артём) | 
 |  *          Adrian Hunter | 
 |  *          Zoltan Sogor | 
 |  */ | 
 |  | 
 | /* | 
 |  * This file implements UBIFS I/O subsystem which provides various I/O-related | 
 |  * helper functions (reading/writing/checking/validating nodes) and implements | 
 |  * write-buffering support. Write buffers help to save space which otherwise | 
 |  * would have been wasted for padding to the nearest minimal I/O unit boundary. | 
 |  * Instead, data first goes to the write-buffer and is flushed when the | 
 |  * buffer is full or when it is not used for some time (by timer). This is | 
 |  * similar to the mechanism is used by JFFS2. | 
 |  * | 
 |  * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum | 
 |  * write size (@c->max_write_size). The latter is the maximum amount of bytes | 
 |  * the underlying flash is able to program at a time, and writing in | 
 |  * @c->max_write_size units should presumably be faster. Obviously, | 
 |  * @c->min_io_size <= @c->max_write_size. Write-buffers are of | 
 |  * @c->max_write_size bytes in size for maximum performance. However, when a | 
 |  * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size | 
 |  * boundary) which contains data is written, not the whole write-buffer, | 
 |  * because this is more space-efficient. | 
 |  * | 
 |  * This optimization adds few complications to the code. Indeed, on the one | 
 |  * hand, we want to write in optimal @c->max_write_size bytes chunks, which | 
 |  * also means aligning writes at the @c->max_write_size bytes offsets. On the | 
 |  * other hand, we do not want to waste space when synchronizing the write | 
 |  * buffer, so during synchronization we writes in smaller chunks. And this makes | 
 |  * the next write offset to be not aligned to @c->max_write_size bytes. So the | 
 |  * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned | 
 |  * to @c->max_write_size bytes again. We do this by temporarily shrinking | 
 |  * write-buffer size (@wbuf->size). | 
 |  * | 
 |  * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by | 
 |  * mutexes defined inside these objects. Since sometimes upper-level code | 
 |  * has to lock the write-buffer (e.g. journal space reservation code), many | 
 |  * functions related to write-buffers have "nolock" suffix which means that the | 
 |  * caller has to lock the write-buffer before calling this function. | 
 |  * | 
 |  * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not | 
 |  * aligned, UBIFS starts the next node from the aligned address, and the padded | 
 |  * bytes may contain any rubbish. In other words, UBIFS does not put padding | 
 |  * bytes in those small gaps. Common headers of nodes store real node lengths, | 
 |  * not aligned lengths. Indexing nodes also store real lengths in branches. | 
 |  * | 
 |  * UBIFS uses padding when it pads to the next min. I/O unit. In this case it | 
 |  * uses padding nodes or padding bytes, if the padding node does not fit. | 
 |  * | 
 |  * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when | 
 |  * they are read from the flash media. | 
 |  */ | 
 |  | 
 | #include <linux/crc32.h> | 
 | #include <linux/slab.h> | 
 | #include "ubifs.h" | 
 |  | 
 | /** | 
 |  * ubifs_ro_mode - switch UBIFS to read read-only mode. | 
 |  * @c: UBIFS file-system description object | 
 |  * @err: error code which is the reason of switching to R/O mode | 
 |  */ | 
 | void ubifs_ro_mode(struct ubifs_info *c, int err) | 
 | { | 
 | 	if (!c->ro_error) { | 
 | 		c->ro_error = 1; | 
 | 		c->no_chk_data_crc = 0; | 
 | 		c->vfs_sb->s_flags |= MS_RDONLY; | 
 | 		ubifs_warn("switched to read-only mode, error %d", err); | 
 | 		dump_stack(); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Below are simple wrappers over UBI I/O functions which include some | 
 |  * additional checks and UBIFS debugging stuff. See corresponding UBI function | 
 |  * for more information. | 
 |  */ | 
 |  | 
 | int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs, | 
 | 		   int len, int even_ebadmsg) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = ubi_read(c->ubi, lnum, buf, offs, len); | 
 | 	/* | 
 | 	 * In case of %-EBADMSG print the error message only if the | 
 | 	 * @even_ebadmsg is true. | 
 | 	 */ | 
 | 	if (err && (err != -EBADMSG || even_ebadmsg)) { | 
 | 		ubifs_err("reading %d bytes from LEB %d:%d failed, error %d", | 
 | 			  len, lnum, offs, err); | 
 | 		dbg_dump_stack(); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs, | 
 | 		    int len, int dtype) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	ubifs_assert(!c->ro_media && !c->ro_mount); | 
 | 	if (c->ro_error) | 
 | 		return -EROFS; | 
 | 	if (!dbg_is_tst_rcvry(c)) | 
 | 		err = ubi_leb_write(c->ubi, lnum, buf, offs, len, dtype); | 
 | 	else | 
 | 		err = dbg_leb_write(c, lnum, buf, offs, len, dtype); | 
 | 	if (err) { | 
 | 		ubifs_err("writing %d bytes to LEB %d:%d failed, error %d", | 
 | 			  len, lnum, offs, err); | 
 | 		ubifs_ro_mode(c, err); | 
