|  | /******************************************************************************* | 
|  |  | 
|  | Intel PRO/1000 Linux driver | 
|  | Copyright(c) 1999 - 2011 Intel Corporation. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify it | 
|  | under the terms and conditions of the GNU General Public License, | 
|  | version 2, as published by the Free Software Foundation. | 
|  |  | 
|  | This program is distributed in the hope it will be useful, but WITHOUT | 
|  | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License along with | 
|  | this program; if not, write to the Free Software Foundation, Inc., | 
|  | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | 
|  |  | 
|  | The full GNU General Public License is included in this distribution in | 
|  | the file called "COPYING". | 
|  |  | 
|  | Contact Information: | 
|  | Linux NICS <linux.nics@intel.com> | 
|  | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | 
|  | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  |  | 
|  | *******************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * 82562G 10/100 Network Connection | 
|  | * 82562G-2 10/100 Network Connection | 
|  | * 82562GT 10/100 Network Connection | 
|  | * 82562GT-2 10/100 Network Connection | 
|  | * 82562V 10/100 Network Connection | 
|  | * 82562V-2 10/100 Network Connection | 
|  | * 82566DC-2 Gigabit Network Connection | 
|  | * 82566DC Gigabit Network Connection | 
|  | * 82566DM-2 Gigabit Network Connection | 
|  | * 82566DM Gigabit Network Connection | 
|  | * 82566MC Gigabit Network Connection | 
|  | * 82566MM Gigabit Network Connection | 
|  | * 82567LM Gigabit Network Connection | 
|  | * 82567LF Gigabit Network Connection | 
|  | * 82567V Gigabit Network Connection | 
|  | * 82567LM-2 Gigabit Network Connection | 
|  | * 82567LF-2 Gigabit Network Connection | 
|  | * 82567V-2 Gigabit Network Connection | 
|  | * 82567LF-3 Gigabit Network Connection | 
|  | * 82567LM-3 Gigabit Network Connection | 
|  | * 82567LM-4 Gigabit Network Connection | 
|  | * 82577LM Gigabit Network Connection | 
|  | * 82577LC Gigabit Network Connection | 
|  | * 82578DM Gigabit Network Connection | 
|  | * 82578DC Gigabit Network Connection | 
|  | * 82579LM Gigabit Network Connection | 
|  | * 82579V Gigabit Network Connection | 
|  | */ | 
|  |  | 
|  | #include "e1000.h" | 
|  |  | 
|  | #define ICH_FLASH_GFPREG		0x0000 | 
|  | #define ICH_FLASH_HSFSTS		0x0004 | 
|  | #define ICH_FLASH_HSFCTL		0x0006 | 
|  | #define ICH_FLASH_FADDR			0x0008 | 
|  | #define ICH_FLASH_FDATA0		0x0010 | 
|  | #define ICH_FLASH_PR0			0x0074 | 
|  |  | 
|  | #define ICH_FLASH_READ_COMMAND_TIMEOUT	500 | 
|  | #define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500 | 
|  | #define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000 | 
|  | #define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF | 
|  | #define ICH_FLASH_CYCLE_REPEAT_COUNT	10 | 
|  |  | 
|  | #define ICH_CYCLE_READ			0 | 
|  | #define ICH_CYCLE_WRITE			2 | 
|  | #define ICH_CYCLE_ERASE			3 | 
|  |  | 
|  | #define FLASH_GFPREG_BASE_MASK		0x1FFF | 
|  | #define FLASH_SECTOR_ADDR_SHIFT		12 | 
|  |  | 
|  | #define ICH_FLASH_SEG_SIZE_256		256 | 
|  | #define ICH_FLASH_SEG_SIZE_4K		4096 | 
|  | #define ICH_FLASH_SEG_SIZE_8K		8192 | 
|  | #define ICH_FLASH_SEG_SIZE_64K		65536 | 
|  |  | 
|  |  | 
|  | #define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */ | 
|  | /* FW established a valid mode */ | 
|  | #define E1000_ICH_FWSM_FW_VALID		0x00008000 | 
|  |  | 
|  | #define E1000_ICH_MNG_IAMT_MODE		0x2 | 
|  |  | 
|  | #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \ | 
|  | (ID_LED_DEF1_OFF2 <<  8) | \ | 
|  | (ID_LED_DEF1_ON2  <<  4) | \ | 
|  | (ID_LED_DEF1_DEF2)) | 
|  |  | 
|  | #define E1000_ICH_NVM_SIG_WORD		0x13 | 
|  | #define E1000_ICH_NVM_SIG_MASK		0xC000 | 
|  | #define E1000_ICH_NVM_VALID_SIG_MASK    0xC0 | 
|  | #define E1000_ICH_NVM_SIG_VALUE         0x80 | 
|  |  | 
|  | #define E1000_ICH8_LAN_INIT_TIMEOUT	1500 | 
|  |  | 
|  | #define E1000_FEXTNVM_SW_CONFIG		1 | 
|  | #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */ | 
|  |  | 
|  | #define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7 | 
|  | #define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7 | 
|  | #define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3 | 
|  |  | 
|  | #define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL | 
|  |  | 
|  | #define E1000_ICH_RAR_ENTRIES		7 | 
|  |  | 
|  | #define PHY_PAGE_SHIFT 5 | 
|  | #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \ | 
|  | ((reg) & MAX_PHY_REG_ADDRESS)) | 
|  | #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */ | 
|  | #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */ | 
|  |  | 
|  | #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002 | 
|  | #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300 | 
|  | #define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200 | 
|  |  | 
|  | #define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */ | 
|  |  | 
|  | #define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */ | 
|  |  | 
|  | /* SMBus Address Phy Register */ | 
|  | #define HV_SMB_ADDR            PHY_REG(768, 26) | 
|  | #define HV_SMB_ADDR_MASK       0x007F | 
|  | #define HV_SMB_ADDR_PEC_EN     0x0200 | 
|  | #define HV_SMB_ADDR_VALID      0x0080 | 
|  |  | 
|  | /* PHY Power Management Control */ | 
|  | #define HV_PM_CTRL		PHY_REG(770, 17) | 
|  |  | 
|  | /* PHY Low Power Idle Control */ | 
|  | #define I82579_LPI_CTRL			PHY_REG(772, 20) | 
|  | #define I82579_LPI_CTRL_ENABLE_MASK	0x6000 | 
|  |  | 
|  | /* Strapping Option Register - RO */ | 
|  | #define E1000_STRAP                     0x0000C | 
|  | #define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000 | 
|  | #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17 | 
|  |  | 
|  | /* OEM Bits Phy Register */ | 
|  | #define HV_OEM_BITS            PHY_REG(768, 25) | 
|  | #define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */ | 
|  | #define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */ | 
|  | #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */ | 
|  |  | 
|  | #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */ | 
|  | #define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */ | 
|  |  | 
|  | /* KMRN Mode Control */ | 
|  | #define HV_KMRN_MODE_CTRL      PHY_REG(769, 16) | 
|  | #define HV_KMRN_MDIO_SLOW      0x0400 | 
|  |  | 
|  | /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ | 
|  | /* Offset 04h HSFSTS */ | 
|  | union ich8_hws_flash_status { | 
|  | struct ich8_hsfsts { | 
|  | u16 flcdone    :1; /* bit 0 Flash Cycle Done */ | 
|  | u16 flcerr     :1; /* bit 1 Flash Cycle Error */ | 
|  | u16 dael       :1; /* bit 2 Direct Access error Log */ | 
|  | u16 berasesz   :2; /* bit 4:3 Sector Erase Size */ | 
|  | u16 flcinprog  :1; /* bit 5 flash cycle in Progress */ | 
|  | u16 reserved1  :2; /* bit 13:6 Reserved */ | 
|  | u16 reserved2  :6; /* bit 13:6 Reserved */ | 
|  | u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */ | 
|  | u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */ | 
|  | } hsf_status; | 
|  | u16 regval; | 
|  | }; | 
|  |  | 
|  | /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ | 
|  | /* Offset 06h FLCTL */ | 
|  | union ich8_hws_flash_ctrl { | 
|  | struct ich8_hsflctl { | 
|  | u16 flcgo      :1;   /* 0 Flash Cycle Go */ | 
|  | u16 flcycle    :2;   /* 2:1 Flash Cycle */ | 
|  | u16 reserved   :5;   /* 7:3 Reserved  */ | 
|  | u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */ | 
|  | u16 flockdn    :6;   /* 15:10 Reserved */ | 
|  | } hsf_ctrl; | 
|  | u16 regval; | 
|  | }; | 
|  |  | 
|  | /* ICH Flash Region Access Permissions */ | 
|  | union ich8_hws_flash_regacc { | 
|  | struct ich8_flracc { | 
|  | u32 grra      :8; /* 0:7 GbE region Read Access */ | 
|  | u32 grwa      :8; /* 8:15 GbE region Write Access */ | 
|  | u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */ | 
|  | u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */ | 
|  | } hsf_flregacc; | 
|  | u16 regval; | 
|  | }; | 
|  |  | 
|  | /* ICH Flash Protected Region */ | 
|  | union ich8_flash_protected_range { | 
|  | struct ich8_pr { | 
|  | u32 base:13;     /* 0:12 Protected Range Base */ | 
|  | u32 reserved1:2; /* 13:14 Reserved */ | 
|  | u32 rpe:1;       /* 15 Read Protection Enable */ | 
|  | u32 limit:13;    /* 16:28 Protected Range Limit */ | 
|  | u32 reserved2:2; /* 29:30 Reserved */ | 
|  | u32 wpe:1;       /* 31 Write Protection Enable */ | 
|  | } range; | 
|  | u32 regval; | 
|  | }; | 
|  |  | 
|  | static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw); | 
|  | static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); | 
|  | static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); | 
|  | static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); | 
|  | static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, | 
|  | u32 offset, u8 byte); | 
|  | static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, | 
|  | u8 *data); | 
|  | static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, | 
|  | u16 *data); | 
|  | static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, | 
|  | u8 size, u16 *data); | 
|  | static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw); | 
|  | static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); | 
|  | static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw); | 
|  | static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); | 
|  | static s32 e1000_led_on_ich8lan(struct e1000_hw *hw); | 
|  | static s32 e1000_led_off_ich8lan(struct e1000_hw *hw); | 
|  | static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); | 
|  | static s32 e1000_setup_led_pchlan(struct e1000_hw *hw); | 
|  | static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); | 
|  | static s32 e1000_led_on_pchlan(struct e1000_hw *hw); | 
|  | static s32 e1000_led_off_pchlan(struct e1000_hw *hw); | 
|  | static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); | 
|  | static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); | 
|  | static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw); | 
|  | static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link); | 
|  | static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw); | 
|  | static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw); | 
|  | static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw); | 
|  | static s32 e1000_k1_workaround_lv(struct e1000_hw *hw); | 
|  | static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate); | 
|  |  | 
|  | static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg) | 
|  | { | 
|  | return readw(hw->flash_address + reg); | 
|  | } | 
|  |  | 
|  | static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg) | 
|  | { | 
|  | return readl(hw->flash_address + reg); | 
|  | } | 
|  |  | 
|  | static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val) | 
|  | { | 
|  | writew(val, hw->flash_address + reg); | 
|  | } | 
|  |  | 
|  | static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val) | 
|  | { | 
|  | writel(val, hw->flash_address + reg); | 
|  | } | 
|  |  | 
|  | #define er16flash(reg)		__er16flash(hw, (reg)) | 
|  | #define er32flash(reg)		__er32flash(hw, (reg)) | 
|  | #define ew16flash(reg,val)	__ew16flash(hw, (reg), (val)) | 
|  | #define ew32flash(reg,val)	__ew32flash(hw, (reg), (val)) | 
|  |  | 
|  | /** | 
|  | *  e1000_init_phy_params_pchlan - Initialize PHY function pointers | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Initialize family-specific PHY parameters and function pointers. | 
|  | **/ | 
|  | static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | u32 ctrl, fwsm; | 
|  | s32 ret_val = 0; | 
|  |  | 
|  | phy->addr                     = 1; | 
|  | phy->reset_delay_us           = 100; | 
|  |  | 
|  | phy->ops.read_reg             = e1000_read_phy_reg_hv; | 
|  | phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked; | 
|  | phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan; | 
|  | phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan; | 
|  | phy->ops.write_reg            = e1000_write_phy_reg_hv; | 
|  | phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked; | 
|  | phy->ops.power_up             = e1000_power_up_phy_copper; | 
|  | phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan; | 
|  | phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT; | 
|  |  | 
|  | /* | 
|  | * The MAC-PHY interconnect may still be in SMBus mode | 
|  | * after Sx->S0.  If the manageability engine (ME) is | 
|  | * disabled, then toggle the LANPHYPC Value bit to force | 
|  | * the interconnect to PCIe mode. | 
|  | */ | 
|  | fwsm = er32(FWSM); | 
|  | if (!(fwsm & E1000_ICH_FWSM_FW_VALID)) { | 
|  | ctrl = er32(CTRL); | 
|  | ctrl |=  E1000_CTRL_LANPHYPC_OVERRIDE; | 
|  | ctrl &= ~E1000_CTRL_LANPHYPC_VALUE; | 
|  | ew32(CTRL, ctrl); | 
|  | udelay(10); | 
|  | ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE; | 
|  | ew32(CTRL, ctrl); | 
|  | msleep(50); | 
|  |  | 
|  | /* | 
|  | * Gate automatic PHY configuration by hardware on | 
|  | * non-managed 82579 | 
|  | */ | 
|  | if (hw->mac.type == e1000_pch2lan) | 
|  | e1000_gate_hw_phy_config_ich8lan(hw, true); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reset the PHY before any access to it.  Doing so, ensures that | 
|  | * the PHY is in a known good state before we read/write PHY registers. | 
|  | * The generic reset is sufficient here, because we haven't determined | 
|  | * the PHY type yet. | 
|  | */ | 
|  | ret_val = e1000e_phy_hw_reset_generic(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | /* Ungate automatic PHY configuration on non-managed 82579 */ | 
|  | if ((hw->mac.type == e1000_pch2lan)  && | 
|  | !(fwsm & E1000_ICH_FWSM_FW_VALID)) { | 
|  | msleep(10); | 
|  | e1000_gate_hw_phy_config_ich8lan(hw, false); | 
|  | } | 
|  |  | 
|  | phy->id = e1000_phy_unknown; | 
|  | switch (hw->mac.type) { | 
|  | default: | 
|  | ret_val = e1000e_get_phy_id(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK)) | 
|  | break; | 
|  | /* fall-through */ | 
|  | case e1000_pch2lan: | 
|  | /* | 
|  | * In case the PHY needs to be in mdio slow mode, | 
|  | * set slow mode and try to get the PHY id again. | 
|  | */ | 
|  | ret_val = e1000_set_mdio_slow_mode_hv(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | ret_val = e1000e_get_phy_id(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | break; | 
|  | } | 
|  | phy->type = e1000e_get_phy_type_from_id(phy->id); | 
|  |  | 
|  | switch (phy->type) { | 
|  | case e1000_phy_82577: | 
|  | case e1000_phy_82579: | 
|  | phy->ops.check_polarity = e1000_check_polarity_82577; | 
|  | phy->ops.force_speed_duplex = | 
|  | e1000_phy_force_speed_duplex_82577; | 
|  | phy->ops.get_cable_length = e1000_get_cable_length_82577; | 
|  | phy->ops.get_info = e1000_get_phy_info_82577; | 
|  | phy->ops.commit = e1000e_phy_sw_reset; | 
|  | break; | 
|  | case e1000_phy_82578: | 
|  | phy->ops.check_polarity = e1000_check_polarity_m88; | 
|  | phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; | 
