| /* | 
 |  * Kernel-based Virtual Machine driver for Linux | 
 |  * | 
 |  * derived from drivers/kvm/kvm_main.c | 
 |  * | 
 |  * Copyright (C) 2006 Qumranet, Inc. | 
 |  * | 
 |  * Authors: | 
 |  *   Avi Kivity   <avi@qumranet.com> | 
 |  *   Yaniv Kamay  <yaniv@qumranet.com> | 
 |  * | 
 |  * This work is licensed under the terms of the GNU GPL, version 2.  See | 
 |  * the COPYING file in the top-level directory. | 
 |  * | 
 |  */ | 
 |  | 
 | #include <linux/kvm_host.h> | 
 | #include "irq.h" | 
 | #include "mmu.h" | 
 | #include "i8254.h" | 
 | #include "tss.h" | 
 |  | 
 | #include <linux/clocksource.h> | 
 | #include <linux/kvm.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/module.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/highmem.h> | 
 |  | 
 | #include <asm/uaccess.h> | 
 | #include <asm/msr.h> | 
 | #include <asm/desc.h> | 
 |  | 
 | #define MAX_IO_MSRS 256 | 
 | #define CR0_RESERVED_BITS						\ | 
 | 	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ | 
 | 			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ | 
 | 			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) | 
 | #define CR4_RESERVED_BITS						\ | 
 | 	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ | 
 | 			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE	\ | 
 | 			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR	\ | 
 | 			  | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE)) | 
 |  | 
 | #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) | 
 | /* EFER defaults: | 
 |  * - enable syscall per default because its emulated by KVM | 
 |  * - enable LME and LMA per default on 64 bit KVM | 
 |  */ | 
 | #ifdef CONFIG_X86_64 | 
 | static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL; | 
 | #else | 
 | static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL; | 
 | #endif | 
 |  | 
 | #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM | 
 | #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU | 
 |  | 
 | static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid, | 
 | 				    struct kvm_cpuid_entry2 __user *entries); | 
 |  | 
 | struct kvm_x86_ops *kvm_x86_ops; | 
 |  | 
 | struct kvm_stats_debugfs_item debugfs_entries[] = { | 
 | 	{ "pf_fixed", VCPU_STAT(pf_fixed) }, | 
 | 	{ "pf_guest", VCPU_STAT(pf_guest) }, | 
 | 	{ "tlb_flush", VCPU_STAT(tlb_flush) }, | 
 | 	{ "invlpg", VCPU_STAT(invlpg) }, | 
 | 	{ "exits", VCPU_STAT(exits) }, | 
 | 	{ "io_exits", VCPU_STAT(io_exits) }, | 
 | 	{ "mmio_exits", VCPU_STAT(mmio_exits) }, | 
 | 	{ "signal_exits", VCPU_STAT(signal_exits) }, | 
 | 	{ "irq_window", VCPU_STAT(irq_window_exits) }, | 
 | 	{ "halt_exits", VCPU_STAT(halt_exits) }, | 
 | 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) }, | 
 | 	{ "hypercalls", VCPU_STAT(hypercalls) }, | 
 | 	{ "request_irq", VCPU_STAT(request_irq_exits) }, | 
 | 	{ "irq_exits", VCPU_STAT(irq_exits) }, | 
 | 	{ "host_state_reload", VCPU_STAT(host_state_reload) }, | 
 | 	{ "efer_reload", VCPU_STAT(efer_reload) }, | 
 | 	{ "fpu_reload", VCPU_STAT(fpu_reload) }, | 
 | 	{ "insn_emulation", VCPU_STAT(insn_emulation) }, | 
 | 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, | 
 | 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, | 
 | 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) }, | 
 | 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, | 
 | 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, | 
 | 	{ "mmu_flooded", VM_STAT(mmu_flooded) }, | 
 | 	{ "mmu_recycled", VM_STAT(mmu_recycled) }, | 
 | 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, | 
 | 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, | 
 | 	{ "largepages", VM_STAT(lpages) }, | 
 | 	{ NULL } | 
 | }; | 
 |  | 
 |  | 
 | unsigned long segment_base(u16 selector) | 
 | { | 
 | 	struct descriptor_table gdt; | 
 | 	struct desc_struct *d; | 
 | 	unsigned long table_base; | 
 | 	unsigned long v; | 
 |  | 
 | 	if (selector == 0) | 
 | 		return 0; | 
 |  | 
 | 	asm("sgdt %0" : "=m"(gdt)); | 
 | 	table_base = gdt.base; | 
 |  | 
 | 	if (selector & 4) {           /* from ldt */ | 
 | 		u16 ldt_selector; | 
 |  | 
 | 		asm("sldt %0" : "=g"(ldt_selector)); | 
 | 		table_base = segment_base(ldt_selector); | 
 | 	} | 
 | 	d = (struct desc_struct *)(table_base + (selector & ~7)); | 
 | 	v = d->base0 | ((unsigned long)d->base1 << 16) | | 
 | 		((unsigned long)d->base2 << 24); | 
 | #ifdef CONFIG_X86_64 | 
 | 	if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11)) | 
 | 		v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32; | 
 | #endif | 
 | 	return v; | 
 | } | 
 | EXPORT_SYMBOL_GPL(segment_base); | 
 |  | 
 | u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (irqchip_in_kernel(vcpu->kvm)) | 
 | 		return vcpu->arch.apic_base; | 
 | 	else | 
 | 		return vcpu->arch.apic_base; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_get_apic_base); | 
 |  | 
 | void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data) | 
 | { | 
 | 	/* TODO: reserve bits check */ | 
 | 	if (irqchip_in_kernel(vcpu->kvm)) | 
 | 		kvm_lapic_set_base(vcpu, data); | 
 | 	else | 
 | 		vcpu->arch.apic_base = data; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_set_apic_base); | 
 |  | 
 | void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) | 
 | { | 
 | 	WARN_ON(vcpu->arch.exception.pending); | 
 | 	vcpu->arch.exception.pending = true; | 
 | 	vcpu->arch.exception.has_error_code = false; | 
 | 	vcpu->arch.exception.nr = nr; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_queue_exception); | 
 |  | 
 | void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr, | 
 | 			   u32 error_code) | 
 | { | 
 | 	++vcpu->stat.pf_guest; | 
 | 	if (vcpu->arch.exception.pending) { | 
 | 		if (vcpu->arch.exception.nr == PF_VECTOR) { | 
 | 			printk(KERN_DEBUG "kvm: inject_page_fault:" | 
 | 					" double fault 0x%lx\n", addr); | 
 | 			vcpu->arch.exception.nr = DF_VECTOR; | 
 | 			vcpu->arch.exception.error_code = 0; | 
 | 		} else if (vcpu->arch.exception.nr == DF_VECTOR) { | 
 | 			/* triple fault -> shutdown */ | 
 | 			set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests); | 
 | 		} | 
 | 		return; | 
 | 	} | 
 | 	vcpu->arch.cr2 = addr; | 
 | 	kvm_queue_exception_e(vcpu, PF_VECTOR, error_code); | 
 | } | 
 |  | 
 | void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) | 
 | { | 
 | 	WARN_ON(vcpu->arch.exception.pending); | 
 | 	vcpu->arch.exception.pending = true; | 
 | 	vcpu->arch.exception.has_error_code = true; | 
 | 	vcpu->arch.exception.nr = nr; | 
 | 	vcpu->arch.exception.error_code = error_code; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_queue_exception_e); | 
 |  | 
 | static void __queue_exception(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, | 
 | 				     vcpu->arch.exception.has_error_code, | 
 | 				     vcpu->arch.exception.error_code); | 
 | } | 
 |  | 
 | /* | 
 |  * Load the pae pdptrs.  Return true is they are all valid. | 
 |  */ | 
 | int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) | 
 | { | 
 | 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; | 
 | 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; | 
 | 	int i; | 
 | 	int ret; | 
 | 	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)]; | 
 |  | 
 | 	ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte, | 
 | 				  offset * sizeof(u64), sizeof(pdpte)); | 
 | 	if (ret < 0) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 | 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { | 
 | 		if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) { | 
 | 			ret = 0; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 | 	ret = 1; | 
 |  | 
 | 	memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs)); | 
 | out: | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(load_pdptrs); | 
 |  | 
 | static bool pdptrs_changed(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)]; | 
 | 	bool changed = true; | 
 | 	int r; | 
 |  | 
 | 	if (is_long_mode(vcpu) || !is_pae(vcpu)) | 
 | 		return false; | 
 |  | 
 | 	r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte)); | 
 | 	if (r < 0) | 
 | 		goto out; | 
 | 	changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0; | 
 | out: | 
 |  | 
 | 	return changed; | 
 | } | 
 |  | 
 | void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) | 
 | { | 
 | 	if (cr0 & CR0_RESERVED_BITS) { | 
 | 		printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n", | 
 | 		       cr0, vcpu->arch.cr0); | 
 | 		kvm_inject_gp(vcpu, 0); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) { | 
 | 		printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n"); | 
 | 		kvm_inject_gp(vcpu, 0); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) { | 
 | 		printk(KERN_DEBUG "set_cr0: #GP, set PG flag " | 
 | 		       "and a clear PE flag\n"); | 
 | 		kvm_inject_gp(vcpu, 0); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { | 
 | #ifdef CONFIG_X86_64 | 
 | 		if ((vcpu->arch.shadow_efer & EFER_LME)) { | 
 | 			int cs_db, cs_l; | 
 |  | 
 | 			if (!is_pae(vcpu)) { | 
 | 				printk(KERN_DEBUG "set_cr0: #GP, start paging " | 
 | 				       "in long mode while PAE is disabled\n"); | 
 | 				kvm_inject_gp(vcpu, 0); | 
 | 				return; | 
 | 			} | 
 | 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); | 
 | 			if (cs_l) { | 
 | 				printk(KERN_DEBUG "set_cr0: #GP, start paging " | 
 | 				       "in long mode while CS.L == 1\n"); | 
 | 				kvm_inject_gp(vcpu, 0); | 
 | 				return; | 
 |  | 
 | 			} | 
 | 		} else | 
 | #endif | 
 | 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) { | 
 | 			printk(KERN_DEBUG "set_cr0: #GP, pdptrs " | 
 | 			       "reserved bits\n"); | 
 | 			kvm_inject_gp(vcpu, 0); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 	} | 
 |  | 
 | 	kvm_x86_ops->set_cr0(vcpu, cr0); | 
 | 	vcpu->arch.cr0 = cr0; | 
 |  | 
 | 	kvm_mmu_reset_context(vcpu); | 
 | 	return; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_set_cr0); | 
 |  | 
 | void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) | 
 | { | 
 | 	kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)); | 
 | 	KVMTRACE_1D(LMSW, vcpu, | 
 | 		    (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)), | 
 | 		    handler); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_lmsw); | 
 |  | 
 | void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) | 
 | { | 
 | 	if (cr4 & CR4_RESERVED_BITS) { | 
 | 		printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n"); | 
 | 		kvm_inject_gp(vcpu, 0); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (is_long_mode(vcpu)) { | 
 | 		if (!(cr4 & X86_CR4_PAE)) { | 
 | 			printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while " | 
 | 			       "in long mode\n"); | 
 | 			kvm_inject_gp(vcpu, 0); | 
 | 			return; | 
 | 		} | 
 | 	} else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE) | 
 | 		   && !load_pdptrs(vcpu, vcpu->arch.cr3)) { | 
 | 		printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n"); | 
 | 		kvm_inject_gp(vcpu, 0); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (cr4 & X86_CR4_VMXE) { | 
 | 		printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n"); | 
 | 		kvm_inject_gp(vcpu, 0); | 
 | 		return; | 
 | 	} | 
 | 	kvm_x86_ops->set_cr4(vcpu, cr4); | 
 | 	vcpu->arch.cr4 = cr4; | 
 | 	kvm_mmu_reset_context(vcpu); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_set_cr4); | 
 |  | 
 | void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) | 
 | { | 
 | 	if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) { | 
 | 		kvm_mmu_flush_tlb(vcpu); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (is_long_mode(vcpu)) { | 
 | 		if (cr3 & CR3_L_MODE_RESERVED_BITS) { | 
 | 			printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n"); | 
 | 			kvm_inject_gp(vcpu, 0); | 
 | 			return; | 
 | 		} | 
 | 	} else { | 
 | 		if (is_pae(vcpu)) { | 
 | 			if (cr3 & CR3_PAE_RESERVED_BITS) { | 
 | 				printk(KERN_DEBUG | 
 | 				       "set_cr3: #GP, reserved bits\n"); | 
 | 				kvm_inject_gp(vcpu, 0); | 
 | 				return; | 
 | 			} | 
 | 			if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) { | 
 | 				printk(KERN_DEBUG "set_cr3: #GP, pdptrs " | 
 | 				       "reserved bits\n"); | 
 | 				kvm_inject_gp(vcpu, 0); | 
 | 				return; | 
 | 			} | 
 | 		} | 
 | 		/* | 
 | 		 * We don't check reserved bits in nonpae mode, because | 
 | 		 * this isn't enforced, and VMware depends on this. | 
 | 		 */ | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Does the new cr3 value map to physical memory? (Note, we | 
 | 	 * catch an invalid cr3 even in real-mode, because it would | 
 | 	 * cause trouble later on when we turn on paging anyway.) | 
 | 	 * | 
 | 	 * A real CPU would silently accept an invalid cr3 and would | 
 | 	 * attempt to use it - with largely undefined (and often hard | 
 | 	 * to debug) behavior on the guest side. | 
 | 	 */ | 
 | 	if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT))) | 
 | 		kvm_inject_gp(vcpu, 0); | 
 | 	else { | 
 | 		vcpu->arch.cr3 = cr3; | 
 | 		vcpu->arch.mmu.new_cr3(vcpu); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_set_cr3); | 
 |  | 
 | void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) | 
 | { | 
 | 	if (cr8 & CR8_RESERVED_BITS) { | 
 | 		printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8); | 
 | 		kvm_inject_gp(vcpu, 0); | 
 | 		return; | 
 | 	} | 
 | 	if (irqchip_in_kernel(vcpu->kvm)) | 
 | 		kvm_lapic_set_tpr(vcpu, cr8); | 
 | 	else | 
 | 		vcpu->arch.cr8 = cr8; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_set_cr8); | 
 |  | 
 | unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (irqchip_in_kernel(vcpu->kvm)) | 
 | 		return kvm_lapic_get_cr8(vcpu); | 
 | 	else | 
 | 		return vcpu->arch.cr8; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_get_cr8); | 
 |  | 
 | /* | 
 |  * List of msr numbers which we expose to userspace through KVM_GET_MSRS | 
 |  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. | 
 |  * | 
 |  * This list is modified at module load time to reflect the | 
 |  * capabilities of the host cpu. | 
 |  */ | 
 | static u32 msrs_to_save[] = { | 
 | 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, | 
 | 	MSR_K6_STAR, | 
 | #ifdef CONFIG_X86_64 | 
 | 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, | 
 | #endif | 
 | 	MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, | 
 | 	MSR_IA32_PERF_STATUS, | 
 | }; | 
 |  | 
 | static unsigned num_msrs_to_save; | 
 |  | 
 | static u32 emulated_msrs[] = { | 
 | 	MSR_IA32_MISC_ENABLE, | 
 | }; | 
 |  | 
 | static void set_efer(struct kvm_vcpu *vcpu, u64 efer) | 
 | { | 
 | 	if (efer & efer_reserved_bits) { | 
 | 		printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n", | 
 | 		       efer); | 
 | 		kvm_inject_gp(vcpu, 0); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (is_paging(vcpu) | 
 | 	    && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) { | 
