| /* | 
 |  * PRNG: Pseudo Random Number Generator | 
 |  *       Based on NIST Recommended PRNG From ANSI X9.31 Appendix A.2.4 using | 
 |  *       AES 128 cipher | 
 |  * | 
 |  *  (C) Neil Horman <nhorman@tuxdriver.com> | 
 |  * | 
 |  *  This program is free software; you can redistribute it and/or modify it | 
 |  *  under the terms of the GNU General Public License as published by the | 
 |  *  Free Software Foundation; either version 2 of the License, or (at your | 
 |  *  any later version. | 
 |  * | 
 |  * | 
 |  */ | 
 |  | 
 | #include <crypto/internal/rng.h> | 
 | #include <linux/err.h> | 
 | #include <linux/init.h> | 
 | #include <linux/module.h> | 
 | #include <linux/moduleparam.h> | 
 | #include <linux/string.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 | #define DEFAULT_PRNG_KEY "0123456789abcdef" | 
 | #define DEFAULT_PRNG_KSZ 16 | 
 | #define DEFAULT_BLK_SZ 16 | 
 | #define DEFAULT_V_SEED "zaybxcwdveuftgsh" | 
 |  | 
 | /* | 
 |  * Flags for the prng_context flags field | 
 |  */ | 
 |  | 
 | #define PRNG_FIXED_SIZE 0x1 | 
 | #define PRNG_NEED_RESET 0x2 | 
 |  | 
 | /* | 
 |  * Note: DT is our counter value | 
 |  *	 I is our intermediate value | 
 |  *	 V is our seed vector | 
 |  * See http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf | 
 |  * for implementation details | 
 |  */ | 
 |  | 
 |  | 
 | struct prng_context { | 
 | 	spinlock_t prng_lock; | 
 | 	unsigned char rand_data[DEFAULT_BLK_SZ]; | 
 | 	unsigned char last_rand_data[DEFAULT_BLK_SZ]; | 
 | 	unsigned char DT[DEFAULT_BLK_SZ]; | 
 | 	unsigned char I[DEFAULT_BLK_SZ]; | 
 | 	unsigned char V[DEFAULT_BLK_SZ]; | 
 | 	u32 rand_data_valid; | 
 | 	struct crypto_cipher *tfm; | 
 | 	u32 flags; | 
 | }; | 
 |  | 
 | static int dbg; | 
 |  | 
 | static void hexdump(char *note, unsigned char *buf, unsigned int len) | 
 | { | 
 | 	if (dbg) { | 
 | 		printk(KERN_CRIT "%s", note); | 
 | 		print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET, | 
 | 				16, 1, | 
 | 				buf, len, false); | 
 | 	} | 
 | } | 
 |  | 
 | #define dbgprint(format, args...) do {\ | 
 | if (dbg)\ | 
 | 	printk(format, ##args);\ | 
 | } while (0) | 
 |  | 
 | static void xor_vectors(unsigned char *in1, unsigned char *in2, | 
 | 			unsigned char *out, unsigned int size) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < size; i++) | 
 | 		out[i] = in1[i] ^ in2[i]; | 
 |  | 
 | } | 
 | /* | 
 |  * Returns DEFAULT_BLK_SZ bytes of random data per call | 
 |  * returns 0 if generation succeded, <0 if something went wrong | 
 |  */ | 
 | static int _get_more_prng_bytes(struct prng_context *ctx, int cont_test) | 
 | { | 
 | 	int i; | 
 | 	unsigned char tmp[DEFAULT_BLK_SZ]; | 
 | 	unsigned char *output = NULL; | 
 |  | 
 |  | 
 | 	dbgprint(KERN_CRIT "Calling _get_more_prng_bytes for context %p\n", | 
 | 		ctx); | 
 |  | 