 | 		dbg_dump_stack(); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len, | 
 | 		     int dtype) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	ubifs_assert(!c->ro_media && !c->ro_mount); | 
 | 	if (c->ro_error) | 
 | 		return -EROFS; | 
 | 	if (!dbg_is_tst_rcvry(c)) | 
 | 		err = ubi_leb_change(c->ubi, lnum, buf, len, dtype); | 
 | 	else | 
 | 		err = dbg_leb_change(c, lnum, buf, len, dtype); | 
 | 	if (err) { | 
 | 		ubifs_err("changing %d bytes in LEB %d failed, error %d", | 
 | 			  len, lnum, err); | 
 | 		ubifs_ro_mode(c, err); | 
 | 		dbg_dump_stack(); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | int ubifs_leb_unmap(struct ubifs_info *c, int lnum) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	ubifs_assert(!c->ro_media && !c->ro_mount); | 
 | 	if (c->ro_error) | 
 | 		return -EROFS; | 
 | 	if (!dbg_is_tst_rcvry(c)) | 
 | 		err = ubi_leb_unmap(c->ubi, lnum); | 
 | 	else | 
 | 		err = dbg_leb_unmap(c, lnum); | 
 | 	if (err) { | 
 | 		ubifs_err("unmap LEB %d failed, error %d", lnum, err); | 
 | 		ubifs_ro_mode(c, err); | 
 | 		dbg_dump_stack(); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | int ubifs_leb_map(struct ubifs_info *c, int lnum, int dtype) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	ubifs_assert(!c->ro_media && !c->ro_mount); | 
 | 	if (c->ro_error) | 
 | 		return -EROFS; | 
 | 	if (!dbg_is_tst_rcvry(c)) | 
 | 		err = ubi_leb_map(c->ubi, lnum, dtype); | 
 | 	else | 
 | 		err = dbg_leb_map(c, lnum, dtype); | 
 | 	if (err) { | 
 | 		ubifs_err("mapping LEB %d failed, error %d", lnum, err); | 
 | 		ubifs_ro_mode(c, err); | 
 | 		dbg_dump_stack(); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | int ubifs_is_mapped(const struct ubifs_info *c, int lnum) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = ubi_is_mapped(c->ubi, lnum); | 
 | 	if (err < 0) { | 
 | 		ubifs_err("ubi_is_mapped failed for LEB %d, error %d", | 
 | 			  lnum, err); | 
 | 		dbg_dump_stack(); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_check_node - check node. | 
 |  * @c: UBIFS file-system description object | 
 |  * @buf: node to check | 
 |  * @lnum: logical eraseblock number | 
 |  * @offs: offset within the logical eraseblock | 
 |  * @quiet: print no messages | 
 |  * @must_chk_crc: indicates whether to always check the CRC | 
 |  * | 
 |  * This function checks node magic number and CRC checksum. This function also | 
 |  * validates node length to prevent UBIFS from becoming crazy when an attacker | 
 |  * feeds it a file-system image with incorrect nodes. For example, too large | 
 |  * node length in the common header could cause UBIFS to read memory outside of | 
 |  * allocated buffer when checking the CRC checksum. | 
 |  * | 
 |  * This function may skip data nodes CRC checking if @c->no_chk_data_crc is | 
 |  * true, which is controlled by corresponding UBIFS mount option. However, if | 
 |  * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is | 
 |  * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are | 
 |  * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC | 
 |  * is checked. This is because during mounting or re-mounting from R/O mode to | 
 |  * R/W mode we may read journal nodes (when replying the journal or doing the | 
 |  * recovery) and the journal nodes may potentially be corrupted, so checking is | 
 |  * required. | 
 |  * | 
 |  * This function returns zero in case of success and %-EUCLEAN in case of bad | 
 |  * CRC or magic. | 
 |  */ | 
 | int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum, | 
 | 		     int offs, int quiet, int must_chk_crc) | 
 | { | 
 | 	int err = -EINVAL, type, node_len; | 
 | 	uint32_t crc, node_crc, magic; | 
 | 	const struct ubifs_ch *ch = buf; | 
 |  | 
 | 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); | 
 | 	ubifs_assert(!(offs & 7) && offs < c->leb_size); | 
 |  | 
 | 	magic = le32_to_cpu(ch->magic); | 
 | 	if (magic != UBIFS_NODE_MAGIC) { | 
 | 		if (!quiet) | 
 | 			ubifs_err("bad magic %#08x, expected %#08x", | 
 | 				  magic, UBIFS_NODE_MAGIC); | 
 | 		err = -EUCLEAN; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	type = ch->node_type; | 
 | 	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) { | 
 | 		if (!quiet) | 
 | 			ubifs_err("bad node type %d", type); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	node_len = le32_to_cpu(ch->len); | 
 | 	if (node_len + offs > c->leb_size) | 
 | 		goto out_len; | 
 |  | 
 | 	if (c->ranges[type].max_len == 0) { | 
 | 		if (node_len != c->ranges[type].len) | 
 | 			goto out_len; | 
 | 	} else if (node_len < c->ranges[type].min_len || | 
 | 		   node_len > c->ranges[type].max_len) | 
 | 		goto out_len; | 
 |  | 
 | 	if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting && | 
 | 	    !c->remounting_rw && c->no_chk_data_crc) | 
 | 		return 0; | 
 |  | 
 | 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); | 
 | 	node_crc = le32_to_cpu(ch->crc); | 
 | 	if (crc != node_crc) { | 