 | 		printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n"); | 
 | 		kvm_inject_gp(vcpu, 0); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	kvm_x86_ops->set_efer(vcpu, efer); | 
 |  | 
 | 	efer &= ~EFER_LMA; | 
 | 	efer |= vcpu->arch.shadow_efer & EFER_LMA; | 
 |  | 
 | 	vcpu->arch.shadow_efer = efer; | 
 | } | 
 |  | 
 | void kvm_enable_efer_bits(u64 mask) | 
 | { | 
 |        efer_reserved_bits &= ~mask; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); | 
 |  | 
 |  | 
 | /* | 
 |  * Writes msr value into into the appropriate "register". | 
 |  * Returns 0 on success, non-0 otherwise. | 
 |  * Assumes vcpu_load() was already called. | 
 |  */ | 
 | int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) | 
 | { | 
 | 	return kvm_x86_ops->set_msr(vcpu, msr_index, data); | 
 | } | 
 |  | 
 | /* | 
 |  * Adapt set_msr() to msr_io()'s calling convention | 
 |  */ | 
 | static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) | 
 | { | 
 | 	return kvm_set_msr(vcpu, index, *data); | 
 | } | 
 |  | 
 | static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) | 
 | { | 
 | 	static int version; | 
 | 	struct kvm_wall_clock wc; | 
 | 	struct timespec wc_ts; | 
 |  | 
 | 	if (!wall_clock) | 
 | 		return; | 
 |  | 
 | 	version++; | 
 |  | 
 | 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); | 
 |  | 
 | 	wc_ts = current_kernel_time(); | 
 | 	wc.wc_sec = wc_ts.tv_sec; | 
 | 	wc.wc_nsec = wc_ts.tv_nsec; | 
 | 	wc.wc_version = version; | 
 |  | 
 | 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); | 
 |  | 
 | 	version++; | 
 | 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); | 
 | } | 
 |  | 
 | static void kvm_write_guest_time(struct kvm_vcpu *v) | 
 | { | 
 | 	struct timespec ts; | 
 | 	unsigned long flags; | 
 | 	struct kvm_vcpu_arch *vcpu = &v->arch; | 
 | 	void *shared_kaddr; | 
 |  | 
 | 	if ((!vcpu->time_page)) | 
 | 		return; | 
 |  | 
 | 	/* Keep irq disabled to prevent changes to the clock */ | 
 | 	local_irq_save(flags); | 
 | 	kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER, | 
 | 			  &vcpu->hv_clock.tsc_timestamp); | 
 | 	ktime_get_ts(&ts); | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	/* With all the info we got, fill in the values */ | 
 |  | 
 | 	vcpu->hv_clock.system_time = ts.tv_nsec + | 
 | 				     (NSEC_PER_SEC * (u64)ts.tv_sec); | 
 | 	/* | 
 | 	 * The interface expects us to write an even number signaling that the | 
 | 	 * update is finished. Since the guest won't see the intermediate | 
 | 	 * state, we just write "2" at the end | 
 | 	 */ | 
 | 	vcpu->hv_clock.version = 2; | 
 |  | 
 | 	shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0); | 
 |  | 
 | 	memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock, | 
 | 		sizeof(vcpu->hv_clock)); | 
 |  | 
 | 	kunmap_atomic(shared_kaddr, KM_USER0); | 
 |  | 
 | 	mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT); | 
 | } | 
 |  | 
 |  | 
 | int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data) | 
 | { | 
 | 	switch (msr) { | 
 | 	case MSR_EFER: | 
 | 		set_efer(vcpu, data); | 
 | 		break; | 
 | 	case MSR_IA32_MC0_STATUS: | 
 | 		pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n", | 
 | 		       __func__, data); | 
 | 		break; | 
 | 	case MSR_IA32_MCG_STATUS: | 
 | 		pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n", | 
 | 			__func__, data); | 
 | 		break; | 
 | 	case MSR_IA32_MCG_CTL: | 
 | 		pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n", | 
 | 			__func__, data); | 
 | 		break; | 
 | 	case MSR_IA32_UCODE_REV: | 
 | 	case MSR_IA32_UCODE_WRITE: | 
 | 	case 0x200 ... 0x2ff: /* MTRRs */ | 
 | 		break; | 
 | 	case MSR_IA32_APICBASE: | 
 | 		kvm_set_apic_base(vcpu, data); | 
 | 		break; | 
 | 	case MSR_IA32_MISC_ENABLE: | 
 | 		vcpu->arch.ia32_misc_enable_msr = data; | 
 | 		break; | 
 | 	case MSR_KVM_WALL_CLOCK: | 
 | 		vcpu->kvm->arch.wall_clock = data; | 
 | 		kvm_write_wall_clock(vcpu->kvm, data); | 
 | 		break; | 
 | 	case MSR_KVM_SYSTEM_TIME: { | 
 | 		if (vcpu->arch.time_page) { | 
 | 			kvm_release_page_dirty(vcpu->arch.time_page); | 
 | 			vcpu->arch.time_page = NULL; | 
 | 		} | 
 |  | 
 | 		vcpu->arch.time = data; | 
 |  | 
 | 		/* we verify if the enable bit is set... */ | 
 | 		if (!(data & 1)) | 
 | 			break; | 
 |  | 
 | 		/* ...but clean it before doing the actual write */ | 
 | 		vcpu->arch.time_offset = data & ~(PAGE_MASK | 1); | 
 |  | 
 | 		vcpu->arch.hv_clock.tsc_to_system_mul = | 
 | 					clocksource_khz2mult(tsc_khz, 22); | 
 | 		vcpu->arch.hv_clock.tsc_shift = 22; | 
 |  | 
 | 		down_read(¤t->mm->mmap_sem); | 
 | 		vcpu->arch.time_page = | 
 | 				gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT); | 
 | 		up_read(¤t->mm->mmap_sem); | 
 |  | 
 | 		if (is_error_page(vcpu->arch.time_page)) { | 
 | 			kvm_release_page_clean(vcpu->arch.time_page); | 
 | 			vcpu->arch.time_page = NULL; | 
 | 		} | 
 |  | 
 | 		kvm_write_guest_time(vcpu); | 
 | 		break; | 
 | 	} | 
 | 	default: | 
 | 		pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_set_msr_common); | 
 |  | 
 |  | 
 | /* | 
 |  * Reads an msr value (of 'msr_index') into 'pdata'. | 
 |  * Returns 0 on success, non-0 otherwise. | 
 |  * Assumes vcpu_load() was already called. | 
 |  */ | 
 | int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) | 
 | { | 
 | 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata); | 
 | } | 
 |  | 
 | int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) | 
 | { | 
 | 	u64 data; | 
 |  | 
 | 	switch (msr) { | 
 | 	case 0xc0010010: /* SYSCFG */ | 
 | 	case 0xc0010015: /* HWCR */ | 
 | 	case MSR_IA32_PLATFORM_ID: | 
 | 	case MSR_IA32_P5_MC_ADDR: | 
 | 	case MSR_IA32_P5_MC_TYPE: | 
 | 	case MSR_IA32_MC0_CTL: | 
 | 	case MSR_IA32_MCG_STATUS: | 
 | 	case MSR_IA32_MCG_CAP: | 
 | 	case MSR_IA32_MCG_CTL: | 
 | 	case MSR_IA32_MC0_MISC: | 
 | 	case MSR_IA32_MC0_MISC+4: | 
 | 	case MSR_IA32_MC0_MISC+8: | 
 | 	case MSR_IA32_MC0_MISC+12: | 
 | 	case MSR_IA32_MC0_MISC+16: | 
 | 	case MSR_IA32_UCODE_REV: | 
 | 	case MSR_IA32_EBL_CR_POWERON: | 
 | 		/* MTRR registers */ | 
 | 	case 0xfe: | 
 | 	case 0x200 ... 0x2ff: | 
 | 		data = 0; | 
 | 		break; | 
 | 	case 0xcd: /* fsb frequency */ | 
 | 		data = 3; | 
 | 		break; | 
 | 	case MSR_IA32_APICBASE: | 
 | 		data = kvm_get_apic_base(vcpu); | 
 | 		break; | 
 | 	case MSR_IA32_MISC_ENABLE: | 
 | 		data = vcpu->arch.ia32_misc_enable_msr; | 
 | 		break; | 
 | 	case MSR_IA32_PERF_STATUS: | 
 | 		/* TSC increment by tick */ | 
 | 		data = 1000ULL; | 
 | 		/* CPU multiplier */ | 
 | 		data |= (((uint64_t)4ULL) << 40); | 
 | 		break; | 
 | 	case MSR_EFER: | 
 | 		data = vcpu->arch.shadow_efer; | 
 | 		break; | 
 | 	case MSR_KVM_WALL_CLOCK: | 
 | 		data = vcpu->kvm->arch.wall_clock; | 
 | 		break; | 
 | 	case MSR_KVM_SYSTEM_TIME: | 
 | 		data = vcpu->arch.time; | 
 | 		break; | 
 | 	default: | 
 | 		pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); | 
 | 		return 1; | 
 | 	} | 
 | 	*pdata = data; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_get_msr_common); | 
 |  | 
 | /* | 
 |  * Read or write a bunch of msrs. All parameters are kernel addresses. | 
 |  * | 
 |  * @return number of msrs set successfully. | 
 |  */ | 
 | static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, | 
 | 		    struct kvm_msr_entry *entries, | 
 | 		    int (*do_msr)(struct kvm_vcpu *vcpu, | 
 | 				  unsigned index, u64 *data)) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	vcpu_load(vcpu); | 
 |  | 
 | 	down_read(&vcpu->kvm->slots_lock); | 
 | 	for (i = 0; i < msrs->nmsrs; ++i) | 
 | 		if (do_msr(vcpu, entries[i].index, &entries[i].data)) | 
 | 			break; | 
 | 	up_read(&vcpu->kvm->slots_lock); | 
 |  | 
 | 	vcpu_put(vcpu); | 
 |  | 
 | 	return i; | 
 | } | 
 |  | 
 | /* | 
 |  * Read or write a bunch of msrs. Parameters are user addresses. | 
 |  * | 
 |  * @return number of msrs set successfully. | 
 |  */ | 
 | static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, | 
 | 		  int (*do_msr)(struct kvm_vcpu *vcpu, | 
 | 				unsigned index, u64 *data), | 
 | 		  int writeback) | 
 | { | 
 | 	struct kvm_msrs msrs; | 
 | 	struct kvm_msr_entry *entries; | 
 | 	int r, n; | 
 | 	unsigned size; | 
 |  | 
 | 	r = -EFAULT; | 
 | 	if (copy_from_user(&msrs, user_msrs, sizeof msrs)) | 
 | 		goto out; | 
 |  | 
 | 	r = -E2BIG; | 
 | 	if (msrs.nmsrs >= MAX_IO_MSRS) | 
 | 		goto out; | 
 |  | 
 | 	r = -ENOMEM; | 
 | 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; | 
 | 	entries = vmalloc(size); | 
 | 	if (!entries) | 
 | 		goto out; | 
 |  | 
 | 	r = -EFAULT; | 
 | 	if (copy_from_user(entries, user_msrs->entries, size)) | 
 | 		goto out_free; | 
 |  | 
 | 	r = n = __msr_io(vcpu, &msrs, entries, do_msr); | 
 | 	if (r < 0) | 
 | 		goto out_free; | 
 |  | 
 | 	r = -EFAULT; | 
 | 	if (writeback && copy_to_user(user_msrs->entries, entries, size)) | 
 | 		goto out_free; | 
 |  | 
 | 	r = n; | 
 |  | 
 | out_free: | 
 | 	vfree(entries); | 
 | out: | 
 | 	return r; | 
 | } | 
 |  | 
 | /* | 
 |  * Make sure that a cpu that is being hot-unplugged does not have any vcpus | 
 |  * cached on it. | 
 |  */ | 
 | void decache_vcpus_on_cpu(int cpu) | 
 | { | 
 | 	struct kvm *vm; | 
 | 	struct kvm_vcpu *vcpu; | 
 | 	int i; | 
 |  | 
 | 	spin_lock(&kvm_lock); | 
 | 	list_for_each_entry(vm, &vm_list, vm_list) | 
 | 		for (i = 0; i < KVM_MAX_VCPUS; ++i) { | 
 | 			vcpu = vm->vcpus[i]; | 
 | 			if (!vcpu) | 
 | 				continue; | 
 | 			/* | 
 | 			 * If the vcpu is locked, then it is running on some | 
 | 			 * other cpu and therefore it is not cached on the | 
 | 			 * cpu in question. | 
 | 			 * | 
 | 			 * If it's not locked, check the last cpu it executed | 
 | 			 * on. | 
 | 			 */ | 
 | 			if (mutex_trylock(&vcpu->mutex)) { | 
 | 				if (vcpu->cpu == cpu) { | 
 | 					kvm_x86_ops->vcpu_decache(vcpu); | 
 | 					vcpu->cpu = -1; | 
 | 				} | 
 | 				mutex_unlock(&vcpu->mutex); | 
 | 			} | 
 | 		} | 
 | 	spin_unlock(&kvm_lock); | 
 | } | 
 |  | 
 | int kvm_dev_ioctl_check_extension(long ext) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	switch (ext) { | 
 | 	case KVM_CAP_IRQCHIP: | 
 | 	case KVM_CAP_HLT: | 
 | 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: | 
 | 	case KVM_CAP_USER_MEMORY: | 
 | 	case KVM_CAP_SET_TSS_ADDR: | 
 | 	case KVM_CAP_EXT_CPUID: | 
 | 	case KVM_CAP_CLOCKSOURCE: | 
 | 	case KVM_CAP_PIT: | 
 | 	case KVM_CAP_NOP_IO_DELAY: | 
 | 	case KVM_CAP_MP_STATE: | 
 | 		r = 1; | 
 | 		break; | 
 | 	case KVM_CAP_VAPIC: | 
 | 		r = !kvm_x86_ops->cpu_has_accelerated_tpr(); | 
 | 		break; | 
 | 	case KVM_CAP_NR_VCPUS: | 
 | 		r = KVM_MAX_VCPUS; | 
 | 		break; | 
 | 	case KVM_CAP_NR_MEMSLOTS: | 
 | 		r = KVM_MEMORY_SLOTS; | 
 | 		break; | 
 | 	case KVM_CAP_PV_MMU: | 
 | 		r = !tdp_enabled; | 
 | 		break; | 
 | 	default: | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	return r; | 
 |  | 
 | } | 
 |  | 
 | long kvm_arch_dev_ioctl(struct file *filp, | 
 | 			unsigned int ioctl, unsigned long arg) | 
 | { | 
 | 	void __user *argp = (void __user *)arg; | 
 | 	long r; | 
 |  | 
 | 	switch (ioctl) { | 
 | 	case KVM_GET_MSR_INDEX_LIST: { | 
 | 		struct kvm_msr_list __user *user_msr_list = argp; | 
 | 		struct kvm_msr_list msr_list; | 
 | 		unsigned n; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) | 
 | 			goto out; | 
 | 		n = msr_list.nmsrs; | 
 | 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); | 
 | 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) | 
 | 			goto out; | 
 | 		r = -E2BIG; | 
 | 		if (n < num_msrs_to_save) | 
 | 			goto out; | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(user_msr_list->indices, &msrs_to_save, | 
 | 				 num_msrs_to_save * sizeof(u32))) | 
 | 			goto out; | 
 | 		if (copy_to_user(user_msr_list->indices | 
 | 				 + num_msrs_to_save * sizeof(u32), | 
 | 				 &emulated_msrs, | 
 | 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32))) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_SUPPORTED_CPUID: { | 
 | 		struct kvm_cpuid2 __user *cpuid_arg = argp; | 
 | 		struct kvm_cpuid2 cpuid; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | 
 | 			goto out; | 
 | 		r = kvm_dev_ioctl_get_supported_cpuid(&cpuid, | 
 | 			cpuid_arg->entries); | 
 | 		if (r) | 
 | 			goto out; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	default: | 
 | 		r = -EINVAL; | 
 | 	} | 
 | out: | 
 | 	return r; | 
 | } | 
 |  | 
 | void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) | 
 | { | 
 | 	kvm_x86_ops->vcpu_load(vcpu, cpu); | 
 | 	kvm_write_guest_time(vcpu); | 
 | } | 
 |  | 
 | void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	kvm_x86_ops->vcpu_put(vcpu); | 
 | 	kvm_put_guest_fpu(vcpu); | 
 | } | 
 |  | 
 | static int is_efer_nx(void) | 
 | { | 
 | 	u64 efer; | 
 |  | 
 | 	rdmsrl(MSR_EFER, efer); | 
 | 	return efer & EFER_NX; | 
 | } | 
 |  | 
 | static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int i; | 
 | 	struct kvm_cpuid_entry2 *e, *entry; | 
 |  | 
 | 	entry = NULL; | 
 | 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) { | 
 | 		e = &vcpu->arch.cpuid_entries[i]; | 
 | 		if (e->function == 0x80000001) { | 
 | 			entry = e; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) { | 
 | 		entry->edx &= ~(1 << 20); | 
 | 		printk(KERN_INFO "kvm: guest NX capability removed\n"); | 
 | 	} | 
 | } | 
 |  | 
 | /* when an old userspace process fills a new kernel module */ | 
 | static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu, | 
 | 				    struct kvm_cpuid *cpuid, | 
 | 				    struct kvm_cpuid_entry __user *entries) | 
 | { | 
 | 	int r, i; | 
 | 	struct kvm_cpuid_entry *cpuid_entries; | 
 |  | 
 | 	r = -E2BIG; | 
 | 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) | 
 | 		goto out; | 
 | 	r = -ENOMEM; | 
 | 	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent); | 
 | 	if (!cpuid_entries) | 
 | 		goto out; | 
 | 	r = -EFAULT; | 
 | 	if (copy_from_user(cpuid_entries, entries, | 
 | 			   cpuid->nent * sizeof(struct kvm_cpuid_entry))) | 
 | 		goto out_free; | 
 | 	for (i = 0; i < cpuid->nent; i++) { | 
 | 		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function; | 
 | 		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax; | 
 | 		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx; | 
 | 		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx; | 
 | 		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx; | 
 | 		vcpu->arch.cpuid_entries[i].index = 0; | 
 | 		vcpu->arch.cpuid_entries[i].flags = 0; | 
 | 		vcpu->arch.cpuid_entries[i].padding[0] = 0; | 
 | 		vcpu->arch.cpuid_entries[i].padding[1] = 0; | 
 | 		vcpu->arch.cpuid_entries[i].padding[2] = 0; | 
 | 	} | 
 | 	vcpu->arch.cpuid_nent = cpuid->nent; | 
 | 	cpuid_fix_nx_cap(vcpu); | 
 | 	r = 0; | 
 |  | 
 | out_free: | 
 | 	vfree(cpuid_entries); | 
 | out: | 
 | 	return r; | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu, | 
 | 				    struct kvm_cpuid2 *cpuid, | 