|  | phy->ops.get_cable_length = e1000e_get_cable_length_m88; | 
|  | phy->ops.get_info = e1000e_get_phy_info_m88; | 
|  | break; | 
|  | default: | 
|  | ret_val = -E1000_ERR_PHY; | 
|  | break; | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Initialize family-specific PHY parameters and function pointers. | 
|  | **/ | 
|  | static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val; | 
|  | u16 i = 0; | 
|  |  | 
|  | phy->addr			= 1; | 
|  | phy->reset_delay_us		= 100; | 
|  |  | 
|  | phy->ops.power_up               = e1000_power_up_phy_copper; | 
|  | phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan; | 
|  |  | 
|  | /* | 
|  | * We may need to do this twice - once for IGP and if that fails, | 
|  | * we'll set BM func pointers and try again | 
|  | */ | 
|  | ret_val = e1000e_determine_phy_address(hw); | 
|  | if (ret_val) { | 
|  | phy->ops.write_reg = e1000e_write_phy_reg_bm; | 
|  | phy->ops.read_reg  = e1000e_read_phy_reg_bm; | 
|  | ret_val = e1000e_determine_phy_address(hw); | 
|  | if (ret_val) { | 
|  | e_dbg("Cannot determine PHY addr. Erroring out\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | phy->id = 0; | 
|  | while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) && | 
|  | (i++ < 100)) { | 
|  | msleep(1); | 
|  | ret_val = e1000e_get_phy_id(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* Verify phy id */ | 
|  | switch (phy->id) { | 
|  | case IGP03E1000_E_PHY_ID: | 
|  | phy->type = e1000_phy_igp_3; | 
|  | phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; | 
|  | phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked; | 
|  | phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked; | 
|  | phy->ops.get_info = e1000e_get_phy_info_igp; | 
|  | phy->ops.check_polarity = e1000_check_polarity_igp; | 
|  | phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp; | 
|  | break; | 
|  | case IFE_E_PHY_ID: | 
|  | case IFE_PLUS_E_PHY_ID: | 
|  | case IFE_C_E_PHY_ID: | 
|  | phy->type = e1000_phy_ife; | 
|  | phy->autoneg_mask = E1000_ALL_NOT_GIG; | 
|  | phy->ops.get_info = e1000_get_phy_info_ife; | 
|  | phy->ops.check_polarity = e1000_check_polarity_ife; | 
|  | phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife; | 
|  | break; | 
|  | case BME1000_E_PHY_ID: | 
|  | phy->type = e1000_phy_bm; | 
|  | phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; | 
|  | phy->ops.read_reg = e1000e_read_phy_reg_bm; | 
|  | phy->ops.write_reg = e1000e_write_phy_reg_bm; | 
|  | phy->ops.commit = e1000e_phy_sw_reset; | 
|  | phy->ops.get_info = e1000e_get_phy_info_m88; | 
|  | phy->ops.check_polarity = e1000_check_polarity_m88; | 
|  | phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; | 
|  | break; | 
|  | default: | 
|  | return -E1000_ERR_PHY; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Initialize family-specific NVM parameters and function | 
|  | *  pointers. | 
|  | **/ | 
|  | static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; | 
|  | u32 gfpreg, sector_base_addr, sector_end_addr; | 
|  | u16 i; | 
|  |  | 
|  | /* Can't read flash registers if the register set isn't mapped. */ | 
|  | if (!hw->flash_address) { | 
|  | e_dbg("ERROR: Flash registers not mapped\n"); | 
|  | return -E1000_ERR_CONFIG; | 
|  | } | 
|  |  | 
|  | nvm->type = e1000_nvm_flash_sw; | 
|  |  | 
|  | gfpreg = er32flash(ICH_FLASH_GFPREG); | 
|  |  | 
|  | /* | 
|  | * sector_X_addr is a "sector"-aligned address (4096 bytes) | 
|  | * Add 1 to sector_end_addr since this sector is included in | 
|  | * the overall size. | 
|  | */ | 
|  | sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; | 
|  | sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; | 
|  |  | 
|  | /* flash_base_addr is byte-aligned */ | 
|  | nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT; | 
|  |  | 
|  | /* | 
|  | * find total size of the NVM, then cut in half since the total | 
|  | * size represents two separate NVM banks. | 
|  | */ | 
|  | nvm->flash_bank_size = (sector_end_addr - sector_base_addr) | 
|  | << FLASH_SECTOR_ADDR_SHIFT; | 
|  | nvm->flash_bank_size /= 2; | 
|  | /* Adjust to word count */ | 
|  | nvm->flash_bank_size /= sizeof(u16); | 
|  |  | 
|  | nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS; | 
|  |  | 
|  | /* Clear shadow ram */ | 
|  | for (i = 0; i < nvm->word_size; i++) { | 
|  | dev_spec->shadow_ram[i].modified = false; | 
|  | dev_spec->shadow_ram[i].value    = 0xFFFF; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Initialize family-specific MAC parameters and function | 
|  | *  pointers. | 
|  | **/ | 
|  | static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  |  | 
|  | /* Set media type function pointer */ | 
|  | hw->phy.media_type = e1000_media_type_copper; | 
|  |  | 
|  | /* Set mta register count */ | 
|  | mac->mta_reg_count = 32; | 
|  | /* Set rar entry count */ | 
|  | mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; | 
|  | if (mac->type == e1000_ich8lan) | 
|  | mac->rar_entry_count--; | 
|  | /* FWSM register */ | 
|  | mac->has_fwsm = true; | 
|  | /* ARC subsystem not supported */ | 
|  | mac->arc_subsystem_valid = false; | 
|  | /* Adaptive IFS supported */ | 
|  | mac->adaptive_ifs = true; | 
|  |  | 
|  | /* LED operations */ | 
|  | switch (mac->type) { | 
|  | case e1000_ich8lan: | 
|  | case e1000_ich9lan: | 
|  | case e1000_ich10lan: | 
|  | /* check management mode */ | 
|  | mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan; | 
|  | /* ID LED init */ | 
|  | mac->ops.id_led_init = e1000e_id_led_init; | 
|  | /* setup LED */ | 
|  | mac->ops.setup_led = e1000e_setup_led_generic; | 
|  | /* cleanup LED */ | 
|  | mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; | 
|  | /* turn on/off LED */ | 
|  | mac->ops.led_on = e1000_led_on_ich8lan; | 
|  | mac->ops.led_off = e1000_led_off_ich8lan; | 
|  | break; | 
|  | case e1000_pchlan: | 
|  | case e1000_pch2lan: | 
|  | /* check management mode */ | 
|  | mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan; | 
|  | /* ID LED init */ | 
|  | mac->ops.id_led_init = e1000_id_led_init_pchlan; | 
|  | /* setup LED */ | 
|  | mac->ops.setup_led = e1000_setup_led_pchlan; | 
|  | /* cleanup LED */ | 
|  | mac->ops.cleanup_led = e1000_cleanup_led_pchlan; | 
|  | /* turn on/off LED */ | 
|  | mac->ops.led_on = e1000_led_on_pchlan; | 
|  | mac->ops.led_off = e1000_led_off_pchlan; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Enable PCS Lock-loss workaround for ICH8 */ | 
|  | if (mac->type == e1000_ich8lan) | 
|  | e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true); | 
|  |  | 
|  | /* Gate automatic PHY configuration by hardware on managed 82579 */ | 
|  | if ((mac->type == e1000_pch2lan) && | 
|  | (er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) | 
|  | e1000_gate_hw_phy_config_ich8lan(hw, true); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_set_eee_pchlan - Enable/disable EEE support | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Enable/disable EEE based on setting in dev_spec structure.  The bits in | 
|  | *  the LPI Control register will remain set only if/when link is up. | 
|  | **/ | 
|  | static s32 e1000_set_eee_pchlan(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  | u16 phy_reg; | 
|  |  | 
|  | if (hw->phy.type != e1000_phy_82579) | 
|  | goto out; | 
|  |  | 
|  | ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | if (hw->dev_spec.ich8lan.eee_disable) | 
|  | phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK; | 
|  | else | 
|  | phy_reg |= I82579_LPI_CTRL_ENABLE_MASK; | 
|  |  | 
|  | ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg); | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_check_for_copper_link_ich8lan - Check for link (Copper) | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Checks to see of the link status of the hardware has changed.  If a | 
|  | *  change in link status has been detected, then we read the PHY registers | 
|  | *  to get the current speed/duplex if link exists. | 
|  | **/ | 
|  | static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  | s32 ret_val; | 
|  | bool link; | 
|  |  | 
|  | /* | 
|  | * We only want to go out to the PHY registers to see if Auto-Neg | 
|  | * has completed and/or if our link status has changed.  The | 
|  | * get_link_status flag is set upon receiving a Link Status | 
|  | * Change or Rx Sequence Error interrupt. | 
|  | */ | 
|  | if (!mac->get_link_status) { | 
|  | ret_val = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * First we want to see if the MII Status Register reports | 
|  | * link.  If so, then we want to get the current speed/duplex | 
|  | * of the PHY. | 
|  | */ | 
|  | ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | if (hw->mac.type == e1000_pchlan) { | 
|  | ret_val = e1000_k1_gig_workaround_hv(hw, link); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!link) | 
|  | goto out; /* No link detected */ | 
|  |  | 
|  | mac->get_link_status = false; | 
|  |  | 
|  | if (hw->phy.type == e1000_phy_82578) { | 
|  | ret_val = e1000_link_stall_workaround_hv(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (hw->mac.type == e1000_pch2lan) { | 
|  | ret_val = e1000_k1_workaround_lv(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if there was DownShift, must be checked | 
|  | * immediately after link-up | 
|  | */ | 
|  | e1000e_check_downshift(hw); | 
|  |  | 
|  | /* Enable/Disable EEE after link up */ | 
|  | ret_val = e1000_set_eee_pchlan(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * If we are forcing speed/duplex, then we simply return since | 
|  | * we have already determined whether we have link or not. | 
|  | */ | 
|  | if (!mac->autoneg) { | 
|  | ret_val = -E1000_ERR_CONFIG; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Auto-Neg is enabled.  Auto Speed Detection takes care | 
|  | * of MAC speed/duplex configuration.  So we only need to | 
|  | * configure Collision Distance in the MAC. | 
|  | */ | 
|  | e1000e_config_collision_dist(hw); | 
|  |  | 
|  | /* | 
|  | * Configure Flow Control now that Auto-Neg has completed. | 
|  | * First, we need to restore the desired flow control | 
|  | * settings because we may have had to re-autoneg with a | 
|  | * different link partner. | 
|  | */ | 
|  | ret_val = e1000e_config_fc_after_link_up(hw); | 
|  | if (ret_val) | 
|  | e_dbg("Error configuring flow control\n"); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | s32 rc; | 
|  |  | 
|  | rc = e1000_init_mac_params_ich8lan(adapter); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | rc = e1000_init_nvm_params_ich8lan(hw); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | switch (hw->mac.type) { | 
|  | case e1000_ich8lan: | 
|  | case e1000_ich9lan: | 
|  | case e1000_ich10lan: | 
|  | rc = e1000_init_phy_params_ich8lan(hw); | 
|  | break; | 
|  | case e1000_pchlan: | 
|  | case e1000_pch2lan: | 
|  | rc = e1000_init_phy_params_pchlan(hw); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | if (adapter->hw.phy.type == e1000_phy_ife) { | 
|  | adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES; | 
|  | adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN; | 
|  | } | 
|  |  | 
|  | if ((adapter->hw.mac.type == e1000_ich8lan) && | 
|  | (adapter->hw.phy.type == e1000_phy_igp_3)) | 
|  | adapter->flags |= FLAG_LSC_GIG_SPEED_DROP; | 
|  |  | 
|  | /* Disable EEE by default until IEEE802.3az spec is finalized */ | 
|  | if (adapter->flags2 & FLAG2_HAS_EEE) | 
|  | adapter->hw.dev_spec.ich8lan.eee_disable = true; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static DEFINE_MUTEX(nvm_mutex); | 
|  |  | 
|  | /** | 
|  | *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Acquires the mutex for performing NVM operations. | 
|  | **/ | 
|  | static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | mutex_lock(&nvm_mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_release_nvm_ich8lan - Release NVM mutex | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Releases the mutex used while performing NVM operations. | 
|  | **/ | 
|  | static void e1000_release_nvm_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | mutex_unlock(&nvm_mutex); | 
|  | } | 
|  |  | 
|  | static DEFINE_MUTEX(swflag_mutex); | 
|  |  | 
|  | /** | 
|  | *  e1000_acquire_swflag_ich8lan - Acquire software control flag | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Acquires the software control flag for performing PHY and select | 
|  | *  MAC CSR accesses. | 
|  | **/ | 
|  | static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; | 
|  | s32 ret_val = 0; | 
|  |  | 
|  | mutex_lock(&swflag_mutex); | 
|  |  | 
|  | while (timeout) { | 
|  | extcnf_ctrl = er32(EXTCNF_CTRL); | 
|  | if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) | 
|  | break; | 
|  |  | 
|  | mdelay(1); | 
|  | timeout--; | 
|  | } | 
|  |  | 
|  | if (!timeout) { | 
|  | e_dbg("SW/FW/HW has locked the resource for too long.\n"); | 
|  | ret_val = -E1000_ERR_CONFIG; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | timeout = SW_FLAG_TIMEOUT; | 
|  |  | 
|  | extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; | 
|  | ew32(EXTCNF_CTRL, extcnf_ctrl); | 
|  |  | 
|  | while (timeout) { | 
|  | extcnf_ctrl = er32(EXTCNF_CTRL); | 
|  | if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) | 
|  | break; | 
|  |  | 
|  | mdelay(1); | 
|  | timeout--; | 
|  | } | 
|  |  | 
|  | if (!timeout) { | 
|  | e_dbg("Failed to acquire the semaphore.\n"); | 
|  | extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; | 
|  | ew32(EXTCNF_CTRL, extcnf_ctrl); | 
|  | ret_val = -E1000_ERR_CONFIG; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | if (ret_val) | 
|  | mutex_unlock(&swflag_mutex); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_release_swflag_ich8lan - Release software control flag | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Releases the software control flag for performing PHY and select | 
|  | *  MAC CSR accesses. | 
|  | **/ | 
|  | static void e1000_release_swflag_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | u32 extcnf_ctrl; | 
|  |  | 
|  | extcnf_ctrl = er32(EXTCNF_CTRL); | 
|  | extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; | 
|  | ew32(EXTCNF_CTRL, extcnf_ctrl); | 
|  |  | 
|  | mutex_unlock(&swflag_mutex); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_check_mng_mode_ich8lan - Checks management mode | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  This checks if the adapter has any manageability enabled. | 
|  | *  This is a function pointer entry point only called by read/write | 
|  | *  routines for the PHY and NVM parts. | 
|  | **/ | 
|  | static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | u32 fwsm; | 
|  |  | 
|  | fwsm = er32(FWSM); | 
|  | return (fwsm & E1000_ICH_FWSM_FW_VALID) && | 
|  | ((fwsm & E1000_FWSM_MODE_MASK) == | 
|  | (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_check_mng_mode_pchlan - Checks management mode | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  This checks if the adapter has iAMT enabled. | 
|  | *  This is a function pointer entry point only called by read/write | 
