|  | /* | 
|  | * NAND flash simulator. | 
|  | * | 
|  | * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org> | 
|  | * | 
|  | * Copyright (C) 2004 Nokia Corporation | 
|  | * | 
|  | * Note: NS means "NAND Simulator". | 
|  | * Note: Input means input TO flash chip, output means output FROM chip. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License as published by the | 
|  | * Free Software Foundation; either version 2, or (at your option) any later | 
|  | * version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but | 
|  | * WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General | 
|  | * Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA | 
|  | */ | 
|  |  | 
|  | #include <linux/init.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/moduleparam.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <asm/div64.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/mtd/nand.h> | 
|  | #include <linux/mtd/partitions.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/random.h> | 
|  |  | 
|  | /* Default simulator parameters values */ | 
|  | #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \ | 
|  | !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \ | 
|  | !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \ | 
|  | !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE) | 
|  | #define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98 | 
|  | #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39 | 
|  | #define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */ | 
|  | #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */ | 
|  | #endif | 
|  |  | 
|  | #ifndef CONFIG_NANDSIM_ACCESS_DELAY | 
|  | #define CONFIG_NANDSIM_ACCESS_DELAY 25 | 
|  | #endif | 
|  | #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY | 
|  | #define CONFIG_NANDSIM_PROGRAMM_DELAY 200 | 
|  | #endif | 
|  | #ifndef CONFIG_NANDSIM_ERASE_DELAY | 
|  | #define CONFIG_NANDSIM_ERASE_DELAY 2 | 
|  | #endif | 
|  | #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE | 
|  | #define CONFIG_NANDSIM_OUTPUT_CYCLE 40 | 
|  | #endif | 
|  | #ifndef CONFIG_NANDSIM_INPUT_CYCLE | 
|  | #define CONFIG_NANDSIM_INPUT_CYCLE  50 | 
|  | #endif | 
|  | #ifndef CONFIG_NANDSIM_BUS_WIDTH | 
|  | #define CONFIG_NANDSIM_BUS_WIDTH  8 | 
|  | #endif | 
|  | #ifndef CONFIG_NANDSIM_DO_DELAYS | 
|  | #define CONFIG_NANDSIM_DO_DELAYS  0 | 
|  | #endif | 
|  | #ifndef CONFIG_NANDSIM_LOG | 
|  | #define CONFIG_NANDSIM_LOG        0 | 
|  | #endif | 
|  | #ifndef CONFIG_NANDSIM_DBG | 
|  | #define CONFIG_NANDSIM_DBG        0 | 
|  | #endif | 
|  |  | 
|  | static uint first_id_byte  = CONFIG_NANDSIM_FIRST_ID_BYTE; | 
|  | static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE; | 
|  | static uint third_id_byte  = CONFIG_NANDSIM_THIRD_ID_BYTE; | 
|  | static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE; | 
|  | static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY; | 
|  | static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY; | 
|  | static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY; | 
|  | static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE; | 
|  | static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE; | 
|  | static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH; | 
|  | static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS; | 
|  | static uint log            = CONFIG_NANDSIM_LOG; | 
|  | static uint dbg            = CONFIG_NANDSIM_DBG; | 
|  | static unsigned long parts[MAX_MTD_DEVICES]; | 
|  | static unsigned int parts_num; | 
|  | static char *badblocks = NULL; | 
|  | static char *weakblocks = NULL; | 
|  | static char *weakpages = NULL; | 
|  | static unsigned int bitflips = 0; | 
|  | static char *gravepages = NULL; | 
|  | static unsigned int rptwear = 0; | 
|  | static unsigned int overridesize = 0; | 
|  |  | 
|  | module_param(first_id_byte,  uint, 0400); | 
|  | module_param(second_id_byte, uint, 0400); | 
|  | module_param(third_id_byte,  uint, 0400); | 
|  | module_param(fourth_id_byte, uint, 0400); | 
|  | module_param(access_delay,   uint, 0400); | 
|  | module_param(programm_delay, uint, 0400); | 
|  | module_param(erase_delay,    uint, 0400); | 
|  | module_param(output_cycle,   uint, 0400); | 
|  | module_param(input_cycle,    uint, 0400); | 
|  | module_param(bus_width,      uint, 0400); | 
|  | module_param(do_delays,      uint, 0400); | 
|  | module_param(log,            uint, 0400); | 
|  | module_param(dbg,            uint, 0400); | 
|  | module_param_array(parts, ulong, &parts_num, 0400); | 
|  | module_param(badblocks,      charp, 0400); | 
|  | module_param(weakblocks,     charp, 0400); | 
|  | module_param(weakpages,      charp, 0400); | 
|  | module_param(bitflips,       uint, 0400); | 
|  | module_param(gravepages,     charp, 0400); | 
|  | module_param(rptwear,        uint, 0400); | 
|  | module_param(overridesize,   uint, 0400); | 
|  |  | 
|  | MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)"); | 
|  | MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)"); | 
|  | MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command"); | 
|  | MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command"); | 
|  | MODULE_PARM_DESC(access_delay,   "Initial page access delay (microiseconds)"); | 
|  | MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds"); | 
|  | MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)"); | 
|  | MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanodeconds)"); | 
|  | MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanodeconds)"); | 
|  | MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)"); | 
|  | MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero"); | 
|  | MODULE_PARM_DESC(log,            "Perform logging if not zero"); | 
|  | MODULE_PARM_DESC(dbg,            "Output debug information if not zero"); | 
|  | MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas"); | 
|  | /* Page and erase block positions for the following parameters are independent of any partitions */ | 
|  | MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas"); | 
|  | MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]" | 
|  | " separated by commas e.g. 113:2 means eb 113" | 
|  | " can be erased only twice before failing"); | 
|  | MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]" | 
|  | " separated by commas e.g. 1401:2 means page 1401" | 
|  | " can be written only twice before failing"); | 
|  | MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)"); | 
|  | MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]" | 
|  | " separated by commas e.g. 1401:2 means page 1401" | 
|  | " can be read only twice before failing"); | 
|  | MODULE_PARM_DESC(rptwear,        "Number of erases inbetween reporting wear, if not zero"); | 
|  | MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. " | 
|  | "The size is specified in erase blocks and as the exponent of a power of two" | 
|  | " e.g. 5 means a size of 32 erase blocks"); | 
|  |  | 
|  | /* The largest possible page size */ | 
|  | #define NS_LARGEST_PAGE_SIZE	2048 | 
|  |  | 
|  | /* The prefix for simulator output */ | 
|  | #define NS_OUTPUT_PREFIX "[nandsim]" | 
|  |  | 
|  | /* Simulator's output macros (logging, debugging, warning, error) */ | 
|  | #define NS_LOG(args...) \ | 
|  | do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0) | 
|  | #define NS_DBG(args...) \ | 
|  | do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0) | 
|  | #define NS_WARN(args...) \ | 
|  | do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0) | 
|  | #define NS_ERR(args...) \ | 
|  | do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0) | 
|  | #define NS_INFO(args...) \ | 
|  | do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0) | 
|  |  | 
|  | /* Busy-wait delay macros (microseconds, milliseconds) */ | 
|  | #define NS_UDELAY(us) \ | 
|  | do { if (do_delays) udelay(us); } while(0) | 
|  | #define NS_MDELAY(us) \ | 
|  | do { if (do_delays) mdelay(us); } while(0) | 
|  |  | 
|  | /* Is the nandsim structure initialized ? */ | 
|  | #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0) | 
|  |  | 
|  | /* Good operation completion status */ | 
|  | #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0))) | 
|  |  | 
|  | /* Operation failed completion status */ | 
|  | #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns)) | 
|  |  | 
|  | /* Calculate the page offset in flash RAM image by (row, column) address */ | 
|  | #define NS_RAW_OFFSET(ns) \ | 
|  | (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column) | 
|  |  | 
|  | /* Calculate the OOB offset in flash RAM image by (row, column) address */ | 
|  | #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz) | 
|  |  | 
|  | /* After a command is input, the simulator goes to one of the following states */ | 