 | 		if (!quiet) | 
 | 			ubifs_err("bad CRC: calculated %#08x, read %#08x", | 
 | 				  crc, node_crc); | 
 | 		err = -EUCLEAN; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_len: | 
 | 	if (!quiet) | 
 | 		ubifs_err("bad node length %d", node_len); | 
 | out: | 
 | 	if (!quiet) { | 
 | 		ubifs_err("bad node at LEB %d:%d", lnum, offs); | 
 | 		dbg_dump_node(c, buf); | 
 | 		dbg_dump_stack(); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_pad - pad flash space. | 
 |  * @c: UBIFS file-system description object | 
 |  * @buf: buffer to put padding to | 
 |  * @pad: how many bytes to pad | 
 |  * | 
 |  * The flash media obliges us to write only in chunks of %c->min_io_size and | 
 |  * when we have to write less data we add padding node to the write-buffer and | 
 |  * pad it to the next minimal I/O unit's boundary. Padding nodes help when the | 
 |  * media is being scanned. If the amount of wasted space is not enough to fit a | 
 |  * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes | 
 |  * pattern (%UBIFS_PADDING_BYTE). | 
 |  * | 
 |  * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is | 
 |  * used. | 
 |  */ | 
 | void ubifs_pad(const struct ubifs_info *c, void *buf, int pad) | 
 | { | 
 | 	uint32_t crc; | 
 |  | 
 | 	ubifs_assert(pad >= 0 && !(pad & 7)); | 
 |  | 
 | 	if (pad >= UBIFS_PAD_NODE_SZ) { | 
 | 		struct ubifs_ch *ch = buf; | 
 | 		struct ubifs_pad_node *pad_node = buf; | 
 |  | 
 | 		ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); | 
 | 		ch->node_type = UBIFS_PAD_NODE; | 
 | 		ch->group_type = UBIFS_NO_NODE_GROUP; | 
 | 		ch->padding[0] = ch->padding[1] = 0; | 
 | 		ch->sqnum = 0; | 
 | 		ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ); | 
 | 		pad -= UBIFS_PAD_NODE_SZ; | 
 | 		pad_node->pad_len = cpu_to_le32(pad); | 
 | 		crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8); | 
 | 		ch->crc = cpu_to_le32(crc); | 
 | 		memset(buf + UBIFS_PAD_NODE_SZ, 0, pad); | 
 | 	} else if (pad > 0) | 
 | 		/* Too little space, padding node won't fit */ | 
 | 		memset(buf, UBIFS_PADDING_BYTE, pad); | 
 | } | 
 |  | 
 | /** | 
 |  * next_sqnum - get next sequence number. | 
 |  * @c: UBIFS file-system description object | 
 |  */ | 
 | static unsigned long long next_sqnum(struct ubifs_info *c) | 
 | { | 
 | 	unsigned long long sqnum; | 
 |  | 
 | 	spin_lock(&c->cnt_lock); | 
 | 	sqnum = ++c->max_sqnum; | 
 | 	spin_unlock(&c->cnt_lock); | 
 |  | 
 | 	if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) { | 
 | 		if (sqnum >= SQNUM_WATERMARK) { | 
 | 			ubifs_err("sequence number overflow %llu, end of life", | 
 | 				  sqnum); | 
 | 			ubifs_ro_mode(c, -EINVAL); | 
 | 		} | 
 | 		ubifs_warn("running out of sequence numbers, end of life soon"); | 
 | 	} | 
 |  | 
 | 	return sqnum; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_prepare_node - prepare node to be written to flash. | 
 |  * @c: UBIFS file-system description object | 
 |  * @node: the node to pad | 
 |  * @len: node length | 
 |  * @pad: if the buffer has to be padded | 
 |  * | 
 |  * This function prepares node at @node to be written to the media - it | 
 |  * calculates node CRC, fills the common header, and adds proper padding up to | 
 |  * the next minimum I/O unit if @pad is not zero. | 
 |  */ | 
 | void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad) | 
 | { | 
 | 	uint32_t crc; | 
 | 	struct ubifs_ch *ch = node; | 
 | 	unsigned long long sqnum = next_sqnum(c); | 
 |  | 
 | 	ubifs_assert(len >= UBIFS_CH_SZ); | 
 |  | 
 | 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); | 
 | 	ch->len = cpu_to_le32(len); | 
 | 	ch->group_type = UBIFS_NO_NODE_GROUP; | 
 | 	ch->sqnum = cpu_to_le64(sqnum); | 
 | 	ch->padding[0] = ch->padding[1] = 0; | 
 | 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); | 
 | 	ch->crc = cpu_to_le32(crc); | 
 |  | 
 | 	if (pad) { | 
 | 		len = ALIGN(len, 8); | 
 | 		pad = ALIGN(len, c->min_io_size) - len; | 
 | 		ubifs_pad(c, node + len, pad); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_prep_grp_node - prepare node of a group to be written to flash. | 
 |  * @c: UBIFS file-system description object | 
 |  * @node: the node to pad | 
 |  * @len: node length | 
 |  * @last: indicates the last node of the group | 
 |  * | 
 |  * This function prepares node at @node to be written to the media - it | 
 |  * calculates node CRC and fills the common header. | 
 |  */ | 
 | void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last) | 
 | { | 
 | 	uint32_t crc; | 
 | 	struct ubifs_ch *ch = node; | 
 | 	unsigned long long sqnum = next_sqnum(c); | 
 |  | 
 | 	ubifs_assert(len >= UBIFS_CH_SZ); | 
 |  | 
 | 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); | 
 | 	ch->len = cpu_to_le32(len); | 
 | 	if (last) | 
 | 		ch->group_type = UBIFS_LAST_OF_NODE_GROUP; | 
 | 	else | 
 | 		ch->group_type = UBIFS_IN_NODE_GROUP; | 
 | 	ch->sqnum = cpu_to_le64(sqnum); | 
 | 	ch->padding[0] = ch->padding[1] = 0; | 
 | 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); | 