|  | *  routines for the PHY and NVM parts. | 
|  | **/ | 
|  | static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw) | 
|  | { | 
|  | u32 fwsm; | 
|  |  | 
|  | fwsm = er32(FWSM); | 
|  | return (fwsm & E1000_ICH_FWSM_FW_VALID) && | 
|  | (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Checks if firmware is blocking the reset of the PHY. | 
|  | *  This is a function pointer entry point only called by | 
|  | *  reset routines. | 
|  | **/ | 
|  | static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | u32 fwsm; | 
|  |  | 
|  | fwsm = er32(FWSM); | 
|  |  | 
|  | return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Assumes semaphore already acquired. | 
|  | * | 
|  | **/ | 
|  | static s32 e1000_write_smbus_addr(struct e1000_hw *hw) | 
|  | { | 
|  | u16 phy_data; | 
|  | u32 strap = er32(STRAP); | 
|  | s32 ret_val = 0; | 
|  |  | 
|  | strap &= E1000_STRAP_SMBUS_ADDRESS_MASK; | 
|  |  | 
|  | ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | phy_data &= ~HV_SMB_ADDR_MASK; | 
|  | phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT); | 
|  | phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; | 
|  | ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration | 
|  | *  @hw:   pointer to the HW structure | 
|  | * | 
|  | *  SW should configure the LCD from the NVM extended configuration region | 
|  | *  as a workaround for certain parts. | 
|  | **/ | 
|  | static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; | 
|  | s32 ret_val = 0; | 
|  | u16 word_addr, reg_data, reg_addr, phy_page = 0; | 
|  |  | 
|  | /* | 
|  | * Initialize the PHY from the NVM on ICH platforms.  This | 
|  | * is needed due to an issue where the NVM configuration is | 
|  | * not properly autoloaded after power transitions. | 
|  | * Therefore, after each PHY reset, we will load the | 
|  | * configuration data out of the NVM manually. | 
|  | */ | 
|  | switch (hw->mac.type) { | 
|  | case e1000_ich8lan: | 
|  | if (phy->type != e1000_phy_igp_3) | 
|  | return ret_val; | 
|  |  | 
|  | if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) || | 
|  | (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) { | 
|  | sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; | 
|  | break; | 
|  | } | 
|  | /* Fall-thru */ | 
|  | case e1000_pchlan: | 
|  | case e1000_pch2lan: | 
|  | sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; | 
|  | break; | 
|  | default: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | ret_val = hw->phy.ops.acquire(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | data = er32(FEXTNVM); | 
|  | if (!(data & sw_cfg_mask)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Make sure HW does not configure LCD from PHY | 
|  | * extended configuration before SW configuration | 
|  | */ | 
|  | data = er32(EXTCNF_CTRL); | 
|  | if (!(hw->mac.type == e1000_pch2lan)) { | 
|  | if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | cnf_size = er32(EXTCNF_SIZE); | 
|  | cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; | 
|  | cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; | 
|  | if (!cnf_size) | 
|  | goto out; | 
|  |  | 
|  | cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; | 
|  | cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; | 
|  |  | 
|  | if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) && | 
|  | (hw->mac.type == e1000_pchlan)) || | 
|  | (hw->mac.type == e1000_pch2lan)) { | 
|  | /* | 
|  | * HW configures the SMBus address and LEDs when the | 
|  | * OEM and LCD Write Enable bits are set in the NVM. | 
|  | * When both NVM bits are cleared, SW will configure | 
|  | * them instead. | 
|  | */ | 
|  | ret_val = e1000_write_smbus_addr(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | data = er32(LEDCTL); | 
|  | ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG, | 
|  | (u16)data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Configure LCD from extended configuration region. */ | 
|  |  | 
|  | /* cnf_base_addr is in DWORD */ | 
|  | word_addr = (u16)(cnf_base_addr << 1); | 
|  |  | 
|  | for (i = 0; i < cnf_size; i++) { | 
|  | ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, | 
|  | ®_data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1), | 
|  | 1, ®_addr); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | /* Save off the PHY page for future writes. */ | 
|  | if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { | 
|  | phy_page = reg_data; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | reg_addr &= PHY_REG_MASK; | 
|  | reg_addr |= phy_page; | 
|  |  | 
|  | ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr, | 
|  | reg_data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | hw->phy.ops.release(hw); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_k1_gig_workaround_hv - K1 Si workaround | 
|  | *  @hw:   pointer to the HW structure | 
|  | *  @link: link up bool flag | 
|  | * | 
|  | *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning | 
|  | *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig | 
|  | *  If link is down, the function will restore the default K1 setting located | 
|  | *  in the NVM. | 
|  | **/ | 
|  | static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  | u16 status_reg = 0; | 
|  | bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; | 
|  |  | 
|  | if (hw->mac.type != e1000_pchlan) | 
|  | goto out; | 
|  |  | 
|  | /* Wrap the whole flow with the sw flag */ | 
|  | ret_val = hw->phy.ops.acquire(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ | 
|  | if (link) { | 
|  | if (hw->phy.type == e1000_phy_82578) { | 
|  | ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS, | 
|  | &status_reg); | 
|  | if (ret_val) | 
|  | goto release; | 
|  |  | 
|  | status_reg &= BM_CS_STATUS_LINK_UP | | 
|  | BM_CS_STATUS_RESOLVED | | 
|  | BM_CS_STATUS_SPEED_MASK; | 
|  |  | 
|  | if (status_reg == (BM_CS_STATUS_LINK_UP | | 
|  | BM_CS_STATUS_RESOLVED | | 
|  | BM_CS_STATUS_SPEED_1000)) | 
|  | k1_enable = false; | 
|  | } | 
|  |  | 
|  | if (hw->phy.type == e1000_phy_82577) { | 
|  | ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS, | 
|  | &status_reg); | 
|  | if (ret_val) | 
|  | goto release; | 
|  |  | 
|  | status_reg &= HV_M_STATUS_LINK_UP | | 
|  | HV_M_STATUS_AUTONEG_COMPLETE | | 
|  | HV_M_STATUS_SPEED_MASK; | 
|  |  | 
|  | if (status_reg == (HV_M_STATUS_LINK_UP | | 
|  | HV_M_STATUS_AUTONEG_COMPLETE | | 
|  | HV_M_STATUS_SPEED_1000)) | 
|  | k1_enable = false; | 
|  | } | 
|  |  | 
|  | /* Link stall fix for link up */ | 
|  | ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), | 
|  | 0x0100); | 
|  | if (ret_val) | 
|  | goto release; | 
|  |  | 
|  | } else { | 
|  | /* Link stall fix for link down */ | 
|  | ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), | 
|  | 0x4100); | 
|  | if (ret_val) | 
|  | goto release; | 
|  | } | 
|  |  | 
|  | ret_val = e1000_configure_k1_ich8lan(hw, k1_enable); | 
|  |  | 
|  | release: | 
|  | hw->phy.ops.release(hw); | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_configure_k1_ich8lan - Configure K1 power state | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @enable: K1 state to configure | 
|  | * | 
|  | *  Configure the K1 power state based on the provided parameter. | 
|  | *  Assumes semaphore already acquired. | 
|  | * | 
|  | *  Success returns 0, Failure returns -E1000_ERR_PHY (-2) | 
|  | **/ | 
|  | s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  | u32 ctrl_reg = 0; | 
|  | u32 ctrl_ext = 0; | 
|  | u32 reg = 0; | 
|  | u16 kmrn_reg = 0; | 
|  |  | 
|  | ret_val = e1000e_read_kmrn_reg_locked(hw, | 
|  | E1000_KMRNCTRLSTA_K1_CONFIG, | 
|  | &kmrn_reg); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | if (k1_enable) | 
|  | kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE; | 
|  | else | 
|  | kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE; | 
|  |  | 
|  | ret_val = e1000e_write_kmrn_reg_locked(hw, | 
|  | E1000_KMRNCTRLSTA_K1_CONFIG, | 
|  | kmrn_reg); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | udelay(20); | 
|  | ctrl_ext = er32(CTRL_EXT); | 
|  | ctrl_reg = er32(CTRL); | 
|  |  | 
|  | reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); | 
|  | reg |= E1000_CTRL_FRCSPD; | 
|  | ew32(CTRL, reg); | 
|  |  | 
|  | ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS); | 
|  | udelay(20); | 
|  | ew32(CTRL, ctrl_reg); | 
|  | ew32(CTRL_EXT, ctrl_ext); | 
|  | udelay(20); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration | 
|  | *  @hw:       pointer to the HW structure | 
|  | *  @d0_state: boolean if entering d0 or d3 device state | 
|  | * | 
|  | *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are | 
|  | *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit | 
|  | *  in NVM determines whether HW should configure LPLU and Gbe Disable. | 
|  | **/ | 
|  | static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  | u32 mac_reg; | 
|  | u16 oem_reg; | 
|  |  | 
|  | if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan)) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = hw->phy.ops.acquire(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (!(hw->mac.type == e1000_pch2lan)) { | 
|  | mac_reg = er32(EXTCNF_CTRL); | 
|  | if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | mac_reg = er32(FEXTNVM); | 
|  | if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M)) | 
|  | goto out; | 
|  |  | 
|  | mac_reg = er32(PHY_CTRL); | 
|  |  | 
|  | ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU); | 
|  |  | 
|  | if (d0_state) { | 
|  | if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE) | 
|  | oem_reg |= HV_OEM_BITS_GBE_DIS; | 
|  |  | 
|  | if (mac_reg & E1000_PHY_CTRL_D0A_LPLU) | 
|  | oem_reg |= HV_OEM_BITS_LPLU; | 
|  | } else { | 
|  | if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE) | 
|  | oem_reg |= HV_OEM_BITS_GBE_DIS; | 
|  |  | 
|  | if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU) | 
|  | oem_reg |= HV_OEM_BITS_LPLU; | 
|  | } | 
|  | /* Restart auto-neg to activate the bits */ | 
|  | if (!e1000_check_reset_block(hw)) | 
|  | oem_reg |= HV_OEM_BITS_RESTART_AN; | 
|  | ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg); | 
|  |  | 
|  | out: | 
|  | hw->phy.ops.release(hw); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode | 
|  | *  @hw:   pointer to the HW structure | 
|  | **/ | 
|  | static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 data; | 
|  |  | 
|  | ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | data |= HV_KMRN_MDIO_SLOW; | 
|  |  | 
|  | ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be | 
|  | *  done after every PHY reset. | 
|  | **/ | 
|  | static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  | u16 phy_data; | 
|  |  | 
|  | if (hw->mac.type != e1000_pchlan) | 
|  | return ret_val; | 
|  |  | 
|  | /* Set MDIO slow mode before any other MDIO access */ | 
|  | if (hw->phy.type == e1000_phy_82577) { | 
|  | ret_val = e1000_set_mdio_slow_mode_hv(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (((hw->phy.type == e1000_phy_82577) && | 
|  | ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || | 
|  | ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { | 
|  | /* Disable generation of early preamble */ | 
|  | ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Preamble tuning for SSC */ | 
|  | ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | if (hw->phy.type == e1000_phy_82578) { | 
|  | /* | 
|  | * Return registers to default by doing a soft reset then | 
|  | * writing 0x3140 to the control register. | 
|  | */ | 
|  | if (hw->phy.revision < 2) { | 
|  | e1000e_phy_sw_reset(hw); | 
|  | ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Select page 0 */ | 
|  | ret_val = hw->phy.ops.acquire(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | hw->phy.addr = 1; | 
|  | ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); | 
|  | hw->phy.ops.release(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Configure the K1 Si workaround during phy reset assuming there is | 
|  | * link so that it disables K1 if link is in 1Gbps. | 
|  | */ | 
|  | ret_val = e1000_k1_gig_workaround_hv(hw, true); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | /* Workaround for link disconnects on a busy hub in half duplex */ | 
|  | ret_val = hw->phy.ops.acquire(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | ret_val = hw->phy.ops.read_reg_locked(hw, | 
|  | PHY_REG(BM_PORT_CTRL_PAGE, 17), | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | goto release; | 
|  | ret_val = hw->phy.ops.write_reg_locked(hw, | 
|  | PHY_REG(BM_PORT_CTRL_PAGE, 17), | 
|  | phy_data & 0x00FF); | 
|  | release: | 
|  | hw->phy.ops.release(hw); | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY | 
|  | *  @hw:   pointer to the HW structure | 
|  | **/ | 
|  | void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | u32 mac_reg; | 
|  | u16 i; | 
|  |  | 
|  | /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */ | 
|  | for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) { | 
|  | mac_reg = er32(RAL(i)); | 
|  | e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF)); | 
|  | e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF)); | 
|  | mac_reg = er32(RAH(i)); | 
|  | e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF)); | 
|  | e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0x8000)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation | 
|  | *  with 82579 PHY | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @enable: flag to enable/disable workaround when enabling/disabling jumbos | 
|  | **/ | 
|  | s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  | u16 phy_reg, data; | 
|  | u32 mac_reg; | 
|  | u16 i; | 
|  |  | 
|  | if (hw->mac.type != e1000_pch2lan) | 
|  | goto out; | 
|  |  | 
|  | /* disable Rx path while enabling/disabling workaround */ | 
|  | e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); | 
|  | ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14)); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | if (enable) { | 
|  | /* | 
|  | * Write Rx addresses (rar_entry_count for RAL/H, +4 for | 
|  | * SHRAL/H) and initial CRC values to the MAC | 
|  | */ | 
|  | for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) { | 
|  | u8 mac_addr[ETH_ALEN] = {0}; | 
|  | u32 addr_high, addr_low; | 
|  |  | 
|  | addr_high = er32(RAH(i)); | 
|  | if (!(addr_high & E1000_RAH_AV)) | 
|  | continue; | 
|  | addr_low = er32(RAL(i)); | 
|  | mac_addr[0] = (addr_low & 0xFF); | 
|  | mac_addr[1] = ((addr_low >> 8) & 0xFF); | 
|  | mac_addr[2] = ((addr_low >> 16) & 0xFF); | 
|  | mac_addr[3] = ((addr_low >> 24) & 0xFF); | 
|  | mac_addr[4] = (addr_high & 0xFF); | 
|  | mac_addr[5] = ((addr_high >> 8) & 0xFF); | 
|  |  | 
|  | ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr)); | 
|  | } | 
|  |  | 
|  | /* Write Rx addresses to the PHY */ | 
|  | e1000_copy_rx_addrs_to_phy_ich8lan(hw); | 
|  |  | 
|  | /* Enable jumbo frame workaround in the MAC */ | 
|  | mac_reg = er32(FFLT_DBG); | 
|  | mac_reg &= ~(1 << 14); | 
|  | mac_reg |= (7 << 15); | 
|  | ew32(FFLT_DBG, mac_reg); | 