 | 	hexdump("Input DT: ", ctx->DT, DEFAULT_BLK_SZ); | 
 | 	hexdump("Input I: ", ctx->I, DEFAULT_BLK_SZ); | 
 | 	hexdump("Input V: ", ctx->V, DEFAULT_BLK_SZ); | 
 |  | 
 | 	/* | 
 | 	 * This algorithm is a 3 stage state machine | 
 | 	 */ | 
 | 	for (i = 0; i < 3; i++) { | 
 |  | 
 | 		switch (i) { | 
 | 		case 0: | 
 | 			/* | 
 | 			 * Start by encrypting the counter value | 
 | 			 * This gives us an intermediate value I | 
 | 			 */ | 
 | 			memcpy(tmp, ctx->DT, DEFAULT_BLK_SZ); | 
 | 			output = ctx->I; | 
 | 			hexdump("tmp stage 0: ", tmp, DEFAULT_BLK_SZ); | 
 | 			break; | 
 | 		case 1: | 
 |  | 
 | 			/* | 
 | 			 * Next xor I with our secret vector V | 
 | 			 * encrypt that result to obtain our | 
 | 			 * pseudo random data which we output | 
 | 			 */ | 
 | 			xor_vectors(ctx->I, ctx->V, tmp, DEFAULT_BLK_SZ); | 
 | 			hexdump("tmp stage 1: ", tmp, DEFAULT_BLK_SZ); | 
 | 			output = ctx->rand_data; | 
 | 			break; | 
 | 		case 2: | 
 | 			/* | 
 | 			 * First check that we didn't produce the same | 
 | 			 * random data that we did last time around through this | 
 | 			 */ | 
 | 			if (!memcmp(ctx->rand_data, ctx->last_rand_data, | 
 | 					DEFAULT_BLK_SZ)) { | 
 | 				if (cont_test) { | 
 | 					panic("cprng %p Failed repetition check!\n", | 
 | 						ctx); | 
 | 				} | 
 |  | 
 | 				printk(KERN_ERR | 
 | 					"ctx %p Failed repetition check!\n", | 
 | 					ctx); | 
 |  | 
 | 				ctx->flags |= PRNG_NEED_RESET; | 
 | 				return -EINVAL; | 
 | 			} | 
 | 			memcpy(ctx->last_rand_data, ctx->rand_data, | 
 | 				DEFAULT_BLK_SZ); | 
 |  | 
 | 			/* | 
 | 			 * Lastly xor the random data with I | 
 | 			 * and encrypt that to obtain a new secret vector V | 
 | 			 */ | 
 | 			xor_vectors(ctx->rand_data, ctx->I, tmp, | 
 | 				DEFAULT_BLK_SZ); | 
 | 			output = ctx->V; | 
 | 			hexdump("tmp stage 2: ", tmp, DEFAULT_BLK_SZ); | 
 | 			break; | 
 | 		} | 
 |  | 
 |  | 
 | 		/* do the encryption */ | 
 | 		crypto_cipher_encrypt_one(ctx->tfm, output, tmp); | 
 |  | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now update our DT value | 
 | 	 */ | 
 | 	for (i = DEFAULT_BLK_SZ - 1; i >= 0; i--) { | 
 | 		ctx->DT[i] += 1; | 
 | 		if (ctx->DT[i] != 0) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	dbgprint("Returning new block for context %p\n", ctx); | 
 | 	ctx->rand_data_valid = 0; | 
 |  | 
 | 	hexdump("Output DT: ", ctx->DT, DEFAULT_BLK_SZ); | 
 | 	hexdump("Output I: ", ctx->I, DEFAULT_BLK_SZ); | 
 | 	hexdump("Output V: ", ctx->V, DEFAULT_BLK_SZ); | 
 | 	hexdump("New Random Data: ", ctx->rand_data, DEFAULT_BLK_SZ); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Our exported functions */ | 
 | static int get_prng_bytes(char *buf, size_t nbytes, struct prng_context *ctx, | 
 | 				int do_cont_test) | 
 | { | 
 | 	unsigned char *ptr = buf; | 
 | 	unsigned int byte_count = (unsigned int)nbytes; | 
 | 	int err; | 
 |  | 
 |  | 
 | 	spin_lock_bh(&ctx->prng_lock); | 
 |  | 
 | 	err = -EINVAL; | 
 | 	if (ctx->flags & PRNG_NEED_RESET) | 
 | 		goto done; | 
 |  | 
 | 	/* | 
 | 	 * If the FIXED_SIZE flag is on, only return whole blocks of | 
 | 	 * pseudo random data | 
 | 	 */ | 
 | 	err = -EINVAL; | 
 | 	if (ctx->flags & PRNG_FIXED_SIZE) { | 
 | 		if (nbytes < DEFAULT_BLK_SZ) | 
 | 			goto done; | 
 | 		byte_count = DEFAULT_BLK_SZ; | 
 | 	} | 
 |  | 
 | 	err = byte_count; | 
 |  | 
 | 	dbgprint(KERN_CRIT "getting %d random bytes for context %p\n", | 
 | 		byte_count, ctx); | 
 |  | 
 |  | 
 | remainder: | 
 | 	if (ctx->rand_data_valid == DEFAULT_BLK_SZ) { | 
 | 		if (_get_more_prng_bytes(ctx, do_cont_test) < 0) { | 
 | 			memset(buf, 0, nbytes); | 
 | 			err = -EINVAL; | 
 | 			goto done; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Copy any data less than an entire block | 
 | 	 */ | 
 | 	if (byte_count < DEFAULT_BLK_SZ) { | 
 | empty_rbuf: | 
 | 		for (; ctx->rand_data_valid < DEFAULT_BLK_SZ; | 
 | 			ctx->rand_data_valid++) { | 
 | 			*ptr = ctx->rand_data[ctx->rand_data_valid]; | 
 | 			ptr++; | 
 | 			byte_count--; | 
 | 			if (byte_count == 0) | 
 | 				goto done; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now copy whole blocks | 
 | 	 */ | 
 | 	for (; byte_count >= DEFAULT_BLK_SZ; byte_count -= DEFAULT_BLK_SZ) { | 
 | 		if (ctx->rand_data_valid == DEFAULT_BLK_SZ) { | 
 | 			if (_get_more_prng_bytes(ctx, do_cont_test) < 0) { | 
 | 				memset(buf, 0, nbytes); | 
 | 				err = -EINVAL; | 
 | 				goto done; | 
 | 			} | 
 | 		} | 
 | 		if (ctx->rand_data_valid > 0) | 
 | 			goto empty_rbuf; | 
 | 		memcpy(ptr, ctx->rand_data, DEFAULT_BLK_SZ); | 
 | 		ctx->rand_data_valid += DEFAULT_BLK_SZ; | 
 | 		ptr += DEFAULT_BLK_SZ; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now go back and get any remaining partial block | 
 | 	 */ | 
 | 	if (byte_count) | 
 | 		goto remainder; | 
 |  | 
 | done: | 
 | 	spin_unlock_bh(&ctx->prng_lock); | 
 | 	dbgprint(KERN_CRIT "returning %d from get_prng_bytes in context %p\n", | 
 | 		err, ctx); | 
 | 	return err; | 
 | } | 
 |  | 
 | static void free_prng_context(struct prng_context *ctx) | 
 | { | 
 | 	crypto_free_cipher(ctx->tfm); | 
 | } | 
 |  | 
 | static int reset_prng_context(struct prng_context *ctx, | 
 | 			      unsigned char *key, size_t klen, | 
 | 			      unsigned char *V, unsigned char *DT) | 
 | { | 
 | 	int ret; | 
 | 	unsigned char *prng_key; | 
 |  | 
 | 	spin_lock_bh(&ctx->prng_lock); | 
 | 	ctx->flags |= PRNG_NEED_RESET; | 
 |  | 
 | 	prng_key = (key != NULL) ? key : (unsigned char *)DEFAULT_PRNG_KEY; | 
 |  | 
 | 	if (!key) | 
 | 		klen = DEFAULT_PRNG_KSZ; | 
 |  | 
 | 	if (V) | 
 | 		memcpy(ctx->V, V, DEFAULT_BLK_SZ); | 
 | 	else | 
 | 		memcpy(ctx->V, DEFAULT_V_SEED, DEFAULT_BLK_SZ); | 
 |  | 
 | 	if (DT) | 
 | 		memcpy(ctx->DT, DT, DEFAULT_BLK_SZ); | 
 | 	else | 
 | 		memset(ctx->DT, 0, DEFAULT_BLK_SZ); | 
 |  | 
 | 	memset(ctx->rand_data, 0, DEFAULT_BLK_SZ); | 
 | 	memset(ctx->last_rand_data, 0, DEFAULT_BLK_SZ); | 
 |  | 
 | 	ctx->rand_data_valid = DEFAULT_BLK_SZ; | 
 |  | 
 | 	ret = crypto_cipher_setkey(ctx->tfm, prng_key, klen); | 
 | 	if (ret) { | 
 | 		dbgprint(KERN_CRIT "PRNG: setkey() failed flags=%x\n", | 
 | 			crypto_cipher_get_flags(ctx->tfm)); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = 0; | 
 | 	ctx->flags &= ~PRNG_NEED_RESET; | 
 | out: | 
 | 	spin_unlock_bh(&ctx->prng_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int cprng_init(struct crypto_tfm *tfm) | 
 | { | 
 | 	struct prng_context *ctx = crypto_tfm_ctx(tfm); | 
 |  | 
 | 	spin_lock_init(&ctx->prng_lock); | 
 | 	ctx->tfm = crypto_alloc_cipher("aes", 0, 0); | 
 | 	if (IS_ERR(ctx->tfm)) { | 
 | 		dbgprint(KERN_CRIT "Failed to alloc tfm for context %p\n", | 
 | 				ctx); | 
 | 		return PTR_ERR(ctx->tfm); | 
 | 	} | 
 |  | 
 | 	if (reset_prng_context(ctx, NULL, DEFAULT_PRNG_KSZ, NULL, NULL) < 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * after allocation, we should always force the user to reset | 
 | 	 * so they don't inadvertently use the insecure default values | 
 | 	 * without specifying them intentially | 
 | 	 */ | 
 | 	ctx->flags |= PRNG_NEED_RESET; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void cprng_exit(struct crypto_tfm *tfm) | 
 | { | 
 | 	free_prng_context(crypto_tfm_ctx(tfm)); | 
 | } | 
 |  | 
 | static int cprng_get_random(struct crypto_rng *tfm, u8 *rdata, | 
 | 			    unsigned int dlen) | 
 | { | 
 | 	struct prng_context *prng = crypto_rng_ctx(tfm); | 
 |  | 
 | 	return get_prng_bytes(rdata, dlen, prng, 0); | 
 | } | 
 |  | 
 | /* | 
 |  *  This is the cprng_registered reset method the seed value is | 
 |  *  interpreted as the tuple { V KEY DT} | 
 |  *  V and KEY are required during reset, and DT is optional, detected | 
 |  *  as being present by testing the length of the seed | 
 |  */ | 
 | static int cprng_reset(struct crypto_rng *tfm, u8 *seed, unsigned int slen) | 
 | { | 
 | 	struct prng_context *prng = crypto_rng_ctx(tfm); | 
 | 	u8 *key = seed + DEFAULT_BLK_SZ; | 
 | 	u8 *dt = NULL; | 
 |  | 
 | 	if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (slen >= (2 * DEFAULT_BLK_SZ + DEFAULT_PRNG_KSZ)) | 
 | 		dt = key + DEFAULT_PRNG_KSZ; | 
 |  | 
 | 	reset_prng_context(prng, key, DEFAULT_PRNG_KSZ, seed, dt); | 
 |  | 
 | 	if (prng->flags & PRNG_NEED_RESET) | 
 | 		return -EINVAL; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct crypto_alg rng_alg = { | 
 | 	.cra_name		= "stdrng", | 
 | 	.cra_driver_name	= "ansi_cprng", | 
 | 	.cra_priority		= 100, | 
 | 	.cra_flags		= CRYPTO_ALG_TYPE_RNG, | 
 | 	.cra_ctxsize		= sizeof(struct prng_context), | 
 | 	.cra_type		= &crypto_rng_type, | 
 | 	.cra_module		= THIS_MODULE, | 
 | 	.cra_list		= LIST_HEAD_INIT(rng_alg.cra_list), | 
 | 	.cra_init		= cprng_init, | 
 | 	.cra_exit		= cprng_exit, | 
 | 	.cra_u			= { | 
 | 		.rng = { | 
 | 			.rng_make_random	= cprng_get_random, | 
 | 			.rng_reset		= cprng_reset, | 
 | 			.seedsize = DEFAULT_PRNG_KSZ + 2*DEFAULT_BLK_SZ, | 
 | 		} | 
 | 	} | 
 | }; | 
 |  | 
 | #ifdef CONFIG_CRYPTO_FIPS | 
 | static int fips_cprng_get_random(struct crypto_rng *tfm, u8 *rdata, | 
 | 			    unsigned int dlen) | 
 | { | 
 | 	struct prng_context *prng = crypto_rng_ctx(tfm); | 
 |  | 
 | 	return get_prng_bytes(rdata, dlen, prng, 1); | 
 | } | 
 |  | 
 | static int fips_cprng_reset(struct crypto_rng *tfm, u8 *seed, unsigned int slen) | 
 | { | 
 | 	u8 rdata[DEFAULT_BLK_SZ]; | 
 | 	int rc; | 
 |  | 
 | 	struct prng_context *prng = crypto_rng_ctx(tfm); | 
 |  | 
 | 	rc = cprng_reset(tfm, seed, slen); | 
 |  | 
 | 	if (!rc) | 
 | 		goto out; | 
 |  | 
 | 	/* this primes our continuity test */ | 
 | 	rc = get_prng_bytes(rdata, DEFAULT_BLK_SZ, prng, 0); | 
 | 	prng->rand_data_valid = DEFAULT_BLK_SZ; | 
 |  | 
 | out: | 
 | 	return rc; | 
 | } | 
 |  | 
 | static struct crypto_alg fips_rng_alg = { | 
 | 	.cra_name		= "fips(ansi_cprng)", | 
 | 	.cra_driver_name	= "fips_ansi_cprng", | 
 | 	.cra_priority		= 300, | 
 | 	.cra_flags		= CRYPTO_ALG_TYPE_RNG, | 
 | 	.cra_ctxsize		= sizeof(struct prng_context), | 
 | 	.cra_type		= &crypto_rng_type, | 
 | 	.cra_module		= THIS_MODULE, | 
 | 	.cra_list		= LIST_HEAD_INIT(rng_alg.cra_list), | 
 | 	.cra_init		= cprng_init, | 
 | 	.cra_exit		= cprng_exit, | 
 | 	.cra_u			= { | 
 | 		.rng = { | 
 | 			.rng_make_random	= fips_cprng_get_random, | 
 | 			.rng_reset		= fips_cprng_reset, | 
 | 			.seedsize = DEFAULT_PRNG_KSZ + 2*DEFAULT_BLK_SZ, | 
 | 		} | 
 | 	} | 
 | }; | 
 | #endif | 
 |  | 
 | /* Module initalization */ | 
 | static int __init prng_mod_init(void) | 
 | { | 
 | 	int rc = 0; | 
 |  | 
 | 	rc = crypto_register_alg(&rng_alg); | 
 | #ifdef CONFIG_CRYPTO_FIPS | 
 | 	if (rc) | 
 | 		goto out; | 
 |  | 
 | 	rc = crypto_register_alg(&fips_rng_alg); | 
 |  | 
 | out: | 
 | #endif | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void __exit prng_mod_fini(void) | 
 | { | 
 | 	crypto_unregister_alg(&rng_alg); | 
 | #ifdef CONFIG_CRYPTO_FIPS | 
 | 	crypto_unregister_alg(&fips_rng_alg); | 
 | #endif | 
 | 	return; | 
 | } | 
 |  | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_DESCRIPTION("Software Pseudo Random Number Generator"); | 
 | MODULE_AUTHOR("Neil Horman <nhorman@tuxdriver.com>"); | 
 | module_param(dbg, int, 0); | 
 | MODULE_PARM_DESC(dbg, "Boolean to enable debugging (0/1 == off/on)"); | 
 | module_init(prng_mod_init); | 
 | module_exit(prng_mod_fini); | 
 | MODULE_ALIAS("stdrng"); |