 | 	ch->crc = cpu_to_le32(crc); | 
 | } | 
 |  | 
 | /** | 
 |  * wbuf_timer_callback - write-buffer timer callback function. | 
 |  * @data: timer data (write-buffer descriptor) | 
 |  * | 
 |  * This function is called when the write-buffer timer expires. | 
 |  */ | 
 | static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer) | 
 | { | 
 | 	struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer); | 
 |  | 
 | 	dbg_io("jhead %s", dbg_jhead(wbuf->jhead)); | 
 | 	wbuf->need_sync = 1; | 
 | 	wbuf->c->need_wbuf_sync = 1; | 
 | 	ubifs_wake_up_bgt(wbuf->c); | 
 | 	return HRTIMER_NORESTART; | 
 | } | 
 |  | 
 | /** | 
 |  * new_wbuf_timer - start new write-buffer timer. | 
 |  * @wbuf: write-buffer descriptor | 
 |  */ | 
 | static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) | 
 | { | 
 | 	ubifs_assert(!hrtimer_active(&wbuf->timer)); | 
 |  | 
 | 	if (wbuf->no_timer) | 
 | 		return; | 
 | 	dbg_io("set timer for jhead %s, %llu-%llu millisecs", | 
 | 	       dbg_jhead(wbuf->jhead), | 
 | 	       div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC), | 
 | 	       div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta, | 
 | 		       USEC_PER_SEC)); | 
 | 	hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta, | 
 | 			       HRTIMER_MODE_REL); | 
 | } | 
 |  | 
 | /** | 
 |  * cancel_wbuf_timer - cancel write-buffer timer. | 
 |  * @wbuf: write-buffer descriptor | 
 |  */ | 
 | static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) | 
 | { | 
 | 	if (wbuf->no_timer) | 
 | 		return; | 
 | 	wbuf->need_sync = 0; | 
 | 	hrtimer_cancel(&wbuf->timer); | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_wbuf_sync_nolock - synchronize write-buffer. | 
 |  * @wbuf: write-buffer to synchronize | 
 |  * | 
 |  * This function synchronizes write-buffer @buf and returns zero in case of | 
 |  * success or a negative error code in case of failure. | 
 |  * | 
 |  * Note, although write-buffers are of @c->max_write_size, this function does | 
 |  * not necessarily writes all @c->max_write_size bytes to the flash. Instead, | 
 |  * if the write-buffer is only partially filled with data, only the used part | 
 |  * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized. | 
 |  * This way we waste less space. | 
 |  */ | 
 | int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf) | 
 | { | 
 | 	struct ubifs_info *c = wbuf->c; | 
 | 	int err, dirt, sync_len; | 
 |  | 
 | 	cancel_wbuf_timer_nolock(wbuf); | 
 | 	if (!wbuf->used || wbuf->lnum == -1) | 
 | 		/* Write-buffer is empty or not seeked */ | 
 | 		return 0; | 
 |  | 
 | 	dbg_io("LEB %d:%d, %d bytes, jhead %s", | 
 | 	       wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead)); | 
 | 	ubifs_assert(!(wbuf->avail & 7)); | 
 | 	ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size); | 
 | 	ubifs_assert(wbuf->size >= c->min_io_size); | 
 | 	ubifs_assert(wbuf->size <= c->max_write_size); | 
 | 	ubifs_assert(wbuf->size % c->min_io_size == 0); | 
 | 	ubifs_assert(!c->ro_media && !c->ro_mount); | 
 | 	if (c->leb_size - wbuf->offs >= c->max_write_size) | 
 | 		ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size)); | 
 |  | 
 | 	if (c->ro_error) | 
 | 		return -EROFS; | 
 |  | 
 | 	/* | 
 | 	 * Do not write whole write buffer but write only the minimum necessary | 
 | 	 * amount of min. I/O units. | 
 | 	 */ | 
 | 	sync_len = ALIGN(wbuf->used, c->min_io_size); | 
 | 	dirt = sync_len - wbuf->used; | 
 | 	if (dirt) | 
 | 		ubifs_pad(c, wbuf->buf + wbuf->used, dirt); | 
 | 	err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len, | 
 | 			      wbuf->dtype); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	spin_lock(&wbuf->lock); | 
 | 	wbuf->offs += sync_len; | 
 | 	/* | 
 | 	 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size. | 
 | 	 * But our goal is to optimize writes and make sure we write in | 
 | 	 * @c->max_write_size chunks and to @c->max_write_size-aligned offset. | 
 | 	 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make | 
 | 	 * sure that @wbuf->offs + @wbuf->size is aligned to | 
 | 	 * @c->max_write_size. This way we make sure that after next | 
 | 	 * write-buffer flush we are again at the optimal offset (aligned to | 
 | 	 * @c->max_write_size). | 
 | 	 */ | 
 | 	if (c->leb_size - wbuf->offs < c->max_write_size) | 
 | 		wbuf->size = c->leb_size - wbuf->offs; | 
 | 	else if (wbuf->offs & (c->max_write_size - 1)) | 
 | 		wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; | 
 | 	else | 
 | 		wbuf->size = c->max_write_size; | 
 | 	wbuf->avail = wbuf->size; | 
 | 	wbuf->used = 0; | 
 | 	wbuf->next_ino = 0; | 
 | 	spin_unlock(&wbuf->lock); | 
 |  | 
 | 	if (wbuf->sync_callback) | 
 | 		err = wbuf->sync_callback(c, wbuf->lnum, | 
 | 					  c->leb_size - wbuf->offs, dirt); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_wbuf_seek_nolock - seek write-buffer. | 
 |  * @wbuf: write-buffer | 
 |  * @lnum: logical eraseblock number to seek to | 