 | 				    struct kvm_cpuid_entry2 __user *entries) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	r = -E2BIG; | 
 | 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) | 
 | 		goto out; | 
 | 	r = -EFAULT; | 
 | 	if (copy_from_user(&vcpu->arch.cpuid_entries, entries, | 
 | 			   cpuid->nent * sizeof(struct kvm_cpuid_entry2))) | 
 | 		goto out; | 
 | 	vcpu->arch.cpuid_nent = cpuid->nent; | 
 | 	return 0; | 
 |  | 
 | out: | 
 | 	return r; | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu, | 
 | 				    struct kvm_cpuid2 *cpuid, | 
 | 				    struct kvm_cpuid_entry2 __user *entries) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	r = -E2BIG; | 
 | 	if (cpuid->nent < vcpu->arch.cpuid_nent) | 
 | 		goto out; | 
 | 	r = -EFAULT; | 
 | 	if (copy_to_user(entries, &vcpu->arch.cpuid_entries, | 
 | 			   vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2))) | 
 | 		goto out; | 
 | 	return 0; | 
 |  | 
 | out: | 
 | 	cpuid->nent = vcpu->arch.cpuid_nent; | 
 | 	return r; | 
 | } | 
 |  | 
 | static inline u32 bit(int bitno) | 
 | { | 
 | 	return 1 << (bitno & 31); | 
 | } | 
 |  | 
 | static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function, | 
 | 			  u32 index) | 
 | { | 
 | 	entry->function = function; | 
 | 	entry->index = index; | 
 | 	cpuid_count(entry->function, entry->index, | 
 | 		&entry->eax, &entry->ebx, &entry->ecx, &entry->edx); | 
 | 	entry->flags = 0; | 
 | } | 
 |  | 
 | static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function, | 
 | 			 u32 index, int *nent, int maxnent) | 
 | { | 
 | 	const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) | | 
 | 		bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) | | 
 | 		bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) | | 
 | 		bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) | | 
 | 		bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) | | 
 | 		bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) | | 
 | 		bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) | | 
 | 		bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) | | 
 | 		bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) | | 
 | 		bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP); | 
 | 	const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) | | 
 | 		bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) | | 
 | 		bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) | | 
 | 		bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) | | 
 | 		bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) | | 
 | 		bit(X86_FEATURE_PGE) | | 
 | 		bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) | | 
 | 		bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) | | 
 | 		bit(X86_FEATURE_SYSCALL) | | 
 | 		(bit(X86_FEATURE_NX) && is_efer_nx()) | | 
 | #ifdef CONFIG_X86_64 | 
 | 		bit(X86_FEATURE_LM) | | 
 | #endif | 
 | 		bit(X86_FEATURE_MMXEXT) | | 
 | 		bit(X86_FEATURE_3DNOWEXT) | | 
 | 		bit(X86_FEATURE_3DNOW); | 
 | 	const u32 kvm_supported_word3_x86_features = | 
 | 		bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16); | 
 | 	const u32 kvm_supported_word6_x86_features = | 
 | 		bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY); | 
 |  | 
 | 	/* all func 2 cpuid_count() should be called on the same cpu */ | 
 | 	get_cpu(); | 
 | 	do_cpuid_1_ent(entry, function, index); | 
 | 	++*nent; | 
 |  | 
 | 	switch (function) { | 
 | 	case 0: | 
 | 		entry->eax = min(entry->eax, (u32)0xb); | 
 | 		break; | 
 | 	case 1: | 
 | 		entry->edx &= kvm_supported_word0_x86_features; | 
 | 		entry->ecx &= kvm_supported_word3_x86_features; | 
 | 		break; | 
 | 	/* function 2 entries are STATEFUL. That is, repeated cpuid commands | 
 | 	 * may return different values. This forces us to get_cpu() before | 
 | 	 * issuing the first command, and also to emulate this annoying behavior | 
 | 	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */ | 
 | 	case 2: { | 
 | 		int t, times = entry->eax & 0xff; | 
 |  | 
 | 		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC; | 
 | 		for (t = 1; t < times && *nent < maxnent; ++t) { | 
 | 			do_cpuid_1_ent(&entry[t], function, 0); | 
 | 			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC; | 
 | 			++*nent; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 | 	/* function 4 and 0xb have additional index. */ | 
 | 	case 4: { | 
 | 		int i, cache_type; | 
 |  | 
 | 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | 
 | 		/* read more entries until cache_type is zero */ | 
 | 		for (i = 1; *nent < maxnent; ++i) { | 
 | 			cache_type = entry[i - 1].eax & 0x1f; | 
 | 			if (!cache_type) | 
 | 				break; | 
 | 			do_cpuid_1_ent(&entry[i], function, i); | 
 | 			entry[i].flags |= | 
 | 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | 
 | 			++*nent; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 | 	case 0xb: { | 
 | 		int i, level_type; | 
 |  | 
 | 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | 
 | 		/* read more entries until level_type is zero */ | 
 | 		for (i = 1; *nent < maxnent; ++i) { | 
 | 			level_type = entry[i - 1].ecx & 0xff; | 
 | 			if (!level_type) | 
 | 				break; | 
 | 			do_cpuid_1_ent(&entry[i], function, i); | 
 | 			entry[i].flags |= | 
 | 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | 
 | 			++*nent; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 | 	case 0x80000000: | 
 | 		entry->eax = min(entry->eax, 0x8000001a); | 
 | 		break; | 
 | 	case 0x80000001: | 
 | 		entry->edx &= kvm_supported_word1_x86_features; | 
 | 		entry->ecx &= kvm_supported_word6_x86_features; | 
 | 		break; | 
 | 	} | 
 | 	put_cpu(); | 
 | } | 
 |  | 
 | static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid, | 
 | 				    struct kvm_cpuid_entry2 __user *entries) | 
 | { | 
 | 	struct kvm_cpuid_entry2 *cpuid_entries; | 
 | 	int limit, nent = 0, r = -E2BIG; | 
 | 	u32 func; | 
 |  | 
 | 	if (cpuid->nent < 1) | 
 | 		goto out; | 
 | 	r = -ENOMEM; | 
 | 	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent); | 
 | 	if (!cpuid_entries) | 
 | 		goto out; | 
 |  | 
 | 	do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent); | 
 | 	limit = cpuid_entries[0].eax; | 
 | 	for (func = 1; func <= limit && nent < cpuid->nent; ++func) | 
 | 		do_cpuid_ent(&cpuid_entries[nent], func, 0, | 
 | 				&nent, cpuid->nent); | 
 | 	r = -E2BIG; | 
 | 	if (nent >= cpuid->nent) | 
 | 		goto out_free; | 
 |  | 
 | 	do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent); | 
 | 	limit = cpuid_entries[nent - 1].eax; | 
 | 	for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func) | 
 | 		do_cpuid_ent(&cpuid_entries[nent], func, 0, | 
 | 			       &nent, cpuid->nent); | 
 | 	r = -EFAULT; | 
 | 	if (copy_to_user(entries, cpuid_entries, | 
 | 			nent * sizeof(struct kvm_cpuid_entry2))) | 
 | 		goto out_free; | 
 | 	cpuid->nent = nent; | 
 | 	r = 0; | 
 |  | 
 | out_free: | 
 | 	vfree(cpuid_entries); | 
 | out: | 
 | 	return r; | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, | 
 | 				    struct kvm_lapic_state *s) | 
 | { | 
 | 	vcpu_load(vcpu); | 
 | 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); | 
 | 	vcpu_put(vcpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, | 
 | 				    struct kvm_lapic_state *s) | 
 | { | 
 | 	vcpu_load(vcpu); | 
 | 	memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s); | 
 | 	kvm_apic_post_state_restore(vcpu); | 
 | 	vcpu_put(vcpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, | 
 | 				    struct kvm_interrupt *irq) | 
 | { | 
 | 	if (irq->irq < 0 || irq->irq >= 256) | 
 | 		return -EINVAL; | 
 | 	if (irqchip_in_kernel(vcpu->kvm)) | 
 | 		return -ENXIO; | 
 | 	vcpu_load(vcpu); | 
 |  | 
 | 	set_bit(irq->irq, vcpu->arch.irq_pending); | 
 | 	set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary); | 
 |  | 
 | 	vcpu_put(vcpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, | 
 | 					   struct kvm_tpr_access_ctl *tac) | 
 | { | 
 | 	if (tac->flags) | 
 | 		return -EINVAL; | 
 | 	vcpu->arch.tpr_access_reporting = !!tac->enabled; | 
 | 	return 0; | 
 | } | 
 |  | 
 | long kvm_arch_vcpu_ioctl(struct file *filp, | 
 | 			 unsigned int ioctl, unsigned long arg) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = filp->private_data; | 
 | 	void __user *argp = (void __user *)arg; | 
 | 	int r; | 
 |  | 
 | 	switch (ioctl) { | 
 | 	case KVM_GET_LAPIC: { | 
 | 		struct kvm_lapic_state lapic; | 
 |  | 
 | 		memset(&lapic, 0, sizeof lapic); | 
 | 		r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic); | 
 | 		if (r) | 
 | 			goto out; | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, &lapic, sizeof lapic)) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_LAPIC: { | 
 | 		struct kvm_lapic_state lapic; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&lapic, argp, sizeof lapic)) | 
 | 			goto out; | 
 | 		r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);; | 
 | 		if (r) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_INTERRUPT: { | 
 | 		struct kvm_interrupt irq; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&irq, argp, sizeof irq)) | 
 | 			goto out; | 
 | 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); | 
 | 		if (r) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_CPUID: { | 
 | 		struct kvm_cpuid __user *cpuid_arg = argp; | 
 | 		struct kvm_cpuid cpuid; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | 
 | 			goto out; | 
 | 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); | 
 | 		if (r) | 
 | 			goto out; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_CPUID2: { | 
 | 		struct kvm_cpuid2 __user *cpuid_arg = argp; | 
 | 		struct kvm_cpuid2 cpuid; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | 
 | 			goto out; | 
 | 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, | 
 | 				cpuid_arg->entries); | 
 | 		if (r) | 
 | 			goto out; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_CPUID2: { | 
 | 		struct kvm_cpuid2 __user *cpuid_arg = argp; | 
 | 		struct kvm_cpuid2 cpuid; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | 
 | 			goto out; | 
 | 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, | 
 | 				cpuid_arg->entries); | 
 | 		if (r) | 
 | 			goto out; | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_MSRS: | 
 | 		r = msr_io(vcpu, argp, kvm_get_msr, 1); | 
 | 		break; | 
 | 	case KVM_SET_MSRS: | 
 | 		r = msr_io(vcpu, argp, do_set_msr, 0); | 
 | 		break; | 
 | 	case KVM_TPR_ACCESS_REPORTING: { | 
 | 		struct kvm_tpr_access_ctl tac; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&tac, argp, sizeof tac)) | 
 | 			goto out; | 
 | 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); | 
 | 		if (r) | 
 | 			goto out; | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, &tac, sizeof tac)) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	}; | 
 | 	case KVM_SET_VAPIC_ADDR: { | 
 | 		struct kvm_vapic_addr va; | 
 |  | 
 | 		r = -EINVAL; | 
 | 		if (!irqchip_in_kernel(vcpu->kvm)) | 
 | 			goto out; | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&va, argp, sizeof va)) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); | 
 | 		break; | 
 | 	} | 
 | 	default: | 
 | 		r = -EINVAL; | 
 | 	} | 
 | out: | 
 | 	return r; | 
 | } | 
 |  | 
 | static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (addr > (unsigned int)(-3 * PAGE_SIZE)) | 
 | 		return -1; | 
 | 	ret = kvm_x86_ops->set_tss_addr(kvm, addr); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, | 
 | 					  u32 kvm_nr_mmu_pages) | 
 | { | 
 | 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) | 
 | 		return -EINVAL; | 
 |  | 
 | 	down_write(&kvm->slots_lock); | 
 |  | 
 | 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); | 
 | 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; | 
 |  | 
 | 	up_write(&kvm->slots_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) | 
 | { | 
 | 	return kvm->arch.n_alloc_mmu_pages; | 
 | } | 
 |  | 
 | gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn) | 
 | { | 
 | 	int i; | 
 | 	struct kvm_mem_alias *alias; | 
 |  | 
 | 	for (i = 0; i < kvm->arch.naliases; ++i) { | 
 | 		alias = &kvm->arch.aliases[i]; | 
 | 		if (gfn >= alias->base_gfn | 
 | 		    && gfn < alias->base_gfn + alias->npages) | 
 | 			return alias->target_gfn + gfn - alias->base_gfn; | 
 | 	} | 
 | 	return gfn; | 
 | } | 
 |  | 
 | /* | 
 |  * Set a new alias region.  Aliases map a portion of physical memory into | 
 |  * another portion.  This is useful for memory windows, for example the PC | 
 |  * VGA region. | 
 |  */ | 
 | static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm, | 
 | 					 struct kvm_memory_alias *alias) | 
 | { | 
 | 	int r, n; | 
 | 	struct kvm_mem_alias *p; | 
 |  | 
 | 	r = -EINVAL; | 
 | 	/* General sanity checks */ | 
 | 	if (alias->memory_size & (PAGE_SIZE - 1)) | 
 | 		goto out; | 
 | 	if (alias->guest_phys_addr & (PAGE_SIZE - 1)) | 
 | 		goto out; | 
 | 	if (alias->slot >= KVM_ALIAS_SLOTS) | 
 | 		goto out; | 
 | 	if (alias->guest_phys_addr + alias->memory_size | 
 | 	    < alias->guest_phys_addr) | 
 | 		goto out; | 
 | 	if (alias->target_phys_addr + alias->memory_size | 
 | 	    < alias->target_phys_addr) | 
 | 		goto out; | 
 |  | 
 | 	down_write(&kvm->slots_lock); | 
 |  | 
 | 	p = &kvm->arch.aliases[alias->slot]; | 
 | 	p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT; | 
 | 	p->npages = alias->memory_size >> PAGE_SHIFT; | 
 | 	p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT; | 
 |  | 
 | 	for (n = KVM_ALIAS_SLOTS; n > 0; --n) | 
 | 		if (kvm->arch.aliases[n - 1].npages) | 
 | 			break; | 
 | 	kvm->arch.naliases = n; | 
 |  | 
 | 	kvm_mmu_zap_all(kvm); | 
 |  | 
 | 	up_write(&kvm->slots_lock); | 
 |  | 
 | 	return 0; | 
 |  | 
 | out: | 
 | 	return r; | 
 | } | 
 |  | 
 | static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	r = 0; | 
 | 	switch (chip->chip_id) { | 
 | 	case KVM_IRQCHIP_PIC_MASTER: | 
 | 		memcpy(&chip->chip.pic, | 
 | 			&pic_irqchip(kvm)->pics[0], | 
 | 			sizeof(struct kvm_pic_state)); | 
 | 		break; | 
 | 	case KVM_IRQCHIP_PIC_SLAVE: | 
 | 		memcpy(&chip->chip.pic, | 
 | 			&pic_irqchip(kvm)->pics[1], | 
 | 			sizeof(struct kvm_pic_state)); | 
 | 		break; | 
 | 	case KVM_IRQCHIP_IOAPIC: | 
 | 		memcpy(&chip->chip.ioapic, | 
 | 			ioapic_irqchip(kvm), | 
 | 			sizeof(struct kvm_ioapic_state)); | 
 | 		break; | 
 | 	default: | 
 | 		r = -EINVAL; | 
 | 		break; | 
 | 	} | 
 | 	return r; | 
 | } | 
 |  | 
 | static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	r = 0; | 
 | 	switch (chip->chip_id) { | 
 | 	case KVM_IRQCHIP_PIC_MASTER: | 
 | 		memcpy(&pic_irqchip(kvm)->pics[0], | 
 | 			&chip->chip.pic, | 
 | 			sizeof(struct kvm_pic_state)); | 
 | 		break; | 
 | 	case KVM_IRQCHIP_PIC_SLAVE: | 
 | 		memcpy(&pic_irqchip(kvm)->pics[1], | 
 | 			&chip->chip.pic, | 
 | 			sizeof(struct kvm_pic_state)); | 
 | 		break; | 
 | 	case KVM_IRQCHIP_IOAPIC: | 
 | 		memcpy(ioapic_irqchip(kvm), | 
 | 			&chip->chip.ioapic, | 
 | 			sizeof(struct kvm_ioapic_state)); | 