|  | #define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */ | 
|  | #define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */ | 
|  | #define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */ | 
|  | #define STATE_CMD_PAGEPROG     0x00000004 /* start page programm */ | 
|  | #define STATE_CMD_READOOB      0x00000005 /* read OOB area */ | 
|  | #define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */ | 
|  | #define STATE_CMD_STATUS       0x00000007 /* read status */ | 
|  | #define STATE_CMD_STATUS_M     0x00000008 /* read multi-plane status (isn't implemented) */ | 
|  | #define STATE_CMD_SEQIN        0x00000009 /* sequential data imput */ | 
|  | #define STATE_CMD_READID       0x0000000A /* read ID */ | 
|  | #define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */ | 
|  | #define STATE_CMD_RESET        0x0000000C /* reset */ | 
|  | #define STATE_CMD_RNDOUT       0x0000000D /* random output command */ | 
|  | #define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */ | 
|  | #define STATE_CMD_MASK         0x0000000F /* command states mask */ | 
|  |  | 
|  | /* After an address is input, the simulator goes to one of these states */ | 
|  | #define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */ | 
|  | #define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */ | 
|  | #define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */ | 
|  | #define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */ | 
|  | #define STATE_ADDR_MASK        0x00000070 /* address states mask */ | 
|  |  | 
|  | /* Durind data input/output the simulator is in these states */ | 
|  | #define STATE_DATAIN           0x00000100 /* waiting for data input */ | 
|  | #define STATE_DATAIN_MASK      0x00000100 /* data input states mask */ | 
|  |  | 
|  | #define STATE_DATAOUT          0x00001000 /* waiting for page data output */ | 
|  | #define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */ | 
|  | #define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */ | 
|  | #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */ | 
|  | #define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */ | 
|  |  | 
|  | /* Previous operation is done, ready to accept new requests */ | 
|  | #define STATE_READY            0x00000000 | 
|  |  | 
|  | /* This state is used to mark that the next state isn't known yet */ | 
|  | #define STATE_UNKNOWN          0x10000000 | 
|  |  | 
|  | /* Simulator's actions bit masks */ | 
|  | #define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */ | 
|  | #define ACTION_PRGPAGE   0x00200000 /* programm the internal buffer to flash */ | 
|  | #define ACTION_SECERASE  0x00300000 /* erase sector */ | 
|  | #define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */ | 
|  | #define ACTION_HALFOFF   0x00500000 /* add to address half of page */ | 
|  | #define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */ | 
|  | #define ACTION_MASK      0x00700000 /* action mask */ | 
|  |  | 
|  | #define NS_OPER_NUM      13 /* Number of operations supported by the simulator */ | 
|  | #define NS_OPER_STATES   6  /* Maximum number of states in operation */ | 
|  |  | 
|  | #define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */ | 
|  | #define OPT_PAGE256      0x00000001 /* 256-byte  page chips */ | 
|  | #define OPT_PAGE512      0x00000002 /* 512-byte  page chips */ | 
|  | #define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */ | 
|  | #define OPT_SMARTMEDIA   0x00000010 /* SmartMedia technology chips */ | 
|  | #define OPT_AUTOINCR     0x00000020 /* page number auto inctimentation is possible */ | 
|  | #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */ | 
|  | #define OPT_LARGEPAGE    (OPT_PAGE2048) /* 2048-byte page chips */ | 
|  | #define OPT_SMALLPAGE    (OPT_PAGE256  | OPT_PAGE512)  /* 256 and 512-byte page chips */ | 
|  |  | 
|  | /* Remove action bits ftom state */ | 
|  | #define NS_STATE(x) ((x) & ~ACTION_MASK) | 
|  |  | 
|  | /* | 
|  | * Maximum previous states which need to be saved. Currently saving is | 
|  | * only needed for page programm operation with preceeded read command | 
|  | * (which is only valid for 512-byte pages). | 
|  | */ | 
|  | #define NS_MAX_PREVSTATES 1 | 
|  |  | 
|  | /* | 
|  | * A union to represent flash memory contents and flash buffer. | 
|  | */ | 
|  | union ns_mem { | 
|  | u_char *byte;    /* for byte access */ | 
|  | uint16_t *word;  /* for 16-bit word access */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * The structure which describes all the internal simulator data. | 
|  | */ | 
|  | struct nandsim { | 
|  | struct mtd_partition partitions[MAX_MTD_DEVICES]; | 
|  | unsigned int nbparts; | 
|  |  | 
|  | uint busw;              /* flash chip bus width (8 or 16) */ | 
|  | u_char ids[4];          /* chip's ID bytes */ | 
|  | uint32_t options;       /* chip's characteristic bits */ | 
|  | uint32_t state;         /* current chip state */ | 
|  | uint32_t nxstate;       /* next expected state */ | 
|  |  | 
|  | uint32_t *op;           /* current operation, NULL operations isn't known yet  */ | 
|  | uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */ | 
|  | uint16_t npstates;      /* number of previous states saved */ | 
|  | uint16_t stateidx;      /* current state index */ | 
|  |  | 
|  | /* The simulated NAND flash pages array */ | 
|  | union ns_mem *pages; | 
|  |  | 
|  | /* Internal buffer of page + OOB size bytes */ | 
|  | union ns_mem buf; | 
|  |  | 
|  | /* NAND flash "geometry" */ | 
|  | struct nandsin_geometry { | 
|  | uint64_t totsz;     /* total flash size, bytes */ | 
|  | uint32_t secsz;     /* flash sector (erase block) size, bytes */ | 
|  | uint pgsz;          /* NAND flash page size, bytes */ | 
|  | uint oobsz;         /* page OOB area size, bytes */ | 
|  | uint64_t totszoob;  /* total flash size including OOB, bytes */ | 
|  | uint pgszoob;       /* page size including OOB , bytes*/ | 
|  | uint secszoob;      /* sector size including OOB, bytes */ | 
|  | uint pgnum;         /* total number of pages */ | 
|  | uint pgsec;         /* number of pages per sector */ | 
|  | uint secshift;      /* bits number in sector size */ | 
|  | uint pgshift;       /* bits number in page size */ | 
|  | uint oobshift;      /* bits number in OOB size */ | 
|  | uint pgaddrbytes;   /* bytes per page address */ | 
|  | uint secaddrbytes;  /* bytes per sector address */ | 
|  | uint idbytes;       /* the number ID bytes that this chip outputs */ | 
|  | } geom; | 
|  |  | 
|  | /* NAND flash internal registers */ | 
|  | struct nandsim_regs { | 
|  | unsigned command; /* the command register */ | 
|  | u_char   status;  /* the status register */ | 
|  | uint     row;     /* the page number */ | 
|  | uint     column;  /* the offset within page */ | 
|  | uint     count;   /* internal counter */ | 
|  | uint     num;     /* number of bytes which must be processed */ | 
|  | uint     off;     /* fixed page offset */ | 
|  | } regs; | 
|  |  | 
|  | /* NAND flash lines state */ | 
|  | struct ns_lines_status { | 
|  | int ce;  /* chip Enable */ | 
|  | int cle; /* command Latch Enable */ | 
|  | int ale; /* address Latch Enable */ | 
|  | int wp;  /* write Protect */ | 
|  | } lines; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Operations array. To perform any operation the simulator must pass | 
|  | * through the correspondent states chain. | 
|  | */ | 
|  | static struct nandsim_operations { | 
|  | uint32_t reqopts;  /* options which are required to perform the operation */ | 
|  | uint32_t states[NS_OPER_STATES]; /* operation's states */ | 
|  | } ops[NS_OPER_NUM] = { | 
|  | /* Read page + OOB from the beginning */ | 
|  | {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY, | 
|  | STATE_DATAOUT, STATE_READY}}, | 
|  | /* Read page + OOB from the second half */ | 
|  | {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY, | 
|  | STATE_DATAOUT, STATE_READY}}, | 
|  | /* Read OOB */ | 
|  | {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY, | 
|  | STATE_DATAOUT, STATE_READY}}, | 
|  | /* Programm page starting from the beginning */ | 
|  | {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN, | 
|  | STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, | 
|  | /* Programm page starting from the beginning */ | 
|  | {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE, | 
|  | STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, | 
|  | /* Programm page starting from the second half */ | 
|  | {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE, | 
|  | STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, | 
|  | /* Programm OOB */ | 
|  | {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE, | 
|  | STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, | 
|  | /* Erase sector */ | 
|  | {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}}, | 