 |  * @offs: logical eraseblock offset to seek to | 
 |  * @dtype: data type | 
 |  * | 
 |  * This function targets the write-buffer to logical eraseblock @lnum:@offs. | 
 |  * The write-buffer has to be empty. Returns zero in case of success and a | 
 |  * negative error code in case of failure. | 
 |  */ | 
 | int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs, | 
 | 			   int dtype) | 
 | { | 
 | 	const struct ubifs_info *c = wbuf->c; | 
 |  | 
 | 	dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead)); | 
 | 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt); | 
 | 	ubifs_assert(offs >= 0 && offs <= c->leb_size); | 
 | 	ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7)); | 
 | 	ubifs_assert(lnum != wbuf->lnum); | 
 | 	ubifs_assert(wbuf->used == 0); | 
 |  | 
 | 	spin_lock(&wbuf->lock); | 
 | 	wbuf->lnum = lnum; | 
 | 	wbuf->offs = offs; | 
 | 	if (c->leb_size - wbuf->offs < c->max_write_size) | 
 | 		wbuf->size = c->leb_size - wbuf->offs; | 
 | 	else if (wbuf->offs & (c->max_write_size - 1)) | 
 | 		wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; | 
 | 	else | 
 | 		wbuf->size = c->max_write_size; | 
 | 	wbuf->avail = wbuf->size; | 
 | 	wbuf->used = 0; | 
 | 	spin_unlock(&wbuf->lock); | 
 | 	wbuf->dtype = dtype; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_bg_wbufs_sync - synchronize write-buffers. | 
 |  * @c: UBIFS file-system description object | 
 |  * | 
 |  * This function is called by background thread to synchronize write-buffers. | 
 |  * Returns zero in case of success and a negative error code in case of | 
 |  * failure. | 
 |  */ | 
 | int ubifs_bg_wbufs_sync(struct ubifs_info *c) | 
 | { | 
 | 	int err, i; | 
 |  | 
 | 	ubifs_assert(!c->ro_media && !c->ro_mount); | 
 | 	if (!c->need_wbuf_sync) | 
 | 		return 0; | 
 | 	c->need_wbuf_sync = 0; | 
 |  | 
 | 	if (c->ro_error) { | 
 | 		err = -EROFS; | 
 | 		goto out_timers; | 
 | 	} | 
 |  | 
 | 	dbg_io("synchronize"); | 
 | 	for (i = 0; i < c->jhead_cnt; i++) { | 
 | 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; | 
 |  | 
 | 		cond_resched(); | 
 |  | 
 | 		/* | 
 | 		 * If the mutex is locked then wbuf is being changed, so | 
 | 		 * synchronization is not necessary. | 
 | 		 */ | 
 | 		if (mutex_is_locked(&wbuf->io_mutex)) | 
 | 			continue; | 
 |  | 
 | 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); | 
 | 		if (!wbuf->need_sync) { | 
 | 			mutex_unlock(&wbuf->io_mutex); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		err = ubifs_wbuf_sync_nolock(wbuf); | 
 | 		mutex_unlock(&wbuf->io_mutex); | 
 | 		if (err) { | 
 | 			ubifs_err("cannot sync write-buffer, error %d", err); | 
 | 			ubifs_ro_mode(c, err); | 
 | 			goto out_timers; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_timers: | 
 | 	/* Cancel all timers to prevent repeated errors */ | 
 | 	for (i = 0; i < c->jhead_cnt; i++) { | 
 | 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; | 
 |  | 
 | 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); | 
 | 		cancel_wbuf_timer_nolock(wbuf); | 
 | 		mutex_unlock(&wbuf->io_mutex); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_wbuf_write_nolock - write data to flash via write-buffer. | 
 |  * @wbuf: write-buffer | 
 |  * @buf: node to write | 
 |  * @len: node length | 
 |  * | 
 |  * This function writes data to flash via write-buffer @wbuf. This means that | 
 |  * the last piece of the node won't reach the flash media immediately if it | 
 |  * does not take whole max. write unit (@c->max_write_size). Instead, the node | 
 |  * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or | 
 |  * because more data are appended to the write-buffer). | 
 |  * | 
 |  * This function returns zero in case of success and a negative error code in | 
 |  * case of failure. If the node cannot be written because there is no more | 
 |  * space in this logical eraseblock, %-ENOSPC is returned. | 
 |  */ | 
 | int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len) | 
 | { | 
 | 	struct ubifs_info *c = wbuf->c; | 
 | 	int err, written, n, aligned_len = ALIGN(len, 8); | 
 |  | 
 | 	dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len, | 
 | 	       dbg_ntype(((struct ubifs_ch *)buf)->node_type), | 
 | 	       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used); | 
 | 	ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt); | 
 | 	ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0); | 
 | 	ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size); | 
 | 	ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size); | 
 | 	ubifs_assert(wbuf->size >= c->min_io_size); | 
 | 	ubifs_assert(wbuf->size <= c->max_write_size); | 
 | 	ubifs_assert(wbuf->size % c->min_io_size == 0); | 
 | 	ubifs_assert(mutex_is_locked(&wbuf->io_mutex)); | 
 | 	ubifs_assert(!c->ro_media && !c->ro_mount); | 
 | 	ubifs_assert(!c->space_fixup); | 
 | 	if (c->leb_size - wbuf->offs >= c->max_write_size) | 
 | 		ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size)); | 