 | 		break; | 
 | 	default: | 
 | 		r = -EINVAL; | 
 | 		break; | 
 | 	} | 
 | 	kvm_pic_update_irq(pic_irqchip(kvm)); | 
 | 	return r; | 
 | } | 
 |  | 
 | static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) | 
 | { | 
 | 	int r = 0; | 
 |  | 
 | 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state)); | 
 | 	return r; | 
 | } | 
 |  | 
 | static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) | 
 | { | 
 | 	int r = 0; | 
 |  | 
 | 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state)); | 
 | 	kvm_pit_load_count(kvm, 0, ps->channels[0].count); | 
 | 	return r; | 
 | } | 
 |  | 
 | /* | 
 |  * Get (and clear) the dirty memory log for a memory slot. | 
 |  */ | 
 | int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, | 
 | 				      struct kvm_dirty_log *log) | 
 | { | 
 | 	int r; | 
 | 	int n; | 
 | 	struct kvm_memory_slot *memslot; | 
 | 	int is_dirty = 0; | 
 |  | 
 | 	down_write(&kvm->slots_lock); | 
 |  | 
 | 	r = kvm_get_dirty_log(kvm, log, &is_dirty); | 
 | 	if (r) | 
 | 		goto out; | 
 |  | 
 | 	/* If nothing is dirty, don't bother messing with page tables. */ | 
 | 	if (is_dirty) { | 
 | 		kvm_mmu_slot_remove_write_access(kvm, log->slot); | 
 | 		kvm_flush_remote_tlbs(kvm); | 
 | 		memslot = &kvm->memslots[log->slot]; | 
 | 		n = ALIGN(memslot->npages, BITS_PER_LONG) / 8; | 
 | 		memset(memslot->dirty_bitmap, 0, n); | 
 | 	} | 
 | 	r = 0; | 
 | out: | 
 | 	up_write(&kvm->slots_lock); | 
 | 	return r; | 
 | } | 
 |  | 
 | long kvm_arch_vm_ioctl(struct file *filp, | 
 | 		       unsigned int ioctl, unsigned long arg) | 
 | { | 
 | 	struct kvm *kvm = filp->private_data; | 
 | 	void __user *argp = (void __user *)arg; | 
 | 	int r = -EINVAL; | 
 |  | 
 | 	switch (ioctl) { | 
 | 	case KVM_SET_TSS_ADDR: | 
 | 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg); | 
 | 		if (r < 0) | 
 | 			goto out; | 
 | 		break; | 
 | 	case KVM_SET_MEMORY_REGION: { | 
 | 		struct kvm_memory_region kvm_mem; | 
 | 		struct kvm_userspace_memory_region kvm_userspace_mem; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem)) | 
 | 			goto out; | 
 | 		kvm_userspace_mem.slot = kvm_mem.slot; | 
 | 		kvm_userspace_mem.flags = kvm_mem.flags; | 
 | 		kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr; | 
 | 		kvm_userspace_mem.memory_size = kvm_mem.memory_size; | 
 | 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0); | 
 | 		if (r) | 
 | 			goto out; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_NR_MMU_PAGES: | 
 | 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); | 
 | 		if (r) | 
 | 			goto out; | 
 | 		break; | 
 | 	case KVM_GET_NR_MMU_PAGES: | 
 | 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); | 
 | 		break; | 
 | 	case KVM_SET_MEMORY_ALIAS: { | 
 | 		struct kvm_memory_alias alias; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&alias, argp, sizeof alias)) | 
 | 			goto out; | 
 | 		r = kvm_vm_ioctl_set_memory_alias(kvm, &alias); | 
 | 		if (r) | 
 | 			goto out; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_CREATE_IRQCHIP: | 
 | 		r = -ENOMEM; | 
 | 		kvm->arch.vpic = kvm_create_pic(kvm); | 
 | 		if (kvm->arch.vpic) { | 
 | 			r = kvm_ioapic_init(kvm); | 
 | 			if (r) { | 
 | 				kfree(kvm->arch.vpic); | 
 | 				kvm->arch.vpic = NULL; | 
 | 				goto out; | 
 | 			} | 
 | 		} else | 
 | 			goto out; | 
 | 		break; | 
 | 	case KVM_CREATE_PIT: | 
 | 		r = -ENOMEM; | 
 | 		kvm->arch.vpit = kvm_create_pit(kvm); | 
 | 		if (kvm->arch.vpit) | 
 | 			r = 0; | 
 | 		break; | 
 | 	case KVM_IRQ_LINE: { | 
 | 		struct kvm_irq_level irq_event; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&irq_event, argp, sizeof irq_event)) | 
 | 			goto out; | 
 | 		if (irqchip_in_kernel(kvm)) { | 
 | 			mutex_lock(&kvm->lock); | 
 | 			if (irq_event.irq < 16) | 
 | 				kvm_pic_set_irq(pic_irqchip(kvm), | 
 | 					irq_event.irq, | 
 | 					irq_event.level); | 
 | 			kvm_ioapic_set_irq(kvm->arch.vioapic, | 
 | 					irq_event.irq, | 
 | 					irq_event.level); | 
 | 			mutex_unlock(&kvm->lock); | 
 | 			r = 0; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_IRQCHIP: { | 
 | 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */ | 
 | 		struct kvm_irqchip chip; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&chip, argp, sizeof chip)) | 
 | 			goto out; | 
 | 		r = -ENXIO; | 
 | 		if (!irqchip_in_kernel(kvm)) | 
 | 			goto out; | 
 | 		r = kvm_vm_ioctl_get_irqchip(kvm, &chip); | 
 | 		if (r) | 
 | 			goto out; | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, &chip, sizeof chip)) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_IRQCHIP: { | 
 | 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */ | 
 | 		struct kvm_irqchip chip; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&chip, argp, sizeof chip)) | 
 | 			goto out; | 
 | 		r = -ENXIO; | 
 | 		if (!irqchip_in_kernel(kvm)) | 
 | 			goto out; | 
 | 		r = kvm_vm_ioctl_set_irqchip(kvm, &chip); | 
 | 		if (r) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_PIT: { | 
 | 		struct kvm_pit_state ps; | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&ps, argp, sizeof ps)) | 
 | 			goto out; | 
 | 		r = -ENXIO; | 
 | 		if (!kvm->arch.vpit) | 
 | 			goto out; | 
 | 		r = kvm_vm_ioctl_get_pit(kvm, &ps); | 
 | 		if (r) | 
 | 			goto out; | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, &ps, sizeof ps)) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_PIT: { | 
 | 		struct kvm_pit_state ps; | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&ps, argp, sizeof ps)) | 
 | 			goto out; | 
 | 		r = -ENXIO; | 
 | 		if (!kvm->arch.vpit) | 
 | 			goto out; | 
 | 		r = kvm_vm_ioctl_set_pit(kvm, &ps); | 
 | 		if (r) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	default: | 
 | 		; | 
 | 	} | 
 | out: | 
 | 	return r; | 
 | } | 
 |  | 
 | static void kvm_init_msr_list(void) | 
 | { | 
 | 	u32 dummy[2]; | 
 | 	unsigned i, j; | 
 |  | 
 | 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) { | 
 | 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) | 
 | 			continue; | 
 | 		if (j < i) | 
 | 			msrs_to_save[j] = msrs_to_save[i]; | 
 | 		j++; | 
 | 	} | 
 | 	num_msrs_to_save = j; | 
 | } | 
 |  | 
 | /* | 
 |  * Only apic need an MMIO device hook, so shortcut now.. | 
 |  */ | 
 | static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu, | 
 | 						gpa_t addr) | 
 | { | 
 | 	struct kvm_io_device *dev; | 
 |  | 
 | 	if (vcpu->arch.apic) { | 
 | 		dev = &vcpu->arch.apic->dev; | 
 | 		if (dev->in_range(dev, addr)) | 
 | 			return dev; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 |  | 
 | static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu, | 
 | 						gpa_t addr) | 
 | { | 
 | 	struct kvm_io_device *dev; | 
 |  | 
 | 	dev = vcpu_find_pervcpu_dev(vcpu, addr); | 
 | 	if (dev == NULL) | 
 | 		dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr); | 
 | 	return dev; | 
 | } | 
 |  | 
 | int emulator_read_std(unsigned long addr, | 
 | 			     void *val, | 
 | 			     unsigned int bytes, | 
 | 			     struct kvm_vcpu *vcpu) | 
 | { | 
 | 	void *data = val; | 
 | 	int r = X86EMUL_CONTINUE; | 
 |  | 
 | 	while (bytes) { | 
 | 		gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr); | 
 | 		unsigned offset = addr & (PAGE_SIZE-1); | 
 | 		unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset); | 
 | 		int ret; | 
 |  | 
 | 		if (gpa == UNMAPPED_GVA) { | 
 | 			r = X86EMUL_PROPAGATE_FAULT; | 
 | 			goto out; | 
 | 		} | 
 | 		ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy); | 
 | 		if (ret < 0) { | 
 | 			r = X86EMUL_UNHANDLEABLE; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		bytes -= tocopy; | 
 | 		data += tocopy; | 
 | 		addr += tocopy; | 
 | 	} | 
 | out: | 
 | 	return r; | 
 | } | 
 | EXPORT_SYMBOL_GPL(emulator_read_std); | 
 |  | 
 | static int emulator_read_emulated(unsigned long addr, | 
 | 				  void *val, | 
 | 				  unsigned int bytes, | 
 | 				  struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_io_device *mmio_dev; | 
 | 	gpa_t                 gpa; | 
 |  | 
 | 	if (vcpu->mmio_read_completed) { | 
 | 		memcpy(val, vcpu->mmio_data, bytes); | 
 | 		vcpu->mmio_read_completed = 0; | 
 | 		return X86EMUL_CONTINUE; | 
 | 	} | 
 |  | 
 | 	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr); | 
 |  | 
 | 	/* For APIC access vmexit */ | 
 | 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) | 
 | 		goto mmio; | 
 |  | 
 | 	if (emulator_read_std(addr, val, bytes, vcpu) | 
 | 			== X86EMUL_CONTINUE) | 
 | 		return X86EMUL_CONTINUE; | 
 | 	if (gpa == UNMAPPED_GVA) | 
 | 		return X86EMUL_PROPAGATE_FAULT; | 
 |  | 
 | mmio: | 
 | 	/* | 
 | 	 * Is this MMIO handled locally? | 
 | 	 */ | 
 | 	mutex_lock(&vcpu->kvm->lock); | 
 | 	mmio_dev = vcpu_find_mmio_dev(vcpu, gpa); | 
 | 	if (mmio_dev) { | 
 | 		kvm_iodevice_read(mmio_dev, gpa, bytes, val); | 
 | 		mutex_unlock(&vcpu->kvm->lock); | 
 | 		return X86EMUL_CONTINUE; | 
 | 	} | 
 | 	mutex_unlock(&vcpu->kvm->lock); | 
 |  | 
 | 	vcpu->mmio_needed = 1; | 
 | 	vcpu->mmio_phys_addr = gpa; | 
 | 	vcpu->mmio_size = bytes; | 
 | 	vcpu->mmio_is_write = 0; | 
 |  | 
 | 	return X86EMUL_UNHANDLEABLE; | 
 | } | 
 |  | 
 | int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, | 
 | 			  const void *val, int bytes) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); | 
 | 	if (ret < 0) | 
 | 		return 0; | 
 | 	kvm_mmu_pte_write(vcpu, gpa, val, bytes); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int emulator_write_emulated_onepage(unsigned long addr, | 
 | 					   const void *val, | 
 | 					   unsigned int bytes, | 
 | 					   struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_io_device *mmio_dev; | 
 | 	gpa_t                 gpa; | 
 |  | 
 | 	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr); | 
 |  | 
 | 	if (gpa == UNMAPPED_GVA) { | 
 | 		kvm_inject_page_fault(vcpu, addr, 2); | 
 | 		return X86EMUL_PROPAGATE_FAULT; | 
 | 	} | 
 |  | 
 | 	/* For APIC access vmexit */ | 
 | 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) | 
 | 		goto mmio; | 
 |  | 
 | 	if (emulator_write_phys(vcpu, gpa, val, bytes)) | 
 | 		return X86EMUL_CONTINUE; | 
 |  | 
 | mmio: | 
 | 	/* | 
 | 	 * Is this MMIO handled locally? | 
 | 	 */ | 
 | 	mutex_lock(&vcpu->kvm->lock); | 
 | 	mmio_dev = vcpu_find_mmio_dev(vcpu, gpa); | 
 | 	if (mmio_dev) { | 
 | 		kvm_iodevice_write(mmio_dev, gpa, bytes, val); | 
 | 		mutex_unlock(&vcpu->kvm->lock); | 
 | 		return X86EMUL_CONTINUE; | 
 | 	} | 
 | 	mutex_unlock(&vcpu->kvm->lock); | 
 |  | 
 | 	vcpu->mmio_needed = 1; | 
 | 	vcpu->mmio_phys_addr = gpa; | 
 | 	vcpu->mmio_size = bytes; | 
 | 	vcpu->mmio_is_write = 1; | 
 | 	memcpy(vcpu->mmio_data, val, bytes); | 
 |  | 
 | 	return X86EMUL_CONTINUE; | 
 | } | 
 |  | 
 | int emulator_write_emulated(unsigned long addr, | 
 | 				   const void *val, | 
 | 				   unsigned int bytes, | 
 | 				   struct kvm_vcpu *vcpu) | 
 | { | 
 | 	/* Crossing a page boundary? */ | 
 | 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { | 
 | 		int rc, now; | 
 |  | 
 | 		now = -addr & ~PAGE_MASK; | 
 | 		rc = emulator_write_emulated_onepage(addr, val, now, vcpu); | 
 | 		if (rc != X86EMUL_CONTINUE) | 
 | 			return rc; | 
 | 		addr += now; | 
 | 		val += now; | 
 | 		bytes -= now; | 
 | 	} | 
 | 	return emulator_write_emulated_onepage(addr, val, bytes, vcpu); | 
 | } | 
 | EXPORT_SYMBOL_GPL(emulator_write_emulated); | 
 |  | 
 | static int emulator_cmpxchg_emulated(unsigned long addr, | 
 | 				     const void *old, | 
 | 				     const void *new, | 
 | 				     unsigned int bytes, | 
 | 				     struct kvm_vcpu *vcpu) | 
 | { | 
 | 	static int reported; | 
 |  | 
 | 	if (!reported) { | 
 | 		reported = 1; | 
 | 		printk(KERN_WARNING "kvm: emulating exchange as write\n"); | 
 | 	} | 
 | #ifndef CONFIG_X86_64 | 
 | 	/* guests cmpxchg8b have to be emulated atomically */ | 
 | 	if (bytes == 8) { | 
 | 		gpa_t gpa; | 
 | 		struct page *page; | 
 | 		char *kaddr; | 
 | 		u64 val; | 
 |  | 
 | 		gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr); | 
 |  | 
 | 		if (gpa == UNMAPPED_GVA || | 
 | 		   (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) | 
 | 			goto emul_write; | 
 |  | 
 | 		if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) | 
 | 			goto emul_write; | 
 |  | 
 | 		val = *(u64 *)new; | 
 |  | 
 | 		down_read(¤t->mm->mmap_sem); | 
 | 		page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); | 
 | 		up_read(¤t->mm->mmap_sem); | 
 |  | 
 | 		kaddr = kmap_atomic(page, KM_USER0); | 
 | 		set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val); | 
 | 		kunmap_atomic(kaddr, KM_USER0); | 
 | 		kvm_release_page_dirty(page); | 
 | 	} | 
 | emul_write: | 
 | #endif | 
 |  | 
 | 	return emulator_write_emulated(addr, new, bytes, vcpu); | 
 | } | 
 |  | 
 | static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) | 
 | { | 
 | 	return kvm_x86_ops->get_segment_base(vcpu, seg); | 
 | } | 
 |  | 
 | int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address) | 
 | { | 
 | 	return X86EMUL_CONTINUE; | 
 | } | 
 |  | 
 | int emulate_clts(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS); | 
 | 	return X86EMUL_CONTINUE; | 
 | } | 
 |  | 
 | int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = ctxt->vcpu; | 
 |  | 
 | 	switch (dr) { | 
 | 	case 0 ... 3: | 
 | 		*dest = kvm_x86_ops->get_dr(vcpu, dr); | 
 | 		return X86EMUL_CONTINUE; | 
 | 	default: | 
 | 		pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr); | 
 | 		return X86EMUL_UNHANDLEABLE; | 
 | 	} | 
 | } | 
 |  | 
 | int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) | 
 | { | 
 | 	unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U; | 
 | 	int exception; | 
 |  | 
 | 	kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception); | 
 | 	if (exception) { | 
 | 		/* FIXME: better handling */ | 
 | 		return X86EMUL_UNHANDLEABLE; | 
 | 	} | 
 | 	return X86EMUL_CONTINUE; | 
 | } | 
 |  | 
 | void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context) | 
 | { | 
 | 	static int reported; | 
 | 	u8 opcodes[4]; | 
 | 	unsigned long rip = vcpu->arch.rip; | 
 | 	unsigned long rip_linear; | 
 |  | 
 | 	rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS); | 
 |  | 
 | 	if (reported) | 
 | 		return; | 
 |  | 
 | 	emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu); | 
 |  | 
 | 	printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n", | 
 | 	       context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]); | 
 | 	reported = 1; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_report_emulation_failure); | 
 |  | 
 | static struct x86_emulate_ops emulate_ops = { | 
 | 	.read_std            = emulator_read_std, | 
 | 	.read_emulated       = emulator_read_emulated, | 
 | 	.write_emulated      = emulator_write_emulated, | 
 | 	.cmpxchg_emulated    = emulator_cmpxchg_emulated, | 
 | }; | 
 |  | 
 | int emulate_instruction(struct kvm_vcpu *vcpu, | 
 | 			struct kvm_run *run, | 