|  | /* Read status */ | 
|  | {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}}, | 
|  | /* Read multi-plane status */ | 
|  | {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}}, | 
|  | /* Read ID */ | 
|  | {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}}, | 
|  | /* Large page devices read page */ | 
|  | {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY, | 
|  | STATE_DATAOUT, STATE_READY}}, | 
|  | /* Large page devices random page read */ | 
|  | {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY, | 
|  | STATE_DATAOUT, STATE_READY}}, | 
|  | }; | 
|  |  | 
|  | struct weak_block { | 
|  | struct list_head list; | 
|  | unsigned int erase_block_no; | 
|  | unsigned int max_erases; | 
|  | unsigned int erases_done; | 
|  | }; | 
|  |  | 
|  | static LIST_HEAD(weak_blocks); | 
|  |  | 
|  | struct weak_page { | 
|  | struct list_head list; | 
|  | unsigned int page_no; | 
|  | unsigned int max_writes; | 
|  | unsigned int writes_done; | 
|  | }; | 
|  |  | 
|  | static LIST_HEAD(weak_pages); | 
|  |  | 
|  | struct grave_page { | 
|  | struct list_head list; | 
|  | unsigned int page_no; | 
|  | unsigned int max_reads; | 
|  | unsigned int reads_done; | 
|  | }; | 
|  |  | 
|  | static LIST_HEAD(grave_pages); | 
|  |  | 
|  | static unsigned long *erase_block_wear = NULL; | 
|  | static unsigned int wear_eb_count = 0; | 
|  | static unsigned long total_wear = 0; | 
|  | static unsigned int rptwear_cnt = 0; | 
|  |  | 
|  | /* MTD structure for NAND controller */ | 
|  | static struct mtd_info *nsmtd; | 
|  |  | 
|  | static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE]; | 
|  |  | 
|  | /* | 
|  | * Allocate array of page pointers and initialize the array to NULL | 
|  | * pointers. | 
|  | * | 
|  | * RETURNS: 0 if success, -ENOMEM if memory alloc fails. | 
|  | */ | 
|  | static int alloc_device(struct nandsim *ns) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem)); | 
|  | if (!ns->pages) { | 
|  | NS_ERR("alloc_map: unable to allocate page array\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | for (i = 0; i < ns->geom.pgnum; i++) { | 
|  | ns->pages[i].byte = NULL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free any allocated pages, and free the array of page pointers. | 
|  | */ | 
|  | static void free_device(struct nandsim *ns) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (ns->pages) { | 
|  | for (i = 0; i < ns->geom.pgnum; i++) { | 
|  | if (ns->pages[i].byte) | 
|  | kfree(ns->pages[i].byte); | 
|  | } | 
|  | vfree(ns->pages); | 
|  | } | 
|  | } | 
|  |  | 
|  | static char *get_partition_name(int i) | 
|  | { | 
|  | char buf[64]; | 
|  | sprintf(buf, "NAND simulator partition %d", i); | 
|  | return kstrdup(buf, GFP_KERNEL); | 
|  | } | 
|  |  | 
|  | static u_int64_t divide(u_int64_t n, u_int32_t d) | 
|  | { | 
|  | do_div(n, d); | 
|  | return n; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the nandsim structure. | 
|  | * | 
|  | * RETURNS: 0 if success, -ERRNO if failure. | 
|  | */ | 
|  | static int init_nandsim(struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *chip = (struct nand_chip *)mtd->priv; | 
|  | struct nandsim   *ns   = (struct nandsim *)(chip->priv); | 
|  | int i, ret = 0; | 
|  | u_int64_t remains; | 
|  | u_int64_t next_offset; | 
|  |  | 
|  | if (NS_IS_INITIALIZED(ns)) { | 
|  | NS_ERR("init_nandsim: nandsim is already initialized\n"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* Force mtd to not do delays */ | 
|  | chip->chip_delay = 0; | 
|  |  | 
|  | /* Initialize the NAND flash parameters */ | 
|  | ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8; | 
|  | ns->geom.totsz    = mtd->size; | 
|  | ns->geom.pgsz     = mtd->writesize; | 
|  | ns->geom.oobsz    = mtd->oobsize; | 
|  | ns->geom.secsz    = mtd->erasesize; | 
|  | ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz; | 
|  | ns->geom.pgnum    = divide(ns->geom.totsz, ns->geom.pgsz); | 
|  | ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz; | 
|  | ns->geom.secshift = ffs(ns->geom.secsz) - 1; | 
|  | ns->geom.pgshift  = chip->page_shift; | 
|  | ns->geom.oobshift = ffs(ns->geom.oobsz) - 1; | 
|  | ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz; | 
|  | ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec; | 
|  | ns->options = 0; | 
|  |  | 
|  | if (ns->geom.pgsz == 256) { | 
|  | ns->options |= OPT_PAGE256; | 
|  | } | 
|  | else if (ns->geom.pgsz == 512) { | 
|  | ns->options |= (OPT_PAGE512 | OPT_AUTOINCR); | 
|  | if (ns->busw == 8) | 
|  | ns->options |= OPT_PAGE512_8BIT; | 
|  | } else if (ns->geom.pgsz == 2048) { | 
|  | ns->options |= OPT_PAGE2048; | 
|  | } else { | 
|  | NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (ns->options & OPT_SMALLPAGE) { | 
|  | if (ns->geom.totsz <= (32 << 20)) { | 
|  | ns->geom.pgaddrbytes  = 3; | 
|  | ns->geom.secaddrbytes = 2; | 
|  | } else { | 
|  | ns->geom.pgaddrbytes  = 4; | 
|  | ns->geom.secaddrbytes = 3; | 
|  | } | 
|  | } else { | 
|  | if (ns->geom.totsz <= (128 << 20)) { | 
|  | ns->geom.pgaddrbytes  = 4; | 
|  | ns->geom.secaddrbytes = 2; | 
|  | } else { | 
|  | ns->geom.pgaddrbytes  = 5; | 
|  | ns->geom.secaddrbytes = 3; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Fill the partition_info structure */ | 
|  | if (parts_num > ARRAY_SIZE(ns->partitions)) { | 
|  | NS_ERR("too many partitions.\n"); | 
|  | ret = -EINVAL; | 
|  | goto error; | 
|  | } | 
|  | remains = ns->geom.totsz; | 
|  | next_offset = 0; | 
|  | for (i = 0; i < parts_num; ++i) { | 
|  | u_int64_t part_sz = (u_int64_t)parts[i] * ns->geom.secsz; | 
|  |  | 
|  | if (!part_sz || part_sz > remains) { | 
|  | NS_ERR("bad partition size.\n"); | 
|  | ret = -EINVAL; | 
|  | goto error; | 
|  | } | 
|  | ns->partitions[i].name   = get_partition_name(i); | 
|  | ns->partitions[i].offset = next_offset; | 
|  | ns->partitions[i].size   = part_sz; | 
|  | next_offset += ns->partitions[i].size; | 
|  | remains -= ns->partitions[i].size; | 
|  | } | 
|  | ns->nbparts = parts_num; | 
|  | if (remains) { | 
|  | if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) { | 
|  | NS_ERR("too many partitions.\n"); | 
|  | ret = -EINVAL; | 
|  | goto error; | 
|  | } | 
|  | ns->partitions[i].name   = get_partition_name(i); | 
|  | ns->partitions[i].offset = next_offset; | 
|  | ns->partitions[i].size   = remains; | 
|  | ns->nbparts += 1; | 
|  | } | 
|  |  | 
|  | /* Detect how many ID bytes the NAND chip outputs */ | 
|  | for (i = 0; nand_flash_ids[i].name != NULL; i++) { | 
|  | if (second_id_byte != nand_flash_ids[i].id) | 
|  | continue; | 
|  | if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR)) | 
|  | ns->options |= OPT_AUTOINCR; | 
|  | } | 
|  |  | 
|  | if (ns->busw == 16) | 
|  | NS_WARN("16-bit flashes support wasn't tested\n"); | 
|  |  | 
|  | printk("flash size: %llu MiB\n", | 
|  | (unsigned long long)ns->geom.totsz >> 20); | 
|  | printk("page size: %u bytes\n",         ns->geom.pgsz); | 
|  | printk("OOB area size: %u bytes\n",     ns->geom.oobsz); | 
|  | printk("sector size: %u KiB\n",         ns->geom.secsz >> 10); | 
|  | printk("pages number: %u\n",            ns->geom.pgnum); | 
|  | printk("pages per sector: %u\n",        ns->geom.pgsec); | 
|  | printk("bus width: %u\n",               ns->busw); | 
|  | printk("bits in sector size: %u\n",     ns->geom.secshift); | 
|  | printk("bits in page size: %u\n",       ns->geom.pgshift); | 
|  | printk("bits in OOB size: %u\n",	ns->geom.oobshift); | 
|  | printk("flash size with OOB: %llu KiB\n", | 
|  | (unsigned long long)ns->geom.totszoob >> 10); | 
|  | printk("page address bytes: %u\n",      ns->geom.pgaddrbytes); | 
|  | printk("sector address bytes: %u\n",    ns->geom.secaddrbytes); | 
|  | printk("options: %#x\n",                ns->options); | 
|  |  | 
|  | if ((ret = alloc_device(ns)) != 0) | 
|  | goto error; | 
|  |  | 
|  | /* Allocate / initialize the internal buffer */ | 
|  | ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL); | 
|  | if (!ns->buf.byte) { | 
|  | NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n", | 
|  | ns->geom.pgszoob); | 
|  | ret = -ENOMEM; | 
|  | goto error; | 
|  | } | 
|  | memset(ns->buf.byte, 0xFF, ns->geom.pgszoob); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | error: | 
|  | free_device(ns); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free the nandsim structure. | 
|  | */ | 
|  | static void free_nandsim(struct nandsim *ns) | 
|  | { | 
|  | kfree(ns->buf.byte); | 
|  | free_device(ns); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd) | 
|  | { | 
|  | char *w; | 
|  | int zero_ok; | 
|  | unsigned int erase_block_no; | 
|  | loff_t offset; | 
|  |  | 
|  | if (!badblocks) | 
|  | return 0; | 
|  | w = badblocks; | 
|  | do { | 
|  | zero_ok = (*w == '0' ? 1 : 0); | 
|  | erase_block_no = simple_strtoul(w, &w, 0); | 
|  | if (!zero_ok && !erase_block_no) { | 
|  | NS_ERR("invalid badblocks.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | offset = erase_block_no * ns->geom.secsz; | 
|  | if (mtd->block_markbad(mtd, offset)) { | 
|  | NS_ERR("invalid badblocks.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (*w == ',') | 
|  | w += 1; | 
|  | } while (*w); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int parse_weakblocks(void) | 
|  | { | 
|  | char *w; | 
|  | int zero_ok; | 
|  | unsigned int erase_block_no; | 
|  | unsigned int max_erases; | 
|  | struct weak_block *wb; | 
|  |  | 
|  | if (!weakblocks) | 
|  | return 0; | 
|  | w = weakblocks; | 
|  | do { | 
|  | zero_ok = (*w == '0' ? 1 : 0); | 
|  | erase_block_no = simple_strtoul(w, &w, 0); | 
|  | if (!zero_ok && !erase_block_no) { | 
|  | NS_ERR("invalid weakblocks.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | max_erases = 3; | 
|  | if (*w == ':') { | 
|  | w += 1; | 
|  | max_erases = simple_strtoul(w, &w, 0); | 
|  | } | 
|  | if (*w == ',') | 
|  | w += 1; | 
|  | wb = kzalloc(sizeof(*wb), GFP_KERNEL); | 
|  | if (!wb) { | 
|  | NS_ERR("unable to allocate memory.\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | wb->erase_block_no = erase_block_no; | 
|  | wb->max_erases = max_erases; | 
|  | list_add(&wb->list, &weak_blocks); | 
|  | } while (*w); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int erase_error(unsigned int erase_block_no) | 
|  | { | 
|  | struct weak_block *wb; | 
|  |  | 
|  | list_for_each_entry(wb, &weak_blocks, list) | 
|  | if (wb->erase_block_no == erase_block_no) { | 
|  | if (wb->erases_done >= wb->max_erases) | 
|  | return 1; | 
|  | wb->erases_done += 1; | 
|  | return 0; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int parse_weakpages(void) | 
|  | { | 
|  | char *w; | 
|  | int zero_ok; | 
|  | unsigned int page_no; | 
|  | unsigned int max_writes; | 
|  | struct weak_page *wp; | 
|  |  | 
|  | if (!weakpages) | 
|  | return 0; | 
|  | w = weakpages; | 
|  | do { | 
|  | zero_ok = (*w == '0' ? 1 : 0); | 
|  | page_no = simple_strtoul(w, &w, 0); | 
|  | if (!zero_ok && !page_no) { | 
|  | NS_ERR("invalid weakpagess.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | max_writes = 3; | 
|  | if (*w == ':') { | 
|  | w += 1; | 
|  | max_writes = simple_strtoul(w, &w, 0); | 
|  | } | 
|  | if (*w == ',') | 
|  | w += 1; | 
|  | wp = kzalloc(sizeof(*wp), GFP_KERNEL); | 
|  | if (!wp) { | 
|  | NS_ERR("unable to allocate memory.\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | wp->page_no = page_no; | 
|  | wp->max_writes = max_writes; | 
|  | list_add(&wp->list, &weak_pages); | 
|  | } while (*w); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int write_error(unsigned int page_no) | 
|  | { | 
|  | struct weak_page *wp; | 
|  |  | 
|  | list_for_each_entry(wp, &weak_pages, list) | 
|  | if (wp->page_no == page_no) { | 
|  | if (wp->writes_done >= wp->max_writes) | 
|  | return 1; | 
|  | wp->writes_done += 1; | 
|  | return 0; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int parse_gravepages(void) | 
|  | { | 
|  | char *g; | 
|  | int zero_ok; | 
|  | unsigned int page_no; | 
|  | unsigned int max_reads; | 
|  | struct grave_page *gp; | 
|  |  | 
|  | if (!gravepages) | 
|  | return 0; | 
|  | g = gravepages; | 
|  | do { | 
|  | zero_ok = (*g == '0' ? 1 : 0); | 
|  | page_no = simple_strtoul(g, &g, 0); | 
|  | if (!zero_ok && !page_no) { | 
|  | NS_ERR("invalid gravepagess.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | max_reads = 3; | 
|  | if (*g == ':') { | 
|  | g += 1; | 
|  | max_reads = simple_strtoul(g, &g, 0); | 
|  | } | 
|  | if (*g == ',') | 
|  | g += 1; | 
|  | gp = kzalloc(sizeof(*gp), GFP_KERNEL); | 
|  | if (!gp) { | 
|  | NS_ERR("unable to allocate memory.\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | gp->page_no = page_no; | 
|  | gp->max_reads = max_reads; | 
|  | list_add(&gp->list, &grave_pages); | 
|  | } while (*g); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int read_error(unsigned int page_no) | 
|  | { | 
|  | struct grave_page *gp; | 
|  |  | 
|  | list_for_each_entry(gp, &grave_pages, list) | 
|  | if (gp->page_no == page_no) { | 
|  | if (gp->reads_done >= gp->max_reads) | 
|  | return 1; | 
|  | gp->reads_done += 1; | 
|  | return 0; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void free_lists(void) | 
|  | { | 
|  | struct list_head *pos, *n; | 
|  | list_for_each_safe(pos, n, &weak_blocks) { | 
|  | list_del(pos); | 
|  | kfree(list_entry(pos, struct weak_block, list)); | 
|  | } | 
|  | list_for_each_safe(pos, n, &weak_pages) { | 
|  | list_del(pos); | 
|  | kfree(list_entry(pos, struct weak_page, list)); | 
|  | } | 
|  | list_for_each_safe(pos, n, &grave_pages) { | 
|  | list_del(pos); | 
|  | kfree(list_entry(pos, struct grave_page, list)); | 
|  | } | 
|  | kfree(erase_block_wear); | 
|  | } | 
|  |  | 
|  | static int setup_wear_reporting(struct mtd_info *mtd) | 
|  | { | 
|  | size_t mem; | 
|  |  | 
|  | if (!rptwear) | 
|  | return 0; | 
|  | wear_eb_count = divide(mtd->size, mtd->erasesize); | 
|  | mem = wear_eb_count * sizeof(unsigned long); | 
|  | if (mem / sizeof(unsigned long) != wear_eb_count) { | 
|  | NS_ERR("Too many erase blocks for wear reporting\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | erase_block_wear = kzalloc(mem, GFP_KERNEL); | 
|  | if (!erase_block_wear) { | 
|  | NS_ERR("Too many erase blocks for wear reporting\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void update_wear(unsigned int erase_block_no) | 
|  | { | 
|  | unsigned long wmin = -1, wmax = 0, avg; | 
|  | unsigned long deciles[10], decile_max[10], tot = 0; | 
|  | unsigned int i; | 
|  |  | 
|  | if (!erase_block_wear) | 
|  | return; | 
|  | total_wear += 1; | 
|  | if (total_wear == 0) | 
|  | NS_ERR("Erase counter total overflow\n"); | 
|  | erase_block_wear[erase_block_no] += 1; | 
|  | if (erase_block_wear[erase_block_no] == 0) | 
|  | NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no); | 
|  | rptwear_cnt += 1; | 
|  | if (rptwear_cnt < rptwear) | 
|  | return; | 
|  | rptwear_cnt = 0; | 
|  | /* Calc wear stats */ | 
|  | for (i = 0; i < wear_eb_count; ++i) { | 
|  | unsigned long wear = erase_block_wear[i]; | 
|  | if (wear < wmin) | 
|  | wmin = wear; | 
|  | if (wear > wmax) | 
|  | wmax = wear; | 
|  | tot += wear; | 
|  | } | 
|  | for (i = 0; i < 9; ++i) { | 
|  | deciles[i] = 0; | 
|  | decile_max[i] = (wmax * (i + 1) + 5) / 10; | 
|  | } | 
|  | deciles[9] = 0; | 
|  | decile_max[9] = wmax; | 
|  | for (i = 0; i < wear_eb_count; ++i) { | 
|  | int d; | 
|  | unsigned long wear = erase_block_wear[i]; | 
|  | for (d = 0; d < 10; ++d) | 
|  | if (wear <= decile_max[d]) { | 
|  | deciles[d] += 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | avg = tot / wear_eb_count; | 
|  | /* Output wear report */ | 
|  | NS_INFO("*** Wear Report ***\n"); | 
|  | NS_INFO("Total numbers of erases:  %lu\n", tot); | 
|  | NS_INFO("Number of erase blocks:   %u\n", wear_eb_count); | 
|  | NS_INFO("Average number of erases: %lu\n", avg); | 
|  | NS_INFO("Maximum number of erases: %lu\n", wmax); | 
|  | NS_INFO("Minimum number of erases: %lu\n", wmin); | 
|  | for (i = 0; i < 10; ++i) { | 
|  | unsigned long from = (i ? decile_max[i - 1] + 1 : 0); | 
|  | if (from > decile_max[i]) | 
|  | continue; | 
|  | NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n", | 
|  | from, | 
|  | decile_max[i], | 
|  | deciles[i]); | 
|  | } | 
|  | NS_INFO("*** End of Wear Report ***\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns the string representation of 'state' state. | 
|  | */ | 
|  | static char *get_state_name(uint32_t state) | 
|  | { | 
|  | switch (NS_STATE(state)) { | 
|  | case STATE_CMD_READ0: | 
|  | return "STATE_CMD_READ0"; | 
|  | case STATE_CMD_READ1: | 
|  | return "STATE_CMD_READ1"; | 
|  | case STATE_CMD_PAGEPROG: | 
|  | return "STATE_CMD_PAGEPROG"; | 
|  | case STATE_CMD_READOOB: | 
|  | return "STATE_CMD_READOOB"; | 
|  | case STATE_CMD_READSTART: | 
|  | return "STATE_CMD_READSTART"; | 
|  | case STATE_CMD_ERASE1: | 
|  | return "STATE_CMD_ERASE1"; | 
|  | case STATE_CMD_STATUS: | 
|  | return "STATE_CMD_STATUS"; | 
|  | case STATE_CMD_STATUS_M: | 
|  | return "STATE_CMD_STATUS_M"; | 
|  | case STATE_CMD_SEQIN: | 
|  | return "STATE_CMD_SEQIN"; | 
|  | case STATE_CMD_READID: | 
|  | return "STATE_CMD_READID"; | 
|  | case STATE_CMD_ERASE2: | 
|  | return "STATE_CMD_ERASE2"; | 
|  | case STATE_CMD_RESET: | 
|  | return "STATE_CMD_RESET"; | 
|  | case STATE_CMD_RNDOUT: | 
|  | return "STATE_CMD_RNDOUT"; | 
|  | case STATE_CMD_RNDOUTSTART: | 
|  | return "STATE_CMD_RNDOUTSTART"; | 
|  | case STATE_ADDR_PAGE: | 
|  | return "STATE_ADDR_PAGE"; | 
|  | case STATE_ADDR_SEC: | 
|  | return "STATE_ADDR_SEC"; | 
|  | case STATE_ADDR_ZERO: | 
|  | return "STATE_ADDR_ZERO"; | 
|  | case STATE_ADDR_COLUMN: | 
|  | return "STATE_ADDR_COLUMN"; | 