 |  | 
 | 	if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) { | 
 | 		err = -ENOSPC; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	cancel_wbuf_timer_nolock(wbuf); | 
 |  | 
 | 	if (c->ro_error) | 
 | 		return -EROFS; | 
 |  | 
 | 	if (aligned_len <= wbuf->avail) { | 
 | 		/* | 
 | 		 * The node is not very large and fits entirely within | 
 | 		 * write-buffer. | 
 | 		 */ | 
 | 		memcpy(wbuf->buf + wbuf->used, buf, len); | 
 |  | 
 | 		if (aligned_len == wbuf->avail) { | 
 | 			dbg_io("flush jhead %s wbuf to LEB %d:%d", | 
 | 			       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); | 
 | 			err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, | 
 | 					      wbuf->offs, wbuf->size, | 
 | 					      wbuf->dtype); | 
 | 			if (err) | 
 | 				goto out; | 
 |  | 
 | 			spin_lock(&wbuf->lock); | 
 | 			wbuf->offs += wbuf->size; | 
 | 			if (c->leb_size - wbuf->offs >= c->max_write_size) | 
 | 				wbuf->size = c->max_write_size; | 
 | 			else | 
 | 				wbuf->size = c->leb_size - wbuf->offs; | 
 | 			wbuf->avail = wbuf->size; | 
 | 			wbuf->used = 0; | 
 | 			wbuf->next_ino = 0; | 
 | 			spin_unlock(&wbuf->lock); | 
 | 		} else { | 
 | 			spin_lock(&wbuf->lock); | 
 | 			wbuf->avail -= aligned_len; | 
 | 			wbuf->used += aligned_len; | 
 | 			spin_unlock(&wbuf->lock); | 
 | 		} | 
 |  | 
 | 		goto exit; | 
 | 	} | 
 |  | 
 | 	written = 0; | 
 |  | 
 | 	if (wbuf->used) { | 
 | 		/* | 
 | 		 * The node is large enough and does not fit entirely within | 
 | 		 * current available space. We have to fill and flush | 
 | 		 * write-buffer and switch to the next max. write unit. | 
 | 		 */ | 
 | 		dbg_io("flush jhead %s wbuf to LEB %d:%d", | 
 | 		       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); | 
 | 		memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail); | 
 | 		err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, | 
 | 				      wbuf->size, wbuf->dtype); | 
 | 		if (err) | 
 | 			goto out; | 
 |  | 
 | 		wbuf->offs += wbuf->size; | 
 | 		len -= wbuf->avail; | 
 | 		aligned_len -= wbuf->avail; | 
 | 		written += wbuf->avail; | 
 | 	} else if (wbuf->offs & (c->max_write_size - 1)) { | 
 | 		/* | 
 | 		 * The write-buffer offset is not aligned to | 
 | 		 * @c->max_write_size and @wbuf->size is less than | 
 | 		 * @c->max_write_size. Write @wbuf->size bytes to make sure the | 
 | 		 * following writes are done in optimal @c->max_write_size | 
 | 		 * chunks. | 
 | 		 */ | 
 | 		dbg_io("write %d bytes to LEB %d:%d", | 
 | 		       wbuf->size, wbuf->lnum, wbuf->offs); | 
 | 		err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs, | 
 | 				      wbuf->size, wbuf->dtype); | 
 | 		if (err) | 
 | 			goto out; | 
 |  | 
 | 		wbuf->offs += wbuf->size; | 
 | 		len -= wbuf->size; | 
 | 		aligned_len -= wbuf->size; | 
 | 		written += wbuf->size; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The remaining data may take more whole max. write units, so write the | 
 | 	 * remains multiple to max. write unit size directly to the flash media. | 
 | 	 * We align node length to 8-byte boundary because we anyway flash wbuf | 
 | 	 * if the remaining space is less than 8 bytes. | 
 | 	 */ | 
 | 	n = aligned_len >> c->max_write_shift; | 
 | 	if (n) { | 
 | 		n <<= c->max_write_shift; | 
 | 		dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, | 
 | 		       wbuf->offs); | 
 | 		err = ubifs_leb_write(c, wbuf->lnum, buf + written, | 
 | 				      wbuf->offs, n, wbuf->dtype); | 
 | 		if (err) | 
 | 			goto out; | 
 | 		wbuf->offs += n; | 
 | 		aligned_len -= n; | 
 | 		len -= n; | 
 | 		written += n; | 
 | 	} | 
 |  | 
 | 	spin_lock(&wbuf->lock); | 
 | 	if (aligned_len) | 
 | 		/* | 
 | 		 * And now we have what's left and what does not take whole | 
 | 		 * max. write unit, so write it to the write-buffer and we are | 
 | 		 * done. | 
 | 		 */ | 
 | 		memcpy(wbuf->buf, buf + written, len); | 
 |  | 
 | 	if (c->leb_size - wbuf->offs >= c->max_write_size) | 
 | 		wbuf->size = c->max_write_size; | 
 | 	else | 
 | 		wbuf->size = c->leb_size - wbuf->offs; | 
 | 	wbuf->avail = wbuf->size - aligned_len; | 
 | 	wbuf->used = aligned_len; | 
 | 	wbuf->next_ino = 0; | 
 | 	spin_unlock(&wbuf->lock); | 
 |  | 
 | exit: | 
 | 	if (wbuf->sync_callback) { | 
 | 		int free = c->leb_size - wbuf->offs - wbuf->used; | 
 |  | 
 | 		err = wbuf->sync_callback(c, wbuf->lnum, free, 0); | 
 | 		if (err) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	if (wbuf->used) | 
 | 		new_wbuf_timer_nolock(wbuf); | 
 |  | 
 | 	return 0; | 
 |  | 
 | out: | 
 | 	ubifs_err("cannot write %d bytes to LEB %d:%d, error %d", | 
 | 		  len, wbuf->lnum, wbuf->offs, err); | 
 | 	dbg_dump_node(c, buf); | 
 | 	dbg_dump_stack(); | 
 | 	dbg_dump_leb(c, wbuf->lnum); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_write_node - write node to the media. | 
 |  * @c: UBIFS file-system description object | 
 |  * @buf: the node to write | 
 |  * @len: node length | 
 |  * @lnum: logical eraseblock number | 