 | 			unsigned long cr2, | 
 | 			u16 error_code, | 
 | 			int emulation_type) | 
 | { | 
 | 	int r; | 
 | 	struct decode_cache *c; | 
 |  | 
 | 	vcpu->arch.mmio_fault_cr2 = cr2; | 
 | 	kvm_x86_ops->cache_regs(vcpu); | 
 |  | 
 | 	vcpu->mmio_is_write = 0; | 
 | 	vcpu->arch.pio.string = 0; | 
 |  | 
 | 	if (!(emulation_type & EMULTYPE_NO_DECODE)) { | 
 | 		int cs_db, cs_l; | 
 | 		kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); | 
 |  | 
 | 		vcpu->arch.emulate_ctxt.vcpu = vcpu; | 
 | 		vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu); | 
 | 		vcpu->arch.emulate_ctxt.mode = | 
 | 			(vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM) | 
 | 			? X86EMUL_MODE_REAL : cs_l | 
 | 			? X86EMUL_MODE_PROT64 :	cs_db | 
 | 			? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16; | 
 |  | 
 | 		if (vcpu->arch.emulate_ctxt.mode == X86EMUL_MODE_PROT64) { | 
 | 			vcpu->arch.emulate_ctxt.cs_base = 0; | 
 | 			vcpu->arch.emulate_ctxt.ds_base = 0; | 
 | 			vcpu->arch.emulate_ctxt.es_base = 0; | 
 | 			vcpu->arch.emulate_ctxt.ss_base = 0; | 
 | 		} else { | 
 | 			vcpu->arch.emulate_ctxt.cs_base = | 
 | 					get_segment_base(vcpu, VCPU_SREG_CS); | 
 | 			vcpu->arch.emulate_ctxt.ds_base = | 
 | 					get_segment_base(vcpu, VCPU_SREG_DS); | 
 | 			vcpu->arch.emulate_ctxt.es_base = | 
 | 					get_segment_base(vcpu, VCPU_SREG_ES); | 
 | 			vcpu->arch.emulate_ctxt.ss_base = | 
 | 					get_segment_base(vcpu, VCPU_SREG_SS); | 
 | 		} | 
 |  | 
 | 		vcpu->arch.emulate_ctxt.gs_base = | 
 | 					get_segment_base(vcpu, VCPU_SREG_GS); | 
 | 		vcpu->arch.emulate_ctxt.fs_base = | 
 | 					get_segment_base(vcpu, VCPU_SREG_FS); | 
 |  | 
 | 		r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops); | 
 |  | 
 | 		/* Reject the instructions other than VMCALL/VMMCALL when | 
 | 		 * try to emulate invalid opcode */ | 
 | 		c = &vcpu->arch.emulate_ctxt.decode; | 
 | 		if ((emulation_type & EMULTYPE_TRAP_UD) && | 
 | 		    (!(c->twobyte && c->b == 0x01 && | 
 | 		      (c->modrm_reg == 0 || c->modrm_reg == 3) && | 
 | 		       c->modrm_mod == 3 && c->modrm_rm == 1))) | 
 | 			return EMULATE_FAIL; | 
 |  | 
 | 		++vcpu->stat.insn_emulation; | 
 | 		if (r)  { | 
 | 			++vcpu->stat.insn_emulation_fail; | 
 | 			if (kvm_mmu_unprotect_page_virt(vcpu, cr2)) | 
 | 				return EMULATE_DONE; | 
 | 			return EMULATE_FAIL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops); | 
 |  | 
 | 	if (vcpu->arch.pio.string) | 
 | 		return EMULATE_DO_MMIO; | 
 |  | 
 | 	if ((r || vcpu->mmio_is_write) && run) { | 
 | 		run->exit_reason = KVM_EXIT_MMIO; | 
 | 		run->mmio.phys_addr = vcpu->mmio_phys_addr; | 
 | 		memcpy(run->mmio.data, vcpu->mmio_data, 8); | 
 | 		run->mmio.len = vcpu->mmio_size; | 
 | 		run->mmio.is_write = vcpu->mmio_is_write; | 
 | 	} | 
 |  | 
 | 	if (r) { | 
 | 		if (kvm_mmu_unprotect_page_virt(vcpu, cr2)) | 
 | 			return EMULATE_DONE; | 
 | 		if (!vcpu->mmio_needed) { | 
 | 			kvm_report_emulation_failure(vcpu, "mmio"); | 
 | 			return EMULATE_FAIL; | 
 | 		} | 
 | 		return EMULATE_DO_MMIO; | 
 | 	} | 
 |  | 
 | 	kvm_x86_ops->decache_regs(vcpu); | 
 | 	kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags); | 
 |  | 
 | 	if (vcpu->mmio_is_write) { | 
 | 		vcpu->mmio_needed = 0; | 
 | 		return EMULATE_DO_MMIO; | 
 | 	} | 
 |  | 
 | 	return EMULATE_DONE; | 
 | } | 
 | EXPORT_SYMBOL_GPL(emulate_instruction); | 
 |  | 
 | static void free_pio_guest_pages(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i) | 
 | 		if (vcpu->arch.pio.guest_pages[i]) { | 
 | 			kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]); | 
 | 			vcpu->arch.pio.guest_pages[i] = NULL; | 
 | 		} | 
 | } | 
 |  | 
 | static int pio_copy_data(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	void *p = vcpu->arch.pio_data; | 
 | 	void *q; | 
 | 	unsigned bytes; | 
 | 	int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1; | 
 |  | 
 | 	q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE, | 
 | 		 PAGE_KERNEL); | 
 | 	if (!q) { | 
 | 		free_pio_guest_pages(vcpu); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	q += vcpu->arch.pio.guest_page_offset; | 
 | 	bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count; | 
 | 	if (vcpu->arch.pio.in) | 
 | 		memcpy(q, p, bytes); | 
 | 	else | 
 | 		memcpy(p, q, bytes); | 
 | 	q -= vcpu->arch.pio.guest_page_offset; | 
 | 	vunmap(q); | 
 | 	free_pio_guest_pages(vcpu); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int complete_pio(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_pio_request *io = &vcpu->arch.pio; | 
 | 	long delta; | 
 | 	int r; | 
 |  | 
 | 	kvm_x86_ops->cache_regs(vcpu); | 
 |  | 
 | 	if (!io->string) { | 
 | 		if (io->in) | 
 | 			memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data, | 
 | 			       io->size); | 
 | 	} else { | 
 | 		if (io->in) { | 
 | 			r = pio_copy_data(vcpu); | 
 | 			if (r) { | 
 | 				kvm_x86_ops->cache_regs(vcpu); | 
 | 				return r; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		delta = 1; | 
 | 		if (io->rep) { | 
 | 			delta *= io->cur_count; | 
 | 			/* | 
 | 			 * The size of the register should really depend on | 
 | 			 * current address size. | 
 | 			 */ | 
 | 			vcpu->arch.regs[VCPU_REGS_RCX] -= delta; | 
 | 		} | 
 | 		if (io->down) | 
 | 			delta = -delta; | 
 | 		delta *= io->size; | 
 | 		if (io->in) | 
 | 			vcpu->arch.regs[VCPU_REGS_RDI] += delta; | 
 | 		else | 
 | 			vcpu->arch.regs[VCPU_REGS_RSI] += delta; | 
 | 	} | 
 |  | 
 | 	kvm_x86_ops->decache_regs(vcpu); | 
 |  | 
 | 	io->count -= io->cur_count; | 
 | 	io->cur_count = 0; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void kernel_pio(struct kvm_io_device *pio_dev, | 
 | 		       struct kvm_vcpu *vcpu, | 
 | 		       void *pd) | 
 | { | 
 | 	/* TODO: String I/O for in kernel device */ | 
 |  | 
 | 	mutex_lock(&vcpu->kvm->lock); | 
 | 	if (vcpu->arch.pio.in) | 
 | 		kvm_iodevice_read(pio_dev, vcpu->arch.pio.port, | 
 | 				  vcpu->arch.pio.size, | 
 | 				  pd); | 
 | 	else | 
 | 		kvm_iodevice_write(pio_dev, vcpu->arch.pio.port, | 
 | 				   vcpu->arch.pio.size, | 
 | 				   pd); | 
 | 	mutex_unlock(&vcpu->kvm->lock); | 
 | } | 
 |  | 
 | static void pio_string_write(struct kvm_io_device *pio_dev, | 
 | 			     struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_pio_request *io = &vcpu->arch.pio; | 
 | 	void *pd = vcpu->arch.pio_data; | 
 | 	int i; | 
 |  | 
 | 	mutex_lock(&vcpu->kvm->lock); | 
 | 	for (i = 0; i < io->cur_count; i++) { | 
 | 		kvm_iodevice_write(pio_dev, io->port, | 
 | 				   io->size, | 
 | 				   pd); | 
 | 		pd += io->size; | 
 | 	} | 
 | 	mutex_unlock(&vcpu->kvm->lock); | 
 | } | 
 |  | 
 | static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu, | 
 | 					       gpa_t addr) | 
 | { | 
 | 	return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr); | 
 | } | 
 |  | 
 | int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in, | 
 | 		  int size, unsigned port) | 
 | { | 
 | 	struct kvm_io_device *pio_dev; | 
 |  | 
 | 	vcpu->run->exit_reason = KVM_EXIT_IO; | 
 | 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; | 
 | 	vcpu->run->io.size = vcpu->arch.pio.size = size; | 
 | 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; | 
 | 	vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1; | 
 | 	vcpu->run->io.port = vcpu->arch.pio.port = port; | 
 | 	vcpu->arch.pio.in = in; | 
 | 	vcpu->arch.pio.string = 0; | 
 | 	vcpu->arch.pio.down = 0; | 
 | 	vcpu->arch.pio.guest_page_offset = 0; | 
 | 	vcpu->arch.pio.rep = 0; | 
 |  | 
 | 	if (vcpu->run->io.direction == KVM_EXIT_IO_IN) | 
 | 		KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size, | 
 | 			    handler); | 
 | 	else | 
 | 		KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size, | 
 | 			    handler); | 
 |  | 
 | 	kvm_x86_ops->cache_regs(vcpu); | 
 | 	memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4); | 
 | 	kvm_x86_ops->decache_regs(vcpu); | 
 |  | 
 | 	kvm_x86_ops->skip_emulated_instruction(vcpu); | 
 |  | 
 | 	pio_dev = vcpu_find_pio_dev(vcpu, port); | 
 | 	if (pio_dev) { | 
 | 		kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data); | 
 | 		complete_pio(vcpu); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_emulate_pio); | 
 |  | 
 | int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in, | 
 | 		  int size, unsigned long count, int down, | 
 | 		  gva_t address, int rep, unsigned port) | 
 | { | 
 | 	unsigned now, in_page; | 
 | 	int i, ret = 0; | 
 | 	int nr_pages = 1; | 
 | 	struct page *page; | 
 | 	struct kvm_io_device *pio_dev; | 
 |  | 
 | 	vcpu->run->exit_reason = KVM_EXIT_IO; | 
 | 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; | 
 | 	vcpu->run->io.size = vcpu->arch.pio.size = size; | 
 | 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; | 
 | 	vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count; | 
 | 	vcpu->run->io.port = vcpu->arch.pio.port = port; | 
 | 	vcpu->arch.pio.in = in; | 
 | 	vcpu->arch.pio.string = 1; | 
 | 	vcpu->arch.pio.down = down; | 
 | 	vcpu->arch.pio.guest_page_offset = offset_in_page(address); | 
 | 	vcpu->arch.pio.rep = rep; | 
 |  | 
 | 	if (vcpu->run->io.direction == KVM_EXIT_IO_IN) | 
 | 		KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size, | 
 | 			    handler); | 
 | 	else | 
 | 		KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size, | 
 | 			    handler); | 
 |  | 
 | 	if (!count) { | 
 | 		kvm_x86_ops->skip_emulated_instruction(vcpu); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (!down) | 
 | 		in_page = PAGE_SIZE - offset_in_page(address); | 
 | 	else | 
 | 		in_page = offset_in_page(address) + size; | 
 | 	now = min(count, (unsigned long)in_page / size); | 
 | 	if (!now) { | 
 | 		/* | 
 | 		 * String I/O straddles page boundary.  Pin two guest pages | 
 | 		 * so that we satisfy atomicity constraints.  Do just one | 
 | 		 * transaction to avoid complexity. | 
 | 		 */ | 
 | 		nr_pages = 2; | 
 | 		now = 1; | 
 | 	} | 
 | 	if (down) { | 
 | 		/* | 
 | 		 * String I/O in reverse.  Yuck.  Kill the guest, fix later. | 
 | 		 */ | 
 | 		pr_unimpl(vcpu, "guest string pio down\n"); | 
 | 		kvm_inject_gp(vcpu, 0); | 
 | 		return 1; | 
 | 	} | 
 | 	vcpu->run->io.count = now; | 
 | 	vcpu->arch.pio.cur_count = now; | 
 |  | 
 | 	if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count) | 
 | 		kvm_x86_ops->skip_emulated_instruction(vcpu); | 
 |  | 
 | 	for (i = 0; i < nr_pages; ++i) { | 
 | 		page = gva_to_page(vcpu, address + i * PAGE_SIZE); | 
 | 		vcpu->arch.pio.guest_pages[i] = page; | 
 | 		if (!page) { | 
 | 			kvm_inject_gp(vcpu, 0); | 
 | 			free_pio_guest_pages(vcpu); | 
 | 			return 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	pio_dev = vcpu_find_pio_dev(vcpu, port); | 
 | 	if (!vcpu->arch.pio.in) { | 
 | 		/* string PIO write */ | 
 | 		ret = pio_copy_data(vcpu); | 
 | 		if (ret >= 0 && pio_dev) { | 
 | 			pio_string_write(pio_dev, vcpu); | 
 | 			complete_pio(vcpu); | 
 | 			if (vcpu->arch.pio.count == 0) | 
 | 				ret = 1; | 
 | 		} | 
 | 	} else if (pio_dev) | 
 | 		pr_unimpl(vcpu, "no string pio read support yet, " | 
 | 		       "port %x size %d count %ld\n", | 
 | 			port, size, count); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_emulate_pio_string); | 
 |  | 
 | int kvm_arch_init(void *opaque) | 
 | { | 
 | 	int r; | 
 | 	struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque; | 
 |  | 
 | 	if (kvm_x86_ops) { | 
 | 		printk(KERN_ERR "kvm: already loaded the other module\n"); | 
 | 		r = -EEXIST; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!ops->cpu_has_kvm_support()) { | 
 | 		printk(KERN_ERR "kvm: no hardware support\n"); | 
 | 		r = -EOPNOTSUPP; | 
 | 		goto out; | 
 | 	} | 
 | 	if (ops->disabled_by_bios()) { | 
 | 		printk(KERN_ERR "kvm: disabled by bios\n"); | 
 | 		r = -EOPNOTSUPP; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	r = kvm_mmu_module_init(); | 
 | 	if (r) | 
 | 		goto out; | 
 |  | 
 | 	kvm_init_msr_list(); | 
 |  | 
 | 	kvm_x86_ops = ops; | 
 | 	kvm_mmu_set_nonpresent_ptes(0ull, 0ull); | 
 | 	return 0; | 
 |  | 
 | out: | 
 | 	return r; | 
 | } | 
 |  | 
 | void kvm_arch_exit(void) | 
 | { | 
 | 	kvm_x86_ops = NULL; | 
 | 	kvm_mmu_module_exit(); | 
 | } | 
 |  | 
 | int kvm_emulate_halt(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	++vcpu->stat.halt_exits; | 
 | 	KVMTRACE_0D(HLT, vcpu, handler); | 
 | 	if (irqchip_in_kernel(vcpu->kvm)) { | 
 | 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED; | 
 | 		up_read(&vcpu->kvm->slots_lock); | 
 | 		kvm_vcpu_block(vcpu); | 
 | 		down_read(&vcpu->kvm->slots_lock); | 
 | 		if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) | 
 | 			return -EINTR; | 
 | 		return 1; | 
 | 	} else { | 
 | 		vcpu->run->exit_reason = KVM_EXIT_HLT; | 
 | 		return 0; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_emulate_halt); | 
 |  | 
 | static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0, | 
 | 			   unsigned long a1) | 
 | { | 
 | 	if (is_long_mode(vcpu)) | 
 | 		return a0; | 
 | 	else | 
 | 		return a0 | ((gpa_t)a1 << 32); | 
 | } | 
 |  | 
 | int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned long nr, a0, a1, a2, a3, ret; | 
 | 	int r = 1; | 
 |  | 
 | 	kvm_x86_ops->cache_regs(vcpu); | 
 |  | 
 | 	nr = vcpu->arch.regs[VCPU_REGS_RAX]; | 
 | 	a0 = vcpu->arch.regs[VCPU_REGS_RBX]; | 
 | 	a1 = vcpu->arch.regs[VCPU_REGS_RCX]; | 
 | 	a2 = vcpu->arch.regs[VCPU_REGS_RDX]; | 
 | 	a3 = vcpu->arch.regs[VCPU_REGS_RSI]; | 
 |  | 
 | 	KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler); | 
 |  | 
 | 	if (!is_long_mode(vcpu)) { | 
 | 		nr &= 0xFFFFFFFF; | 
 | 		a0 &= 0xFFFFFFFF; | 
 | 		a1 &= 0xFFFFFFFF; | 
 | 		a2 &= 0xFFFFFFFF; | 
 | 		a3 &= 0xFFFFFFFF; | 
 | 	} | 
 |  | 
 | 	switch (nr) { | 
 | 	case KVM_HC_VAPIC_POLL_IRQ: | 
 | 		ret = 0; | 
 | 		break; | 
 | 	case KVM_HC_MMU_OP: | 
 | 		r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret); | 
 | 		break; | 
 | 	default: | 
 | 		ret = -KVM_ENOSYS; | 
 | 		break; | 
 | 	} | 
 | 	vcpu->arch.regs[VCPU_REGS_RAX] = ret; | 
 | 	kvm_x86_ops->decache_regs(vcpu); | 
 | 	++vcpu->stat.hypercalls; | 
 | 	return r; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); | 
 |  | 
 | int kvm_fix_hypercall(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	char instruction[3]; | 
 | 	int ret = 0; | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * Blow out the MMU to ensure that no other VCPU has an active mapping | 
 | 	 * to ensure that the updated hypercall appears atomically across all | 
 | 	 * VCPUs. | 
 | 	 */ | 
 | 	kvm_mmu_zap_all(vcpu->kvm); | 
 |  | 
 | 	kvm_x86_ops->cache_regs(vcpu); | 
 | 	kvm_x86_ops->patch_hypercall(vcpu, instruction); | 
 | 	if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu) | 
 | 	    != X86EMUL_CONTINUE) | 
 | 		ret = -EFAULT; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static u64 mk_cr_64(u64 curr_cr, u32 new_val) | 
 | { | 
 | 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val; | 
 | } | 
 |  | 
 | void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base) | 
 | { | 
 | 	struct descriptor_table dt = { limit, base }; | 
 |  | 
 | 	kvm_x86_ops->set_gdt(vcpu, &dt); | 
 | } | 
 |  | 
 | void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base) | 
 | { | 
 | 	struct descriptor_table dt = { limit, base }; | 
 |  | 
 | 	kvm_x86_ops->set_idt(vcpu, &dt); | 
 | } | 
 |  | 
 | void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw, | 
 | 		   unsigned long *rflags) | 
 | { | 
 | 	kvm_lmsw(vcpu, msw); | 
 | 	*rflags = kvm_x86_ops->get_rflags(vcpu); | 
 | } | 
 |  | 
 | unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr) | 
 | { | 
 | 	kvm_x86_ops->decache_cr4_guest_bits(vcpu); | 
 | 	switch (cr) { | 
 | 	case 0: | 
 | 		return vcpu->arch.cr0; | 
 | 	case 2: | 
 | 		return vcpu->arch.cr2; | 
 | 	case 3: | 
 | 		return vcpu->arch.cr3; | 
 | 	case 4: | 
 | 		return vcpu->arch.cr4; | 
 | 	case 8: | 
 | 		return kvm_get_cr8(vcpu); | 
 | 	default: | 
 | 		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr); | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val, | 
 | 		     unsigned long *rflags) | 
 | { | 
 | 	switch (cr) { | 
 | 	case 0: | 
 | 		kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val)); | 
 | 		*rflags = kvm_x86_ops->get_rflags(vcpu); | 
 | 		break; | 
 | 	case 2: | 
 | 		vcpu->arch.cr2 = val; | 
 | 		break; | 
 | 	case 3: | 
 | 		kvm_set_cr3(vcpu, val); | 
 | 		break; | 
 | 	case 4: | 
 | 		kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val)); | 
 | 		break; | 
 | 	case 8: | 
 | 		kvm_set_cr8(vcpu, val & 0xfUL); | 
 | 		break; | 
 | 	default: | 
 | 		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr); | 
 | 	} | 
 | } | 
 |  | 
 | static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i) | 
 | { | 
 | 	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i]; | 
 | 	int j, nent = vcpu->arch.cpuid_nent; | 
 |  | 
 | 	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT; | 
 | 	/* when no next entry is found, the current entry[i] is reselected */ | 
 | 	for (j = i + 1; j == i; j = (j + 1) % nent) { | 
 | 		struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j]; | 
 | 		if (ej->function == e->function) { | 
 | 			ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT; | 
 | 			return j; | 
 | 		} | 
 | 	} | 
 | 	return 0; /* silence gcc, even though control never reaches here */ | 
 | } | 
 |  | 
 | /* find an entry with matching function, matching index (if needed), and that | 
 |  * should be read next (if it's stateful) */ | 
 | static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e, | 
 | 	u32 function, u32 index) | 
 | { | 
 | 	if (e->function != function) | 
 | 		return 0; | 
 | 	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index) | 
 | 		return 0; | 
 | 	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) && | 
 | 		!(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT)) | 
 | 		return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | void kvm_emulate_cpuid(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int i; | 
 | 	u32 function, index; | 
 | 	struct kvm_cpuid_entry2 *e, *best; | 
 |  | 
 | 	kvm_x86_ops->cache_regs(vcpu); | 
 | 	function = vcpu->arch.regs[VCPU_REGS_RAX]; | 
 | 	index = vcpu->arch.regs[VCPU_REGS_RCX]; | 
 | 	vcpu->arch.regs[VCPU_REGS_RAX] = 0; | 
 | 	vcpu->arch.regs[VCPU_REGS_RBX] = 0; | 
 | 	vcpu->arch.regs[VCPU_REGS_RCX] = 0; | 
 | 	vcpu->arch.regs[VCPU_REGS_RDX] = 0; | 
 | 	best = NULL; | 
 | 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) { | 
 | 		e = &vcpu->arch.cpuid_entries[i]; | 
 | 		if (is_matching_cpuid_entry(e, function, index)) { | 
 | 			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) | 
 | 				move_to_next_stateful_cpuid_entry(vcpu, i); | 
 | 			best = e; | 
 | 			break; | 
 | 		} | 
 | 		/* | 
 | 		 * Both basic or both extended? | 
 | 		 */ | 
 | 		if (((e->function ^ function) & 0x80000000) == 0) | 
 | 			if (!best || e->function > best->function) | 
 | 				best = e; | 
 | 	} | 
 | 	if (best) { | 
 | 		vcpu->arch.regs[VCPU_REGS_RAX] = best->eax; | 
 | 		vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx; | 
 | 		vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx; | 
 | 		vcpu->arch.regs[VCPU_REGS_RDX] = best->edx; | 
 | 	} | 
 | 	kvm_x86_ops->decache_regs(vcpu); | 
 | 	kvm_x86_ops->skip_emulated_instruction(vcpu); | 
 | 	KVMTRACE_5D(CPUID, vcpu, function, | 
 | 		    (u32)vcpu->arch.regs[VCPU_REGS_RAX], | 
 | 		    (u32)vcpu->arch.regs[VCPU_REGS_RBX], | 
 | 		    (u32)vcpu->arch.regs[VCPU_REGS_RCX], | 
 | 		    (u32)vcpu->arch.regs[VCPU_REGS_RDX], handler); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_emulate_cpuid); | 
 |  | 
 | /* | 
 |  * Check if userspace requested an interrupt window, and that the | 
 |  * interrupt window is open. | 
 |  * | 
 |  * No need to exit to userspace if we already have an interrupt queued. | 
 |  */ | 
 | static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu, | 
 | 					  struct kvm_run *kvm_run) | 
 | { | 
 | 	return (!vcpu->arch.irq_summary && | 
 | 		kvm_run->request_interrupt_window && | 
 | 		vcpu->arch.interrupt_window_open && | 
 | 		(kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF)); | 
 | } | 
 |  | 
 | static void post_kvm_run_save(struct kvm_vcpu *vcpu, | 
 | 			      struct kvm_run *kvm_run) | 
 | { | 
 | 	kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0; | 
 | 	kvm_run->cr8 = kvm_get_cr8(vcpu); | 
 | 	kvm_run->apic_base = kvm_get_apic_base(vcpu); | 
 | 	if (irqchip_in_kernel(vcpu->kvm)) | 
 | 		kvm_run->ready_for_interrupt_injection = 1; | 
 | 	else | 
 | 		kvm_run->ready_for_interrupt_injection = | 
 | 					(vcpu->arch.interrupt_window_open && | 
 | 					 vcpu->arch.irq_summary == 0); | 
 | } | 
 |  | 
 | static void vapic_enter(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_lapic *apic = vcpu->arch.apic; | 
 | 	struct page *page; | 
 |  | 
 | 	if (!apic || !apic->vapic_addr) | 
 | 		return; | 
 |  | 
 | 	down_read(¤t->mm->mmap_sem); | 
 | 	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); | 
 | 	up_read(¤t->mm->mmap_sem); | 
 |  | 
 | 	vcpu->arch.apic->vapic_page = page; | 
 | } | 
 |  | 
 | static void vapic_exit(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_lapic *apic = vcpu->arch.apic; | 
 |  | 
 | 	if (!apic || !apic->vapic_addr) | 
 | 		return; | 
 |  | 
 | 	kvm_release_page_dirty(apic->vapic_page); | 
 | 	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); | 
 | } | 
 |  | 
 | static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) { | 
 | 		pr_debug("vcpu %d received sipi with vector # %x\n", | 
 | 		       vcpu->vcpu_id, vcpu->arch.sipi_vector); | 
 | 		kvm_lapic_reset(vcpu); | 
 | 		r = kvm_x86_ops->vcpu_reset(vcpu); | 
 | 		if (r) | 
 | 			return r; | 
 | 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; | 
 | 	} | 
 |  | 
 | 	down_read(&vcpu->kvm->slots_lock); | 
 | 	vapic_enter(vcpu); | 
 |  | 
 | preempted: | 
 | 	if (vcpu->guest_debug.enabled) | 
 | 		kvm_x86_ops->guest_debug_pre(vcpu); | 
 |  | 
 | again: | 
 | 	if (vcpu->requests) | 
 | 		if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests)) | 
 | 			kvm_mmu_unload(vcpu); | 
 |  | 
 | 	r = kvm_mmu_reload(vcpu); | 
 | 	if (unlikely(r)) | 
 | 		goto out; | 
 |  | 
 | 	if (vcpu->requests) { | 
 | 		if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests)) | 
 | 			__kvm_migrate_apic_timer(vcpu); | 
 | 		if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS, | 
 | 				       &vcpu->requests)) { | 
 | 			kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS; | 
 | 			r = 0; | 
 | 			goto out; | 
 | 		} | 
 | 		if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) { | 
 | 			kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; | 
 | 			r = 0; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	kvm_inject_pending_timer_irqs(vcpu); | 
 |  | 
 | 	preempt_disable(); | 
 |  | 
 | 	kvm_x86_ops->prepare_guest_switch(vcpu); | 
 | 	kvm_load_guest_fpu(vcpu); | 
 |  | 
 | 	local_irq_disable(); | 
 |  | 
 | 	if (need_resched()) { | 
 | 		local_irq_enable(); | 
 | 		preempt_enable(); | 
 | 		r = 1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (vcpu->requests) | 
 | 		if (test_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests)) { | 
 | 			local_irq_enable(); | 
 | 			preempt_enable(); | 
 | 			r = 1; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 	if (signal_pending(current)) { | 
 | 		local_irq_enable(); | 
 | 		preempt_enable(); | 
 | 		r = -EINTR; | 
 | 		kvm_run->exit_reason = KVM_EXIT_INTR; | 
 | 		++vcpu->stat.signal_exits; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	vcpu->guest_mode = 1; | 
 | 	/* | 
 | 	 * Make sure that guest_mode assignment won't happen after | 
 | 	 * testing the pending IRQ vector bitmap. | 
 | 	 */ | 
 | 	smp_wmb(); | 
 |  | 
 | 	if (vcpu->arch.exception.pending) | 
 | 		__queue_exception(vcpu); | 
 | 	else if (irqchip_in_kernel(vcpu->kvm)) | 
 | 		kvm_x86_ops->inject_pending_irq(vcpu); | 
 | 	else | 
 | 		kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run); | 
 |  | 
 | 	kvm_lapic_sync_to_vapic(vcpu); | 
 |  | 
 | 	up_read(&vcpu->kvm->slots_lock); | 
 |  | 
 | 	kvm_guest_enter(); | 
 |  | 
 | 	if (vcpu->requests) | 
 | 		if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests)) | 
 | 			kvm_x86_ops->tlb_flush(vcpu); | 
 |  | 
 | 	KVMTRACE_0D(VMENTRY, vcpu, entryexit); | 
 | 	kvm_x86_ops->run(vcpu, kvm_run); | 
 |  | 
 | 	vcpu->guest_mode = 0; | 
 | 	local_irq_enable(); | 
 |  | 
 | 	++vcpu->stat.exits; | 
 |  | 
 | 	/* | 
 | 	 * We must have an instruction between local_irq_enable() and | 
 | 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by | 
 | 	 * the interrupt shadow.  The stat.exits increment will do nicely. | 
 | 	 * But we need to prevent reordering, hence this barrier(): | 
 | 	 */ | 
 | 	barrier(); | 
 |  | 
 | 	kvm_guest_exit(); | 
 |  | 
 | 	preempt_enable(); | 
 |  | 
 | 	down_read(&vcpu->kvm->slots_lock); | 
 |  | 
 | 	/* | 
 | 	 * Profile KVM exit RIPs: | 
 | 	 */ | 
 | 	if (unlikely(prof_on == KVM_PROFILING)) { | 
 | 		kvm_x86_ops->cache_regs(vcpu); | 
 | 		profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip); | 
 | 	} | 
 |  | 
 | 	if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu)) | 
 | 		vcpu->arch.exception.pending = false; | 
 |  | 
 | 	kvm_lapic_sync_from_vapic(vcpu); | 
 |  | 
 | 	r = kvm_x86_ops->handle_exit(kvm_run, vcpu); | 
 |  | 
 | 	if (r > 0) { | 
 | 		if (dm_request_for_irq_injection(vcpu, kvm_run)) { | 
 | 			r = -EINTR; | 
 | 			kvm_run->exit_reason = KVM_EXIT_INTR; | 
 | 			++vcpu->stat.request_irq_exits; | 
 | 			goto out; | 
 | 		} | 
 | 		if (!need_resched()) | 
 | 			goto again; | 
 | 	} | 
 |  | 
 | out: | 
 | 	up_read(&vcpu->kvm->slots_lock); | 
 | 	if (r > 0) { | 
 | 		kvm_resched(vcpu); | 
 | 		down_read(&vcpu->kvm->slots_lock); | 
 | 		goto preempted; | 
 | 	} | 
 |  | 
 | 	post_kvm_run_save(vcpu, kvm_run); | 
 |  | 
 | 	down_read(&vcpu->kvm->slots_lock); | 
 | 	vapic_exit(vcpu); | 
 | 	up_read(&vcpu->kvm->slots_lock); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) | 
 | { | 
 | 	int r; | 
 | 	sigset_t sigsaved; | 
 |  | 
 | 	vcpu_load(vcpu); | 
 |  | 
 | 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { | 
 | 		kvm_vcpu_block(vcpu); | 
 | 		vcpu_put(vcpu); | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	if (vcpu->sigset_active) | 
 | 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); | 
 |  | 
 | 	/* re-sync apic's tpr */ | 
 | 	if (!irqchip_in_kernel(vcpu->kvm)) | 
 | 		kvm_set_cr8(vcpu, kvm_run->cr8); | 
 |  | 
 | 	if (vcpu->arch.pio.cur_count) { | 
 | 		r = complete_pio(vcpu); | 
 | 		if (r) | 
 | 			goto out; | 
 | 	} | 
 | #if CONFIG_HAS_IOMEM | 
 | 	if (vcpu->mmio_needed) { | 
 | 		memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8); | 
 | 		vcpu->mmio_read_completed = 1; | 
 | 		vcpu->mmio_needed = 0; | 
 |  | 
 | 		down_read(&vcpu->kvm->slots_lock); | 
 | 		r = emulate_instruction(vcpu, kvm_run, | 
 | 					vcpu->arch.mmio_fault_cr2, 0, | 
 | 					EMULTYPE_NO_DECODE); | 
 | 		up_read(&vcpu->kvm->slots_lock); | 
 | 		if (r == EMULATE_DO_MMIO) { | 
 | 			/* | 
 | 			 * Read-modify-write.  Back to userspace. | 
 | 			 */ | 
 | 			r = 0; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 | #endif | 
 | 	if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) { | 
 | 		kvm_x86_ops->cache_regs(vcpu); | 
 | 		vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret; | 
 | 		kvm_x86_ops->decache_regs(vcpu); | 
 | 	} | 
 |  | 
 | 	r = __vcpu_run(vcpu, kvm_run); | 
 |  | 
 | out: | 
 | 	if (vcpu->sigset_active) | 
 | 		sigprocmask(SIG_SETMASK, &sigsaved, NULL); | 
 |  | 
 | 	vcpu_put(vcpu); | 
 | 	return r; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) | 
 | { | 
 | 	vcpu_load(vcpu); | 
 |  | 
 | 	kvm_x86_ops->cache_regs(vcpu); | 
 |  | 
 | 	regs->rax = vcpu->arch.regs[VCPU_REGS_RAX]; | 
 | 	regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX]; | 
 | 	regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX]; | 
 | 	regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX]; | 
 | 	regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI]; | 
 | 	regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI]; | 
 | 	regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP]; | 
 | 	regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP]; | 
 | #ifdef CONFIG_X86_64 | 
 | 	regs->r8 = vcpu->arch.regs[VCPU_REGS_R8]; | 
 | 	regs->r9 = vcpu->arch.regs[VCPU_REGS_R9]; | 
 | 	regs->r10 = vcpu->arch.regs[VCPU_REGS_R10]; | 
 | 	regs->r11 = vcpu->arch.regs[VCPU_REGS_R11]; | 
 | 	regs->r12 = vcpu->arch.regs[VCPU_REGS_R12]; | 
 | 	regs->r13 = vcpu->arch.regs[VCPU_REGS_R13]; | 
 | 	regs->r14 = vcpu->arch.regs[VCPU_REGS_R14]; | 
 | 	regs->r15 = vcpu->arch.regs[VCPU_REGS_R15]; | 
 | #endif | 
 |  | 
 | 	regs->rip = vcpu->arch.rip; | 
 | 	regs->rflags = kvm_x86_ops->get_rflags(vcpu); | 
 |  | 
 | 	/* | 
 | 	 * Don't leak debug flags in case they were set for guest debugging | 
 | 	 */ | 
 | 	if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep) | 
 | 		regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF); | 
 |  | 
 | 	vcpu_put(vcpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) | 
 | { | 
 | 	vcpu_load(vcpu); | 
 |  | 
 | 	vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax; | 
 | 	vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx; | 
 | 	vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx; | 
 | 	vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx; | 
 | 	vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi; | 
 | 	vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi; | 
 | 	vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp; | 
 | 	vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp; | 
 | #ifdef CONFIG_X86_64 | 
 | 	vcpu->arch.regs[VCPU_REGS_R8] = regs->r8; | 
 | 	vcpu->arch.regs[VCPU_REGS_R9] = regs->r9; | 
 | 	vcpu->arch.regs[VCPU_REGS_R10] = regs->r10; | 
 | 	vcpu->arch.regs[VCPU_REGS_R11] = regs->r11; | 
 | 	vcpu->arch.regs[VCPU_REGS_R12] = regs->r12; | 
 | 	vcpu->arch.regs[VCPU_REGS_R13] = regs->r13; | 
 | 	vcpu->arch.regs[VCPU_REGS_R14] = regs->r14; | 
 | 	vcpu->arch.regs[VCPU_REGS_R15] = regs->r15; | 
 | #endif | 
 |  | 
 | 	vcpu->arch.rip = regs->rip; | 
 | 	kvm_x86_ops->set_rflags(vcpu, regs->rflags); | 
 |  | 
 | 	kvm_x86_ops->decache_regs(vcpu); | 
 |  | 
 | 	vcpu_put(vcpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void get_segment(struct kvm_vcpu *vcpu, | 
 | 			struct kvm_segment *var, int seg) | 
 | { | 
 | 	kvm_x86_ops->get_segment(vcpu, var, seg); | 
 | } | 
 |  | 
 | void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) | 
 | { | 
 | 	struct kvm_segment cs; | 
 |  | 
 | 	get_segment(vcpu, &cs, VCPU_SREG_CS); | 
 | 	*db = cs.db; | 
 | 	*l = cs.l; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); | 
 |  | 
 | int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, | 
 | 				  struct kvm_sregs *sregs) | 
 | { | 
 | 	struct descriptor_table dt; | 
 | 	int pending_vec; | 
 |  | 
 | 	vcpu_load(vcpu); | 
 |  | 
 | 	get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); | 
 | 	get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); | 
 | 	get_segment(vcpu, &sregs->es, VCPU_SREG_ES); | 
 | 	get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); | 
 | 	get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); | 
 | 	get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); | 
 |  | 
 | 	get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); | 
 | 	get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); | 
 |  | 
 | 	kvm_x86_ops->get_idt(vcpu, &dt); | 
 | 	sregs->idt.limit = dt.limit; | 
 | 	sregs->idt.base = dt.base; | 
 | 	kvm_x86_ops->get_gdt(vcpu, &dt); | 
 | 	sregs->gdt.limit = dt.limit; | 
 | 	sregs->gdt.base = dt.base; | 
 |  | 
 | 	kvm_x86_ops->decache_cr4_guest_bits(vcpu); | 
 | 	sregs->cr0 = vcpu->arch.cr0; | 
 | 	sregs->cr2 = vcpu->arch.cr2; | 
 | 	sregs->cr3 = vcpu->arch.cr3; | 
 | 	sregs->cr4 = vcpu->arch.cr4; | 
 | 	sregs->cr8 = kvm_get_cr8(vcpu); | 
 | 	sregs->efer = vcpu->arch.shadow_efer; | 
 | 	sregs->apic_base = kvm_get_apic_base(vcpu); | 
 |  | 
 | 	if (irqchip_in_kernel(vcpu->kvm)) { | 
 | 		memset(sregs->interrupt_bitmap, 0, | 
 | 		       sizeof sregs->interrupt_bitmap); | 
 | 		pending_vec = kvm_x86_ops->get_irq(vcpu); | 
 | 		if (pending_vec >= 0) | 
 | 			set_bit(pending_vec, | 
 | 				(unsigned long *)sregs->interrupt_bitmap); | 
 | 	} else | 
 | 		memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending, | 
 | 		       sizeof sregs->interrupt_bitmap); | 
 |  | 
 | 	vcpu_put(vcpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, | 
 | 				    struct kvm_mp_state *mp_state) | 
 | { | 
 | 	vcpu_load(vcpu); | 
 | 	mp_state->mp_state = vcpu->arch.mp_state; | 
 | 	vcpu_put(vcpu); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, | 
 | 				    struct kvm_mp_state *mp_state) | 
 | { | 
 | 	vcpu_load(vcpu); | 
 | 	vcpu->arch.mp_state = mp_state->mp_state; | 
 | 	vcpu_put(vcpu); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void set_segment(struct kvm_vcpu *vcpu, | 
 | 			struct kvm_segment *var, int seg) | 
 | { | 
 | 	kvm_x86_ops->set_segment(vcpu, var, seg); | 
 | } | 
 |  | 
 | static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector, | 
 | 				   struct kvm_segment *kvm_desct) | 
 | { | 
 | 	kvm_desct->base = seg_desc->base0; | 
 | 	kvm_desct->base |= seg_desc->base1 << 16; | 
 | 	kvm_desct->base |= seg_desc->base2 << 24; | 
 | 	kvm_desct->limit = seg_desc->limit0; | 
 | 	kvm_desct->limit |= seg_desc->limit << 16; | 
 | 	kvm_desct->selector = selector; | 
 | 	kvm_desct->type = seg_desc->type; | 
 | 	kvm_desct->present = seg_desc->p; | 
 | 	kvm_desct->dpl = seg_desc->dpl; | 
 | 	kvm_desct->db = seg_desc->d; | 
 | 	kvm_desct->s = seg_desc->s; | 
 | 	kvm_desct->l = seg_desc->l; | 
 | 	kvm_desct->g = seg_desc->g; | 
 | 	kvm_desct->avl = seg_desc->avl; | 
 | 	if (!selector) | 
 | 		kvm_desct->unusable = 1; | 
 | 	else | 
 | 		kvm_desct->unusable = 0; | 
 | 	kvm_desct->padding = 0; | 
 | } | 
 |  | 
 | static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu, | 
 | 					   u16 selector, | 
 | 					   struct descriptor_table *dtable) | 
 | { | 
 | 	if (selector & 1 << 2) { | 
 | 		struct kvm_segment kvm_seg; | 
 |  | 
 | 		get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR); | 
 |  | 
 | 		if (kvm_seg.unusable) | 
 | 			dtable->limit = 0; | 
 | 		else | 
 | 			dtable->limit = kvm_seg.limit; | 
 | 		dtable->base = kvm_seg.base; | 
 | 	} | 
 | 	else | 
 | 		kvm_x86_ops->get_gdt(vcpu, dtable); | 
 | } | 
 |  | 
 | /* allowed just for 8 bytes segments */ | 
 | static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, | 
 | 					 struct desc_struct *seg_desc) | 
 | { | 
 | 	struct descriptor_table dtable; | 
 | 	u16 index = selector >> 3; | 
 |  | 
 | 	get_segment_descritptor_dtable(vcpu, selector, &dtable); | 
 |  | 
 | 	if (dtable.limit < index * 8 + 7) { | 
 | 		kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc); | 
 | 		return 1; | 
 | 	} | 
 | 	return kvm_read_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8); | 
 | } | 
 |  | 
 | /* allowed just for 8 bytes segments */ | 
 | static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, | 
 | 					 struct desc_struct *seg_desc) | 
 | { | 
 | 	struct descriptor_table dtable; | 
 | 	u16 index = selector >> 3; | 
 |  | 
 | 	get_segment_descritptor_dtable(vcpu, selector, &dtable); | 
 |  | 
 | 	if (dtable.limit < index * 8 + 7) | 
 | 		return 1; | 
 | 	return kvm_write_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8); | 
 | } | 
 |  | 
 | static u32 get_tss_base_addr(struct kvm_vcpu *vcpu, | 
 | 			     struct desc_struct *seg_desc) | 
 | { | 
 | 	u32 base_addr; | 
 |  | 
 | 	base_addr = seg_desc->base0; | 
 | 	base_addr |= (seg_desc->base1 << 16); | 
 | 	base_addr |= (seg_desc->base2 << 24); | 
 |  | 
 | 	return base_addr; | 
 | } | 
 |  | 
 | static int load_tss_segment32(struct kvm_vcpu *vcpu, | 
 | 			      struct desc_struct *seg_desc, | 
 | 			      struct tss_segment_32 *tss) | 
 | { | 
 | 	u32 base_addr; | 
 |  | 
 | 	base_addr = get_tss_base_addr(vcpu, seg_desc); | 
 |  | 
 | 	return kvm_read_guest(vcpu->kvm, base_addr, tss, | 
 | 			      sizeof(struct tss_segment_32)); | 
 | } | 
 |  | 
 | static int save_tss_segment32(struct kvm_vcpu *vcpu, | 
 | 			      struct desc_struct *seg_desc, | 
 | 			      struct tss_segment_32 *tss) | 
 | { | 
 | 	u32 base_addr; | 
 |  | 
 | 	base_addr = get_tss_base_addr(vcpu, seg_desc); | 
 |  | 
 | 	return kvm_write_guest(vcpu->kvm, base_addr, tss, | 
 | 			       sizeof(struct tss_segment_32)); | 
 | } | 
 |  | 
 | static int load_tss_segment16(struct kvm_vcpu *vcpu, | 
 | 			      struct desc_struct *seg_desc, | 
 | 			      struct tss_segment_16 *tss) | 
 | { | 
 | 	u32 base_addr; | 
 |  | 
 | 	base_addr = get_tss_base_addr(vcpu, seg_desc); | 
 |  | 
 | 	return kvm_read_guest(vcpu->kvm, base_addr, tss, | 
 | 			      sizeof(struct tss_segment_16)); | 
 | } | 
 |  | 
 | static int save_tss_segment16(struct kvm_vcpu *vcpu, | 
 | 			      struct desc_struct *seg_desc, | 
 | 			      struct tss_segment_16 *tss) | 
 | { | 
 | 	u32 base_addr; | 
 |  | 
 | 	base_addr = get_tss_base_addr(vcpu, seg_desc); | 
 |  | 
 | 	return kvm_write_guest(vcpu->kvm, base_addr, tss, | 
 | 			       sizeof(struct tss_segment_16)); | 
 | } | 
 |  | 
 | static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg) | 
 | { | 
 | 	struct kvm_segment kvm_seg; | 
 |  | 
 | 	get_segment(vcpu, &kvm_seg, seg); | 
 | 	return kvm_seg.selector; | 
 | } | 
 |  | 
 | static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu, | 
 | 						u16 selector, | 
 | 						struct kvm_segment *kvm_seg) | 
 | { | 
 | 	struct desc_struct seg_desc; | 
 |  | 
 | 	if (load_guest_segment_descriptor(vcpu, selector, &seg_desc)) | 
 | 		return 1; | 
 | 	seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, | 
 | 				   int type_bits, int seg) | 
 | { | 
 | 	struct kvm_segment kvm_seg; | 
 |  | 
 | 	if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg)) | 
 | 		return 1; | 
 | 	kvm_seg.type |= type_bits; | 
 |  | 
 | 	if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS && | 
 | 	    seg != VCPU_SREG_LDTR) | 
 | 		if (!kvm_seg.s) | 
 | 			kvm_seg.unusable = 1; | 
 |  | 
 | 	set_segment(vcpu, &kvm_seg, seg); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void save_state_to_tss32(struct kvm_vcpu *vcpu, | 
 | 				struct tss_segment_32 *tss) | 
 | { | 
 | 	tss->cr3 = vcpu->arch.cr3; | 
 | 	tss->eip = vcpu->arch.rip; | 
 | 	tss->eflags = kvm_x86_ops->get_rflags(vcpu); | 
 | 	tss->eax = vcpu->arch.regs[VCPU_REGS_RAX]; | 
 | 	tss->ecx = vcpu->arch.regs[VCPU_REGS_RCX]; | 
 | 	tss->edx = vcpu->arch.regs[VCPU_REGS_RDX]; | 
 | 	tss->ebx = vcpu->arch.regs[VCPU_REGS_RBX]; | 
 | 	tss->esp = vcpu->arch.regs[VCPU_REGS_RSP]; | 
 | 	tss->ebp = vcpu->arch.regs[VCPU_REGS_RBP]; | 
 | 	tss->esi = vcpu->arch.regs[VCPU_REGS_RSI]; | 
 | 	tss->edi = vcpu->arch.regs[VCPU_REGS_RDI]; | 
 |  | 
 | 	tss->es = get_segment_selector(vcpu, VCPU_SREG_ES); | 
 | 	tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS); | 
 | 	tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS); | 
 | 	tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS); | 
 | 	tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS); | 
 | 	tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS); | 
 | 	tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR); | 
 | 	tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR); | 
 | } | 
 |  | 
 | static int load_state_from_tss32(struct kvm_vcpu *vcpu, | 
 | 				  struct tss_segment_32 *tss) | 
 | { | 
 | 	kvm_set_cr3(vcpu, tss->cr3); | 
 |  | 
 | 	vcpu->arch.rip = tss->eip; | 
 | 	kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2); | 
 |  | 
 | 	vcpu->arch.regs[VCPU_REGS_RAX] = tss->eax; | 
 | 	vcpu->arch.regs[VCPU_REGS_RCX] = tss->ecx; | 
 | 	vcpu->arch.regs[VCPU_REGS_RDX] = tss->edx; | 
 | 	vcpu->arch.regs[VCPU_REGS_RBX] = tss->ebx; | 
 | 	vcpu->arch.regs[VCPU_REGS_RSP] = tss->esp; | 
 | 	vcpu->arch.regs[VCPU_REGS_RBP] = tss->ebp; | 
 | 	vcpu->arch.regs[VCPU_REGS_RSI] = tss->esi; | 
 | 	vcpu->arch.regs[VCPU_REGS_RDI] = tss->edi; | 
 |  | 
 | 	if (load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR)) | 
 | 		return 1; | 
 |  | 
 | 	if (load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES)) | 
 | 		return 1; | 
 |  | 
 | 	if (load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS)) | 
 | 		return 1; | 
 |  | 
 | 	if (load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS)) | 
 | 		return 1; | 
 |  | 
 | 	if (load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS)) | 
 | 		return 1; | 
 |  | 
 | 	if (load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS)) | 
 | 		return 1; | 
 |  | 
 | 	if (load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS)) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void save_state_to_tss16(struct kvm_vcpu *vcpu, | 
 | 				struct tss_segment_16 *tss) | 
 | { | 
 | 	tss->ip = vcpu->arch.rip; | 
 | 	tss->flag = kvm_x86_ops->get_rflags(vcpu); | 
 | 	tss->ax = vcpu->arch.regs[VCPU_REGS_RAX]; | 
 | 	tss->cx = vcpu->arch.regs[VCPU_REGS_RCX]; | 
 | 	tss->dx = vcpu->arch.regs[VCPU_REGS_RDX]; | 
 | 	tss->bx = vcpu->arch.regs[VCPU_REGS_RBX]; | 
 | 	tss->sp = vcpu->arch.regs[VCPU_REGS_RSP]; | 
 | 	tss->bp = vcpu->arch.regs[VCPU_REGS_RBP]; | 
 | 	tss->si = vcpu->arch.regs[VCPU_REGS_RSI]; | 
 | 	tss->di = vcpu->arch.regs[VCPU_REGS_RDI]; | 
 |  | 
 | 	tss->es = get_segment_selector(vcpu, VCPU_SREG_ES); | 
 | 	tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS); | 
 | 	tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS); | 
 | 	tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS); | 
 | 	tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR); | 
 | 	tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR); | 
 | } | 
 |  | 
 | static int load_state_from_tss16(struct kvm_vcpu *vcpu, | 
 | 				 struct tss_segment_16 *tss) | 
 | { | 
 | 	vcpu->arch.rip = tss->ip; | 
 | 	kvm_x86_ops->set_rflags(vcpu, tss->flag | 2); | 
 | 	vcpu->arch.regs[VCPU_REGS_RAX] = tss->ax; | 
 | 	vcpu->arch.regs[VCPU_REGS_RCX] = tss->cx; | 
 | 	vcpu->arch.regs[VCPU_REGS_RDX] = tss->dx; | 
 | 	vcpu->arch.regs[VCPU_REGS_RBX] = tss->bx; | 
 | 	vcpu->arch.regs[VCPU_REGS_RSP] = tss->sp; | 
 | 	vcpu->arch.regs[VCPU_REGS_RBP] = tss->bp; | 
 | 	vcpu->arch.regs[VCPU_REGS_RSI] = tss->si; | 
 | 	vcpu->arch.regs[VCPU_REGS_RDI] = tss->di; | 
 |  | 
 | 	if (load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR)) | 
 | 		return 1; | 
 |  | 
 | 	if (load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES)) | 
 | 		return 1; | 
 |  | 
 | 	if (load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS)) | 
 | 		return 1; | 
 |  | 
 | 	if (load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS)) | 
 | 		return 1; | 
 |  | 
 | 	if (load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS)) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector, | 
 | 		       struct desc_struct *cseg_desc, | 
 | 		       struct desc_struct *nseg_desc) | 
 | { | 
 | 	struct tss_segment_16 tss_segment_16; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (load_tss_segment16(vcpu, cseg_desc, &tss_segment_16)) | 
 | 		goto out; | 
 |  | 
 | 	save_state_to_tss16(vcpu, &tss_segment_16); | 
 | 	save_tss_segment16(vcpu, cseg_desc, &tss_segment_16); | 
 |  | 
 | 	if (load_tss_segment16(vcpu, nseg_desc, &tss_segment_16)) | 
 | 		goto out; | 
 | 	if (load_state_from_tss16(vcpu, &tss_segment_16)) | 
 | 		goto out; | 
 |  | 
 | 	ret = 1; | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector, | 
 | 		       struct desc_struct *cseg_desc, | 
 | 		       struct desc_struct *nseg_desc) | 
 | { | 
 | 	struct tss_segment_32 tss_segment_32; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (load_tss_segment32(vcpu, cseg_desc, &tss_segment_32)) | 
 | 		goto out; | 
 |  | 
 | 	save_state_to_tss32(vcpu, &tss_segment_32); | 
 | 	save_tss_segment32(vcpu, cseg_desc, &tss_segment_32); | 
 |  | 
 | 	if (load_tss_segment32(vcpu, nseg_desc, &tss_segment_32)) | 
 | 		goto out; | 
 | 	if (load_state_from_tss32(vcpu, &tss_segment_32)) | 
 | 		goto out; | 
 |  | 
 | 	ret = 1; | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason) | 
 | { | 
 | 	struct kvm_segment tr_seg; | 
 | 	struct desc_struct cseg_desc; | 
 | 	struct desc_struct nseg_desc; | 
 | 	int ret = 0; | 
 |  | 
 | 	get_segment(vcpu, &tr_seg, VCPU_SREG_TR); | 
 |  | 
 | 	if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc)) | 
 | 		goto out; | 
 |  | 
 | 	if (load_guest_segment_descriptor(vcpu, tr_seg.selector, &cseg_desc)) | 
 | 		goto out; | 
 |  | 
 |  | 
 | 	if (reason != TASK_SWITCH_IRET) { | 
 | 		int cpl; | 
 |  | 
 | 		cpl = kvm_x86_ops->get_cpl(vcpu); | 
 | 		if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) { | 
 | 			kvm_queue_exception_e(vcpu, GP_VECTOR, 0); | 
 | 			return 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) { | 
 | 		kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) { | 
 | 		cseg_desc.type &= ~(1 << 8); //clear the B flag | 
 | 		save_guest_segment_descriptor(vcpu, tr_seg.selector, | 
 | 					      &cseg_desc); | 
 | 	} | 
 |  | 
 | 	if (reason == TASK_SWITCH_IRET) { | 
 | 		u32 eflags = kvm_x86_ops->get_rflags(vcpu); | 
 | 		kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT); | 
 | 	} | 
 |  | 
 | 	kvm_x86_ops->skip_emulated_instruction(vcpu); | 
 | 	kvm_x86_ops->cache_regs(vcpu); | 
 |  | 
 | 	if (nseg_desc.type & 8) | 
 | 		ret = kvm_task_switch_32(vcpu, tss_selector, &cseg_desc, | 
 | 					 &nseg_desc); | 
 | 	else | 
 | 		ret = kvm_task_switch_16(vcpu, tss_selector, &cseg_desc, | 
 | 					 &nseg_desc); | 
 |  | 
 | 	if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) { | 
 | 		u32 eflags = kvm_x86_ops->get_rflags(vcpu); | 
 | 		kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT); | 
 | 	} | 
 |  | 
 | 	if (reason != TASK_SWITCH_IRET) { | 
 | 		nseg_desc.type |= (1 << 8); | 
 | 		save_guest_segment_descriptor(vcpu, tss_selector, | 
 | 					      &nseg_desc); | 
 | 	} | 
 |  | 
 | 	kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS); | 
 | 	seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg); | 
 | 	tr_seg.type = 11; | 
 | 	set_segment(vcpu, &tr_seg, VCPU_SREG_TR); | 
 | out: | 
 | 	kvm_x86_ops->decache_regs(vcpu); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_task_switch); | 
 |  | 
 | int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, | 
 | 				  struct kvm_sregs *sregs) | 
 | { | 
 | 	int mmu_reset_needed = 0; | 
 | 	int i, pending_vec, max_bits; | 
 | 	struct descriptor_table dt; | 
 |  | 
 | 	vcpu_load(vcpu); | 
 |  | 
 | 	dt.limit = sregs->idt.limit; | 
 | 	dt.base = sregs->idt.base; | 
 | 	kvm_x86_ops->set_idt(vcpu, &dt); | 
 | 	dt.limit = sregs->gdt.limit; | 
 | 	dt.base = sregs->gdt.base; | 
 | 	kvm_x86_ops->set_gdt(vcpu, &dt); | 
 |  | 
 | 	vcpu->arch.cr2 = sregs->cr2; | 
 | 	mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3; | 
 | 	vcpu->arch.cr3 = sregs->cr3; | 
 |  | 
 | 	kvm_set_cr8(vcpu, sregs->cr8); | 
 |  | 
 | 	mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer; | 
 | 	kvm_x86_ops->set_efer(vcpu, sregs->efer); | 
 | 	kvm_set_apic_base(vcpu, sregs->apic_base); | 
 |  | 
 | 	kvm_x86_ops->decache_cr4_guest_bits(vcpu); | 
 |  | 
 | 	mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0; | 
 | 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0); | 
 | 	vcpu->arch.cr0 = sregs->cr0; | 
 |  | 
 | 	mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4; | 
 | 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4); | 
 | 	if (!is_long_mode(vcpu) && is_pae(vcpu)) | 
 | 		load_pdptrs(vcpu, vcpu->arch.cr3); | 
 |  | 
 | 	if (mmu_reset_needed) | 
 | 		kvm_mmu_reset_context(vcpu); | 
 |  | 
 | 	if (!irqchip_in_kernel(vcpu->kvm)) { | 
 | 		memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap, | 
 | 		       sizeof vcpu->arch.irq_pending); | 
 | 		vcpu->arch.irq_summary = 0; | 
 | 		for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i) | 
 | 			if (vcpu->arch.irq_pending[i]) | 
 | 				__set_bit(i, &vcpu->arch.irq_summary); | 
 | 	} else { | 
 | 		max_bits = (sizeof sregs->interrupt_bitmap) << 3; | 
 | 		pending_vec = find_first_bit( | 
 | 			(const unsigned long *)sregs->interrupt_bitmap, | 
 | 			max_bits); | 
 | 		/* Only pending external irq is handled here */ | 
 | 		if (pending_vec < max_bits) { | 
 | 			kvm_x86_ops->set_irq(vcpu, pending_vec); | 
 | 			pr_debug("Set back pending irq %d\n", | 
 | 				 pending_vec); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); | 
 | 	set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); | 
 | 	set_segment(vcpu, &sregs->es, VCPU_SREG_ES); | 
 | 	set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); | 
 | 	set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); | 
 | 	set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); | 
 |  | 
 | 	set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); | 
 | 	set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); | 
 |  | 
 | 	vcpu_put(vcpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu, | 
 | 				    struct kvm_debug_guest *dbg) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	vcpu_load(vcpu); | 
 |  | 
 | 	r = kvm_x86_ops->set_guest_debug(vcpu, dbg); | 
 |  | 
 | 	vcpu_put(vcpu); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | /* | 
 |  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when | 
 |  * we have asm/x86/processor.h | 
 |  */ | 
 | struct fxsave { | 
 | 	u16	cwd; | 
 | 	u16	swd; | 
 | 	u16	twd; | 
 | 	u16	fop; | 
 | 	u64	rip; | 
 | 	u64	rdp; | 
 | 	u32	mxcsr; | 
 | 	u32	mxcsr_mask; | 
 | 	u32	st_space[32];	/* 8*16 bytes for each FP-reg = 128 bytes */ | 
 | #ifdef CONFIG_X86_64 | 
 | 	u32	xmm_space[64];	/* 16*16 bytes for each XMM-reg = 256 bytes */ | 
 | #else | 
 | 	u32	xmm_space[32];	/* 8*16 bytes for each XMM-reg = 128 bytes */ | 
 | #endif | 
 | }; | 
 |  | 
 | /* | 
 |  * Translate a guest virtual address to a guest physical address. | 
 |  */ | 
 | int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, | 
 | 				    struct kvm_translation *tr) | 
 | { | 
 | 	unsigned long vaddr = tr->linear_address; | 
 | 	gpa_t gpa; | 
 |  | 
 | 	vcpu_load(vcpu); | 
 | 	down_read(&vcpu->kvm->slots_lock); | 
 | 	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr); | 
 | 	up_read(&vcpu->kvm->slots_lock); | 
 | 	tr->physical_address = gpa; | 
 | 	tr->valid = gpa != UNMAPPED_GVA; | 
 | 	tr->writeable = 1; | 
 | 	tr->usermode = 0; | 
 | 	vcpu_put(vcpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) | 
 | { | 
 | 	struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image; | 
 |  | 
 | 	vcpu_load(vcpu); | 
 |  | 
 | 	memcpy(fpu->fpr, fxsave->st_space, 128); | 
 | 	fpu->fcw = fxsave->cwd; | 
 | 	fpu->fsw = fxsave->swd; | 
 | 	fpu->ftwx = fxsave->twd; | 
 | 	fpu->last_opcode = fxsave->fop; | 
 | 	fpu->last_ip = fxsave->rip; | 
 | 	fpu->last_dp = fxsave->rdp; | 
 | 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); | 
 |  | 
 | 	vcpu_put(vcpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) | 
 | { | 
 | 	struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image; | 
 |  | 
 | 	vcpu_load(vcpu); | 
 |  | 
 | 	memcpy(fxsave->st_space, fpu->fpr, 128); | 
 | 	fxsave->cwd = fpu->fcw; | 
 | 	fxsave->swd = fpu->fsw; | 
 | 	fxsave->twd = fpu->ftwx; | 
 | 	fxsave->fop = fpu->last_opcode; | 
 | 	fxsave->rip = fpu->last_ip; | 
 | 	fxsave->rdp = fpu->last_dp; | 
 | 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); | 
 |  | 
 | 	vcpu_put(vcpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void fx_init(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned after_mxcsr_mask; | 
 |  | 
 | 	/* Initialize guest FPU by resetting ours and saving into guest's */ | 
 | 	preempt_disable(); | 
 | 	fx_save(&vcpu->arch.host_fx_image); | 
 | 	fpu_init(); | 
 | 	fx_save(&vcpu->arch.guest_fx_image); | 
 | 	fx_restore(&vcpu->arch.host_fx_image); | 
 | 	preempt_enable(); | 
 |  | 
 | 	vcpu->arch.cr0 |= X86_CR0_ET; | 
 | 	after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space); | 
 | 	vcpu->arch.guest_fx_image.mxcsr = 0x1f80; | 
 | 	memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask, | 
 | 	       0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask); | 
 | } | 
 | EXPORT_SYMBOL_GPL(fx_init); | 
 |  | 
 | void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (!vcpu->fpu_active || vcpu->guest_fpu_loaded) | 
 | 		return; | 
 |  | 
 | 	vcpu->guest_fpu_loaded = 1; | 
 | 	fx_save(&vcpu->arch.host_fx_image); | 
 | 	fx_restore(&vcpu->arch.guest_fx_image); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_load_guest_fpu); | 
 |  | 
 | void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (!vcpu->guest_fpu_loaded) | 
 | 		return; | 
 |  | 
 | 	vcpu->guest_fpu_loaded = 0; | 
 | 	fx_save(&vcpu->arch.guest_fx_image); | 
 | 	fx_restore(&vcpu->arch.host_fx_image); | 
 | 	++vcpu->stat.fpu_reload; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_put_guest_fpu); | 
 |  | 
 | void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	kvm_x86_ops->vcpu_free(vcpu); | 
 | } | 
 |  | 
 | struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, | 
 | 						unsigned int id) | 
 | { | 
 | 	return kvm_x86_ops->vcpu_create(kvm, id); | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	/* We do fxsave: this must be aligned. */ | 
 | 	BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF); | 
 |  | 
 | 	vcpu_load(vcpu); | 
 | 	r = kvm_arch_vcpu_reset(vcpu); | 
 | 	if (r == 0) | 
 | 		r = kvm_mmu_setup(vcpu); | 
 | 	vcpu_put(vcpu); | 
 | 	if (r < 0) | 
 | 		goto free_vcpu; | 
 |  | 
 | 	return 0; | 
 | free_vcpu: | 
 | 	kvm_x86_ops->vcpu_free(vcpu); | 
 | 	return r; | 
 | } | 
 |  | 
 | void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	vcpu_load(vcpu); | 
 | 	kvm_mmu_unload(vcpu); | 
 | 	vcpu_put(vcpu); | 
 |  | 
 | 	kvm_x86_ops->vcpu_free(vcpu); | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return kvm_x86_ops->vcpu_reset(vcpu); | 
 | } | 
 |  | 
 | void kvm_arch_hardware_enable(void *garbage) | 
 | { | 
 | 	kvm_x86_ops->hardware_enable(garbage); | 
 | } | 
 |  | 
 | void kvm_arch_hardware_disable(void *garbage) | 
 | { | 
 | 	kvm_x86_ops->hardware_disable(garbage); | 
 | } | 
 |  | 
 | int kvm_arch_hardware_setup(void) | 
 | { | 
 | 	return kvm_x86_ops->hardware_setup(); | 
 | } | 
 |  | 
 | void kvm_arch_hardware_unsetup(void) | 
 | { | 
 | 	kvm_x86_ops->hardware_unsetup(); | 
 | } | 
 |  | 
 | void kvm_arch_check_processor_compat(void *rtn) | 
 | { | 
 | 	kvm_x86_ops->check_processor_compatibility(rtn); | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct page *page; | 
 | 	struct kvm *kvm; | 
 | 	int r; | 
 |  | 
 | 	BUG_ON(vcpu->kvm == NULL); | 
 | 	kvm = vcpu->kvm; | 
 |  | 
 | 	vcpu->arch.mmu.root_hpa = INVALID_PAGE; | 
 | 	if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0) | 
 | 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; | 
 | 	else | 
 | 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; | 
 |  | 
 | 	page = alloc_page(GFP_KERNEL | __GFP_ZERO); | 
 | 	if (!page) { | 
 | 		r = -ENOMEM; | 
 | 		goto fail; | 
 | 	} | 
 | 	vcpu->arch.pio_data = page_address(page); | 
 |  | 
 | 	r = kvm_mmu_create(vcpu); | 
 | 	if (r < 0) | 
 | 		goto fail_free_pio_data; | 
 |  | 
 | 	if (irqchip_in_kernel(kvm)) { | 
 | 		r = kvm_create_lapic(vcpu); | 
 | 		if (r < 0) | 
 | 			goto fail_mmu_destroy; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | fail_mmu_destroy: | 
 | 	kvm_mmu_destroy(vcpu); | 
 | fail_free_pio_data: | 
 | 	free_page((unsigned long)vcpu->arch.pio_data); | 
 | fail: | 
 | 	return r; | 
 | } | 
 |  | 
 | void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	kvm_free_lapic(vcpu); | 
 | 	down_read(&vcpu->kvm->slots_lock); | 
 | 	kvm_mmu_destroy(vcpu); | 
 | 	up_read(&vcpu->kvm->slots_lock); | 
 | 	free_page((unsigned long)vcpu->arch.pio_data); | 
 | } | 
 |  | 
 | struct  kvm *kvm_arch_create_vm(void) | 
 | { | 
 | 	struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL); | 
 |  | 
 | 	if (!kvm) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); | 
 |  | 
 | 	return kvm; | 
 | } | 
 |  | 
 | static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	vcpu_load(vcpu); | 
 | 	kvm_mmu_unload(vcpu); | 
 | 	vcpu_put(vcpu); | 
 | } | 
 |  | 
 | static void kvm_free_vcpus(struct kvm *kvm) | 
 | { | 
 | 	unsigned int i; | 
 |  | 
 | 	/* | 
 | 	 * Unpin any mmu pages first. | 
 | 	 */ | 
 | 	for (i = 0; i < KVM_MAX_VCPUS; ++i) | 
 | 		if (kvm->vcpus[i]) | 
 | 			kvm_unload_vcpu_mmu(kvm->vcpus[i]); | 
 | 	for (i = 0; i < KVM_MAX_VCPUS; ++i) { | 
 | 		if (kvm->vcpus[i]) { | 
 | 			kvm_arch_vcpu_free(kvm->vcpus[i]); | 
 | 			kvm->vcpus[i] = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 | void kvm_arch_destroy_vm(struct kvm *kvm) | 
 | { | 
 | 	kvm_free_pit(kvm); | 
 | 	kfree(kvm->arch.vpic); | 
 | 	kfree(kvm->arch.vioapic); | 
 | 	kvm_free_vcpus(kvm); | 
 | 	kvm_free_physmem(kvm); | 
 | 	if (kvm->arch.apic_access_page) | 
 | 		put_page(kvm->arch.apic_access_page); | 
 | 	kfree(kvm); | 
 | } | 
 |  | 
 | int kvm_arch_set_memory_region(struct kvm *kvm, | 
 | 				struct kvm_userspace_memory_region *mem, | 
 | 				struct kvm_memory_slot old, | 
 | 				int user_alloc) | 
 | { | 
 | 	int npages = mem->memory_size >> PAGE_SHIFT; | 
 | 	struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot]; | 
 |  | 
 | 	/*To keep backward compatibility with older userspace, | 
 | 	 *x86 needs to hanlde !user_alloc case. | 
 | 	 */ | 
 | 	if (!user_alloc) { | 
 | 		if (npages && !old.rmap) { | 
 | 			down_write(¤t->mm->mmap_sem); | 
 | 			memslot->userspace_addr = do_mmap(NULL, 0, | 
 | 						     npages * PAGE_SIZE, | 
 | 						     PROT_READ | PROT_WRITE, | 
 | 						     MAP_SHARED | MAP_ANONYMOUS, | 
 | 						     0); | 
 | 			up_write(¤t->mm->mmap_sem); | 
 |  | 
 | 			if (IS_ERR((void *)memslot->userspace_addr)) | 
 | 				return PTR_ERR((void *)memslot->userspace_addr); | 
 | 		} else { | 
 | 			if (!old.user_alloc && old.rmap) { | 
 | 				int ret; | 
 |  | 
 | 				down_write(¤t->mm->mmap_sem); | 
 | 				ret = do_munmap(current->mm, old.userspace_addr, | 
 | 						old.npages * PAGE_SIZE); | 
 | 				up_write(¤t->mm->mmap_sem); | 
 | 				if (ret < 0) | 
 | 					printk(KERN_WARNING | 
 | 				       "kvm_vm_ioctl_set_memory_region: " | 
 | 				       "failed to munmap memory\n"); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!kvm->arch.n_requested_mmu_pages) { | 
 | 		unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); | 
 | 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); | 
 | 	} | 
 |  | 
 | 	kvm_mmu_slot_remove_write_access(kvm, mem->slot); | 
 | 	kvm_flush_remote_tlbs(kvm); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE | 
 | 	       || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED; | 
 | } | 
 |  | 
 | static void vcpu_kick_intr(void *info) | 
 | { | 
 | #ifdef DEBUG | 
 | 	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info; | 
 | 	printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu); | 
 | #endif | 
 | } | 
 |  | 
 | void kvm_vcpu_kick(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int ipi_pcpu = vcpu->cpu; | 
 | 	int cpu = get_cpu(); | 
 |  | 
 | 	if (waitqueue_active(&vcpu->wq)) { | 
 | 		wake_up_interruptible(&vcpu->wq); | 
 | 		++vcpu->stat.halt_wakeup; | 
 | 	} | 
 | 	/* | 
 | 	 * We may be called synchronously with irqs disabled in guest mode, | 
 | 	 * So need not to call smp_call_function_single() in that case. | 
 | 	 */ | 
 | 	if (vcpu->guest_mode && vcpu->cpu != cpu) | 
 | 		smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0, 0); | 
 | 	put_cpu(); | 
 | } |