|  | case STATE_DATAIN: | 
|  | return "STATE_DATAIN"; | 
|  | case STATE_DATAOUT: | 
|  | return "STATE_DATAOUT"; | 
|  | case STATE_DATAOUT_ID: | 
|  | return "STATE_DATAOUT_ID"; | 
|  | case STATE_DATAOUT_STATUS: | 
|  | return "STATE_DATAOUT_STATUS"; | 
|  | case STATE_DATAOUT_STATUS_M: | 
|  | return "STATE_DATAOUT_STATUS_M"; | 
|  | case STATE_READY: | 
|  | return "STATE_READY"; | 
|  | case STATE_UNKNOWN: | 
|  | return "STATE_UNKNOWN"; | 
|  | } | 
|  |  | 
|  | NS_ERR("get_state_name: unknown state, BUG\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if command is valid. | 
|  | * | 
|  | * RETURNS: 1 if wrong command, 0 if right. | 
|  | */ | 
|  | static int check_command(int cmd) | 
|  | { | 
|  | switch (cmd) { | 
|  |  | 
|  | case NAND_CMD_READ0: | 
|  | case NAND_CMD_READ1: | 
|  | case NAND_CMD_READSTART: | 
|  | case NAND_CMD_PAGEPROG: | 
|  | case NAND_CMD_READOOB: | 
|  | case NAND_CMD_ERASE1: | 
|  | case NAND_CMD_STATUS: | 
|  | case NAND_CMD_SEQIN: | 
|  | case NAND_CMD_READID: | 
|  | case NAND_CMD_ERASE2: | 
|  | case NAND_CMD_RESET: | 
|  | case NAND_CMD_RNDOUT: | 
|  | case NAND_CMD_RNDOUTSTART: | 
|  | return 0; | 
|  |  | 
|  | case NAND_CMD_STATUS_MULTI: | 
|  | default: | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns state after command is accepted by command number. | 
|  | */ | 
|  | static uint32_t get_state_by_command(unsigned command) | 
|  | { | 
|  | switch (command) { | 
|  | case NAND_CMD_READ0: | 
|  | return STATE_CMD_READ0; | 
|  | case NAND_CMD_READ1: | 
|  | return STATE_CMD_READ1; | 
|  | case NAND_CMD_PAGEPROG: | 
|  | return STATE_CMD_PAGEPROG; | 
|  | case NAND_CMD_READSTART: | 
|  | return STATE_CMD_READSTART; | 
|  | case NAND_CMD_READOOB: | 
|  | return STATE_CMD_READOOB; | 
|  | case NAND_CMD_ERASE1: | 
|  | return STATE_CMD_ERASE1; | 
|  | case NAND_CMD_STATUS: | 
|  | return STATE_CMD_STATUS; | 
|  | case NAND_CMD_STATUS_MULTI: | 
|  | return STATE_CMD_STATUS_M; | 
|  | case NAND_CMD_SEQIN: | 
|  | return STATE_CMD_SEQIN; | 
|  | case NAND_CMD_READID: | 
|  | return STATE_CMD_READID; | 
|  | case NAND_CMD_ERASE2: | 
|  | return STATE_CMD_ERASE2; | 
|  | case NAND_CMD_RESET: | 
|  | return STATE_CMD_RESET; | 
|  | case NAND_CMD_RNDOUT: | 
|  | return STATE_CMD_RNDOUT; | 
|  | case NAND_CMD_RNDOUTSTART: | 
|  | return STATE_CMD_RNDOUTSTART; | 
|  | } | 
|  |  | 
|  | NS_ERR("get_state_by_command: unknown command, BUG\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move an address byte to the correspondent internal register. | 
|  | */ | 
|  | static inline void accept_addr_byte(struct nandsim *ns, u_char bt) | 
|  | { | 
|  | uint byte = (uint)bt; | 
|  |  | 
|  | if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | 
|  | ns->regs.column |= (byte << 8 * ns->regs.count); | 
|  | else { | 
|  | ns->regs.row |= (byte << 8 * (ns->regs.count - | 
|  | ns->geom.pgaddrbytes + | 
|  | ns->geom.secaddrbytes)); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Switch to STATE_READY state. | 
|  | */ | 
|  | static inline void switch_to_ready_state(struct nandsim *ns, u_char status) | 
|  | { | 
|  | NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY)); | 
|  |  | 
|  | ns->state       = STATE_READY; | 
|  | ns->nxstate     = STATE_UNKNOWN; | 
|  | ns->op          = NULL; | 
|  | ns->npstates    = 0; | 
|  | ns->stateidx    = 0; | 
|  | ns->regs.num    = 0; | 
|  | ns->regs.count  = 0; | 
|  | ns->regs.off    = 0; | 
|  | ns->regs.row    = 0; | 
|  | ns->regs.column = 0; | 
|  | ns->regs.status = status; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the operation isn't known yet, try to find it in the global array | 
|  | * of supported operations. | 
|  | * | 
|  | * Operation can be unknown because of the following. | 
|  | *   1. New command was accepted and this is the firs call to find the | 
|  | *      correspondent states chain. In this case ns->npstates = 0; | 
|  | *   2. There is several operations which begin with the same command(s) | 
|  | *      (for example program from the second half and read from the | 
|  | *      second half operations both begin with the READ1 command). In this | 
|  | *      case the ns->pstates[] array contains previous states. | 
|  | * | 
|  | * Thus, the function tries to find operation containing the following | 
|  | * states (if the 'flag' parameter is 0): | 
|  | *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state | 
|  | * | 
|  | * If (one and only one) matching operation is found, it is accepted ( | 
|  | * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is | 
|  | * zeroed). | 
|  | * | 
|  | * If there are several maches, the current state is pushed to the | 
|  | * ns->pstates. | 
|  | * | 
|  | * The operation can be unknown only while commands are input to the chip. | 
|  | * As soon as address command is accepted, the operation must be known. | 
|  | * In such situation the function is called with 'flag' != 0, and the | 
|  | * operation is searched using the following pattern: | 
|  | *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input> | 
|  | * | 
|  | * It is supposed that this pattern must either match one operation on | 
|  | * none. There can't be ambiguity in that case. | 
|  | * | 
|  | * If no matches found, the functions does the following: | 
|  | *   1. if there are saved states present, try to ignore them and search | 
|  | *      again only using the last command. If nothing was found, switch | 
|  | *      to the STATE_READY state. | 
|  | *   2. if there are no saved states, switch to the STATE_READY state. | 
|  | * | 
|  | * RETURNS: -2 - no matched operations found. | 
|  | *          -1 - several matches. | 
|  | *           0 - operation is found. | 
|  | */ | 
|  | static int find_operation(struct nandsim *ns, uint32_t flag) | 
|  | { | 
|  | int opsfound = 0; | 
|  | int i, j, idx = 0; | 
|  |  | 
|  | for (i = 0; i < NS_OPER_NUM; i++) { | 
|  |  | 
|  | int found = 1; | 
|  |  | 
|  | if (!(ns->options & ops[i].reqopts)) | 
|  | /* Ignore operations we can't perform */ | 
|  | continue; | 
|  |  | 
|  | if (flag) { | 
|  | if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK)) | 
|  | continue; | 
|  | } else { | 
|  | if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates])) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | for (j = 0; j < ns->npstates; j++) | 
|  | if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j]) | 
|  | && (ns->options & ops[idx].reqopts)) { | 
|  | found = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (found) { | 
|  | idx = i; | 
|  | opsfound += 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (opsfound == 1) { | 
|  | /* Exact match */ | 
|  | ns->op = &ops[idx].states[0]; | 
|  | if (flag) { | 
|  | /* | 
|  | * In this case the find_operation function was | 
|  | * called when address has just began input. But it isn't | 
|  | * yet fully input and the current state must | 
|  | * not be one of STATE_ADDR_*, but the STATE_ADDR_* | 
|  | * state must be the next state (ns->nxstate). | 
|  | */ | 
|  | ns->stateidx = ns->npstates - 1; | 
|  | } else { | 
|  | ns->stateidx = ns->npstates; | 
|  | } | 
|  | ns->npstates = 0; | 
|  | ns->state = ns->op[ns->stateidx]; | 
|  | ns->nxstate = ns->op[ns->stateidx + 1]; | 
|  | NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n", | 
|  | idx, get_state_name(ns->state), get_state_name(ns->nxstate)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (opsfound == 0) { | 
|  | /* Nothing was found. Try to ignore previous commands (if any) and search again */ | 
|  | if (ns->npstates != 0) { | 
|  | NS_DBG("find_operation: no operation found, try again with state %s\n", | 
|  | get_state_name(ns->state)); | 
|  | ns->npstates = 0; | 
|  | return find_operation(ns, 0); | 
|  |  | 
|  | } | 
|  | NS_DBG("find_operation: no operations found\n"); | 
|  | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); | 
|  | return -2; | 
|  | } | 
|  |  | 
|  | if (flag) { | 
|  | /* This shouldn't happen */ | 
|  | NS_DBG("find_operation: BUG, operation must be known if address is input\n"); | 
|  | return -2; | 
|  | } | 
|  |  | 
|  | NS_DBG("find_operation: there is still ambiguity\n"); | 
|  |  | 
|  | ns->pstates[ns->npstates++] = ns->state; | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns a pointer to the current page. | 
|  | */ | 
|  | static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns) | 
|  | { | 
|  | return &(ns->pages[ns->regs.row]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Retuns a pointer to the current byte, within the current page. | 
|  | */ | 
|  | static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns) | 
|  | { | 
|  | return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fill the NAND buffer with data read from the specified page. | 
|  | */ | 
|  | static void read_page(struct nandsim *ns, int num) | 
|  | { | 
|  | union ns_mem *mypage; | 
|  |  | 
|  | mypage = NS_GET_PAGE(ns); | 
|  | if (mypage->byte == NULL) { | 
|  | NS_DBG("read_page: page %d not allocated\n", ns->regs.row); | 
|  | memset(ns->buf.byte, 0xFF, num); | 
|  | } else { | 
|  | unsigned int page_no = ns->regs.row; | 
|  | NS_DBG("read_page: page %d allocated, reading from %d\n", | 
|  | ns->regs.row, ns->regs.column + ns->regs.off); | 
|  | if (read_error(page_no)) { | 
|  | int i; | 
|  | memset(ns->buf.byte, 0xFF, num); | 
|  | for (i = 0; i < num; ++i) | 
|  | ns->buf.byte[i] = random32(); | 
|  | NS_WARN("simulating read error in page %u\n", page_no); | 
|  | return; | 
|  | } | 
|  | memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num); | 
|  | if (bitflips && random32() < (1 << 22)) { | 
|  | int flips = 1; | 
|  | if (bitflips > 1) | 
|  | flips = (random32() % (int) bitflips) + 1; | 
|  | while (flips--) { | 
|  | int pos = random32() % (num * 8); | 
|  | ns->buf.byte[pos / 8] ^= (1 << (pos % 8)); | 
|  | NS_WARN("read_page: flipping bit %d in page %d " | 
|  | "reading from %d ecc: corrected=%u failed=%u\n", | 
|  | pos, ns->regs.row, ns->regs.column + ns->regs.off, | 
|  | nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Erase all pages in the specified sector. | 
|  | */ | 
|  | static void erase_sector(struct nandsim *ns) | 
|  | { | 
|  | union ns_mem *mypage; | 
|  | int i; | 
|  |  | 
|  | mypage = NS_GET_PAGE(ns); | 
|  | for (i = 0; i < ns->geom.pgsec; i++) { | 
|  | if (mypage->byte != NULL) { | 
|  | NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i); | 
|  | kfree(mypage->byte); | 
|  | mypage->byte = NULL; | 
|  | } | 
|  | mypage++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Program the specified page with the contents from the NAND buffer. | 
|  | */ | 
|  | static int prog_page(struct nandsim *ns, int num) | 
|  | { | 
|  | int i; | 
|  | union ns_mem *mypage; | 
|  | u_char *pg_off; | 
|  |  | 
|  | mypage = NS_GET_PAGE(ns); | 
|  | if (mypage->byte == NULL) { | 
|  | NS_DBG("prog_page: allocating page %d\n", ns->regs.row); | 
|  | /* | 
|  | * We allocate memory with GFP_NOFS because a flash FS may | 
|  | * utilize this. If it is holding an FS lock, then gets here, | 
|  | * then kmalloc runs writeback which goes to the FS again | 
|  | * and deadlocks. This was seen in practice. | 
|  | */ | 
|  | mypage->byte = kmalloc(ns->geom.pgszoob, GFP_NOFS); | 
|  | if (mypage->byte == NULL) { | 
|  | NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row); | 
|  | return -1; | 
|  | } | 
|  | memset(mypage->byte, 0xFF, ns->geom.pgszoob); | 
|  | } | 
|  |  | 
|  | pg_off = NS_PAGE_BYTE_OFF(ns); | 
|  | for (i = 0; i < num; i++) | 
|  | pg_off[i] &= ns->buf.byte[i]; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If state has any action bit, perform this action. | 
|  | * | 
|  | * RETURNS: 0 if success, -1 if error. | 
|  | */ | 
|  | static int do_state_action(struct nandsim *ns, uint32_t action) | 
|  | { | 
|  | int num; | 
|  | int busdiv = ns->busw == 8 ? 1 : 2; | 
|  | unsigned int erase_block_no, page_no; | 
|  |  | 
|  | action &= ACTION_MASK; | 
|  |  | 
|  | /* Check that page address input is correct */ | 
|  | if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) { | 
|  | NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | switch (action) { | 
|  |  | 
|  | case ACTION_CPY: | 
|  | /* | 
|  | * Copy page data to the internal buffer. | 
|  | */ | 
|  |  | 
|  | /* Column shouldn't be very large */ | 
|  | if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) { | 
|  | NS_ERR("do_state_action: column number is too large\n"); | 
|  | break; | 
|  | } | 
|  | num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; | 
|  | read_page(ns, num); | 
|  |  | 
|  | NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n", | 
|  | num, NS_RAW_OFFSET(ns) + ns->regs.off); | 
|  |  | 
|  | if (ns->regs.off == 0) | 
|  | NS_LOG("read page %d\n", ns->regs.row); | 
|  | else if (ns->regs.off < ns->geom.pgsz) | 
|  | NS_LOG("read page %d (second half)\n", ns->regs.row); | 
|  | else | 
|  | NS_LOG("read OOB of page %d\n", ns->regs.row); | 
|  |  | 
|  | NS_UDELAY(access_delay); | 
|  | NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv); | 
|  |  | 
|  | break; | 
|  |  | 
|  | case ACTION_SECERASE: | 
|  | /* | 
|  | * Erase sector. | 
|  | */ | 
|  |  | 
|  | if (ns->lines.wp) { | 
|  | NS_ERR("do_state_action: device is write-protected, ignore sector erase\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec | 
|  | || (ns->regs.row & ~(ns->geom.secsz - 1))) { | 
|  | NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | ns->regs.row = (ns->regs.row << | 
|  | 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column; | 
|  | ns->regs.column = 0; | 
|  |  | 
|  | erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift); | 
|  |  | 
|  | NS_DBG("do_state_action: erase sector at address %#x, off = %d\n", | 
|  | ns->regs.row, NS_RAW_OFFSET(ns)); | 
|  | NS_LOG("erase sector %u\n", erase_block_no); | 
|  |  | 
|  | erase_sector(ns); | 
|  |  | 
|  | NS_MDELAY(erase_delay); | 
|  |  | 
|  | if (erase_block_wear) | 
|  | update_wear(erase_block_no); | 
|  |  | 
|  | if (erase_error(erase_block_no)) { | 
|  | NS_WARN("simulating erase failure in erase block %u\n", erase_block_no); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | break; | 
|  |  | 
|  | case ACTION_PRGPAGE: | 
|  | /* | 
|  | * Programm page - move internal buffer data to the page. | 
|  | */ | 
|  |  | 
|  | if (ns->lines.wp) { | 
|  | NS_WARN("do_state_action: device is write-protected, programm\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; | 
|  | if (num != ns->regs.count) { | 
|  | NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n", | 
|  | ns->regs.count, num); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (prog_page(ns, num) == -1) | 
|  | return -1; | 
|  |  | 
|  | page_no = ns->regs.row; | 
|  |  | 
|  | NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n", | 
|  | num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off); | 
|  | NS_LOG("programm page %d\n", ns->regs.row); | 
|  |  | 
|  | NS_UDELAY(programm_delay); | 
|  | NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv); | 
|  |  | 
|  | if (write_error(page_no)) { | 
|  | NS_WARN("simulating write failure in page %u\n", page_no); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | break; | 
|  |  | 
|  | case ACTION_ZEROOFF: | 
|  | NS_DBG("do_state_action: set internal offset to 0\n"); | 
|  | ns->regs.off = 0; | 
|  | break; | 
|  |  | 
|  | case ACTION_HALFOFF: | 
|  | if (!(ns->options & OPT_PAGE512_8BIT)) { | 
|  | NS_ERR("do_state_action: BUG! can't skip half of page for non-512" | 
|  | "byte page size 8x chips\n"); | 
|  | return -1; | 
|  | } | 
|  | NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2); | 
|  | ns->regs.off = ns->geom.pgsz/2; | 
|  | break; | 
|  |  | 
|  | case ACTION_OOBOFF: | 
|  | NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz); | 
|  | ns->regs.off = ns->geom.pgsz; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | NS_DBG("do_state_action: BUG! unknown action\n"); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Switch simulator's state. | 
|  | */ | 
|  | static void switch_state(struct nandsim *ns) | 
|  | { | 
|  | if (ns->op) { | 
|  | /* | 
|  | * The current operation have already been identified. | 
|  | * Just follow the states chain. | 
|  | */ | 
|  |  | 
|  | ns->stateidx += 1; | 
|  | ns->state = ns->nxstate; | 
|  | ns->nxstate = ns->op[ns->stateidx + 1]; | 
|  |  | 
|  | NS_DBG("switch_state: operation is known, switch to the next state, " | 
|  | "state: %s, nxstate: %s\n", | 
|  | get_state_name(ns->state), get_state_name(ns->nxstate)); | 
|  |  | 
|  | /* See, whether we need to do some action */ | 
|  | if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { | 
|  | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | } else { | 
|  | /* | 
|  | * We don't yet know which operation we perform. | 
|  | * Try to identify it. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | *  The only event causing the switch_state function to | 
|  | *  be called with yet unknown operation is new command. | 
|  | */ | 
|  | ns->state = get_state_by_command(ns->regs.command); | 
|  |  | 
|  | NS_DBG("switch_state: operation is unknown, try to find it\n"); | 
|  |  | 
|  | if (find_operation(ns, 0) != 0) | 
|  | return; | 
|  |  | 
|  | if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { | 
|  | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* For 16x devices column means the page offset in words */ | 
|  | if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) { | 
|  | NS_DBG("switch_state: double the column number for 16x device\n"); | 
|  | ns->regs.column <<= 1; | 
|  | } | 
|  |  | 
|  | if (NS_STATE(ns->nxstate) == STATE_READY) { | 
|  | /* | 
|  | * The current state is the last. Return to STATE_READY | 
|  | */ | 
|  |  | 
|  | u_char status = NS_STATUS_OK(ns); | 
|  |  | 
|  | /* In case of data states, see if all bytes were input/output */ | 
|  | if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) | 
|  | && ns->regs.count != ns->regs.num) { | 
|  | NS_WARN("switch_state: not all bytes were processed, %d left\n", | 
|  | ns->regs.num - ns->regs.count); | 
|  | status = NS_STATUS_FAILED(ns); | 
|  | } | 
|  |  | 
|  | NS_DBG("switch_state: operation complete, switch to STATE_READY state\n"); | 
|  |  | 
|  | switch_to_ready_state(ns, status); | 
|  |  | 
|  | return; | 
|  | } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) { | 
|  | /* | 
|  | * If the next state is data input/output, switch to it now | 
|  | */ | 
|  |  | 
|  | ns->state      = ns->nxstate; | 
|  | ns->nxstate    = ns->op[++ns->stateidx + 1]; | 
|  | ns->regs.num   = ns->regs.count = 0; | 
|  |  | 
|  | NS_DBG("switch_state: the next state is data I/O, switch, " | 
|  | "state: %s, nxstate: %s\n", | 
|  | get_state_name(ns->state), get_state_name(ns->nxstate)); | 
|  |  | 
|  | /* | 
|  | * Set the internal register to the count of bytes which | 
|  | * are expected to be input or output | 
|  | */ | 
|  | switch (NS_STATE(ns->state)) { | 
|  | case STATE_DATAIN: | 
|  | case STATE_DATAOUT: | 
|  | ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; | 
|  | break; | 
|  |  | 
|  | case STATE_DATAOUT_ID: | 
|  | ns->regs.num = ns->geom.idbytes; | 
|  | break; | 
|  |  | 
|  | case STATE_DATAOUT_STATUS: | 
|  | case STATE_DATAOUT_STATUS_M: | 
|  | ns->regs.count = ns->regs.num = 0; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | NS_ERR("switch_state: BUG! unknown data state\n"); | 
|  | } | 
|  |  | 
|  | } else if (ns->nxstate & STATE_ADDR_MASK) { | 
|  | /* | 
|  | * If the next state is address input, set the internal | 
|  | * register to the number of expected address bytes | 
|  | */ | 
|  |  | 
|  | ns->regs.count = 0; | 
|  |  | 
|  | switch (NS_STATE(ns->nxstate)) { | 
|  | case STATE_ADDR_PAGE: | 
|  | ns->regs.num = ns->geom.pgaddrbytes; | 
|  |  | 
|  | break; | 
|  | case STATE_ADDR_SEC: | 
|  | ns->regs.num = ns->geom.secaddrbytes; | 
|  | break; | 
|  |  | 
|  | case STATE_ADDR_ZERO: | 
|  | ns->regs.num = 1; | 
|  | break; | 
|  |  | 
|  | case STATE_ADDR_COLUMN: | 
|  | /* Column address is always 2 bytes */ | 
|  | ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | NS_ERR("switch_state: BUG! unknown address state\n"); | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * Just reset internal counters. | 
|  | */ | 
|  |  | 
|  | ns->regs.num = 0; | 
|  | ns->regs.count = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static u_char ns_nand_read_byte(struct mtd_info *mtd) | 
|  | { | 
|  | struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv; | 
|  | u_char outb = 0x00; | 
|  |  | 
|  | /* Sanity and correctness checks */ | 
|  | if (!ns->lines.ce) { | 
|  | NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb); | 
|  | return outb; | 
|  | } | 
|  | if (ns->lines.ale || ns->lines.cle) { | 
|  | NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb); | 
|  | return outb; | 
|  | } | 
|  | if (!(ns->state & STATE_DATAOUT_MASK)) { | 
|  | NS_WARN("read_byte: unexpected data output cycle, state is %s " | 
|  | "return %#x\n", get_state_name(ns->state), (uint)outb); | 
|  | return outb; | 
|  | } | 
|  |  | 
|  | /* Status register may be read as many times as it is wanted */ | 
|  | if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) { | 
|  | NS_DBG("read_byte: return %#x status\n", ns->regs.status); | 
|  | return ns->regs.status; | 
|  | } | 
|  |  | 
|  | /* Check if there is any data in the internal buffer which may be read */ | 
|  | if (ns->regs.count == ns->regs.num) { | 
|  | NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb); | 
|  | return outb; | 
|  | } | 
|  |  | 
|  | switch (NS_STATE(ns->state)) { | 
|  | case STATE_DATAOUT: | 
|  | if (ns->busw == 8) { | 
|  | outb = ns->buf.byte[ns->regs.count]; | 
|  | ns->regs.count += 1; | 
|  | } else { | 
|  | outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]); | 
|  | ns->regs.count += 2; | 
|  | } | 
|  | break; | 
|  | case STATE_DATAOUT_ID: | 
|  | NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num); | 
|  | outb = ns->ids[ns->regs.count]; | 
|  | ns->regs.count += 1; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | if (ns->regs.count == ns->regs.num) { | 
|  | NS_DBG("read_byte: all bytes were read\n"); | 
|  |  | 
|  | /* | 
|  | * The OPT_AUTOINCR allows to read next conseqitive pages without | 
|  | * new read operation cycle. | 
|  | */ | 
|  | if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) { | 
|  | ns->regs.count = 0; | 
|  | if (ns->regs.row + 1 < ns->geom.pgnum) | 
|  | ns->regs.row += 1; | 
|  | NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row); | 
|  | do_state_action(ns, ACTION_CPY); | 
|  | } | 
|  | else if (NS_STATE(ns->nxstate) == STATE_READY) | 
|  | switch_state(ns); | 
|  |  | 
|  | } | 
|  |  | 
|  | return outb; | 
|  | } | 
|  |  | 
|  | static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte) | 
|  | { | 
|  | struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv; | 
|  |  | 
|  | /* Sanity and correctness checks */ | 
|  | if (!ns->lines.ce) { | 
|  | NS_ERR("write_byte: chip is disabled, ignore write\n"); | 
|  | return; | 
|  | } | 
|  | if (ns->lines.ale && ns->lines.cle) { | 
|  | NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (ns->lines.cle == 1) { | 
|  | /* | 
|  | * The byte written is a command. | 
|  | */ | 
|  |  | 
|  | if (byte == NAND_CMD_RESET) { | 
|  | NS_LOG("reset chip\n"); | 
|  | switch_to_ready_state(ns, NS_STATUS_OK(ns)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Check that the command byte is correct */ | 
|  | if (check_command(byte)) { | 
|  | NS_ERR("write_byte: unknown command %#x\n", (uint)byte); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS | 
|  | || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M | 
|  | || NS_STATE(ns->state) == STATE_DATAOUT) { | 
|  | int row = ns->regs.row; | 
|  |  | 
|  | switch_state(ns); | 
|  | if (byte == NAND_CMD_RNDOUT) | 
|  | ns->regs.row = row; | 
|  | } | 
|  |  | 
|  | /* Check if chip is expecting command */ | 
|  | if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) { | 
|  | /* | 
|  | * We are in situation when something else (not command) | 
|  | * was expected but command was input. In this case ignore | 
|  | * previous command(s)/state(s) and accept the last one. | 
|  | */ | 
|  | NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, " | 
|  | "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate)); | 
|  | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); | 
|  | } | 
|  |  | 
|  | NS_DBG("command byte corresponding to %s state accepted\n", | 
|  | get_state_name(get_state_by_command(byte))); | 
|  | ns->regs.command = byte; | 
|  | switch_state(ns); | 
|  |  | 
|  | } else if (ns->lines.ale == 1) { | 
|  | /* | 
|  | * The byte written is an address. | 
|  | */ | 
|  |  | 
|  | if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) { | 
|  |  | 
|  | NS_DBG("write_byte: operation isn't known yet, identify it\n"); | 
|  |  | 
|  | if (find_operation(ns, 1) < 0) | 
|  | return; | 
|  |  | 
|  | if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { | 
|  | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ns->regs.count = 0; | 
|  | switch (NS_STATE(ns->nxstate)) { | 
|  | case STATE_ADDR_PAGE: | 
|  | ns->regs.num = ns->geom.pgaddrbytes; | 
|  | break; | 
|  | case STATE_ADDR_SEC: | 
|  | ns->regs.num = ns->geom.secaddrbytes; | 
|  | break; | 
|  | case STATE_ADDR_ZERO: | 
|  | ns->regs.num = 1; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check that chip is expecting address */ | 
|  | if (!(ns->nxstate & STATE_ADDR_MASK)) { | 
|  | NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, " | 
|  | "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate)); | 
|  | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Check if this is expected byte */ | 
|  | if (ns->regs.count == ns->regs.num) { | 
|  | NS_ERR("write_byte: no more address bytes expected\n"); | 
|  | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | accept_addr_byte(ns, byte); | 
|  |  | 
|  | ns->regs.count += 1; | 
|  |  | 
|  | NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n", | 
|  | (uint)byte, ns->regs.count, ns->regs.num); | 
|  |  | 
|  | if (ns->regs.count == ns->regs.num) { | 
|  | NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column); | 
|  | switch_state(ns); | 
|  | } | 
|  |  | 
|  | } else { | 
|  | /* | 
|  | * The byte written is an input data. | 
|  | */ | 
|  |  | 
|  | /* Check that chip is expecting data input */ | 
|  | if (!(ns->state & STATE_DATAIN_MASK)) { | 
|  | NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, " | 
|  | "switch to %s\n", (uint)byte, | 
|  | get_state_name(ns->state), get_state_name(STATE_READY)); | 
|  | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Check if this is expected byte */ | 
|  | if (ns->regs.count == ns->regs.num) { | 
|  | NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n", | 
|  | ns->regs.num); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (ns->busw == 8) { | 
|  | ns->buf.byte[ns->regs.count] = byte; | 
|  | ns->regs.count += 1; | 
|  | } else { | 
|  | ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte); | 
|  | ns->regs.count += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask) | 
|  | { | 
|  | struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv; | 
|  |  | 
|  | ns->lines.cle = bitmask & NAND_CLE ? 1 : 0; | 
|  | ns->lines.ale = bitmask & NAND_ALE ? 1 : 0; | 
|  | ns->lines.ce = bitmask & NAND_NCE ? 1 : 0; | 
|  |  | 
|  | if (cmd != NAND_CMD_NONE) | 
|  | ns_nand_write_byte(mtd, cmd); | 
|  | } | 
|  |  | 
|  | static int ns_device_ready(struct mtd_info *mtd) | 
|  | { | 
|  | NS_DBG("device_ready\n"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static uint16_t ns_nand_read_word(struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *chip = (struct nand_chip *)mtd->priv; | 
|  |  | 
|  | NS_DBG("read_word\n"); | 
|  |  | 
|  | return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8); | 
|  | } | 
|  |  | 
|  | static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) | 
|  | { | 
|  | struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv; | 
|  |  | 
|  | /* Check that chip is expecting data input */ | 
|  | if (!(ns->state & STATE_DATAIN_MASK)) { | 
|  | NS_ERR("write_buf: data input isn't expected, state is %s, " | 
|  | "switch to STATE_READY\n", get_state_name(ns->state)); | 
|  | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Check if these are expected bytes */ | 
|  | if (ns->regs.count + len > ns->regs.num) { | 
|  | NS_ERR("write_buf: too many input bytes\n"); | 
|  | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | memcpy(ns->buf.byte + ns->regs.count, buf, len); | 
|  | ns->regs.count += len; | 
|  |  | 
|  | if (ns->regs.count == ns->regs.num) { | 
|  | NS_DBG("write_buf: %d bytes were written\n", ns->regs.count); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) | 
|  | { | 
|  | struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv; | 
|  |  | 
|  | /* Sanity and correctness checks */ | 
|  | if (!ns->lines.ce) { | 
|  | NS_ERR("read_buf: chip is disabled\n"); | 
|  | return; | 
|  | } | 
|  | if (ns->lines.ale || ns->lines.cle) { | 
|  | NS_ERR("read_buf: ALE or CLE pin is high\n"); | 
|  | return; | 
|  | } | 
|  | if (!(ns->state & STATE_DATAOUT_MASK)) { | 
|  | NS_WARN("read_buf: unexpected data output cycle, current state is %s\n", | 
|  | get_state_name(ns->state)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (NS_STATE(ns->state) != STATE_DATAOUT) { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < len; i++) | 
|  | buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Check if these are expected bytes */ | 
|  | if (ns->regs.count + len > ns->regs.num) { | 
|  | NS_ERR("read_buf: too many bytes to read\n"); | 
|  | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | memcpy(buf, ns->buf.byte + ns->regs.count, len); | 
|  | ns->regs.count += len; | 
|  |  | 
|  | if (ns->regs.count == ns->regs.num) { | 
|  | if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) { | 
|  | ns->regs.count = 0; | 
|  | if (ns->regs.row + 1 < ns->geom.pgnum) | 
|  | ns->regs.row += 1; | 
|  | NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row); | 
|  | do_state_action(ns, ACTION_CPY); | 
|  | } | 
|  | else if (NS_STATE(ns->nxstate) == STATE_READY) | 
|  | switch_state(ns); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) | 
|  | { | 
|  | ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len); | 
|  |  | 
|  | if (!memcmp(buf, &ns_verify_buf[0], len)) { | 
|  | NS_DBG("verify_buf: the buffer is OK\n"); | 
|  | return 0; | 
|  | } else { | 
|  | NS_DBG("verify_buf: the buffer is wrong\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Module initialization function | 
|  | */ | 
|  | static int __init ns_init_module(void) | 
|  | { | 
|  | struct nand_chip *chip; | 
|  | struct nandsim *nand; | 
|  | int retval = -ENOMEM, i; | 
|  |  | 
|  | if (bus_width != 8 && bus_width != 16) { | 
|  | NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Allocate and initialize mtd_info, nand_chip and nandsim structures */ | 
|  | nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip) | 
|  | + sizeof(struct nandsim), GFP_KERNEL); | 
|  | if (!nsmtd) { | 
|  | NS_ERR("unable to allocate core structures.\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | chip        = (struct nand_chip *)(nsmtd + 1); | 
|  | nsmtd->priv = (void *)chip; | 
|  | nand        = (struct nandsim *)(chip + 1); | 
|  | chip->priv  = (void *)nand; | 
|  |  | 
|  | /* | 
|  | * Register simulator's callbacks. | 
|  | */ | 
|  | chip->cmd_ctrl	 = ns_hwcontrol; | 
|  | chip->read_byte  = ns_nand_read_byte; | 
|  | chip->dev_ready  = ns_device_ready; | 
|  | chip->write_buf  = ns_nand_write_buf; | 
|  | chip->read_buf   = ns_nand_read_buf; | 
|  | chip->verify_buf = ns_nand_verify_buf; | 
|  | chip->read_word  = ns_nand_read_word; | 
|  | chip->ecc.mode   = NAND_ECC_SOFT; | 
|  | /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */ | 
|  | /* and 'badblocks' parameters to work */ | 
|  | chip->options   |= NAND_SKIP_BBTSCAN; | 
|  |  | 
|  | /* | 
|  | * Perform minimum nandsim structure initialization to handle | 
|  | * the initial ID read command correctly | 
|  | */ | 
|  | if (third_id_byte != 0xFF || fourth_id_byte != 0xFF) | 
|  | nand->geom.idbytes = 4; | 
|  | else | 
|  | nand->geom.idbytes = 2; | 
|  | nand->regs.status = NS_STATUS_OK(nand); | 
|  | nand->nxstate = STATE_UNKNOWN; | 
|  | nand->options |= OPT_PAGE256; /* temporary value */ | 
|  | nand->ids[0] = first_id_byte; | 
|  | nand->ids[1] = second_id_byte; | 
|  | nand->ids[2] = third_id_byte; | 
|  | nand->ids[3] = fourth_id_byte; | 
|  | if (bus_width == 16) { | 
|  | nand->busw = 16; | 
|  | chip->options |= NAND_BUSWIDTH_16; | 
|  | } | 
|  |  | 
|  | nsmtd->owner = THIS_MODULE; | 
|  |  | 
|  | if ((retval = parse_weakblocks()) != 0) | 
|  | goto error; | 
|  |  | 
|  | if ((retval = parse_weakpages()) != 0) | 
|  | goto error; | 
|  |  | 
|  | if ((retval = parse_gravepages()) != 0) | 
|  | goto error; | 
|  |  | 
|  | if ((retval = nand_scan(nsmtd, 1)) != 0) { | 
|  | NS_ERR("can't register NAND Simulator\n"); | 
|  | if (retval > 0) | 
|  | retval = -ENXIO; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | if (overridesize) { | 
|  | u_int64_t new_size = (u_int64_t)nsmtd->erasesize << overridesize; | 
|  | if (new_size >> overridesize != nsmtd->erasesize) { | 
|  | NS_ERR("overridesize is too big\n"); | 
|  | goto err_exit; | 
|  | } | 
|  | /* N.B. This relies on nand_scan not doing anything with the size before we change it */ | 
|  | nsmtd->size = new_size; | 
|  | chip->chipsize = new_size; | 
|  | chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1; | 
|  | chip->pagemask = (chip->chipsize >> chip->page_shift) - 1; | 
|  | } | 
|  |  | 
|  | if ((retval = setup_wear_reporting(nsmtd)) != 0) | 
|  | goto err_exit; | 
|  |  | 
|  | if ((retval = init_nandsim(nsmtd)) != 0) | 
|  | goto err_exit; | 
|  |  | 
|  | if ((retval = parse_badblocks(nand, nsmtd)) != 0) | 
|  | goto err_exit; | 
|  |  | 
|  | if ((retval = nand_default_bbt(nsmtd)) != 0) | 
|  | goto err_exit; | 
|  |  | 
|  | /* Register NAND partitions */ | 
|  | if ((retval = add_mtd_partitions(nsmtd, &nand->partitions[0], nand->nbparts)) != 0) | 
|  | goto err_exit; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_exit: | 
|  | free_nandsim(nand); | 
|  | nand_release(nsmtd); | 
|  | for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i) | 
|  | kfree(nand->partitions[i].name); | 
|  | error: | 
|  | kfree(nsmtd); | 
|  | free_lists(); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | module_init(ns_init_module); | 
|  |  | 
|  | /* | 
|  | * Module clean-up function | 
|  | */ | 
|  | static void __exit ns_cleanup_module(void) | 
|  | { | 
|  | struct nandsim *ns = (struct nandsim *)(((struct nand_chip *)nsmtd->priv)->priv); | 
|  | int i; | 
|  |  | 
|  | free_nandsim(ns);    /* Free nandsim private resources */ | 
|  | nand_release(nsmtd); /* Unregister driver */ | 
|  | for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i) | 
|  | kfree(ns->partitions[i].name); | 
|  | kfree(nsmtd);        /* Free other structures */ | 
|  | free_lists(); | 
|  | } | 
|  |  | 
|  | module_exit(ns_cleanup_module); | 
|  |  | 
|  | MODULE_LICENSE ("GPL"); | 
|  | MODULE_AUTHOR ("Artem B. Bityuckiy"); | 
|  | MODULE_DESCRIPTION ("The NAND flash simulator"); |