 |  * @offs: offset within the logical eraseblock | 
 |  * @dtype: node life-time hint (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN) | 
 |  * | 
 |  * This function automatically fills node magic number, assigns sequence | 
 |  * number, and calculates node CRC checksum. The length of the @buf buffer has | 
 |  * to be aligned to the minimal I/O unit size. This function automatically | 
 |  * appends padding node and padding bytes if needed. Returns zero in case of | 
 |  * success and a negative error code in case of failure. | 
 |  */ | 
 | int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum, | 
 | 		     int offs, int dtype) | 
 | { | 
 | 	int err, buf_len = ALIGN(len, c->min_io_size); | 
 |  | 
 | 	dbg_io("LEB %d:%d, %s, length %d (aligned %d)", | 
 | 	       lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len, | 
 | 	       buf_len); | 
 | 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); | 
 | 	ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size); | 
 | 	ubifs_assert(!c->ro_media && !c->ro_mount); | 
 | 	ubifs_assert(!c->space_fixup); | 
 |  | 
 | 	if (c->ro_error) | 
 | 		return -EROFS; | 
 |  | 
 | 	ubifs_prepare_node(c, buf, len, 1); | 
 | 	err = ubifs_leb_write(c, lnum, buf, offs, buf_len, dtype); | 
 | 	if (err) | 
 | 		dbg_dump_node(c, buf); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_read_node_wbuf - read node from the media or write-buffer. | 
 |  * @wbuf: wbuf to check for un-written data | 
 |  * @buf: buffer to read to | 
 |  * @type: node type | 
 |  * @len: node length | 
 |  * @lnum: logical eraseblock number | 
 |  * @offs: offset within the logical eraseblock | 
 |  * | 
 |  * This function reads a node of known type and length, checks it and stores | 
 |  * in @buf. If the node partially or fully sits in the write-buffer, this | 
 |  * function takes data from the buffer, otherwise it reads the flash media. | 
 |  * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative | 
 |  * error code in case of failure. | 
 |  */ | 
 | int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len, | 
 | 			 int lnum, int offs) | 
 | { | 
 | 	const struct ubifs_info *c = wbuf->c; | 
 | 	int err, rlen, overlap; | 
 | 	struct ubifs_ch *ch = buf; | 
 |  | 
 | 	dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs, | 
 | 	       dbg_ntype(type), len, dbg_jhead(wbuf->jhead)); | 
 | 	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); | 
 | 	ubifs_assert(!(offs & 7) && offs < c->leb_size); | 
 | 	ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); | 
 |  | 
 | 	spin_lock(&wbuf->lock); | 
 | 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); | 
 | 	if (!overlap) { | 
 | 		/* We may safely unlock the write-buffer and read the data */ | 
 | 		spin_unlock(&wbuf->lock); | 
 | 		return ubifs_read_node(c, buf, type, len, lnum, offs); | 
 | 	} | 
 |  | 
 | 	/* Don't read under wbuf */ | 
 | 	rlen = wbuf->offs - offs; | 
 | 	if (rlen < 0) | 
 | 		rlen = 0; | 
 |  | 
 | 	/* Copy the rest from the write-buffer */ | 
 | 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); | 
 | 	spin_unlock(&wbuf->lock); | 
 |  | 
 | 	if (rlen > 0) { | 
 | 		/* Read everything that goes before write-buffer */ | 
 | 		err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0); | 
 | 		if (err && err != -EBADMSG) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	if (type != ch->node_type) { | 
 | 		ubifs_err("bad node type (%d but expected %d)", | 
 | 			  ch->node_type, type); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	err = ubifs_check_node(c, buf, lnum, offs, 0, 0); | 
 | 	if (err) { | 
 | 		ubifs_err("expected node type %d", type); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	rlen = le32_to_cpu(ch->len); | 
 | 	if (rlen != len) { | 
 | 		ubifs_err("bad node length %d, expected %d", rlen, len); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | out: | 
 | 	ubifs_err("bad node at LEB %d:%d", lnum, offs); | 
 | 	dbg_dump_node(c, buf); | 
 | 	dbg_dump_stack(); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_read_node - read node. | 
 |  * @c: UBIFS file-system description object | 
 |  * @buf: buffer to read to | 
 |  * @type: node type | 
 |  * @len: node length (not aligned) | 
 |  * @lnum: logical eraseblock number | 
 |  * @offs: offset within the logical eraseblock | 
 |  * | 
 |  * This function reads a node of known type and and length, checks it and | 
 |  * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched | 
 |  * and a negative error code in case of failure. | 
 |  */ | 
 | int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len, | 
 | 		    int lnum, int offs) | 
 | { | 
 | 	int err, l; | 
 | 	struct ubifs_ch *ch = buf; | 
 |  | 
 | 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); | 
 | 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); | 
 | 	ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size); | 
 | 	ubifs_assert(!(offs & 7) && offs < c->leb_size); | 