|  |  | 
|  | mac_reg = er32(RCTL); | 
|  | mac_reg |= E1000_RCTL_SECRC; | 
|  | ew32(RCTL, mac_reg); | 
|  |  | 
|  | ret_val = e1000e_read_kmrn_reg(hw, | 
|  | E1000_KMRNCTRLSTA_CTRL_OFFSET, | 
|  | &data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | ret_val = e1000e_write_kmrn_reg(hw, | 
|  | E1000_KMRNCTRLSTA_CTRL_OFFSET, | 
|  | data | (1 << 0)); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | ret_val = e1000e_read_kmrn_reg(hw, | 
|  | E1000_KMRNCTRLSTA_HD_CTRL, | 
|  | &data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | data &= ~(0xF << 8); | 
|  | data |= (0xB << 8); | 
|  | ret_val = e1000e_write_kmrn_reg(hw, | 
|  | E1000_KMRNCTRLSTA_HD_CTRL, | 
|  | data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | /* Enable jumbo frame workaround in the PHY */ | 
|  | e1e_rphy(hw, PHY_REG(769, 23), &data); | 
|  | data &= ~(0x7F << 5); | 
|  | data |= (0x37 << 5); | 
|  | ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | e1e_rphy(hw, PHY_REG(769, 16), &data); | 
|  | data &= ~(1 << 13); | 
|  | ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | e1e_rphy(hw, PHY_REG(776, 20), &data); | 
|  | data &= ~(0x3FF << 2); | 
|  | data |= (0x1A << 2); | 
|  | ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xFE00); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | e1e_rphy(hw, HV_PM_CTRL, &data); | 
|  | ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10)); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | } else { | 
|  | /* Write MAC register values back to h/w defaults */ | 
|  | mac_reg = er32(FFLT_DBG); | 
|  | mac_reg &= ~(0xF << 14); | 
|  | ew32(FFLT_DBG, mac_reg); | 
|  |  | 
|  | mac_reg = er32(RCTL); | 
|  | mac_reg &= ~E1000_RCTL_SECRC; | 
|  | ew32(RCTL, mac_reg); | 
|  |  | 
|  | ret_val = e1000e_read_kmrn_reg(hw, | 
|  | E1000_KMRNCTRLSTA_CTRL_OFFSET, | 
|  | &data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | ret_val = e1000e_write_kmrn_reg(hw, | 
|  | E1000_KMRNCTRLSTA_CTRL_OFFSET, | 
|  | data & ~(1 << 0)); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | ret_val = e1000e_read_kmrn_reg(hw, | 
|  | E1000_KMRNCTRLSTA_HD_CTRL, | 
|  | &data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | data &= ~(0xF << 8); | 
|  | data |= (0xB << 8); | 
|  | ret_val = e1000e_write_kmrn_reg(hw, | 
|  | E1000_KMRNCTRLSTA_HD_CTRL, | 
|  | data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | /* Write PHY register values back to h/w defaults */ | 
|  | e1e_rphy(hw, PHY_REG(769, 23), &data); | 
|  | data &= ~(0x7F << 5); | 
|  | ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | e1e_rphy(hw, PHY_REG(769, 16), &data); | 
|  | data |= (1 << 13); | 
|  | ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | e1e_rphy(hw, PHY_REG(776, 20), &data); | 
|  | data &= ~(0x3FF << 2); | 
|  | data |= (0x8 << 2); | 
|  | ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | e1e_rphy(hw, HV_PM_CTRL, &data); | 
|  | ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10)); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* re-enable Rx path after enabling/disabling workaround */ | 
|  | ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14)); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be | 
|  | *  done after every PHY reset. | 
|  | **/ | 
|  | static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  |  | 
|  | if (hw->mac.type != e1000_pch2lan) | 
|  | goto out; | 
|  |  | 
|  | /* Set MDIO slow mode before any other MDIO access */ | 
|  | ret_val = e1000_set_mdio_slow_mode_hv(hw); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_k1_gig_workaround_lv - K1 Si workaround | 
|  | *  @hw:   pointer to the HW structure | 
|  | * | 
|  | *  Workaround to set the K1 beacon duration for 82579 parts | 
|  | **/ | 
|  | static s32 e1000_k1_workaround_lv(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  | u16 status_reg = 0; | 
|  | u32 mac_reg; | 
|  |  | 
|  | if (hw->mac.type != e1000_pch2lan) | 
|  | goto out; | 
|  |  | 
|  | /* Set K1 beacon duration based on 1Gbps speed or otherwise */ | 
|  | ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) | 
|  | == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) { | 
|  | mac_reg = er32(FEXTNVM4); | 
|  | mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; | 
|  |  | 
|  | if (status_reg & HV_M_STATUS_SPEED_1000) | 
|  | mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC; | 
|  | else | 
|  | mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC; | 
|  |  | 
|  | ew32(FEXTNVM4, mac_reg); | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware | 
|  | *  @hw:   pointer to the HW structure | 
|  | *  @gate: boolean set to true to gate, false to ungate | 
|  | * | 
|  | *  Gate/ungate the automatic PHY configuration via hardware; perform | 
|  | *  the configuration via software instead. | 
|  | **/ | 
|  | static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate) | 
|  | { | 
|  | u32 extcnf_ctrl; | 
|  |  | 
|  | if (hw->mac.type != e1000_pch2lan) | 
|  | return; | 
|  |  | 
|  | extcnf_ctrl = er32(EXTCNF_CTRL); | 
|  |  | 
|  | if (gate) | 
|  | extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; | 
|  | else | 
|  | extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG; | 
|  |  | 
|  | ew32(EXTCNF_CTRL, extcnf_ctrl); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_lan_init_done_ich8lan - Check for PHY config completion | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Check the appropriate indication the MAC has finished configuring the | 
|  | *  PHY after a software reset. | 
|  | **/ | 
|  | static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; | 
|  |  | 
|  | /* Wait for basic configuration completes before proceeding */ | 
|  | do { | 
|  | data = er32(STATUS); | 
|  | data &= E1000_STATUS_LAN_INIT_DONE; | 
|  | udelay(100); | 
|  | } while ((!data) && --loop); | 
|  |  | 
|  | /* | 
|  | * If basic configuration is incomplete before the above loop | 
|  | * count reaches 0, loading the configuration from NVM will | 
|  | * leave the PHY in a bad state possibly resulting in no link. | 
|  | */ | 
|  | if (loop == 0) | 
|  | e_dbg("LAN_INIT_DONE not set, increase timeout\n"); | 
|  |  | 
|  | /* Clear the Init Done bit for the next init event */ | 
|  | data = er32(STATUS); | 
|  | data &= ~E1000_STATUS_LAN_INIT_DONE; | 
|  | ew32(STATUS, data); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset | 
|  | *  @hw: pointer to the HW structure | 
|  | **/ | 
|  | static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  | u16 reg; | 
|  |  | 
|  | if (e1000_check_reset_block(hw)) | 
|  | goto out; | 
|  |  | 
|  | /* Allow time for h/w to get to quiescent state after reset */ | 
|  | msleep(10); | 
|  |  | 
|  | /* Perform any necessary post-reset workarounds */ | 
|  | switch (hw->mac.type) { | 
|  | case e1000_pchlan: | 
|  | ret_val = e1000_hv_phy_workarounds_ich8lan(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | break; | 
|  | case e1000_pch2lan: | 
|  | ret_val = e1000_lv_phy_workarounds_ich8lan(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Dummy read to clear the phy wakeup bit after lcd reset */ | 
|  | if (hw->mac.type >= e1000_pchlan) | 
|  | e1e_rphy(hw, BM_WUC, ®); | 
|  |  | 
|  | /* Configure the LCD with the extended configuration region in NVM */ | 
|  | ret_val = e1000_sw_lcd_config_ich8lan(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | /* Configure the LCD with the OEM bits in NVM */ | 
|  | ret_val = e1000_oem_bits_config_ich8lan(hw, true); | 
|  |  | 
|  | /* Ungate automatic PHY configuration on non-managed 82579 */ | 
|  | if ((hw->mac.type == e1000_pch2lan) && | 
|  | !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { | 
|  | msleep(10); | 
|  | e1000_gate_hw_phy_config_ich8lan(hw, false); | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Resets the PHY | 
|  | *  This is a function pointer entry point called by drivers | 
|  | *  or other shared routines. | 
|  | **/ | 
|  | static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  |  | 
|  | /* Gate automatic PHY configuration by hardware on non-managed 82579 */ | 
|  | if ((hw->mac.type == e1000_pch2lan) && | 
|  | !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) | 
|  | e1000_gate_hw_phy_config_ich8lan(hw, true); | 
|  |  | 
|  | ret_val = e1000e_phy_hw_reset_generic(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | ret_val = e1000_post_phy_reset_ich8lan(hw); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @active: true to enable LPLU, false to disable | 
|  | * | 
|  | *  Sets the LPLU state according to the active flag.  For PCH, if OEM write | 
|  | *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set | 
|  | *  the phy speed. This function will manually set the LPLU bit and restart | 
|  | *  auto-neg as hw would do. D3 and D0 LPLU will call the same function | 
|  | *  since it configures the same bit. | 
|  | **/ | 
|  | static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  | u16 oem_reg; | 
|  |  | 
|  | ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | if (active) | 
|  | oem_reg |= HV_OEM_BITS_LPLU; | 
|  | else | 
|  | oem_reg &= ~HV_OEM_BITS_LPLU; | 
|  |  | 
|  | oem_reg |= HV_OEM_BITS_RESTART_AN; | 
|  | ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @active: true to enable LPLU, false to disable | 
|  | * | 
|  | *  Sets the LPLU D0 state according to the active flag.  When | 
|  | *  activating LPLU this function also disables smart speed | 
|  | *  and vice versa.  LPLU will not be activated unless the | 
|  | *  device autonegotiation advertisement meets standards of | 
|  | *  either 10 or 10/100 or 10/100/1000 at all duplexes. | 
|  | *  This is a function pointer entry point only called by | 
|  | *  PHY setup routines. | 
|  | **/ | 
|  | static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | u32 phy_ctrl; | 
|  | s32 ret_val = 0; | 
|  | u16 data; | 
|  |  | 
|  | if (phy->type == e1000_phy_ife) | 
|  | return ret_val; | 
|  |  | 
|  | phy_ctrl = er32(PHY_CTRL); | 
|  |  | 
|  | if (active) { | 
|  | phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; | 
|  | ew32(PHY_CTRL, phy_ctrl); | 
|  |  | 
|  | if (phy->type != e1000_phy_igp_3) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Call gig speed drop workaround on LPLU before accessing | 
|  | * any PHY registers | 
|  | */ | 
|  | if (hw->mac.type == e1000_ich8lan) | 
|  | e1000e_gig_downshift_workaround_ich8lan(hw); | 
|  |  | 
|  | /* When LPLU is enabled, we should disable SmartSpeed */ | 
|  | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); | 
|  | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } else { | 
|  | phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; | 
|  | ew32(PHY_CTRL, phy_ctrl); | 
|  |  | 
|  | if (phy->type != e1000_phy_igp_3) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * LPLU and SmartSpeed are mutually exclusive.  LPLU is used | 
|  | * during Dx states where the power conservation is most | 
|  | * important.  During driver activity we should enable | 
|  | * SmartSpeed, so performance is maintained. | 
|  | */ | 
|  | if (phy->smart_speed == e1000_smart_speed_on) { | 
|  | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | data |= IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } else if (phy->smart_speed == e1000_smart_speed_off) { | 
|  | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @active: true to enable LPLU, false to disable | 
|  | * | 
|  | *  Sets the LPLU D3 state according to the active flag.  When | 
|  | *  activating LPLU this function also disables smart speed | 
|  | *  and vice versa.  LPLU will not be activated unless the | 
|  | *  device autonegotiation advertisement meets standards of | 
|  | *  either 10 or 10/100 or 10/100/1000 at all duplexes. | 
|  | *  This is a function pointer entry point only called by | 
|  | *  PHY setup routines. | 
|  | **/ | 
|  | static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | u32 phy_ctrl; | 
|  | s32 ret_val; | 
|  | u16 data; | 
|  |  | 
|  | phy_ctrl = er32(PHY_CTRL); | 
|  |  | 
|  | if (!active) { | 
|  | phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; | 
|  | ew32(PHY_CTRL, phy_ctrl); | 
|  |  | 
|  | if (phy->type != e1000_phy_igp_3) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * LPLU and SmartSpeed are mutually exclusive.  LPLU is used | 
|  | * during Dx states where the power conservation is most | 
|  | * important.  During driver activity we should enable | 
|  | * SmartSpeed, so performance is maintained. | 
|  | */ | 
|  | if (phy->smart_speed == e1000_smart_speed_on) { | 
|  | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | data |= IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } else if (phy->smart_speed == e1000_smart_speed_off) { | 
|  | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  | } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || | 
|  | (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || | 
|  | (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { | 
|  | phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; | 
|  | ew32(PHY_CTRL, phy_ctrl); | 
|  |  | 
|  | if (phy->type != e1000_phy_igp_3) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Call gig speed drop workaround on LPLU before accessing | 
|  | * any PHY registers | 
|  | */ | 
|  | if (hw->mac.type == e1000_ich8lan) | 
|  | e1000e_gig_downshift_workaround_ich8lan(hw); | 
|  |  | 
|  | /* When LPLU is enabled, we should disable SmartSpeed */ | 
|  | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @bank:  pointer to the variable that returns the active bank | 
|  | * | 
|  | *  Reads signature byte from the NVM using the flash access registers. | 
|  | *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. | 
|  | **/ | 
|  | static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) | 
|  | { | 
|  | u32 eecd; | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); | 
|  | u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; | 
|  | u8 sig_byte = 0; | 
|  | s32 ret_val = 0; | 
|  |  | 
|  | switch (hw->mac.type) { | 
|  | case e1000_ich8lan: | 
|  | case e1000_ich9lan: | 
|  | eecd = er32(EECD); | 
|  | if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == | 
|  | E1000_EECD_SEC1VAL_VALID_MASK) { | 
|  | if (eecd & E1000_EECD_SEC1VAL) | 
|  | *bank = 1; | 
|  | else | 
|  | *bank = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | e_dbg("Unable to determine valid NVM bank via EEC - " | 
|  | "reading flash signature\n"); | 
|  | /* fall-thru */ | 
|  | default: | 
|  | /* set bank to 0 in case flash read fails */ | 
|  | *bank = 0; | 
|  |  | 
|  | /* Check bank 0 */ | 
|  | ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, | 
|  | &sig_byte); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == | 
|  | E1000_ICH_NVM_SIG_VALUE) { | 
|  | *bank = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Check bank 1 */ | 
|  | ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + | 
|  | bank1_offset, | 
|  | &sig_byte); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == | 
|  | E1000_ICH_NVM_SIG_VALUE) { | 
|  | *bank = 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | e_dbg("ERROR: No valid NVM bank present\n"); | 
|  | return -E1000_ERR_NVM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_read_nvm_ich8lan - Read word(s) from the NVM | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: The offset (in bytes) of the word(s) to read. | 
|  | *  @words: Size of data to read in words | 
|  | *  @data: Pointer to the word(s) to read at offset. | 
|  | * | 
|  | *  Reads a word(s) from the NVM using the flash access registers. | 
|  | **/ | 
|  | static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, | 
|  | u16 *data) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; | 
|  | u32 act_offset; | 
|  | s32 ret_val = 0; | 
|  | u32 bank = 0; | 
|  | u16 i, word; | 
|  |  | 
|  | if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || | 
|  | (words == 0)) { | 
|  | e_dbg("nvm parameter(s) out of bounds\n"); | 
|  | ret_val = -E1000_ERR_NVM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | nvm->ops.acquire(hw); | 
|  |  | 
|  | ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); | 
|  | if (ret_val) { | 
|  | e_dbg("Could not detect valid bank, assuming bank 0\n"); | 
|  | bank = 0; | 
|  | } | 
|  |  | 
|  | act_offset = (bank) ? nvm->flash_bank_size : 0; | 
|  | act_offset += offset; | 
|  |  | 
|  | ret_val = 0; | 
|  | for (i = 0; i < words; i++) { | 
|  | if ((dev_spec->shadow_ram) && | 
|  | (dev_spec->shadow_ram[offset+i].modified)) { | 
|  | data[i] = dev_spec->shadow_ram[offset+i].value; | 
|  | } else { | 
|  | ret_val = e1000_read_flash_word_ich8lan(hw, | 
|  | act_offset + i, | 
|  | &word); | 
|  | if (ret_val) | 
|  | break; | 
|  | data[i] = word; | 
|  | } | 
|  | } | 
|  |  | 
|  | nvm->ops.release(hw); | 
|  |  | 
|  | out: | 
|  | if (ret_val) | 
|  | e_dbg("NVM read error: %d\n", ret_val); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_flash_cycle_init_ich8lan - Initialize flash | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  This function does initial flash setup so that a new read/write/erase cycle | 
|  | *  can be started. | 
|  | **/ | 
|  | static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | union ich8_hws_flash_status hsfsts; | 
|  | s32 ret_val = -E1000_ERR_NVM; | 
|  | s32 i = 0; | 
|  |  | 
|  | hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); | 
|  |  | 
|  | /* Check if the flash descriptor is valid */ | 
|  | if (hsfsts.hsf_status.fldesvalid == 0) { | 
|  | e_dbg("Flash descriptor invalid.  " | 
|  | "SW Sequencing must be used.\n"); | 
|  | return -E1000_ERR_NVM; | 
|  | } | 
|  |  | 
|  | /* Clear FCERR and DAEL in hw status by writing 1 */ | 
|  | hsfsts.hsf_status.flcerr = 1; | 
|  | hsfsts.hsf_status.dael = 1; | 
|  |  | 
|  | ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); | 
|  |  | 
|  | /* | 
|  | * Either we should have a hardware SPI cycle in progress | 
|  | * bit to check against, in order to start a new cycle or | 
|  | * FDONE bit should be changed in the hardware so that it | 
|  | * is 1 after hardware reset, which can then be used as an | 
|  | * indication whether a cycle is in progress or has been | 
|  | * completed. | 
|  | */ | 
|  |  | 
|  | if (hsfsts.hsf_status.flcinprog == 0) { | 
|  | /* | 
|  | * There is no cycle running at present, | 
|  | * so we can start a cycle. | 
|  | * Begin by setting Flash Cycle Done. | 
|  | */ | 
|  | hsfsts.hsf_status.flcdone = 1; | 
|  | ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); | 
|  | ret_val = 0; | 
|  | } else { | 
|  | /* | 
|  | * Otherwise poll for sometime so the current | 
|  | * cycle has a chance to end before giving up. | 
|  | */ | 
|  | for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { | 
|  | hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS); | 
|  | if (hsfsts.hsf_status.flcinprog == 0) { | 
|  | ret_val = 0; | 
|  | break; | 
|  | } | 
|  | udelay(1); | 
|  | } | 
|  | if (ret_val == 0) { | 
|  | /* | 
|  | * Successful in waiting for previous cycle to timeout, | 
|  | * now set the Flash Cycle Done. | 
|  | */ | 
|  | hsfsts.hsf_status.flcdone = 1; | 
|  | ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); | 
|  | } else { | 
|  | e_dbg("Flash controller busy, cannot get access\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @timeout: maximum time to wait for completion | 
|  | * | 
|  | *  This function starts a flash cycle and waits for its completion. | 
|  | **/ | 
|  | static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) | 
|  | { | 
|  | union ich8_hws_flash_ctrl hsflctl; | 
|  | union ich8_hws_flash_status hsfsts; | 
|  | s32 ret_val = -E1000_ERR_NVM; | 
|  | u32 i = 0; | 
|  |  | 
|  | /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ | 
|  | hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); | 
|  | hsflctl.hsf_ctrl.flcgo = 1; | 
|  | ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); | 
|  |  | 
|  | /* wait till FDONE bit is set to 1 */ | 
|  | do { | 
|  | hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); | 
|  | if (hsfsts.hsf_status.flcdone == 1) | 
|  | break; | 
|  | udelay(1); | 
|  | } while (i++ < timeout); | 
|  |  | 
|  | if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) | 
|  | return 0; | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_read_flash_word_ich8lan - Read word from flash | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: offset to data location | 
|  | *  @data: pointer to the location for storing the data | 
|  | * | 
|  | *  Reads the flash word at offset into data.  Offset is converted | 
|  | *  to bytes before read. | 
|  | **/ | 
|  | static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, | 
|  | u16 *data) | 
|  | { | 
|  | /* Must convert offset into bytes. */ | 
|  | offset <<= 1; | 
|  |  | 
|  | return e1000_read_flash_data_ich8lan(hw, offset, 2, data); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_read_flash_byte_ich8lan - Read byte from flash | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: The offset of the byte to read. | 
|  | *  @data: Pointer to a byte to store the value read. | 
|  | * | 
|  | *  Reads a single byte from the NVM using the flash access registers. | 
|  | **/ | 
|  | static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, | 
|  | u8 *data) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 word = 0; | 
|  |  | 
|  | ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | *data = (u8)word; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_read_flash_data_ich8lan - Read byte or word from NVM | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: The offset (in bytes) of the byte or word to read. | 
|  | *  @size: Size of data to read, 1=byte 2=word | 
|  | *  @data: Pointer to the word to store the value read. | 
|  | * | 
|  | *  Reads a byte or word from the NVM using the flash access registers. | 
|  | **/ | 
|  | static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, | 
|  | u8 size, u16 *data) | 
|  | { | 
|  | union ich8_hws_flash_status hsfsts; | 
|  | union ich8_hws_flash_ctrl hsflctl; | 
|  | u32 flash_linear_addr; | 
|  | u32 flash_data = 0; | 
|  | s32 ret_val = -E1000_ERR_NVM; | 
|  | u8 count = 0; | 
|  |  | 
|  | if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) | 
|  | return -E1000_ERR_NVM; | 
|  |  | 
|  | flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) + | 
|  | hw->nvm.flash_base_addr; | 
|  |  | 
|  | do { | 
|  | udelay(1); | 
|  | /* Steps */ | 
|  | ret_val = e1000_flash_cycle_init_ich8lan(hw); | 
|  | if (ret_val != 0) | 
|  | break; | 
|  |  | 
|  | hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); | 
|  | /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ | 
|  | hsflctl.hsf_ctrl.fldbcount = size - 1; | 
|  | hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; | 
|  | ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); | 
|  |  | 
|  | ew32flash(ICH_FLASH_FADDR, flash_linear_addr); | 
|  |  | 
|  | ret_val = e1000_flash_cycle_ich8lan(hw, | 
|  | ICH_FLASH_READ_COMMAND_TIMEOUT); | 
|  |  | 
|  | /* | 
|  | * Check if FCERR is set to 1, if set to 1, clear it | 
|  | * and try the whole sequence a few more times, else | 
|  | * read in (shift in) the Flash Data0, the order is | 
|  | * least significant byte first msb to lsb | 
|  | */ | 
|  | if (ret_val == 0) { | 
|  | flash_data = er32flash(ICH_FLASH_FDATA0); | 
|  | if (size == 1) | 
|  | *data = (u8)(flash_data & 0x000000FF); | 
|  | else if (size == 2) | 
|  | *data = (u16)(flash_data & 0x0000FFFF); | 
|  | break; | 
|  | } else { | 
|  | /* | 
|  | * If we've gotten here, then things are probably | 
|  | * completely hosed, but if the error condition is | 
|  | * detected, it won't hurt to give it another try... | 
|  | * ICH_FLASH_CYCLE_REPEAT_COUNT times. | 
|  | */ | 
|  | hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); | 
|  | if (hsfsts.hsf_status.flcerr == 1) { | 
|  | /* Repeat for some time before giving up. */ | 
|  | continue; | 
|  | } else if (hsfsts.hsf_status.flcdone == 0) { | 
|  | e_dbg("Timeout error - flash cycle " | 
|  | "did not complete.\n"); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_write_nvm_ich8lan - Write word(s) to the NVM | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: The offset (in bytes) of the word(s) to write. | 
|  | *  @words: Size of data to write in words | 
|  | *  @data: Pointer to the word(s) to write at offset. | 
|  | * | 
|  | *  Writes a byte or word to the NVM using the flash access registers. | 
|  | **/ | 
|  | static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, | 
|  | u16 *data) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; | 
|  | u16 i; | 
|  |  | 
|  | if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || | 
|  | (words == 0)) { | 
|  | e_dbg("nvm parameter(s) out of bounds\n"); | 
|  | return -E1000_ERR_NVM; | 
|  | } | 
|  |  | 
|  | nvm->ops.acquire(hw); | 
|  |  | 
|  | for (i = 0; i < words; i++) { | 
|  | dev_spec->shadow_ram[offset+i].modified = true; | 
|  | dev_spec->shadow_ram[offset+i].value = data[i]; | 
|  | } | 
|  |  | 
|  | nvm->ops.release(hw); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  The NVM checksum is updated by calling the generic update_nvm_checksum, | 
|  | *  which writes the checksum to the shadow ram.  The changes in the shadow | 
|  | *  ram are then committed to the EEPROM by processing each bank at a time | 
|  | *  checking for the modified bit and writing only the pending changes. | 
|  | *  After a successful commit, the shadow ram is cleared and is ready for | 
|  | *  future writes. | 
|  | **/ | 
|  | static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; | 
|  | u32 i, act_offset, new_bank_offset, old_bank_offset, bank; | 
|  | s32 ret_val; | 
|  | u16 data; | 
|  |  | 
|  | ret_val = e1000e_update_nvm_checksum_generic(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | if (nvm->type != e1000_nvm_flash_sw) | 
|  | goto out; | 
|  |  | 
|  | nvm->ops.acquire(hw); | 
|  |  | 
|  | /* | 
|  | * We're writing to the opposite bank so if we're on bank 1, | 
|  | * write to bank 0 etc.  We also need to erase the segment that | 
|  | * is going to be written | 
|  | */ | 
|  | ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); | 
|  | if (ret_val) { | 
|  | e_dbg("Could not detect valid bank, assuming bank 0\n"); | 
|  | bank = 0; | 
|  | } | 
|  |  | 
|  | if (bank == 0) { | 
|  | new_bank_offset = nvm->flash_bank_size; | 
|  | old_bank_offset = 0; | 
|  | ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); | 
|  | if (ret_val) | 
|  | goto release; | 
|  | } else { | 
|  | old_bank_offset = nvm->flash_bank_size; | 
|  | new_bank_offset = 0; | 
|  | ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); | 
|  | if (ret_val) | 
|  | goto release; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { | 
|  | /* | 
|  | * Determine whether to write the value stored | 
|  | * in the other NVM bank or a modified value stored | 
|  | * in the shadow RAM | 
|  | */ | 
|  | if (dev_spec->shadow_ram[i].modified) { | 
|  | data = dev_spec->shadow_ram[i].value; | 
|  | } else { | 
|  | ret_val = e1000_read_flash_word_ich8lan(hw, i + | 
|  | old_bank_offset, | 
|  | &data); | 
|  | if (ret_val) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the word is 0x13, then make sure the signature bits | 
|  | * (15:14) are 11b until the commit has completed. | 
|  | * This will allow us to write 10b which indicates the | 
|  | * signature is valid.  We want to do this after the write | 
|  | * has completed so that we don't mark the segment valid | 
|  | * while the write is still in progress | 
|  | */ | 
|  | if (i == E1000_ICH_NVM_SIG_WORD) | 
|  | data |= E1000_ICH_NVM_SIG_MASK; | 
|  |  | 
|  | /* Convert offset to bytes. */ | 
|  | act_offset = (i + new_bank_offset) << 1; | 
|  |  | 
|  | udelay(100); | 
|  | /* Write the bytes to the new bank. */ | 
|  | ret_val = e1000_retry_write_flash_byte_ich8lan(hw, | 
|  | act_offset, | 
|  | (u8)data); | 
|  | if (ret_val) | 
|  | break; | 
|  |  | 
|  | udelay(100); | 
|  | ret_val = e1000_retry_write_flash_byte_ich8lan(hw, | 
|  | act_offset + 1, | 
|  | (u8)(data >> 8)); | 
|  | if (ret_val) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Don't bother writing the segment valid bits if sector | 
|  | * programming failed. | 
|  | */ | 
|  | if (ret_val) { | 
|  | /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ | 
|  | e_dbg("Flash commit failed.\n"); | 
|  | goto release; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Finally validate the new segment by setting bit 15:14 | 
|  | * to 10b in word 0x13 , this can be done without an | 
|  | * erase as well since these bits are 11 to start with | 
|  | * and we need to change bit 14 to 0b | 
|  | */ | 
|  | act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; | 
|  | ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); | 
|  | if (ret_val) | 
|  | goto release; | 
|  |  | 
|  | data &= 0xBFFF; | 
|  | ret_val = e1000_retry_write_flash_byte_ich8lan(hw, | 
|  | act_offset * 2 + 1, | 
|  | (u8)(data >> 8)); | 
|  | if (ret_val) | 
|  | goto release; | 
|  |  | 
|  | /* | 
|  | * And invalidate the previously valid segment by setting | 
|  | * its signature word (0x13) high_byte to 0b. This can be | 
|  | * done without an erase because flash erase sets all bits | 
|  | * to 1's. We can write 1's to 0's without an erase | 
|  | */ | 
|  | act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; | 
|  | ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); | 
|  | if (ret_val) | 
|  | goto release; | 
|  |  | 
|  | /* Great!  Everything worked, we can now clear the cached entries. */ | 
|  | for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { | 
|  | dev_spec->shadow_ram[i].modified = false; | 
|  | dev_spec->shadow_ram[i].value = 0xFFFF; | 
|  | } | 
|  |  | 
|  | release: | 
|  | nvm->ops.release(hw); | 
|  |  | 
|  | /* | 
|  | * Reload the EEPROM, or else modifications will not appear | 
|  | * until after the next adapter reset. | 
|  | */ | 
|  | if (!ret_val) { | 
|  | e1000e_reload_nvm(hw); | 
|  | msleep(10); | 
|  | } | 
|  |  | 
|  | out: | 
|  | if (ret_val) | 
|  | e_dbg("NVM update error: %d\n", ret_val); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. | 
|  | *  If the bit is 0, that the EEPROM had been modified, but the checksum was not | 
|  | *  calculated, in which case we need to calculate the checksum and set bit 6. | 
|  | **/ | 
|  | static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 data; | 
|  |  | 
|  | /* | 
|  | * Read 0x19 and check bit 6.  If this bit is 0, the checksum | 
|  | * needs to be fixed.  This bit is an indication that the NVM | 
|  | * was prepared by OEM software and did not calculate the | 
|  | * checksum...a likely scenario. | 
|  | */ | 
|  | ret_val = e1000_read_nvm(hw, 0x19, 1, &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if ((data & 0x40) == 0) { | 
|  | data |= 0x40; | 
|  | ret_val = e1000_write_nvm(hw, 0x19, 1, &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | ret_val = e1000e_update_nvm_checksum(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | return e1000e_validate_nvm_checksum_generic(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  To prevent malicious write/erase of the NVM, set it to be read-only | 
|  | *  so that the hardware ignores all write/erase cycles of the NVM via | 
|  | *  the flash control registers.  The shadow-ram copy of the NVM will | 
|  | *  still be updated, however any updates to this copy will not stick | 
|  | *  across driver reloads. | 
|  | **/ | 
|  | void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | union ich8_flash_protected_range pr0; | 
|  | union ich8_hws_flash_status hsfsts; | 
|  | u32 gfpreg; | 
|  |  | 
|  | nvm->ops.acquire(hw); | 
|  |  | 
|  | gfpreg = er32flash(ICH_FLASH_GFPREG); | 
|  |  | 
|  | /* Write-protect GbE Sector of NVM */ | 
|  | pr0.regval = er32flash(ICH_FLASH_PR0); | 
|  | pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK; | 
|  | pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK); | 
|  | pr0.range.wpe = true; | 
|  | ew32flash(ICH_FLASH_PR0, pr0.regval); | 
|  |  | 
|  | /* | 
|  | * Lock down a subset of GbE Flash Control Registers, e.g. | 
|  | * PR0 to prevent the write-protection from being lifted. | 
|  | * Once FLOCKDN is set, the registers protected by it cannot | 
|  | * be written until FLOCKDN is cleared by a hardware reset. | 
|  | */ | 
|  | hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); | 
|  | hsfsts.hsf_status.flockdn = true; | 
|  | ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval); | 
|  |  | 
|  | nvm->ops.release(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: The offset (in bytes) of the byte/word to read. | 
|  | *  @size: Size of data to read, 1=byte 2=word | 
|  | *  @data: The byte(s) to write to the NVM. | 
|  | * | 
|  | *  Writes one/two bytes to the NVM using the flash access registers. | 
|  | **/ | 
|  | static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, | 
|  | u8 size, u16 data) | 
|  | { | 
|  | union ich8_hws_flash_status hsfsts; | 
|  | union ich8_hws_flash_ctrl hsflctl; | 
|  | u32 flash_linear_addr; | 
|  | u32 flash_data = 0; | 
|  | s32 ret_val; | 
|  | u8 count = 0; | 
|  |  | 
|  | if (size < 1 || size > 2 || data > size * 0xff || | 
|  | offset > ICH_FLASH_LINEAR_ADDR_MASK) | 
|  | return -E1000_ERR_NVM; | 
|  |  | 
|  | flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) + | 
|  | hw->nvm.flash_base_addr; | 
|  |  | 
|  | do { | 
|  | udelay(1); | 
|  | /* Steps */ | 
|  | ret_val = e1000_flash_cycle_init_ich8lan(hw); | 
|  | if (ret_val) | 
|  | break; | 
|  |  | 
|  | hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); | 
|  | /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ | 
|  | hsflctl.hsf_ctrl.fldbcount = size -1; | 
|  | hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; | 
|  | ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); | 
|  |  | 
|  | ew32flash(ICH_FLASH_FADDR, flash_linear_addr); | 
|  |  | 
|  | if (size == 1) | 
|  | flash_data = (u32)data & 0x00FF; | 
|  | else | 
|  | flash_data = (u32)data; | 
|  |  | 
|  | ew32flash(ICH_FLASH_FDATA0, flash_data); | 
|  |  | 
|  | /* | 
|  | * check if FCERR is set to 1 , if set to 1, clear it | 
|  | * and try the whole sequence a few more times else done | 
|  | */ | 
|  | ret_val = e1000_flash_cycle_ich8lan(hw, | 
|  | ICH_FLASH_WRITE_COMMAND_TIMEOUT); | 
|  | if (!ret_val) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * If we're here, then things are most likely | 
|  | * completely hosed, but if the error condition | 
|  | * is detected, it won't hurt to give it another | 
|  | * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. | 
|  | */ | 
|  | hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); | 
|  | if (hsfsts.hsf_status.flcerr == 1) | 
|  | /* Repeat for some time before giving up. */ | 
|  | continue; | 
|  | if (hsfsts.hsf_status.flcdone == 0) { | 
|  | e_dbg("Timeout error - flash cycle " | 
|  | "did not complete."); | 
|  | break; | 
|  | } | 
|  | } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: The index of the byte to read. | 
|  | *  @data: The byte to write to the NVM. | 
|  | * | 
|  | *  Writes a single byte to the NVM using the flash access registers. | 
|  | **/ | 
|  | static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, | 
|  | u8 data) | 
|  | { | 
|  | u16 word = (u16)data; | 
|  |  | 
|  | return e1000_write_flash_data_ich8lan(hw, offset, 1, word); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: The offset of the byte to write. | 
|  | *  @byte: The byte to write to the NVM. | 
|  | * | 
|  | *  Writes a single byte to the NVM using the flash access registers. | 
|  | *  Goes through a retry algorithm before giving up. | 
|  | **/ | 
|  | static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, | 
|  | u32 offset, u8 byte) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 program_retries; | 
|  |  | 
|  | ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); | 
|  | if (!ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | for (program_retries = 0; program_retries < 100; program_retries++) { | 
|  | e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset); | 
|  | udelay(100); | 
|  | ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); | 
|  | if (!ret_val) | 
|  | break; | 
|  | } | 
|  | if (program_retries == 100) | 
|  | return -E1000_ERR_NVM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @bank: 0 for first bank, 1 for second bank, etc. | 
|  | * | 
|  | *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based. | 
|  | *  bank N is 4096 * N + flash_reg_addr. | 
|  | **/ | 
|  | static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | union ich8_hws_flash_status hsfsts; | 
|  | union ich8_hws_flash_ctrl hsflctl; | 
|  | u32 flash_linear_addr; | 
|  | /* bank size is in 16bit words - adjust to bytes */ | 
|  | u32 flash_bank_size = nvm->flash_bank_size * 2; | 
|  | s32 ret_val; | 
|  | s32 count = 0; | 
|  | s32 j, iteration, sector_size; | 
|  |  | 
|  | hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); | 
|  |  | 
|  | /* | 
|  | * Determine HW Sector size: Read BERASE bits of hw flash status | 
|  | * register | 
|  | * 00: The Hw sector is 256 bytes, hence we need to erase 16 | 
|  | *     consecutive sectors.  The start index for the nth Hw sector | 
|  | *     can be calculated as = bank * 4096 + n * 256 | 
|  | * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. | 
|  | *     The start index for the nth Hw sector can be calculated | 
|  | *     as = bank * 4096 | 
|  | * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 | 
|  | *     (ich9 only, otherwise error condition) | 
|  | * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 | 
|  | */ | 
|  | switch (hsfsts.hsf_status.berasesz) { | 
|  | case 0: | 
|  | /* Hw sector size 256 */ | 
|  | sector_size = ICH_FLASH_SEG_SIZE_256; | 
|  | iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; | 
|  | break; | 
|  | case 1: | 
|  | sector_size = ICH_FLASH_SEG_SIZE_4K; | 
|  | iteration = 1; | 
|  | break; | 
|  | case 2: | 
|  | sector_size = ICH_FLASH_SEG_SIZE_8K; | 
|  | iteration = 1; | 
|  | break; | 
|  | case 3: | 
|  | sector_size = ICH_FLASH_SEG_SIZE_64K; | 
|  | iteration = 1; | 
|  | break; | 
|  | default: | 
|  | return -E1000_ERR_NVM; | 
|  | } | 
|  |  | 
|  | /* Start with the base address, then add the sector offset. */ | 
|  | flash_linear_addr = hw->nvm.flash_base_addr; | 
|  | flash_linear_addr += (bank) ? flash_bank_size : 0; | 
|  |  | 
|  | for (j = 0; j < iteration ; j++) { | 
|  | do { | 
|  | /* Steps */ | 
|  | ret_val = e1000_flash_cycle_init_ich8lan(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* | 
|  | * Write a value 11 (block Erase) in Flash | 
|  | * Cycle field in hw flash control | 
|  | */ | 
|  | hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); | 
|  | hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; | 
|  | ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); | 
|  |  | 
|  | /* | 
|  | * Write the last 24 bits of an index within the | 
|  | * block into Flash Linear address field in Flash | 
|  | * Address. | 
|  | */ | 
|  | flash_linear_addr += (j * sector_size); | 
|  | ew32flash(ICH_FLASH_FADDR, flash_linear_addr); | 
|  |  | 
|  | ret_val = e1000_flash_cycle_ich8lan(hw, | 
|  | ICH_FLASH_ERASE_COMMAND_TIMEOUT); | 
|  | if (ret_val == 0) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Check if FCERR is set to 1.  If 1, | 
|  | * clear it and try the whole sequence | 
|  | * a few more times else Done | 
|  | */ | 
|  | hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); | 
|  | if (hsfsts.hsf_status.flcerr == 1) | 
|  | /* repeat for some time before giving up */ | 
|  | continue; | 
|  | else if (hsfsts.hsf_status.flcdone == 0) | 
|  | return ret_val; | 
|  | } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_valid_led_default_ich8lan - Set the default LED settings | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @data: Pointer to the LED settings | 
|  | * | 
|  | *  Reads the LED default settings from the NVM to data.  If the NVM LED | 
|  | *  settings is all 0's or F's, set the LED default to a valid LED default | 
|  | *  setting. | 
|  | **/ | 
|  | static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) | 
|  | { | 
|  | s32 ret_val; | 
|  |  | 
|  | ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); | 
|  | if (ret_val) { | 
|  | e_dbg("NVM Read Error\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | if (*data == ID_LED_RESERVED_0000 || | 
|  | *data == ID_LED_RESERVED_FFFF) | 
|  | *data = ID_LED_DEFAULT_ICH8LAN; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_id_led_init_pchlan - store LED configurations | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  PCH does not control LEDs via the LEDCTL register, rather it uses | 
|  | *  the PHY LED configuration register. | 
|  | * | 
|  | *  PCH also does not have an "always on" or "always off" mode which | 
|  | *  complicates the ID feature.  Instead of using the "on" mode to indicate | 
|  | *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()), | 
|  | *  use "link_up" mode.  The LEDs will still ID on request if there is no | 
|  | *  link based on logic in e1000_led_[on|off]_pchlan(). | 
|  | **/ | 
|  | static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  | s32 ret_val; | 
|  | const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; | 
|  | const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; | 
|  | u16 data, i, temp, shift; | 
|  |  | 
|  | /* Get default ID LED modes */ | 
|  | ret_val = hw->nvm.ops.valid_led_default(hw, &data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | mac->ledctl_default = er32(LEDCTL); | 
|  | mac->ledctl_mode1 = mac->ledctl_default; | 
|  | mac->ledctl_mode2 = mac->ledctl_default; | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; | 
|  | shift = (i * 5); | 
|  | switch (temp) { | 
|  | case ID_LED_ON1_DEF2: | 
|  | case ID_LED_ON1_ON2: | 
|  | case ID_LED_ON1_OFF2: | 
|  | mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); | 
|  | mac->ledctl_mode1 |= (ledctl_on << shift); | 
|  | break; | 
|  | case ID_LED_OFF1_DEF2: | 
|  | case ID_LED_OFF1_ON2: | 
|  | case ID_LED_OFF1_OFF2: | 
|  | mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); | 
|  | mac->ledctl_mode1 |= (ledctl_off << shift); | 
|  | break; | 
|  | default: | 
|  | /* Do nothing */ | 
|  | break; | 
|  | } | 
|  | switch (temp) { | 
|  | case ID_LED_DEF1_ON2: | 
|  | case ID_LED_ON1_ON2: | 
|  | case ID_LED_OFF1_ON2: | 
|  | mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); | 
|  | mac->ledctl_mode2 |= (ledctl_on << shift); | 
|  | break; | 
|  | case ID_LED_DEF1_OFF2: | 
|  | case ID_LED_ON1_OFF2: | 
|  | case ID_LED_OFF1_OFF2: | 
|  | mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); | 
|  | mac->ledctl_mode2 |= (ledctl_off << shift); | 
|  | break; | 
|  | default: | 
|  | /* Do nothing */ | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability | 
|  | *  register, so the the bus width is hard coded. | 
|  | **/ | 
|  | static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_bus_info *bus = &hw->bus; | 
|  | s32 ret_val; | 
|  |  | 
|  | ret_val = e1000e_get_bus_info_pcie(hw); | 
|  |  | 
|  | /* | 
|  | * ICH devices are "PCI Express"-ish.  They have | 
|  | * a configuration space, but do not contain | 
|  | * PCI Express Capability registers, so bus width | 
|  | * must be hardcoded. | 
|  | */ | 
|  | if (bus->width == e1000_bus_width_unknown) | 
|  | bus->width = e1000_bus_width_pcie_x1; | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_reset_hw_ich8lan - Reset the hardware | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Does a full reset of the hardware which includes a reset of the PHY and | 
|  | *  MAC. | 
|  | **/ | 
|  | static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; | 
|  | u16 reg; | 
|  | u32 ctrl, kab; | 
|  | s32 ret_val; | 
|  |  | 
|  | /* | 
|  | * Prevent the PCI-E bus from sticking if there is no TLP connection | 
|  | * on the last TLP read/write transaction when MAC is reset. | 
|  | */ | 
|  | ret_val = e1000e_disable_pcie_master(hw); | 
|  | if (ret_val) | 
|  | e_dbg("PCI-E Master disable polling has failed.\n"); | 
|  |  | 
|  | e_dbg("Masking off all interrupts\n"); | 
|  | ew32(IMC, 0xffffffff); | 
|  |  | 
|  | /* | 
|  | * Disable the Transmit and Receive units.  Then delay to allow | 
|  | * any pending transactions to complete before we hit the MAC | 
|  | * with the global reset. | 
|  | */ | 
|  | ew32(RCTL, 0); | 
|  | ew32(TCTL, E1000_TCTL_PSP); | 
|  | e1e_flush(); | 
|  |  | 
|  | msleep(10); | 
|  |  | 
|  | /* Workaround for ICH8 bit corruption issue in FIFO memory */ | 
|  | if (hw->mac.type == e1000_ich8lan) { | 
|  | /* Set Tx and Rx buffer allocation to 8k apiece. */ | 
|  | ew32(PBA, E1000_PBA_8K); | 
|  | /* Set Packet Buffer Size to 16k. */ | 
|  | ew32(PBS, E1000_PBS_16K); | 
|  | } | 
|  |  | 
|  | if (hw->mac.type == e1000_pchlan) { | 
|  | /* Save the NVM K1 bit setting*/ | 
|  | ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, ®); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (reg & E1000_NVM_K1_ENABLE) | 
|  | dev_spec->nvm_k1_enabled = true; | 
|  | else | 
|  | dev_spec->nvm_k1_enabled = false; | 
|  | } | 
|  |  | 
|  | ctrl = er32(CTRL); | 
|  |  | 
|  | if (!e1000_check_reset_block(hw)) { | 
|  | /* | 
|  | * Full-chip reset requires MAC and PHY reset at the same | 
|  | * time to make sure the interface between MAC and the | 
|  | * external PHY is reset. | 
|  | */ | 
|  | ctrl |= E1000_CTRL_PHY_RST; | 
|  |  | 
|  | /* | 
|  | * Gate automatic PHY configuration by hardware on | 
|  | * non-managed 82579 | 
|  | */ | 
|  | if ((hw->mac.type == e1000_pch2lan) && | 
|  | !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) | 
|  | e1000_gate_hw_phy_config_ich8lan(hw, true); | 
|  | } | 
|  | ret_val = e1000_acquire_swflag_ich8lan(hw); | 
|  | e_dbg("Issuing a global reset to ich8lan\n"); | 
|  | ew32(CTRL, (ctrl | E1000_CTRL_RST)); | 
|  | msleep(20); | 
|  |  | 
|  | if (!ret_val) | 
|  | e1000_release_swflag_ich8lan(hw); | 
|  |  | 
|  | if (ctrl & E1000_CTRL_PHY_RST) { | 
|  | ret_val = hw->phy.ops.get_cfg_done(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | ret_val = e1000_post_phy_reset_ich8lan(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For PCH, this write will make sure that any noise | 
|  | * will be detected as a CRC error and be dropped rather than show up | 
|  | * as a bad packet to the DMA engine. | 
|  | */ | 
|  | if (hw->mac.type == e1000_pchlan) | 
|  | ew32(CRC_OFFSET, 0x65656565); | 
|  |  | 
|  | ew32(IMC, 0xffffffff); | 
|  | er32(ICR); | 
|  |  | 
|  | kab = er32(KABGTXD); | 
|  | kab |= E1000_KABGTXD_BGSQLBIAS; | 
|  | ew32(KABGTXD, kab); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_init_hw_ich8lan - Initialize the hardware | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Prepares the hardware for transmit and receive by doing the following: | 
|  | *   - initialize hardware bits | 
|  | *   - initialize LED identification | 
|  | *   - setup receive address registers | 
|  | *   - setup flow control | 
|  | *   - setup transmit descriptors | 
|  | *   - clear statistics | 
|  | **/ | 
|  | static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  | u32 ctrl_ext, txdctl, snoop; | 
|  | s32 ret_val; | 
|  | u16 i; | 
|  |  | 
|  | e1000_initialize_hw_bits_ich8lan(hw); | 
|  |  | 
|  | /* Initialize identification LED */ | 
|  | ret_val = mac->ops.id_led_init(hw); | 
|  | if (ret_val) | 
|  | e_dbg("Error initializing identification LED\n"); | 
|  | /* This is not fatal and we should not stop init due to this */ | 
|  |  | 
|  | /* Setup the receive address. */ | 
|  | e1000e_init_rx_addrs(hw, mac->rar_entry_count); | 
|  |  | 
|  | /* Zero out the Multicast HASH table */ | 
|  | e_dbg("Zeroing the MTA\n"); | 
|  | for (i = 0; i < mac->mta_reg_count; i++) | 
|  | E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); | 
|  |  | 
|  | /* | 
|  | * The 82578 Rx buffer will stall if wakeup is enabled in host and | 
|  | * the ME.  Reading the BM_WUC register will clear the host wakeup bit. | 
|  | * Reset the phy after disabling host wakeup to reset the Rx buffer. | 
|  | */ | 
|  | if (hw->phy.type == e1000_phy_82578) { | 
|  | e1e_rphy(hw, BM_WUC, &i); | 
|  | ret_val = e1000_phy_hw_reset_ich8lan(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* Setup link and flow control */ | 
|  | ret_val = e1000_setup_link_ich8lan(hw); | 
|  |  | 
|  | /* Set the transmit descriptor write-back policy for both queues */ | 
|  | txdctl = er32(TXDCTL(0)); | 
|  | txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | | 
|  | E1000_TXDCTL_FULL_TX_DESC_WB; | 
|  | txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) | | 
|  | E1000_TXDCTL_MAX_TX_DESC_PREFETCH; | 
|  | ew32(TXDCTL(0), txdctl); | 
|  | txdctl = er32(TXDCTL(1)); | 
|  | txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | | 
|  | E1000_TXDCTL_FULL_TX_DESC_WB; | 
|  | txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) | | 
|  | E1000_TXDCTL_MAX_TX_DESC_PREFETCH; | 
|  | ew32(TXDCTL(1), txdctl); | 
|  |  | 
|  | /* | 
|  | * ICH8 has opposite polarity of no_snoop bits. | 
|  | * By default, we should use snoop behavior. | 
|  | */ | 
|  | if (mac->type == e1000_ich8lan) | 
|  | snoop = PCIE_ICH8_SNOOP_ALL; | 
|  | else | 
|  | snoop = (u32) ~(PCIE_NO_SNOOP_ALL); | 
|  | e1000e_set_pcie_no_snoop(hw, snoop); | 
|  |  | 
|  | ctrl_ext = er32(CTRL_EXT); | 
|  | ctrl_ext |= E1000_CTRL_EXT_RO_DIS; | 
|  | ew32(CTRL_EXT, ctrl_ext); | 
|  |  | 
|  | /* | 
|  | * Clear all of the statistics registers (clear on read).  It is | 
|  | * important that we do this after we have tried to establish link | 
|  | * because the symbol error count will increment wildly if there | 
|  | * is no link. | 
|  | */ | 
|  | e1000_clear_hw_cntrs_ich8lan(hw); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | /** | 
|  | *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Sets/Clears required hardware bits necessary for correctly setting up the | 
|  | *  hardware for transmit and receive. | 
|  | **/ | 
|  | static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | /* Extended Device Control */ | 
|  | reg = er32(CTRL_EXT); | 
|  | reg |= (1 << 22); | 
|  | /* Enable PHY low-power state when MAC is at D3 w/o WoL */ | 
|  | if (hw->mac.type >= e1000_pchlan) | 
|  | reg |= E1000_CTRL_EXT_PHYPDEN; | 
|  | ew32(CTRL_EXT, reg); | 
|  |  | 
|  | /* Transmit Descriptor Control 0 */ | 
|  | reg = er32(TXDCTL(0)); | 
|  | reg |= (1 << 22); | 
|  | ew32(TXDCTL(0), reg); | 
|  |  | 
|  | /* Transmit Descriptor Control 1 */ | 
|  | reg = er32(TXDCTL(1)); | 
|  | reg |= (1 << 22); | 
|  | ew32(TXDCTL(1), reg); | 
|  |  | 
|  | /* Transmit Arbitration Control 0 */ | 
|  | reg = er32(TARC(0)); | 
|  | if (hw->mac.type == e1000_ich8lan) | 
|  | reg |= (1 << 28) | (1 << 29); | 
|  | reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27); | 
|  | ew32(TARC(0), reg); | 
|  |  | 
|  | /* Transmit Arbitration Control 1 */ | 
|  | reg = er32(TARC(1)); | 
|  | if (er32(TCTL) & E1000_TCTL_MULR) | 
|  | reg &= ~(1 << 28); | 
|  | else | 
|  | reg |= (1 << 28); | 
|  | reg |= (1 << 24) | (1 << 26) | (1 << 30); | 
|  | ew32(TARC(1), reg); | 
|  |  | 
|  | /* Device Status */ | 
|  | if (hw->mac.type == e1000_ich8lan) { | 
|  | reg = er32(STATUS); | 
|  | reg &= ~(1 << 31); | 
|  | ew32(STATUS, reg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * work-around descriptor data corruption issue during nfs v2 udp | 
|  | * traffic, just disable the nfs filtering capability | 
|  | */ | 
|  | reg = er32(RFCTL); | 
|  | reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS); | 
|  | ew32(RFCTL, reg); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_setup_link_ich8lan - Setup flow control and link settings | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Determines which flow control settings to use, then configures flow | 
|  | *  control.  Calls the appropriate media-specific link configuration | 
|  | *  function.  Assuming the adapter has a valid link partner, a valid link | 
|  | *  should be established.  Assumes the hardware has previously been reset | 
|  | *  and the transmitter and receiver are not enabled. | 
|  | **/ | 
|  | static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  |  | 
|  | if (e1000_check_reset_block(hw)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * ICH parts do not have a word in the NVM to determine | 
|  | * the default flow control setting, so we explicitly | 
|  | * set it to full. | 
|  | */ | 
|  | if (hw->fc.requested_mode == e1000_fc_default) { | 
|  | /* Workaround h/w hang when Tx flow control enabled */ | 
|  | if (hw->mac.type == e1000_pchlan) | 
|  | hw->fc.requested_mode = e1000_fc_rx_pause; | 
|  | else | 
|  | hw->fc.requested_mode = e1000_fc_full; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Save off the requested flow control mode for use later.  Depending | 
|  | * on the link partner's capabilities, we may or may not use this mode. | 
|  | */ | 
|  | hw->fc.current_mode = hw->fc.requested_mode; | 
|  |  | 
|  | e_dbg("After fix-ups FlowControl is now = %x\n", | 
|  | hw->fc.current_mode); | 
|  |  | 
|  | /* Continue to configure the copper link. */ | 
|  | ret_val = e1000_setup_copper_link_ich8lan(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ew32(FCTTV, hw->fc.pause_time); | 
|  | if ((hw->phy.type == e1000_phy_82578) || | 
|  | (hw->phy.type == e1000_phy_82579) || | 
|  | (hw->phy.type == e1000_phy_82577)) { | 
|  | ew32(FCRTV_PCH, hw->fc.refresh_time); | 
|  |  | 
|  | ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27), | 
|  | hw->fc.pause_time); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | return e1000e_set_fc_watermarks(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Configures the kumeran interface to the PHY to wait the appropriate time | 
|  | *  when polling the PHY, then call the generic setup_copper_link to finish | 
|  | *  configuring the copper link. | 
|  | **/ | 
|  | static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  | s32 ret_val; | 
|  | u16 reg_data; | 
|  |  | 
|  | ctrl = er32(CTRL); | 
|  | ctrl |= E1000_CTRL_SLU; | 
|  | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 
|  | ew32(CTRL, ctrl); | 
|  |  | 
|  | /* | 
|  | * Set the mac to wait the maximum time between each iteration | 
|  | * and increase the max iterations when polling the phy; | 
|  | * this fixes erroneous timeouts at 10Mbps. | 
|  | */ | 
|  | ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, | 
|  | ®_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | reg_data |= 0x3F; | 
|  | ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, | 
|  | reg_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | switch (hw->phy.type) { | 
|  | case e1000_phy_igp_3: | 
|  | ret_val = e1000e_copper_link_setup_igp(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | break; | 
|  | case e1000_phy_bm: | 
|  | case e1000_phy_82578: | 
|  | ret_val = e1000e_copper_link_setup_m88(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | break; | 
|  | case e1000_phy_82577: | 
|  | case e1000_phy_82579: | 
|  | ret_val = e1000_copper_link_setup_82577(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | break; | 
|  | case e1000_phy_ife: | 
|  | ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | reg_data &= ~IFE_PMC_AUTO_MDIX; | 
|  |  | 
|  | switch (hw->phy.mdix) { | 
|  | case 1: | 
|  | reg_data &= ~IFE_PMC_FORCE_MDIX; | 
|  | break; | 
|  | case 2: | 
|  | reg_data |= IFE_PMC_FORCE_MDIX; | 
|  | break; | 
|  | case 0: | 
|  | default: | 
|  | reg_data |= IFE_PMC_AUTO_MDIX; | 
|  | break; | 
|  | } | 
|  | ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return e1000e_setup_copper_link(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @speed: pointer to store current link speed | 
|  | *  @duplex: pointer to store the current link duplex | 
|  | * | 
|  | *  Calls the generic get_speed_and_duplex to retrieve the current link | 
|  | *  information and then calls the Kumeran lock loss workaround for links at | 
|  | *  gigabit speeds. | 
|  | **/ | 
|  | static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, | 
|  | u16 *duplex) | 
|  | { | 
|  | s32 ret_val; | 
|  |  | 
|  | ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if ((hw->mac.type == e1000_ich8lan) && | 
|  | (hw->phy.type == e1000_phy_igp_3) && | 
|  | (*speed == SPEED_1000)) { | 
|  | ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); | 
|  | } | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Work-around for 82566 Kumeran PCS lock loss: | 
|  | *  On link status change (i.e. PCI reset, speed change) and link is up and | 
|  | *  speed is gigabit- | 
|  | *    0) if workaround is optionally disabled do nothing | 
|  | *    1) wait 1ms for Kumeran link to come up | 
|  | *    2) check Kumeran Diagnostic register PCS lock loss bit | 
|  | *    3) if not set the link is locked (all is good), otherwise... | 
|  | *    4) reset the PHY | 
|  | *    5) repeat up to 10 times | 
|  | *  Note: this is only called for IGP3 copper when speed is 1gb. | 
|  | **/ | 
|  | static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; | 
|  | u32 phy_ctrl; | 
|  | s32 ret_val; | 
|  | u16 i, data; | 
|  | bool link; | 
|  |  | 
|  | if (!dev_spec->kmrn_lock_loss_workaround_enabled) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Make sure link is up before proceeding.  If not just return. | 
|  | * Attempting this while link is negotiating fouled up link | 
|  | * stability | 
|  | */ | 
|  | ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); | 
|  | if (!link) | 
|  | return 0; | 
|  |  | 
|  | for (i = 0; i < 10; i++) { | 
|  | /* read once to clear */ | 
|  | ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | /* and again to get new status */ | 
|  | ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* check for PCS lock */ | 
|  | if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) | 
|  | return 0; | 
|  |  | 
|  | /* Issue PHY reset */ | 
|  | e1000_phy_hw_reset(hw); | 
|  | mdelay(5); | 
|  | } | 
|  | /* Disable GigE link negotiation */ | 
|  | phy_ctrl = er32(PHY_CTRL); | 
|  | phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | | 
|  | E1000_PHY_CTRL_NOND0A_GBE_DISABLE); | 
|  | ew32(PHY_CTRL, phy_ctrl); | 
|  |  | 
|  | /* | 
|  | * Call gig speed drop workaround on Gig disable before accessing | 
|  | * any PHY registers | 
|  | */ | 
|  | e1000e_gig_downshift_workaround_ich8lan(hw); | 
|  |  | 
|  | /* unable to acquire PCS lock */ | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @state: boolean value used to set the current Kumeran workaround state | 
|  | * | 
|  | *  If ICH8, set the current Kumeran workaround state (enabled - true | 
|  | *  /disabled - false). | 
|  | **/ | 
|  | void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, | 
|  | bool state) | 
|  | { | 
|  | struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; | 
|  |  | 
|  | if (hw->mac.type != e1000_ich8lan) { | 
|  | e_dbg("Workaround applies to ICH8 only.\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | dev_spec->kmrn_lock_loss_workaround_enabled = state; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Workaround for 82566 power-down on D3 entry: | 
|  | *    1) disable gigabit link | 
|  | *    2) write VR power-down enable | 
|  | *    3) read it back | 
|  | *  Continue if successful, else issue LCD reset and repeat | 
|  | **/ | 
|  | void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | u32 reg; | 
|  | u16 data; | 
|  | u8  retry = 0; | 
|  |  | 
|  | if (hw->phy.type != e1000_phy_igp_3) | 
|  | return; | 
|  |  | 
|  | /* Try the workaround twice (if needed) */ | 
|  | do { | 
|  | /* Disable link */ | 
|  | reg = er32(PHY_CTRL); | 
|  | reg |= (E1000_PHY_CTRL_GBE_DISABLE | | 
|  | E1000_PHY_CTRL_NOND0A_GBE_DISABLE); | 
|  | ew32(PHY_CTRL, reg); | 
|  |  | 
|  | /* | 
|  | * Call gig speed drop workaround on Gig disable before | 
|  | * accessing any PHY registers | 
|  | */ | 
|  | if (hw->mac.type == e1000_ich8lan) | 
|  | e1000e_gig_downshift_workaround_ich8lan(hw); | 
|  |  | 
|  | /* Write VR power-down enable */ | 
|  | e1e_rphy(hw, IGP3_VR_CTRL, &data); | 
|  | data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; | 
|  | e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN); | 
|  |  | 
|  | /* Read it back and test */ | 
|  | e1e_rphy(hw, IGP3_VR_CTRL, &data); | 
|  | data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; | 
|  | if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) | 
|  | break; | 
|  |  | 
|  | /* Issue PHY reset and repeat at most one more time */ | 
|  | reg = er32(CTRL); | 
|  | ew32(CTRL, reg | E1000_CTRL_PHY_RST); | 
|  | retry++; | 
|  | } while (retry); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), | 
|  | *  LPLU, Gig disable, MDIC PHY reset): | 
|  | *    1) Set Kumeran Near-end loopback | 
|  | *    2) Clear Kumeran Near-end loopback | 
|  | *  Should only be called for ICH8[m] devices with IGP_3 Phy. | 
|  | **/ | 
|  | void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 reg_data; | 
|  |  | 
|  | if ((hw->mac.type != e1000_ich8lan) || | 
|  | (hw->phy.type != e1000_phy_igp_3)) | 
|  | return; | 
|  |  | 
|  | ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, | 
|  | ®_data); | 
|  | if (ret_val) | 
|  | return; | 
|  | reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; | 
|  | ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, | 
|  | reg_data); | 
|  | if (ret_val) | 
|  | return; | 
|  | reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; | 
|  | ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, | 
|  | reg_data); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_disable_gig_wol_ich8lan - disable gig during WoL | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  During S0 to Sx transition, it is possible the link remains at gig | 
|  | *  instead of negotiating to a lower speed.  Before going to Sx, set | 
|  | *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation | 
|  | *  to a lower speed. | 
|  | * | 
|  | *  Should only be called for applicable parts. | 
|  | **/ | 
|  | void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | u32 phy_ctrl; | 
|  | s32 ret_val; | 
|  |  | 
|  | phy_ctrl = er32(PHY_CTRL); | 
|  | phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_GBE_DISABLE; | 
|  | ew32(PHY_CTRL, phy_ctrl); | 
|  |  | 
|  | if (hw->mac.type >= e1000_pchlan) { | 
|  | e1000_oem_bits_config_ich8lan(hw, false); | 
|  | ret_val = hw->phy.ops.acquire(hw); | 
|  | if (ret_val) | 
|  | return; | 
|  | e1000_write_smbus_addr(hw); | 
|  | hw->phy.ops.release(hw); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_cleanup_led_ich8lan - Restore the default LED operation | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Return the LED back to the default configuration. | 
|  | **/ | 
|  | static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | if (hw->phy.type == e1000_phy_ife) | 
|  | return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); | 
|  |  | 
|  | ew32(LEDCTL, hw->mac.ledctl_default); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_led_on_ich8lan - Turn LEDs on | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Turn on the LEDs. | 
|  | **/ | 
|  | static s32 e1000_led_on_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | if (hw->phy.type == e1000_phy_ife) | 
|  | return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, | 
|  | (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); | 
|  |  | 
|  | ew32(LEDCTL, hw->mac.ledctl_mode2); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_led_off_ich8lan - Turn LEDs off | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Turn off the LEDs. | 
|  | **/ | 
|  | static s32 e1000_led_off_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | if (hw->phy.type == e1000_phy_ife) | 
|  | return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, | 
|  | (IFE_PSCL_PROBE_MODE | | 
|  | IFE_PSCL_PROBE_LEDS_OFF)); | 
|  |  | 
|  | ew32(LEDCTL, hw->mac.ledctl_mode1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_setup_led_pchlan - Configures SW controllable LED | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  This prepares the SW controllable LED for use. | 
|  | **/ | 
|  | static s32 e1000_setup_led_pchlan(struct e1000_hw *hw) | 
|  | { | 
|  | return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_cleanup_led_pchlan - Restore the default LED operation | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Return the LED back to the default configuration. | 
|  | **/ | 
|  | static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw) | 
|  | { | 
|  | return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_led_on_pchlan - Turn LEDs on | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Turn on the LEDs. | 
|  | **/ | 
|  | static s32 e1000_led_on_pchlan(struct e1000_hw *hw) | 
|  | { | 
|  | u16 data = (u16)hw->mac.ledctl_mode2; | 
|  | u32 i, led; | 
|  |  | 
|  | /* | 
|  | * If no link, then turn LED on by setting the invert bit | 
|  | * for each LED that's mode is "link_up" in ledctl_mode2. | 
|  | */ | 
|  | if (!(er32(STATUS) & E1000_STATUS_LU)) { | 
|  | for (i = 0; i < 3; i++) { | 
|  | led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; | 
|  | if ((led & E1000_PHY_LED0_MODE_MASK) != | 
|  | E1000_LEDCTL_MODE_LINK_UP) | 
|  | continue; | 
|  | if (led & E1000_PHY_LED0_IVRT) | 
|  | data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); | 
|  | else | 
|  | data |= (E1000_PHY_LED0_IVRT << (i * 5)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return e1e_wphy(hw, HV_LED_CONFIG, data); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_led_off_pchlan - Turn LEDs off | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Turn off the LEDs. | 
|  | **/ | 
|  | static s32 e1000_led_off_pchlan(struct e1000_hw *hw) | 
|  | { | 
|  | u16 data = (u16)hw->mac.ledctl_mode1; | 
|  | u32 i, led; | 
|  |  | 
|  | /* | 
|  | * If no link, then turn LED off by clearing the invert bit | 
|  | * for each LED that's mode is "link_up" in ledctl_mode1. | 
|  | */ | 
|  | if (!(er32(STATUS) & E1000_STATUS_LU)) { | 
|  | for (i = 0; i < 3; i++) { | 
|  | led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; | 
|  | if ((led & E1000_PHY_LED0_MODE_MASK) != | 
|  | E1000_LEDCTL_MODE_LINK_UP) | 
|  | continue; | 
|  | if (led & E1000_PHY_LED0_IVRT) | 
|  | data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); | 
|  | else | 
|  | data |= (E1000_PHY_LED0_IVRT << (i * 5)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return e1e_wphy(hw, HV_LED_CONFIG, data); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Read appropriate register for the config done bit for completion status | 
|  | *  and configure the PHY through s/w for EEPROM-less parts. | 
|  | * | 
|  | *  NOTE: some silicon which is EEPROM-less will fail trying to read the | 
|  | *  config done bit, so only an error is logged and continues.  If we were | 
|  | *  to return with error, EEPROM-less silicon would not be able to be reset | 
|  | *  or change link. | 
|  | **/ | 
|  | static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  | u32 bank = 0; | 
|  | u32 status; | 
|  |  | 
|  | e1000e_get_cfg_done(hw); | 
|  |  | 
|  | /* Wait for indication from h/w that it has completed basic config */ | 
|  | if (hw->mac.type >= e1000_ich10lan) { | 
|  | e1000_lan_init_done_ich8lan(hw); | 
|  | } else { | 
|  | ret_val = e1000e_get_auto_rd_done(hw); | 
|  | if (ret_val) { | 
|  | /* | 
|  | * When auto config read does not complete, do not | 
|  | * return with an error. This can happen in situations | 
|  | * where there is no eeprom and prevents getting link. | 
|  | */ | 
|  | e_dbg("Auto Read Done did not complete\n"); | 
|  | ret_val = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Clear PHY Reset Asserted bit */ | 
|  | status = er32(STATUS); | 
|  | if (status & E1000_STATUS_PHYRA) | 
|  | ew32(STATUS, status & ~E1000_STATUS_PHYRA); | 
|  | else | 
|  | e_dbg("PHY Reset Asserted not set - needs delay\n"); | 
|  |  | 
|  | /* If EEPROM is not marked present, init the IGP 3 PHY manually */ | 
|  | if (hw->mac.type <= e1000_ich9lan) { | 
|  | if (((er32(EECD) & E1000_EECD_PRES) == 0) && | 
|  | (hw->phy.type == e1000_phy_igp_3)) { | 
|  | e1000e_phy_init_script_igp3(hw); | 
|  | } | 
|  | } else { | 
|  | if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { | 
|  | /* Maybe we should do a basic PHY config */ | 
|  | e_dbg("EEPROM not present\n"); | 
|  | ret_val = -E1000_ERR_CONFIG; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down | 
|  | * @hw: pointer to the HW structure | 
|  | * | 
|  | * In the case of a PHY power down to save power, or to turn off link during a | 
|  | * driver unload, or wake on lan is not enabled, remove the link. | 
|  | **/ | 
|  | static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | /* If the management interface is not enabled, then power down */ | 
|  | if (!(hw->mac.ops.check_mng_mode(hw) || | 
|  | hw->phy.ops.check_reset_block(hw))) | 
|  | e1000_power_down_phy_copper(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Clears hardware counters specific to the silicon family and calls | 
|  | *  clear_hw_cntrs_generic to clear all general purpose counters. | 
|  | **/ | 
|  | static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) | 
|  | { | 
|  | u16 phy_data; | 
|  |  | 
|  | e1000e_clear_hw_cntrs_base(hw); | 
|  |  | 
|  | er32(ALGNERRC); | 
|  | er32(RXERRC); | 
|  | er32(TNCRS); | 
|  | er32(CEXTERR); | 
|  | er32(TSCTC); | 
|  | er32(TSCTFC); | 
|  |  | 
|  | er32(MGTPRC); | 
|  | er32(MGTPDC); | 
|  | er32(MGTPTC); | 
|  |  | 
|  | er32(IAC); | 
|  | er32(ICRXOC); | 
|  |  | 
|  | /* Clear PHY statistics registers */ | 
|  | if ((hw->phy.type == e1000_phy_82578) || | 
|  | (hw->phy.type == e1000_phy_82579) || | 
|  | (hw->phy.type == e1000_phy_82577)) { | 
|  | e1e_rphy(hw, HV_SCC_UPPER, &phy_data); | 
|  | e1e_rphy(hw, HV_SCC_LOWER, &phy_data); | 
|  | e1e_rphy(hw, HV_ECOL_UPPER, &phy_data); | 
|  | e1e_rphy(hw, HV_ECOL_LOWER, &phy_data); | 
|  | e1e_rphy(hw, HV_MCC_UPPER, &phy_data); | 
|  | e1e_rphy(hw, HV_MCC_LOWER, &phy_data); | 
|  | e1e_rphy(hw, HV_LATECOL_UPPER, &phy_data); | 
|  | e1e_rphy(hw, HV_LATECOL_LOWER, &phy_data); | 
|  | e1e_rphy(hw, HV_COLC_UPPER, &phy_data); | 
|  | e1e_rphy(hw, HV_COLC_LOWER, &phy_data); | 
|  | e1e_rphy(hw, HV_DC_UPPER, &phy_data); | 
|  | e1e_rphy(hw, HV_DC_LOWER, &phy_data); | 
|  | e1e_rphy(hw, HV_TNCRS_UPPER, &phy_data); | 
|  | e1e_rphy(hw, HV_TNCRS_LOWER, &phy_data); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct e1000_mac_operations ich8_mac_ops = { | 
|  | .id_led_init		= e1000e_id_led_init, | 
|  | /* check_mng_mode dependent on mac type */ | 
|  | .check_for_link		= e1000_check_for_copper_link_ich8lan, | 
|  | /* cleanup_led dependent on mac type */ | 
|  | .clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan, | 
|  | .get_bus_info		= e1000_get_bus_info_ich8lan, | 
|  | .set_lan_id		= e1000_set_lan_id_single_port, | 
|  | .get_link_up_info	= e1000_get_link_up_info_ich8lan, | 
|  | /* led_on dependent on mac type */ | 
|  | /* led_off dependent on mac type */ | 
|  | .update_mc_addr_list	= e1000e_update_mc_addr_list_generic, | 
|  | .reset_hw		= e1000_reset_hw_ich8lan, | 
|  | .init_hw		= e1000_init_hw_ich8lan, | 
|  | .setup_link		= e1000_setup_link_ich8lan, | 
|  | .setup_physical_interface= e1000_setup_copper_link_ich8lan, | 
|  | /* id_led_init dependent on mac type */ | 
|  | }; | 
|  |  | 
|  | static struct e1000_phy_operations ich8_phy_ops = { | 
|  | .acquire		= e1000_acquire_swflag_ich8lan, | 
|  | .check_reset_block	= e1000_check_reset_block_ich8lan, | 
|  | .commit			= NULL, | 
|  | .get_cfg_done		= e1000_get_cfg_done_ich8lan, | 
|  | .get_cable_length	= e1000e_get_cable_length_igp_2, | 
|  | .read_reg		= e1000e_read_phy_reg_igp, | 
|  | .release		= e1000_release_swflag_ich8lan, | 
|  | .reset			= e1000_phy_hw_reset_ich8lan, | 
|  | .set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan, | 
|  | .set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan, | 
|  | .write_reg		= e1000e_write_phy_reg_igp, | 
|  | }; | 
|  |  | 
|  | static struct e1000_nvm_operations ich8_nvm_ops = { | 
|  | .acquire		= e1000_acquire_nvm_ich8lan, | 
|  | .read		 	= e1000_read_nvm_ich8lan, | 
|  | .release		= e1000_release_nvm_ich8lan, | 
|  | .update			= e1000_update_nvm_checksum_ich8lan, | 
|  | .valid_led_default	= e1000_valid_led_default_ich8lan, | 
|  | .validate		= e1000_validate_nvm_checksum_ich8lan, | 
|  | .write			= e1000_write_nvm_ich8lan, | 
|  | }; | 
|  |  | 
|  | struct e1000_info e1000_ich8_info = { | 
|  | .mac			= e1000_ich8lan, | 
|  | .flags			= FLAG_HAS_WOL | 
|  | | FLAG_IS_ICH | 
|  | | FLAG_RX_CSUM_ENABLED | 
|  | | FLAG_HAS_CTRLEXT_ON_LOAD | 
|  | | FLAG_HAS_AMT | 
|  | | FLAG_HAS_FLASH | 
|  | | FLAG_APME_IN_WUC, | 
|  | .pba			= 8, | 
|  | .max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN, | 
|  | .get_variants		= e1000_get_variants_ich8lan, | 
|  | .mac_ops		= &ich8_mac_ops, | 
|  | .phy_ops		= &ich8_phy_ops, | 
|  | .nvm_ops		= &ich8_nvm_ops, | 
|  | }; | 
|  |  | 
|  | struct e1000_info e1000_ich9_info = { | 
|  | .mac			= e1000_ich9lan, | 
|  | .flags			= FLAG_HAS_JUMBO_FRAMES | 
|  | | FLAG_IS_ICH | 
|  | | FLAG_HAS_WOL | 
|  | | FLAG_RX_CSUM_ENABLED | 
|  | | FLAG_HAS_CTRLEXT_ON_LOAD | 
|  | | FLAG_HAS_AMT | 
|  | | FLAG_HAS_ERT | 
|  | | FLAG_HAS_FLASH | 
|  | | FLAG_APME_IN_WUC, | 
|  | .pba			= 10, | 
|  | .max_hw_frame_size	= DEFAULT_JUMBO, | 
|  | .get_variants		= e1000_get_variants_ich8lan, | 
|  | .mac_ops		= &ich8_mac_ops, | 
|  | .phy_ops		= &ich8_phy_ops, | 
|  | .nvm_ops		= &ich8_nvm_ops, | 
|  | }; | 
|  |  | 
|  | struct e1000_info e1000_ich10_info = { | 
|  | .mac			= e1000_ich10lan, | 
|  | .flags			= FLAG_HAS_JUMBO_FRAMES | 
|  | | FLAG_IS_ICH | 
|  | | FLAG_HAS_WOL | 
|  | | FLAG_RX_CSUM_ENABLED | 
|  | | FLAG_HAS_CTRLEXT_ON_LOAD | 
|  | | FLAG_HAS_AMT | 
|  | | FLAG_HAS_ERT | 
|  | | FLAG_HAS_FLASH | 
|  | | FLAG_APME_IN_WUC, | 
|  | .pba			= 10, | 
|  | .max_hw_frame_size	= DEFAULT_JUMBO, | 
|  | .get_variants		= e1000_get_variants_ich8lan, | 
|  | .mac_ops		= &ich8_mac_ops, | 
|  | .phy_ops		= &ich8_phy_ops, | 
|  | .nvm_ops		= &ich8_nvm_ops, | 
|  | }; | 
|  |  | 
|  | struct e1000_info e1000_pch_info = { | 
|  | .mac			= e1000_pchlan, | 
|  | .flags			= FLAG_IS_ICH | 
|  | | FLAG_HAS_WOL | 
|  | | FLAG_RX_CSUM_ENABLED | 
|  | | FLAG_HAS_CTRLEXT_ON_LOAD | 
|  | | FLAG_HAS_AMT | 
|  | | FLAG_HAS_FLASH | 
|  | | FLAG_HAS_JUMBO_FRAMES | 
|  | | FLAG_DISABLE_FC_PAUSE_TIME /* errata */ | 
|  | | FLAG_APME_IN_WUC, | 
|  | .flags2			= FLAG2_HAS_PHY_STATS, | 
|  | .pba			= 26, | 
|  | .max_hw_frame_size	= 4096, | 
|  | .get_variants		= e1000_get_variants_ich8lan, | 
|  | .mac_ops		= &ich8_mac_ops, | 
|  | .phy_ops		= &ich8_phy_ops, | 
|  | .nvm_ops		= &ich8_nvm_ops, | 
|  | }; | 
|  |  | 
|  | struct e1000_info e1000_pch2_info = { | 
|  | .mac			= e1000_pch2lan, | 
|  | .flags			= FLAG_IS_ICH | 
|  | | FLAG_HAS_WOL | 
|  | | FLAG_RX_CSUM_ENABLED | 
|  | | FLAG_HAS_CTRLEXT_ON_LOAD | 
|  | | FLAG_HAS_AMT | 
|  | | FLAG_HAS_FLASH | 
|  | | FLAG_HAS_JUMBO_FRAMES | 
|  | | FLAG_APME_IN_WUC, | 
|  | .flags2			= FLAG2_HAS_PHY_STATS | 
|  | | FLAG2_HAS_EEE, | 
|  | .pba			= 26, | 
|  | .max_hw_frame_size	= DEFAULT_JUMBO, | 
|  | .get_variants		= e1000_get_variants_ich8lan, | 
|  | .mac_ops		= &ich8_mac_ops, | 
|  | .phy_ops		= &ich8_phy_ops, | 
|  | .nvm_ops		= &ich8_nvm_ops, | 
|  | }; |