 | 	ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); | 
 |  | 
 | 	err = ubifs_leb_read(c, lnum, buf, offs, len, 0); | 
 | 	if (err && err != -EBADMSG) | 
 | 		return err; | 
 |  | 
 | 	if (type != ch->node_type) { | 
 | 		ubifs_err("bad node type (%d but expected %d)", | 
 | 			  ch->node_type, type); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	err = ubifs_check_node(c, buf, lnum, offs, 0, 0); | 
 | 	if (err) { | 
 | 		ubifs_err("expected node type %d", type); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	l = le32_to_cpu(ch->len); | 
 | 	if (l != len) { | 
 | 		ubifs_err("bad node length %d, expected %d", l, len); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | out: | 
 | 	ubifs_err("bad node at LEB %d:%d, LEB mapping status %d", lnum, offs, | 
 | 		  ubi_is_mapped(c->ubi, lnum)); | 
 | 	dbg_dump_node(c, buf); | 
 | 	dbg_dump_stack(); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_wbuf_init - initialize write-buffer. | 
 |  * @c: UBIFS file-system description object | 
 |  * @wbuf: write-buffer to initialize | 
 |  * | 
 |  * This function initializes write-buffer. Returns zero in case of success | 
 |  * %-ENOMEM in case of failure. | 
 |  */ | 
 | int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf) | 
 | { | 
 | 	size_t size; | 
 |  | 
 | 	wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL); | 
 | 	if (!wbuf->buf) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t); | 
 | 	wbuf->inodes = kmalloc(size, GFP_KERNEL); | 
 | 	if (!wbuf->inodes) { | 
 | 		kfree(wbuf->buf); | 
 | 		wbuf->buf = NULL; | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	wbuf->used = 0; | 
 | 	wbuf->lnum = wbuf->offs = -1; | 
 | 	/* | 
 | 	 * If the LEB starts at the max. write size aligned address, then | 
 | 	 * write-buffer size has to be set to @c->max_write_size. Otherwise, | 
 | 	 * set it to something smaller so that it ends at the closest max. | 
 | 	 * write size boundary. | 
 | 	 */ | 
 | 	size = c->max_write_size - (c->leb_start % c->max_write_size); | 
 | 	wbuf->avail = wbuf->size = size; | 
 | 	wbuf->dtype = UBI_UNKNOWN; | 
 | 	wbuf->sync_callback = NULL; | 
 | 	mutex_init(&wbuf->io_mutex); | 
 | 	spin_lock_init(&wbuf->lock); | 
 | 	wbuf->c = c; | 
 | 	wbuf->next_ino = 0; | 
 |  | 
 | 	hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 
 | 	wbuf->timer.function = wbuf_timer_callback_nolock; | 
 | 	wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0); | 
 | 	wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT; | 
 | 	wbuf->delta *= 1000000000ULL; | 
 | 	ubifs_assert(wbuf->delta <= ULONG_MAX); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array. | 
 |  * @wbuf: the write-buffer where to add | 
 |  * @inum: the inode number | 
 |  * | 
 |  * This function adds an inode number to the inode array of the write-buffer. | 
 |  */ | 
 | void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum) | 
 | { | 
 | 	if (!wbuf->buf) | 
 | 		/* NOR flash or something similar */ | 
 | 		return; | 
 |  | 
 | 	spin_lock(&wbuf->lock); | 
 | 	if (wbuf->used) | 
 | 		wbuf->inodes[wbuf->next_ino++] = inum; | 
 | 	spin_unlock(&wbuf->lock); | 
 | } | 
 |  | 
 | /** | 
 |  * wbuf_has_ino - returns if the wbuf contains data from the inode. | 
 |  * @wbuf: the write-buffer | 
 |  * @inum: the inode number | 
 |  * | 
 |  * This function returns with %1 if the write-buffer contains some data from the | 
 |  * given inode otherwise it returns with %0. | 
 |  */ | 
 | static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum) | 
 | { | 
 | 	int i, ret = 0; | 
 |  | 
 | 	spin_lock(&wbuf->lock); | 
 | 	for (i = 0; i < wbuf->next_ino; i++) | 
 | 		if (inum == wbuf->inodes[i]) { | 
 | 			ret = 1; | 
 | 			break; | 
 | 		} | 
 | 	spin_unlock(&wbuf->lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode. | 
 |  * @c: UBIFS file-system description object | 
 |  * @inode: inode to synchronize | 
 |  * | 
 |  * This function synchronizes write-buffers which contain nodes belonging to | 
 |  * @inode. Returns zero in case of success and a negative error code in case of | 
 |  * failure. | 
 |  */ | 
 | int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode) | 
 | { | 
 | 	int i, err = 0; | 
 |  | 
 | 	for (i = 0; i < c->jhead_cnt; i++) { | 
 | 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; | 
 |  | 
 | 		if (i == GCHD) | 
 | 			/* | 
 | 			 * GC head is special, do not look at it. Even if the | 
 | 			 * head contains something related to this inode, it is | 
 | 			 * a _copy_ of corresponding on-flash node which sits | 
 | 			 * somewhere else. | 
 | 			 */ | 
 | 			continue; | 
 |  | 
 | 		if (!wbuf_has_ino(wbuf, inode->i_ino)) | 
 | 			continue; | 
 |  | 
 | 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); | 
 | 		if (wbuf_has_ino(wbuf, inode->i_ino)) | 
 | 			err = ubifs_wbuf_sync_nolock(wbuf); | 
 | 		mutex_unlock(&wbuf->io_mutex); | 
 |  | 
 | 		if (err) { | 
 | 			ubifs_ro_mode(c, err); | 
 | 			return err; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } |