| /*  $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $ | 
 |  *  arch/sparc64/mm/init.c | 
 |  * | 
 |  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu) | 
 |  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz) | 
 |  */ | 
 |   | 
 | #include <linux/config.h> | 
 | #include <linux/module.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/string.h> | 
 | #include <linux/init.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/initrd.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/kprobes.h> | 
 | #include <linux/cache.h> | 
 | #include <linux/sort.h> | 
 |  | 
 | #include <asm/head.h> | 
 | #include <asm/system.h> | 
 | #include <asm/page.h> | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/oplib.h> | 
 | #include <asm/iommu.h> | 
 | #include <asm/io.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/dma.h> | 
 | #include <asm/starfire.h> | 
 | #include <asm/tlb.h> | 
 | #include <asm/spitfire.h> | 
 | #include <asm/sections.h> | 
 | #include <asm/tsb.h> | 
 | #include <asm/hypervisor.h> | 
 | #include <asm/prom.h> | 
 |  | 
 | extern void device_scan(void); | 
 |  | 
 | #define MAX_PHYS_ADDRESS	(1UL << 42UL) | 
 | #define KPTE_BITMAP_CHUNK_SZ	(256UL * 1024UL * 1024UL) | 
 | #define KPTE_BITMAP_BYTES	\ | 
 | 	((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8) | 
 |  | 
 | unsigned long kern_linear_pte_xor[2] __read_mostly; | 
 |  | 
 | /* A bitmap, one bit for every 256MB of physical memory.  If the bit | 
 |  * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else | 
 |  * if set we should use a 256MB page (via kern_linear_pte_xor[1]). | 
 |  */ | 
 | unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)]; | 
 |  | 
 | /* A special kernel TSB for 4MB and 256MB linear mappings.  */ | 
 | struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES]; | 
 |  | 
 | #define MAX_BANKS	32 | 
 |  | 
 | static struct linux_prom64_registers pavail[MAX_BANKS] __initdata; | 
 | static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata; | 
 | static int pavail_ents __initdata; | 
 | static int pavail_rescan_ents __initdata; | 
 |  | 
 | static int cmp_p64(const void *a, const void *b) | 
 | { | 
 | 	const struct linux_prom64_registers *x = a, *y = b; | 
 |  | 
 | 	if (x->phys_addr > y->phys_addr) | 
 | 		return 1; | 
 | 	if (x->phys_addr < y->phys_addr) | 
 | 		return -1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __init read_obp_memory(const char *property, | 
 | 				   struct linux_prom64_registers *regs, | 
 | 				   int *num_ents) | 
 | { | 
 | 	int node = prom_finddevice("/memory"); | 
 | 	int prop_size = prom_getproplen(node, property); | 
 | 	int ents, ret, i; | 
 |  | 
 | 	ents = prop_size / sizeof(struct linux_prom64_registers); | 
 | 	if (ents > MAX_BANKS) { | 
 | 		prom_printf("The machine has more %s property entries than " | 
 | 			    "this kernel can support (%d).\n", | 
 | 			    property, MAX_BANKS); | 
 | 		prom_halt(); | 
 | 	} | 
 |  | 
 | 	ret = prom_getproperty(node, property, (char *) regs, prop_size); | 
 | 	if (ret == -1) { | 
 | 		prom_printf("Couldn't get %s property from /memory.\n"); | 
 | 		prom_halt(); | 
 | 	} | 
 |  | 
 | 	/* Sanitize what we got from the firmware, by page aligning | 
 | 	 * everything. | 
 | 	 */ | 
 | 	for (i = 0; i < ents; i++) { | 
 | 		unsigned long base, size; | 
 |  | 
 | 		base = regs[i].phys_addr; | 
 | 		size = regs[i].reg_size; | 
 |  | 
 | 		size &= PAGE_MASK; | 
 | 		if (base & ~PAGE_MASK) { | 
 | 			unsigned long new_base = PAGE_ALIGN(base); | 
 |  | 
 | 			size -= new_base - base; | 
 | 			if ((long) size < 0L) | 
 | 				size = 0UL; | 
 | 			base = new_base; | 
 | 		} | 
 | 		regs[i].phys_addr = base; | 
 | 		regs[i].reg_size = size; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < ents; i++) { | 
 | 		if (regs[i].reg_size == 0UL) { | 
 | 			int j; | 
 |  | 
 | 			for (j = i; j < ents - 1; j++) { | 
 | 				regs[j].phys_addr = | 
 | 					regs[j+1].phys_addr; | 
 | 				regs[j].reg_size = | 
 | 					regs[j+1].reg_size; | 
 | 			} | 
 |  | 
 | 			ents--; | 
 | 			i--; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	*num_ents = ents; | 
 |  | 
 | 	sort(regs, ents, sizeof(struct linux_prom64_registers), | 
 | 	     cmp_p64, NULL); | 
 | } | 
 |  | 
 | unsigned long *sparc64_valid_addr_bitmap __read_mostly; | 
 |  | 
 | /* Kernel physical address base and size in bytes.  */ | 
 | unsigned long kern_base __read_mostly; | 
 | unsigned long kern_size __read_mostly; | 
 |  | 
 | /* get_new_mmu_context() uses "cache + 1".  */ | 
 | DEFINE_SPINLOCK(ctx_alloc_lock); | 
 | unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1; | 
 | #define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6)) | 
 | unsigned long mmu_context_bmap[CTX_BMAP_SLOTS]; | 
 |  | 
 | /* References to special section boundaries */ | 
 | extern char  _start[], _end[]; | 
 |  | 
 | /* Initial ramdisk setup */ | 
 | extern unsigned long sparc_ramdisk_image64; | 
 | extern unsigned int sparc_ramdisk_image; | 
 | extern unsigned int sparc_ramdisk_size; | 
 |  | 
 | struct page *mem_map_zero __read_mostly; | 
 |  | 
 | unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly; | 
 |  | 
 | unsigned long sparc64_kern_pri_context __read_mostly; | 
 | unsigned long sparc64_kern_pri_nuc_bits __read_mostly; | 
 | unsigned long sparc64_kern_sec_context __read_mostly; | 
 |  | 
 | int bigkernel = 0; | 
 |  | 
 | kmem_cache_t *pgtable_cache __read_mostly; | 
 |  | 
 | static void zero_ctor(void *addr, kmem_cache_t *cache, unsigned long flags) | 
 | { | 
 | 	clear_page(addr); | 
 | } | 
 |  | 
 | extern void tsb_cache_init(void); | 
 |  | 
 | void pgtable_cache_init(void) | 
 | { | 
 | 	pgtable_cache = kmem_cache_create("pgtable_cache", | 
 | 					  PAGE_SIZE, PAGE_SIZE, | 
 | 					  SLAB_HWCACHE_ALIGN | | 
 | 					  SLAB_MUST_HWCACHE_ALIGN, | 
 | 					  zero_ctor, | 
 | 					  NULL); | 
 | 	if (!pgtable_cache) { | 
 | 		prom_printf("Could not create pgtable_cache\n"); | 
 | 		prom_halt(); | 
 | 	} | 
 | 	tsb_cache_init(); | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEBUG_DCFLUSH | 
 | atomic_t dcpage_flushes = ATOMIC_INIT(0); | 
 | #ifdef CONFIG_SMP | 
 | atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0); | 
 | #endif | 
 | #endif | 
 |  | 
 | inline void flush_dcache_page_impl(struct page *page) | 
 | { | 
 | 	BUG_ON(tlb_type == hypervisor); | 
 | #ifdef CONFIG_DEBUG_DCFLUSH | 
 | 	atomic_inc(&dcpage_flushes); | 
 | #endif | 
 |  | 
 | #ifdef DCACHE_ALIASING_POSSIBLE | 
 | 	__flush_dcache_page(page_address(page), | 
 | 			    ((tlb_type == spitfire) && | 
 | 			     page_mapping(page) != NULL)); | 
 | #else | 
 | 	if (page_mapping(page) != NULL && | 
 | 	    tlb_type == spitfire) | 
 | 		__flush_icache_page(__pa(page_address(page))); | 
 | #endif | 
 | } | 
 |  | 
 | #define PG_dcache_dirty		PG_arch_1 | 
 | #define PG_dcache_cpu_shift	24UL | 
 | #define PG_dcache_cpu_mask	(256UL - 1UL) | 
 |  | 
 | #if NR_CPUS > 256 | 
 | #error D-cache dirty tracking and thread_info->cpu need fixing for > 256 cpus | 
 | #endif | 
 |  | 
 | #define dcache_dirty_cpu(page) \ | 
 | 	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask) | 
 |  | 
 | static __inline__ void set_dcache_dirty(struct page *page, int this_cpu) | 
 | { | 
 | 	unsigned long mask = this_cpu; | 
 | 	unsigned long non_cpu_bits; | 
 |  | 
 | 	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift); | 
 | 	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty); | 
 |  | 
 | 	__asm__ __volatile__("1:\n\t" | 
 | 			     "ldx	[%2], %%g7\n\t" | 
 | 			     "and	%%g7, %1, %%g1\n\t" | 
 | 			     "or	%%g1, %0, %%g1\n\t" | 
 | 			     "casx	[%2], %%g7, %%g1\n\t" | 
 | 			     "cmp	%%g7, %%g1\n\t" | 
 | 			     "membar	#StoreLoad | #StoreStore\n\t" | 
 | 			     "bne,pn	%%xcc, 1b\n\t" | 
 | 			     " nop" | 
 | 			     : /* no outputs */ | 
 | 			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags) | 
 | 			     : "g1", "g7"); | 
 | } | 
 |  | 
 | static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu) | 
 | { | 
 | 	unsigned long mask = (1UL << PG_dcache_dirty); | 
 |  | 
 | 	__asm__ __volatile__("! test_and_clear_dcache_dirty\n" | 
 | 			     "1:\n\t" | 
 | 			     "ldx	[%2], %%g7\n\t" | 
 | 			     "srlx	%%g7, %4, %%g1\n\t" | 
 | 			     "and	%%g1, %3, %%g1\n\t" | 
 | 			     "cmp	%%g1, %0\n\t" | 
 | 			     "bne,pn	%%icc, 2f\n\t" | 
 | 			     " andn	%%g7, %1, %%g1\n\t" | 
 | 			     "casx	[%2], %%g7, %%g1\n\t" | 
 | 			     "cmp	%%g7, %%g1\n\t" | 
 | 			     "membar	#StoreLoad | #StoreStore\n\t" | 
 | 			     "bne,pn	%%xcc, 1b\n\t" | 
 | 			     " nop\n" | 
 | 			     "2:" | 
 | 			     : /* no outputs */ | 
 | 			     : "r" (cpu), "r" (mask), "r" (&page->flags), | 
 | 			       "i" (PG_dcache_cpu_mask), | 
 | 			       "i" (PG_dcache_cpu_shift) | 
 | 			     : "g1", "g7"); | 
 | } | 
 |  | 
 | static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte) | 
 | { | 
 | 	unsigned long tsb_addr = (unsigned long) ent; | 
 |  | 
 | 	if (tlb_type == cheetah_plus || tlb_type == hypervisor) | 
 | 		tsb_addr = __pa(tsb_addr); | 
 |  | 
 | 	__tsb_insert(tsb_addr, tag, pte); | 
 | } | 
 |  | 
 | unsigned long _PAGE_ALL_SZ_BITS __read_mostly; | 
 | unsigned long _PAGE_SZBITS __read_mostly; | 
 |  | 
 | void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte) | 
 | { | 
 | 	struct mm_struct *mm; | 
 | 	struct tsb *tsb; | 
 | 	unsigned long tag, flags; | 
 | 	unsigned long tsb_index, tsb_hash_shift; | 
 |  | 
 | 	if (tlb_type != hypervisor) { | 
 | 		unsigned long pfn = pte_pfn(pte); | 
 | 		unsigned long pg_flags; | 
 | 		struct page *page; | 
 |  | 
 | 		if (pfn_valid(pfn) && | 
 | 		    (page = pfn_to_page(pfn), page_mapping(page)) && | 
 | 		    ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) { | 
 | 			int cpu = ((pg_flags >> PG_dcache_cpu_shift) & | 
 | 				   PG_dcache_cpu_mask); | 
 | 			int this_cpu = get_cpu(); | 
 |  | 
 | 			/* This is just to optimize away some function calls | 
 | 			 * in the SMP case. | 
 | 			 */ | 
 | 			if (cpu == this_cpu) | 
 | 				flush_dcache_page_impl(page); | 
 | 			else | 
 | 				smp_flush_dcache_page_impl(page, cpu); | 
 |  | 
 | 			clear_dcache_dirty_cpu(page, cpu); | 
 |  | 
 | 			put_cpu(); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	mm = vma->vm_mm; | 
 |  | 
 | 	tsb_index = MM_TSB_BASE; | 
 | 	tsb_hash_shift = PAGE_SHIFT; | 
 |  | 
 | 	spin_lock_irqsave(&mm->context.lock, flags); | 
 |  | 
 | #ifdef CONFIG_HUGETLB_PAGE | 
 | 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) { | 
 | 		if ((tlb_type == hypervisor && | 
 | 		     (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) || | 
 | 		    (tlb_type != hypervisor && | 
 | 		     (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) { | 
 | 			tsb_index = MM_TSB_HUGE; | 
 | 			tsb_hash_shift = HPAGE_SHIFT; | 
 | 		} | 
 | 	} | 
 | #endif | 
 |  | 
 | 	tsb = mm->context.tsb_block[tsb_index].tsb; | 
 | 	tsb += ((address >> tsb_hash_shift) & | 
 | 		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL)); | 
 | 	tag = (address >> 22UL); | 
 | 	tsb_insert(tsb, tag, pte_val(pte)); | 
 |  | 
 | 	spin_unlock_irqrestore(&mm->context.lock, flags); | 
 | } | 
 |  | 
 | void flush_dcache_page(struct page *page) | 
 | { | 
 | 	struct address_space *mapping; | 
 | 	int this_cpu; | 
 |  | 
 | 	if (tlb_type == hypervisor) | 
 | 		return; | 
 |  | 
 | 	/* Do not bother with the expensive D-cache flush if it | 
 | 	 * is merely the zero page.  The 'bigcore' testcase in GDB | 
 | 	 * causes this case to run millions of times. | 
 | 	 */ | 
 | 	if (page == ZERO_PAGE(0)) | 
 | 		return; | 
 |  | 
 | 	this_cpu = get_cpu(); | 
 |  | 
 | 	mapping = page_mapping(page); | 
 | 	if (mapping && !mapping_mapped(mapping)) { | 
 | 		int dirty = test_bit(PG_dcache_dirty, &page->flags); | 
 | 		if (dirty) { | 
 | 			int dirty_cpu = dcache_dirty_cpu(page); | 
 |  | 
 | 			if (dirty_cpu == this_cpu) | 
 | 				goto out; | 
 | 			smp_flush_dcache_page_impl(page, dirty_cpu); | 
 | 		} | 
 | 		set_dcache_dirty(page, this_cpu); | 
 | 	} else { | 
 | 		/* We could delay the flush for the !page_mapping | 
 | 		 * case too.  But that case is for exec env/arg | 
 | 		 * pages and those are %99 certainly going to get | 
 | 		 * faulted into the tlb (and thus flushed) anyways. | 
 | 		 */ | 
 | 		flush_dcache_page_impl(page); | 
 | 	} | 
 |  | 
 | out: | 
 | 	put_cpu(); | 
 | } | 
 |  | 
 | void __kprobes flush_icache_range(unsigned long start, unsigned long end) | 
 | { | 
 | 	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */ | 
 | 	if (tlb_type == spitfire) { | 
 | 		unsigned long kaddr; | 
 |  | 
 | 		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) | 
 | 			__flush_icache_page(__get_phys(kaddr)); | 
 | 	} | 
 | } | 
 |  | 
 | void show_mem(void) | 
 | { | 
 | 	printk("Mem-info:\n"); | 
 | 	show_free_areas(); | 
 | 	printk("Free swap:       %6ldkB\n", | 
 | 	       nr_swap_pages << (PAGE_SHIFT-10)); | 
 | 	printk("%ld pages of RAM\n", num_physpages); | 
 | 	printk("%d free pages\n", nr_free_pages()); | 
 | } | 
 |  | 
 | void mmu_info(struct seq_file *m) | 
 | { | 
 | 	if (tlb_type == cheetah) | 
 | 		seq_printf(m, "MMU Type\t: Cheetah\n"); | 
 | 	else if (tlb_type == cheetah_plus) | 
 | 		seq_printf(m, "MMU Type\t: Cheetah+\n"); | 
 | 	else if (tlb_type == spitfire) | 
 | 		seq_printf(m, "MMU Type\t: Spitfire\n"); | 
 | 	else if (tlb_type == hypervisor) | 
 | 		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n"); | 
 | 	else | 
 | 		seq_printf(m, "MMU Type\t: ???\n"); | 
 |  | 
 | #ifdef CONFIG_DEBUG_DCFLUSH | 
 | 	seq_printf(m, "DCPageFlushes\t: %d\n", | 
 | 		   atomic_read(&dcpage_flushes)); | 
 | #ifdef CONFIG_SMP | 
 | 	seq_printf(m, "DCPageFlushesXC\t: %d\n", | 
 | 		   atomic_read(&dcpage_flushes_xcall)); | 
 | #endif /* CONFIG_SMP */ | 
 | #endif /* CONFIG_DEBUG_DCFLUSH */ | 
 | } | 
 |  | 
 | struct linux_prom_translation { | 
 | 	unsigned long virt; | 
 | 	unsigned long size; | 
 | 	unsigned long data; | 
 | }; | 
 |  | 
 | /* Exported for kernel TLB miss handling in ktlb.S */ | 
 | struct linux_prom_translation prom_trans[512] __read_mostly; | 
 | unsigned int prom_trans_ents __read_mostly; | 
 |  | 
 | /* Exported for SMP bootup purposes. */ | 
 | unsigned long kern_locked_tte_data; | 
 |  | 
 | /* The obp translations are saved based on 8k pagesize, since obp can | 
 |  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS -> | 
 |  * HI_OBP_ADDRESS range are handled in ktlb.S. | 
 |  */ | 
 | static inline int in_obp_range(unsigned long vaddr) | 
 | { | 
 | 	return (vaddr >= LOW_OBP_ADDRESS && | 
 | 		vaddr < HI_OBP_ADDRESS); | 
 | } | 
 |  | 
 | static int cmp_ptrans(const void *a, const void *b) | 
 | { | 
 | 	const struct linux_prom_translation *x = a, *y = b; | 
 |  | 
 | 	if (x->virt > y->virt) | 
 | 		return 1; | 
 | 	if (x->virt < y->virt) | 
 | 		return -1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Read OBP translations property into 'prom_trans[]'.  */ | 
 | static void __init read_obp_translations(void) | 
 | { | 
 | 	int n, node, ents, first, last, i; | 
 |  | 
 | 	node = prom_finddevice("/virtual-memory"); | 
 | 	n = prom_getproplen(node, "translations"); | 
 | 	if (unlikely(n == 0 || n == -1)) { | 
 | 		prom_printf("prom_mappings: Couldn't get size.\n"); | 
 | 		prom_halt(); | 
 | 	} | 
 | 	if (unlikely(n > sizeof(prom_trans))) { | 
 | 		prom_printf("prom_mappings: Size %Zd is too big.\n", n); | 
 | 		prom_halt(); | 
 | 	} | 
 |  | 
 | 	if ((n = prom_getproperty(node, "translations", | 
 | 				  (char *)&prom_trans[0], | 
 | 				  sizeof(prom_trans))) == -1) { | 
 | 		prom_printf("prom_mappings: Couldn't get property.\n"); | 
 | 		prom_halt(); | 
 | 	} | 
 |  | 
 | 	n = n / sizeof(struct linux_prom_translation); | 
 |  | 
 | 	ents = n; | 
 |  | 
 | 	sort(prom_trans, ents, sizeof(struct linux_prom_translation), | 
 | 	     cmp_ptrans, NULL); | 
 |  | 
 | 	/* Now kick out all the non-OBP entries.  */ | 
 | 	for (i = 0; i < ents; i++) { | 
 | 		if (in_obp_range(prom_trans[i].virt)) | 
 | 			break; | 
 | 	} | 
 | 	first = i; | 
 | 	for (; i < ents; i++) { | 
 | 		if (!in_obp_range(prom_trans[i].virt)) | 
 | 			break; | 
 | 	} | 
 | 	last = i; | 
 |  | 
 | 	for (i = 0; i < (last - first); i++) { | 
 | 		struct linux_prom_translation *src = &prom_trans[i + first]; | 
 | 		struct linux_prom_translation *dest = &prom_trans[i]; | 
 |  | 
 | 		*dest = *src; | 
 | 	} | 
 | 	for (; i < ents; i++) { | 
 | 		struct linux_prom_translation *dest = &prom_trans[i]; | 
 | 		dest->virt = dest->size = dest->data = 0x0UL; | 
 | 	} | 
 |  | 
 | 	prom_trans_ents = last - first; | 
 |  | 
 | 	if (tlb_type == spitfire) { | 
 | 		/* Clear diag TTE bits. */ | 
 | 		for (i = 0; i < prom_trans_ents; i++) | 
 | 			prom_trans[i].data &= ~0x0003fe0000000000UL; | 
 | 	} | 
 | } | 
 |  | 
 | static void __init hypervisor_tlb_lock(unsigned long vaddr, | 
 | 				       unsigned long pte, | 
 | 				       unsigned long mmu) | 
 | { | 
 | 	register unsigned long func asm("%o5"); | 
 | 	register unsigned long arg0 asm("%o0"); | 
 | 	register unsigned long arg1 asm("%o1"); | 
 | 	register unsigned long arg2 asm("%o2"); | 
 | 	register unsigned long arg3 asm("%o3"); | 
 |  | 
 | 	func = HV_FAST_MMU_MAP_PERM_ADDR; | 
 | 	arg0 = vaddr; | 
 | 	arg1 = 0; | 
 | 	arg2 = pte; | 
 | 	arg3 = mmu; | 
 | 	__asm__ __volatile__("ta	0x80" | 
 | 			     : "=&r" (func), "=&r" (arg0), | 
 | 			       "=&r" (arg1), "=&r" (arg2), | 
 | 			       "=&r" (arg3) | 
 | 			     : "0" (func), "1" (arg0), "2" (arg1), | 
 | 			       "3" (arg2), "4" (arg3)); | 
 | 	if (arg0 != 0) { | 
 | 		prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: " | 
 | 			    "errors with %lx\n", vaddr, 0, pte, mmu, arg0); | 
 | 		prom_halt(); | 
 | 	} | 
 | } | 
 |  | 
 | static unsigned long kern_large_tte(unsigned long paddr); | 
 |  | 
 | static void __init remap_kernel(void) | 
 | { | 
 | 	unsigned long phys_page, tte_vaddr, tte_data; | 
 | 	int tlb_ent = sparc64_highest_locked_tlbent(); | 
 |  | 
 | 	tte_vaddr = (unsigned long) KERNBASE; | 
 | 	phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL; | 
 | 	tte_data = kern_large_tte(phys_page); | 
 |  | 
 | 	kern_locked_tte_data = tte_data; | 
 |  | 
 | 	/* Now lock us into the TLBs via Hypervisor or OBP. */ | 
 | 	if (tlb_type == hypervisor) { | 
 | 		hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU); | 
 | 		hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU); | 
 | 		if (bigkernel) { | 
 | 			tte_vaddr += 0x400000; | 
 | 			tte_data += 0x400000; | 
 | 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU); | 
 | 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU); | 
 | 		} | 
 | 	} else { | 
 | 		prom_dtlb_load(tlb_ent, tte_data, tte_vaddr); | 
 | 		prom_itlb_load(tlb_ent, tte_data, tte_vaddr); | 
 | 		if (bigkernel) { | 
 | 			tlb_ent -= 1; | 
 | 			prom_dtlb_load(tlb_ent, | 
 | 				       tte_data + 0x400000,  | 
 | 				       tte_vaddr + 0x400000); | 
 | 			prom_itlb_load(tlb_ent, | 
 | 				       tte_data + 0x400000,  | 
 | 				       tte_vaddr + 0x400000); | 
 | 		} | 
 | 		sparc64_highest_unlocked_tlb_ent = tlb_ent - 1; | 
 | 	} | 
 | 	if (tlb_type == cheetah_plus) { | 
 | 		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 | | 
 | 					    CTX_CHEETAH_PLUS_NUC); | 
 | 		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC; | 
 | 		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0; | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static void __init inherit_prom_mappings(void) | 
 | { | 
 | 	read_obp_translations(); | 
 |  | 
 | 	/* Now fixup OBP's idea about where we really are mapped. */ | 
 | 	prom_printf("Remapping the kernel... "); | 
 | 	remap_kernel(); | 
 | 	prom_printf("done.\n"); | 
 | } | 
 |  | 
 | void prom_world(int enter) | 
 | { | 
 | 	if (!enter) | 
 | 		set_fs((mm_segment_t) { get_thread_current_ds() }); | 
 |  | 
 | 	__asm__ __volatile__("flushw"); | 
 | } | 
 |  | 
 | #ifdef DCACHE_ALIASING_POSSIBLE | 
 | void __flush_dcache_range(unsigned long start, unsigned long end) | 
 | { | 
 | 	unsigned long va; | 
 |  | 
 | 	if (tlb_type == spitfire) { | 
 | 		int n = 0; | 
 |  | 
 | 		for (va = start; va < end; va += 32) { | 
 | 			spitfire_put_dcache_tag(va & 0x3fe0, 0x0); | 
 | 			if (++n >= 512) | 
 | 				break; | 
 | 		} | 
 | 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) { | 
 | 		start = __pa(start); | 
 | 		end = __pa(end); | 
 | 		for (va = start; va < end; va += 32) | 
 | 			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t" | 
 | 					     "membar #Sync" | 
 | 					     : /* no outputs */ | 
 | 					     : "r" (va), | 
 | 					       "i" (ASI_DCACHE_INVALIDATE)); | 
 | 	} | 
 | } | 
 | #endif /* DCACHE_ALIASING_POSSIBLE */ | 
 |  | 
 | /* Caller does TLB context flushing on local CPU if necessary. | 
 |  * The caller also ensures that CTX_VALID(mm->context) is false. | 
 |  * | 
 |  * We must be careful about boundary cases so that we never | 
 |  * let the user have CTX 0 (nucleus) or we ever use a CTX | 
 |  * version of zero (and thus NO_CONTEXT would not be caught | 
 |  * by version mis-match tests in mmu_context.h). | 
 |  * | 
 |  * Always invoked with interrupts disabled. | 
 |  */ | 
 | void get_new_mmu_context(struct mm_struct *mm) | 
 | { | 
 | 	unsigned long ctx, new_ctx; | 
 | 	unsigned long orig_pgsz_bits; | 
 | 	unsigned long flags; | 
 | 	int new_version; | 
 |  | 
 | 	spin_lock_irqsave(&ctx_alloc_lock, flags); | 
 | 	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK); | 
 | 	ctx = (tlb_context_cache + 1) & CTX_NR_MASK; | 
 | 	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx); | 
 | 	new_version = 0; | 
 | 	if (new_ctx >= (1 << CTX_NR_BITS)) { | 
 | 		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1); | 
 | 		if (new_ctx >= ctx) { | 
 | 			int i; | 
 | 			new_ctx = (tlb_context_cache & CTX_VERSION_MASK) + | 
 | 				CTX_FIRST_VERSION; | 
 | 			if (new_ctx == 1) | 
 | 				new_ctx = CTX_FIRST_VERSION; | 
 |  | 
 | 			/* Don't call memset, for 16 entries that's just | 
 | 			 * plain silly... | 
 | 			 */ | 
 | 			mmu_context_bmap[0] = 3; | 
 | 			mmu_context_bmap[1] = 0; | 
 | 			mmu_context_bmap[2] = 0; | 
 | 			mmu_context_bmap[3] = 0; | 
 | 			for (i = 4; i < CTX_BMAP_SLOTS; i += 4) { | 
 | 				mmu_context_bmap[i + 0] = 0; | 
 | 				mmu_context_bmap[i + 1] = 0; | 
 | 				mmu_context_bmap[i + 2] = 0; | 
 | 				mmu_context_bmap[i + 3] = 0; | 
 | 			} | 
 | 			new_version = 1; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 | 	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63)); | 
 | 	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK); | 
 | out: | 
 | 	tlb_context_cache = new_ctx; | 
 | 	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits; | 
 | 	spin_unlock_irqrestore(&ctx_alloc_lock, flags); | 
 |  | 
 | 	if (unlikely(new_version)) | 
 | 		smp_new_mmu_context_version(); | 
 | } | 
 |  | 
 | void sparc_ultra_dump_itlb(void) | 
 | { | 
 |         int slot; | 
 |  | 
 | 	if (tlb_type == spitfire) { | 
 | 		printk ("Contents of itlb: "); | 
 | 		for (slot = 0; slot < 14; slot++) printk ("    "); | 
 | 		printk ("%2x:%016lx,%016lx\n", | 
 | 			0, | 
 | 			spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0)); | 
 | 		for (slot = 1; slot < 64; slot+=3) { | 
 | 			printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",  | 
 | 				slot, | 
 | 				spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot), | 
 | 				slot+1, | 
 | 				spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1), | 
 | 				slot+2, | 
 | 				spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2)); | 
 | 		} | 
 | 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) { | 
 | 		printk ("Contents of itlb0:\n"); | 
 | 		for (slot = 0; slot < 16; slot+=2) { | 
 | 			printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n", | 
 | 				slot, | 
 | 				cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot), | 
 | 				slot+1, | 
 | 				cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1)); | 
 | 		} | 
 | 		printk ("Contents of itlb2:\n"); | 
 | 		for (slot = 0; slot < 128; slot+=2) { | 
 | 			printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n", | 
 | 				slot, | 
 | 				cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot), | 
 | 				slot+1, | 
 | 				cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1)); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | void sparc_ultra_dump_dtlb(void) | 
 | { | 
 |         int slot; | 
 |  | 
 | 	if (tlb_type == spitfire) { | 
 | 		printk ("Contents of dtlb: "); | 
 | 		for (slot = 0; slot < 14; slot++) printk ("    "); | 
 | 		printk ("%2x:%016lx,%016lx\n", 0, | 
 | 			spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0)); | 
 | 		for (slot = 1; slot < 64; slot+=3) { | 
 | 			printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",  | 
 | 				slot, | 
 | 				spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot), | 
 | 				slot+1, | 
 | 				spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1), | 
 | 				slot+2, | 
 | 				spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2)); | 
 | 		} | 
 | 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) { | 
 | 		printk ("Contents of dtlb0:\n"); | 
 | 		for (slot = 0; slot < 16; slot+=2) { | 
 | 			printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n", | 
 | 				slot, | 
 | 				cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot), | 
 | 				slot+1, | 
 | 				cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1)); | 
 | 		} | 
 | 		printk ("Contents of dtlb2:\n"); | 
 | 		for (slot = 0; slot < 512; slot+=2) { | 
 | 			printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n", | 
 | 				slot, | 
 | 				cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2), | 
 | 				slot+1, | 
 | 				cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2)); | 
 | 		} | 
 | 		if (tlb_type == cheetah_plus) { | 
 | 			printk ("Contents of dtlb3:\n"); | 
 | 			for (slot = 0; slot < 512; slot+=2) { | 
 | 				printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n", | 
 | 					slot, | 
 | 					cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3), | 
 | 					slot+1, | 
 | 					cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3)); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | extern unsigned long cmdline_memory_size; | 
 |  | 
 | /* Find a free area for the bootmem map, avoiding the kernel image | 
 |  * and the initial ramdisk. | 
 |  */ | 
 | static unsigned long __init choose_bootmap_pfn(unsigned long start_pfn, | 
 | 					       unsigned long end_pfn) | 
 | { | 
 | 	unsigned long avoid_start, avoid_end, bootmap_size; | 
 | 	int i; | 
 |  | 
 | 	bootmap_size = ((end_pfn - start_pfn) + 7) / 8; | 
 | 	bootmap_size = ALIGN(bootmap_size, sizeof(long)); | 
 |  | 
 | 	avoid_start = avoid_end = 0; | 
 | #ifdef CONFIG_BLK_DEV_INITRD | 
 | 	avoid_start = initrd_start; | 
 | 	avoid_end = PAGE_ALIGN(initrd_end); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_DEBUG_BOOTMEM | 
 | 	prom_printf("choose_bootmap_pfn: kern[%lx:%lx] avoid[%lx:%lx]\n", | 
 | 		    kern_base, PAGE_ALIGN(kern_base + kern_size), | 
 | 		    avoid_start, avoid_end); | 
 | #endif | 
 | 	for (i = 0; i < pavail_ents; i++) { | 
 | 		unsigned long start, end; | 
 |  | 
 | 		start = pavail[i].phys_addr; | 
 | 		end = start + pavail[i].reg_size; | 
 |  | 
 | 		while (start < end) { | 
 | 			if (start >= kern_base && | 
 | 			    start < PAGE_ALIGN(kern_base + kern_size)) { | 
 | 				start = PAGE_ALIGN(kern_base + kern_size); | 
 | 				continue; | 
 | 			} | 
 | 			if (start >= avoid_start && start < avoid_end) { | 
 | 				start = avoid_end; | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			if ((end - start) < bootmap_size) | 
 | 				break; | 
 |  | 
 | 			if (start < kern_base && | 
 | 			    (start + bootmap_size) > kern_base) { | 
 | 				start = PAGE_ALIGN(kern_base + kern_size); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			if (start < avoid_start && | 
 | 			    (start + bootmap_size) > avoid_start) { | 
 | 				start = avoid_end; | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			/* OK, it doesn't overlap anything, use it.  */ | 
 | #ifdef CONFIG_DEBUG_BOOTMEM | 
 | 			prom_printf("choose_bootmap_pfn: Using %lx [%lx]\n", | 
 | 				    start >> PAGE_SHIFT, start); | 
 | #endif | 
 | 			return start >> PAGE_SHIFT; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	prom_printf("Cannot find free area for bootmap, aborting.\n"); | 
 | 	prom_halt(); | 
 | } | 
 |  | 
 | static unsigned long __init bootmem_init(unsigned long *pages_avail, | 
 | 					 unsigned long phys_base) | 
 | { | 
 | 	unsigned long bootmap_size, end_pfn; | 
 | 	unsigned long end_of_phys_memory = 0UL; | 
 | 	unsigned long bootmap_pfn, bytes_avail, size; | 
 | 	int i; | 
 |  | 
 | #ifdef CONFIG_DEBUG_BOOTMEM | 
 | 	prom_printf("bootmem_init: Scan pavail, "); | 
 | #endif | 
 |  | 
 | 	bytes_avail = 0UL; | 
 | 	for (i = 0; i < pavail_ents; i++) { | 
 | 		end_of_phys_memory = pavail[i].phys_addr + | 
 | 			pavail[i].reg_size; | 
 | 		bytes_avail += pavail[i].reg_size; | 
 | 		if (cmdline_memory_size) { | 
 | 			if (bytes_avail > cmdline_memory_size) { | 
 | 				unsigned long slack = bytes_avail - cmdline_memory_size; | 
 |  | 
 | 				bytes_avail -= slack; | 
 | 				end_of_phys_memory -= slack; | 
 |  | 
 | 				pavail[i].reg_size -= slack; | 
 | 				if ((long)pavail[i].reg_size <= 0L) { | 
 | 					pavail[i].phys_addr = 0xdeadbeefUL; | 
 | 					pavail[i].reg_size = 0UL; | 
 | 					pavail_ents = i; | 
 | 				} else { | 
 | 					pavail[i+1].reg_size = 0Ul; | 
 | 					pavail[i+1].phys_addr = 0xdeadbeefUL; | 
 | 					pavail_ents = i + 1; | 
 | 				} | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	*pages_avail = bytes_avail >> PAGE_SHIFT; | 
 |  | 
 | 	end_pfn = end_of_phys_memory >> PAGE_SHIFT; | 
 |  | 
 | #ifdef CONFIG_BLK_DEV_INITRD | 
 | 	/* Now have to check initial ramdisk, so that bootmap does not overwrite it */ | 
 | 	if (sparc_ramdisk_image || sparc_ramdisk_image64) { | 
 | 		unsigned long ramdisk_image = sparc_ramdisk_image ? | 
 | 			sparc_ramdisk_image : sparc_ramdisk_image64; | 
 | 		if (ramdisk_image >= (unsigned long)_end - 2 * PAGE_SIZE) | 
 | 			ramdisk_image -= KERNBASE; | 
 | 		initrd_start = ramdisk_image + phys_base; | 
 | 		initrd_end = initrd_start + sparc_ramdisk_size; | 
 | 		if (initrd_end > end_of_phys_memory) { | 
 | 			printk(KERN_CRIT "initrd extends beyond end of memory " | 
 | 		                 	 "(0x%016lx > 0x%016lx)\ndisabling initrd\n", | 
 | 			       initrd_end, end_of_phys_memory); | 
 | 			initrd_start = 0; | 
 | 			initrd_end = 0; | 
 | 		} | 
 | 	} | 
 | #endif	 | 
 | 	/* Initialize the boot-time allocator. */ | 
 | 	max_pfn = max_low_pfn = end_pfn; | 
 | 	min_low_pfn = (phys_base >> PAGE_SHIFT); | 
 |  | 
 | 	bootmap_pfn = choose_bootmap_pfn(min_low_pfn, end_pfn); | 
 |  | 
 | #ifdef CONFIG_DEBUG_BOOTMEM | 
 | 	prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n", | 
 | 		    min_low_pfn, bootmap_pfn, max_low_pfn); | 
 | #endif | 
 | 	bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, | 
 | 					 min_low_pfn, end_pfn); | 
 |  | 
 | 	/* Now register the available physical memory with the | 
 | 	 * allocator. | 
 | 	 */ | 
 | 	for (i = 0; i < pavail_ents; i++) { | 
 | #ifdef CONFIG_DEBUG_BOOTMEM | 
 | 		prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n", | 
 | 			    i, pavail[i].phys_addr, pavail[i].reg_size); | 
 | #endif | 
 | 		free_bootmem(pavail[i].phys_addr, pavail[i].reg_size); | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_BLK_DEV_INITRD | 
 | 	if (initrd_start) { | 
 | 		size = initrd_end - initrd_start; | 
 |  | 
 | 		/* Resert the initrd image area. */ | 
 | #ifdef CONFIG_DEBUG_BOOTMEM | 
 | 		prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n", | 
 | 			initrd_start, initrd_end); | 
 | #endif | 
 | 		reserve_bootmem(initrd_start, size); | 
 | 		*pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT; | 
 |  | 
 | 		initrd_start += PAGE_OFFSET; | 
 | 		initrd_end += PAGE_OFFSET; | 
 | 	} | 
 | #endif | 
 | 	/* Reserve the kernel text/data/bss. */ | 
 | #ifdef CONFIG_DEBUG_BOOTMEM | 
 | 	prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size); | 
 | #endif | 
 | 	reserve_bootmem(kern_base, kern_size); | 
 | 	*pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT; | 
 |  | 
 | 	/* Reserve the bootmem map.   We do not account for it | 
 | 	 * in pages_avail because we will release that memory | 
 | 	 * in free_all_bootmem. | 
 | 	 */ | 
 | 	size = bootmap_size; | 
 | #ifdef CONFIG_DEBUG_BOOTMEM | 
 | 	prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n", | 
 | 		    (bootmap_pfn << PAGE_SHIFT), size); | 
 | #endif | 
 | 	reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size); | 
 | 	*pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT; | 
 |  | 
 | 	for (i = 0; i < pavail_ents; i++) { | 
 | 		unsigned long start_pfn, end_pfn; | 
 |  | 
 | 		start_pfn = pavail[i].phys_addr >> PAGE_SHIFT; | 
 | 		end_pfn = (start_pfn + (pavail[i].reg_size >> PAGE_SHIFT)); | 
 | #ifdef CONFIG_DEBUG_BOOTMEM | 
 | 		prom_printf("memory_present(0, %lx, %lx)\n", | 
 | 			    start_pfn, end_pfn); | 
 | #endif | 
 | 		memory_present(0, start_pfn, end_pfn); | 
 | 	} | 
 |  | 
 | 	sparse_init(); | 
 |  | 
 | 	return end_pfn; | 
 | } | 
 |  | 
 | static struct linux_prom64_registers pall[MAX_BANKS] __initdata; | 
 | static int pall_ents __initdata; | 
 |  | 
 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
 | static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot) | 
 | { | 
 | 	unsigned long vstart = PAGE_OFFSET + pstart; | 
 | 	unsigned long vend = PAGE_OFFSET + pend; | 
 | 	unsigned long alloc_bytes = 0UL; | 
 |  | 
 | 	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) { | 
 | 		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n", | 
 | 			    vstart, vend); | 
 | 		prom_halt(); | 
 | 	} | 
 |  | 
 | 	while (vstart < vend) { | 
 | 		unsigned long this_end, paddr = __pa(vstart); | 
 | 		pgd_t *pgd = pgd_offset_k(vstart); | 
 | 		pud_t *pud; | 
 | 		pmd_t *pmd; | 
 | 		pte_t *pte; | 
 |  | 
 | 		pud = pud_offset(pgd, vstart); | 
 | 		if (pud_none(*pud)) { | 
 | 			pmd_t *new; | 
 |  | 
 | 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); | 
 | 			alloc_bytes += PAGE_SIZE; | 
 | 			pud_populate(&init_mm, pud, new); | 
 | 		} | 
 |  | 
 | 		pmd = pmd_offset(pud, vstart); | 
 | 		if (!pmd_present(*pmd)) { | 
 | 			pte_t *new; | 
 |  | 
 | 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); | 
 | 			alloc_bytes += PAGE_SIZE; | 
 | 			pmd_populate_kernel(&init_mm, pmd, new); | 
 | 		} | 
 |  | 
 | 		pte = pte_offset_kernel(pmd, vstart); | 
 | 		this_end = (vstart + PMD_SIZE) & PMD_MASK; | 
 | 		if (this_end > vend) | 
 | 			this_end = vend; | 
 |  | 
 | 		while (vstart < this_end) { | 
 | 			pte_val(*pte) = (paddr | pgprot_val(prot)); | 
 |  | 
 | 			vstart += PAGE_SIZE; | 
 | 			paddr += PAGE_SIZE; | 
 | 			pte++; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return alloc_bytes; | 
 | } | 
 |  | 
 | extern unsigned int kvmap_linear_patch[1]; | 
 | #endif /* CONFIG_DEBUG_PAGEALLOC */ | 
 |  | 
 | static void __init mark_kpte_bitmap(unsigned long start, unsigned long end) | 
 | { | 
 | 	const unsigned long shift_256MB = 28; | 
 | 	const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL); | 
 | 	const unsigned long size_256MB = (1UL << shift_256MB); | 
 |  | 
 | 	while (start < end) { | 
 | 		long remains; | 
 |  | 
 | 		remains = end - start; | 
 | 		if (remains < size_256MB) | 
 | 			break; | 
 |  | 
 | 		if (start & mask_256MB) { | 
 | 			start = (start + size_256MB) & ~mask_256MB; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		while (remains >= size_256MB) { | 
 | 			unsigned long index = start >> shift_256MB; | 
 |  | 
 | 			__set_bit(index, kpte_linear_bitmap); | 
 |  | 
 | 			start += size_256MB; | 
 | 			remains -= size_256MB; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void __init kernel_physical_mapping_init(void) | 
 | { | 
 | 	unsigned long i; | 
 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
 | 	unsigned long mem_alloced = 0UL; | 
 | #endif | 
 |  | 
 | 	read_obp_memory("reg", &pall[0], &pall_ents); | 
 |  | 
 | 	for (i = 0; i < pall_ents; i++) { | 
 | 		unsigned long phys_start, phys_end; | 
 |  | 
 | 		phys_start = pall[i].phys_addr; | 
 | 		phys_end = phys_start + pall[i].reg_size; | 
 |  | 
 | 		mark_kpte_bitmap(phys_start, phys_end); | 
 |  | 
 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
 | 		mem_alloced += kernel_map_range(phys_start, phys_end, | 
 | 						PAGE_KERNEL); | 
 | #endif | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
 | 	printk("Allocated %ld bytes for kernel page tables.\n", | 
 | 	       mem_alloced); | 
 |  | 
 | 	kvmap_linear_patch[0] = 0x01000000; /* nop */ | 
 | 	flushi(&kvmap_linear_patch[0]); | 
 |  | 
 | 	__flush_tlb_all(); | 
 | #endif | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
 | void kernel_map_pages(struct page *page, int numpages, int enable) | 
 | { | 
 | 	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT; | 
 | 	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE); | 
 |  | 
 | 	kernel_map_range(phys_start, phys_end, | 
 | 			 (enable ? PAGE_KERNEL : __pgprot(0))); | 
 |  | 
 | 	flush_tsb_kernel_range(PAGE_OFFSET + phys_start, | 
 | 			       PAGE_OFFSET + phys_end); | 
 |  | 
 | 	/* we should perform an IPI and flush all tlbs, | 
 | 	 * but that can deadlock->flush only current cpu. | 
 | 	 */ | 
 | 	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start, | 
 | 				 PAGE_OFFSET + phys_end); | 
 | } | 
 | #endif | 
 |  | 
 | unsigned long __init find_ecache_flush_span(unsigned long size) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < pavail_ents; i++) { | 
 | 		if (pavail[i].reg_size >= size) | 
 | 			return pavail[i].phys_addr; | 
 | 	} | 
 |  | 
 | 	return ~0UL; | 
 | } | 
 |  | 
 | static void __init tsb_phys_patch(void) | 
 | { | 
 | 	struct tsb_ldquad_phys_patch_entry *pquad; | 
 | 	struct tsb_phys_patch_entry *p; | 
 |  | 
 | 	pquad = &__tsb_ldquad_phys_patch; | 
 | 	while (pquad < &__tsb_ldquad_phys_patch_end) { | 
 | 		unsigned long addr = pquad->addr; | 
 |  | 
 | 		if (tlb_type == hypervisor) | 
 | 			*(unsigned int *) addr = pquad->sun4v_insn; | 
 | 		else | 
 | 			*(unsigned int *) addr = pquad->sun4u_insn; | 
 | 		wmb(); | 
 | 		__asm__ __volatile__("flush	%0" | 
 | 				     : /* no outputs */ | 
 | 				     : "r" (addr)); | 
 |  | 
 | 		pquad++; | 
 | 	} | 
 |  | 
 | 	p = &__tsb_phys_patch; | 
 | 	while (p < &__tsb_phys_patch_end) { | 
 | 		unsigned long addr = p->addr; | 
 |  | 
 | 		*(unsigned int *) addr = p->insn; | 
 | 		wmb(); | 
 | 		__asm__ __volatile__("flush	%0" | 
 | 				     : /* no outputs */ | 
 | 				     : "r" (addr)); | 
 |  | 
 | 		p++; | 
 | 	} | 
 | } | 
 |  | 
 | /* Don't mark as init, we give this to the Hypervisor.  */ | 
 | static struct hv_tsb_descr ktsb_descr[2]; | 
 | extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES]; | 
 |  | 
 | static void __init sun4v_ktsb_init(void) | 
 | { | 
 | 	unsigned long ktsb_pa; | 
 |  | 
 | 	/* First KTSB for PAGE_SIZE mappings.  */ | 
 | 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE); | 
 |  | 
 | 	switch (PAGE_SIZE) { | 
 | 	case 8 * 1024: | 
 | 	default: | 
 | 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K; | 
 | 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K; | 
 | 		break; | 
 |  | 
 | 	case 64 * 1024: | 
 | 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K; | 
 | 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K; | 
 | 		break; | 
 |  | 
 | 	case 512 * 1024: | 
 | 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K; | 
 | 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K; | 
 | 		break; | 
 |  | 
 | 	case 4 * 1024 * 1024: | 
 | 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB; | 
 | 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB; | 
 | 		break; | 
 | 	}; | 
 |  | 
 | 	ktsb_descr[0].assoc = 1; | 
 | 	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES; | 
 | 	ktsb_descr[0].ctx_idx = 0; | 
 | 	ktsb_descr[0].tsb_base = ktsb_pa; | 
 | 	ktsb_descr[0].resv = 0; | 
 |  | 
 | 	/* Second KTSB for 4MB/256MB mappings.  */ | 
 | 	ktsb_pa = (kern_base + | 
 | 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE)); | 
 |  | 
 | 	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB; | 
 | 	ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB | | 
 | 				   HV_PGSZ_MASK_256MB); | 
 | 	ktsb_descr[1].assoc = 1; | 
 | 	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES; | 
 | 	ktsb_descr[1].ctx_idx = 0; | 
 | 	ktsb_descr[1].tsb_base = ktsb_pa; | 
 | 	ktsb_descr[1].resv = 0; | 
 | } | 
 |  | 
 | void __cpuinit sun4v_ktsb_register(void) | 
 | { | 
 | 	register unsigned long func asm("%o5"); | 
 | 	register unsigned long arg0 asm("%o0"); | 
 | 	register unsigned long arg1 asm("%o1"); | 
 | 	unsigned long pa; | 
 |  | 
 | 	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE); | 
 |  | 
 | 	func = HV_FAST_MMU_TSB_CTX0; | 
 | 	arg0 = 2; | 
 | 	arg1 = pa; | 
 | 	__asm__ __volatile__("ta	%6" | 
 | 			     : "=&r" (func), "=&r" (arg0), "=&r" (arg1) | 
 | 			     : "0" (func), "1" (arg0), "2" (arg1), | 
 | 			       "i" (HV_FAST_TRAP)); | 
 | } | 
 |  | 
 | /* paging_init() sets up the page tables */ | 
 |  | 
 | extern void cheetah_ecache_flush_init(void); | 
 | extern void sun4v_patch_tlb_handlers(void); | 
 |  | 
 | static unsigned long last_valid_pfn; | 
 | pgd_t swapper_pg_dir[2048]; | 
 |  | 
 | static void sun4u_pgprot_init(void); | 
 | static void sun4v_pgprot_init(void); | 
 |  | 
 | void __init paging_init(void) | 
 | { | 
 | 	unsigned long end_pfn, pages_avail, shift, phys_base; | 
 | 	unsigned long real_end, i; | 
 |  | 
 | 	kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL; | 
 | 	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE; | 
 |  | 
 | 	/* Invalidate both kernel TSBs.  */ | 
 | 	memset(swapper_tsb, 0x40, sizeof(swapper_tsb)); | 
 | 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb)); | 
 |  | 
 | 	if (tlb_type == hypervisor) | 
 | 		sun4v_pgprot_init(); | 
 | 	else | 
 | 		sun4u_pgprot_init(); | 
 |  | 
 | 	if (tlb_type == cheetah_plus || | 
 | 	    tlb_type == hypervisor) | 
 | 		tsb_phys_patch(); | 
 |  | 
 | 	if (tlb_type == hypervisor) { | 
 | 		sun4v_patch_tlb_handlers(); | 
 | 		sun4v_ktsb_init(); | 
 | 	} | 
 |  | 
 | 	/* Find available physical memory... */ | 
 | 	read_obp_memory("available", &pavail[0], &pavail_ents); | 
 |  | 
 | 	phys_base = 0xffffffffffffffffUL; | 
 | 	for (i = 0; i < pavail_ents; i++) | 
 | 		phys_base = min(phys_base, pavail[i].phys_addr); | 
 |  | 
 | 	set_bit(0, mmu_context_bmap); | 
 |  | 
 | 	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE); | 
 |  | 
 | 	real_end = (unsigned long)_end; | 
 | 	if ((real_end > ((unsigned long)KERNBASE + 0x400000))) | 
 | 		bigkernel = 1; | 
 | 	if ((real_end > ((unsigned long)KERNBASE + 0x800000))) { | 
 | 		prom_printf("paging_init: Kernel > 8MB, too large.\n"); | 
 | 		prom_halt(); | 
 | 	} | 
 |  | 
 | 	/* Set kernel pgd to upper alias so physical page computations | 
 | 	 * work. | 
 | 	 */ | 
 | 	init_mm.pgd += ((shift) / (sizeof(pgd_t))); | 
 | 	 | 
 | 	memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir)); | 
 |  | 
 | 	/* Now can init the kernel/bad page tables. */ | 
 | 	pud_set(pud_offset(&swapper_pg_dir[0], 0), | 
 | 		swapper_low_pmd_dir + (shift / sizeof(pgd_t))); | 
 | 	 | 
 | 	inherit_prom_mappings(); | 
 | 	 | 
 | 	/* Ok, we can use our TLB miss and window trap handlers safely.  */ | 
 | 	setup_tba(); | 
 |  | 
 | 	__flush_tlb_all(); | 
 |  | 
 | 	if (tlb_type == hypervisor) | 
 | 		sun4v_ktsb_register(); | 
 |  | 
 | 	/* Setup bootmem... */ | 
 | 	pages_avail = 0; | 
 | 	last_valid_pfn = end_pfn = bootmem_init(&pages_avail, phys_base); | 
 |  | 
 | 	max_mapnr = last_valid_pfn; | 
 |  | 
 | 	kernel_physical_mapping_init(); | 
 |  | 
 | 	prom_build_devicetree(); | 
 |  | 
 | 	{ | 
 | 		unsigned long zones_size[MAX_NR_ZONES]; | 
 | 		unsigned long zholes_size[MAX_NR_ZONES]; | 
 | 		int znum; | 
 |  | 
 | 		for (znum = 0; znum < MAX_NR_ZONES; znum++) | 
 | 			zones_size[znum] = zholes_size[znum] = 0; | 
 |  | 
 | 		zones_size[ZONE_DMA] = end_pfn; | 
 | 		zholes_size[ZONE_DMA] = end_pfn - pages_avail; | 
 |  | 
 | 		free_area_init_node(0, &contig_page_data, zones_size, | 
 | 				    __pa(PAGE_OFFSET) >> PAGE_SHIFT, | 
 | 				    zholes_size); | 
 | 	} | 
 |  | 
 | 	device_scan(); | 
 | } | 
 |  | 
 | static void __init taint_real_pages(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents); | 
 |  | 
 | 	/* Find changes discovered in the physmem available rescan and | 
 | 	 * reserve the lost portions in the bootmem maps. | 
 | 	 */ | 
 | 	for (i = 0; i < pavail_ents; i++) { | 
 | 		unsigned long old_start, old_end; | 
 |  | 
 | 		old_start = pavail[i].phys_addr; | 
 | 		old_end = old_start + | 
 | 			pavail[i].reg_size; | 
 | 		while (old_start < old_end) { | 
 | 			int n; | 
 |  | 
 | 			for (n = 0; n < pavail_rescan_ents; n++) { | 
 | 				unsigned long new_start, new_end; | 
 |  | 
 | 				new_start = pavail_rescan[n].phys_addr; | 
 | 				new_end = new_start + | 
 | 					pavail_rescan[n].reg_size; | 
 |  | 
 | 				if (new_start <= old_start && | 
 | 				    new_end >= (old_start + PAGE_SIZE)) { | 
 | 					set_bit(old_start >> 22, | 
 | 						sparc64_valid_addr_bitmap); | 
 | 					goto do_next_page; | 
 | 				} | 
 | 			} | 
 | 			reserve_bootmem(old_start, PAGE_SIZE); | 
 |  | 
 | 		do_next_page: | 
 | 			old_start += PAGE_SIZE; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | int __init page_in_phys_avail(unsigned long paddr) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	paddr &= PAGE_MASK; | 
 |  | 
 | 	for (i = 0; i < pavail_rescan_ents; i++) { | 
 | 		unsigned long start, end; | 
 |  | 
 | 		start = pavail_rescan[i].phys_addr; | 
 | 		end = start + pavail_rescan[i].reg_size; | 
 |  | 
 | 		if (paddr >= start && paddr < end) | 
 | 			return 1; | 
 | 	} | 
 | 	if (paddr >= kern_base && paddr < (kern_base + kern_size)) | 
 | 		return 1; | 
 | #ifdef CONFIG_BLK_DEV_INITRD | 
 | 	if (paddr >= __pa(initrd_start) && | 
 | 	    paddr < __pa(PAGE_ALIGN(initrd_end))) | 
 | 		return 1; | 
 | #endif | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __init mem_init(void) | 
 | { | 
 | 	unsigned long codepages, datapages, initpages; | 
 | 	unsigned long addr, last; | 
 | 	int i; | 
 |  | 
 | 	i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6); | 
 | 	i += 1; | 
 | 	sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3); | 
 | 	if (sparc64_valid_addr_bitmap == NULL) { | 
 | 		prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n"); | 
 | 		prom_halt(); | 
 | 	} | 
 | 	memset(sparc64_valid_addr_bitmap, 0, i << 3); | 
 |  | 
 | 	addr = PAGE_OFFSET + kern_base; | 
 | 	last = PAGE_ALIGN(kern_size) + addr; | 
 | 	while (addr < last) { | 
 | 		set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap); | 
 | 		addr += PAGE_SIZE; | 
 | 	} | 
 |  | 
 | 	taint_real_pages(); | 
 |  | 
 | 	high_memory = __va(last_valid_pfn << PAGE_SHIFT); | 
 |  | 
 | #ifdef CONFIG_DEBUG_BOOTMEM | 
 | 	prom_printf("mem_init: Calling free_all_bootmem().\n"); | 
 | #endif | 
 | 	totalram_pages = num_physpages = free_all_bootmem() - 1; | 
 |  | 
 | 	/* | 
 | 	 * Set up the zero page, mark it reserved, so that page count | 
 | 	 * is not manipulated when freeing the page from user ptes. | 
 | 	 */ | 
 | 	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0); | 
 | 	if (mem_map_zero == NULL) { | 
 | 		prom_printf("paging_init: Cannot alloc zero page.\n"); | 
 | 		prom_halt(); | 
 | 	} | 
 | 	SetPageReserved(mem_map_zero); | 
 |  | 
 | 	codepages = (((unsigned long) _etext) - ((unsigned long) _start)); | 
 | 	codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT; | 
 | 	datapages = (((unsigned long) _edata) - ((unsigned long) _etext)); | 
 | 	datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT; | 
 | 	initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin)); | 
 | 	initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT; | 
 |  | 
 | 	printk("Memory: %uk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n", | 
 | 	       nr_free_pages() << (PAGE_SHIFT-10), | 
 | 	       codepages << (PAGE_SHIFT-10), | 
 | 	       datapages << (PAGE_SHIFT-10),  | 
 | 	       initpages << (PAGE_SHIFT-10),  | 
 | 	       PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT)); | 
 |  | 
 | 	if (tlb_type == cheetah || tlb_type == cheetah_plus) | 
 | 		cheetah_ecache_flush_init(); | 
 | } | 
 |  | 
 | void free_initmem(void) | 
 | { | 
 | 	unsigned long addr, initend; | 
 |  | 
 | 	/* | 
 | 	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes. | 
 | 	 */ | 
 | 	addr = PAGE_ALIGN((unsigned long)(__init_begin)); | 
 | 	initend = (unsigned long)(__init_end) & PAGE_MASK; | 
 | 	for (; addr < initend; addr += PAGE_SIZE) { | 
 | 		unsigned long page; | 
 | 		struct page *p; | 
 |  | 
 | 		page = (addr + | 
 | 			((unsigned long) __va(kern_base)) - | 
 | 			((unsigned long) KERNBASE)); | 
 | 		memset((void *)addr, 0xcc, PAGE_SIZE); | 
 | 		p = virt_to_page(page); | 
 |  | 
 | 		ClearPageReserved(p); | 
 | 		init_page_count(p); | 
 | 		__free_page(p); | 
 | 		num_physpages++; | 
 | 		totalram_pages++; | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_BLK_DEV_INITRD | 
 | void free_initrd_mem(unsigned long start, unsigned long end) | 
 | { | 
 | 	if (start < end) | 
 | 		printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10); | 
 | 	for (; start < end; start += PAGE_SIZE) { | 
 | 		struct page *p = virt_to_page(start); | 
 |  | 
 | 		ClearPageReserved(p); | 
 | 		init_page_count(p); | 
 | 		__free_page(p); | 
 | 		num_physpages++; | 
 | 		totalram_pages++; | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | #define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U) | 
 | #define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V) | 
 | #define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U) | 
 | #define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V) | 
 | #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R) | 
 | #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R) | 
 |  | 
 | pgprot_t PAGE_KERNEL __read_mostly; | 
 | EXPORT_SYMBOL(PAGE_KERNEL); | 
 |  | 
 | pgprot_t PAGE_KERNEL_LOCKED __read_mostly; | 
 | pgprot_t PAGE_COPY __read_mostly; | 
 |  | 
 | pgprot_t PAGE_SHARED __read_mostly; | 
 | EXPORT_SYMBOL(PAGE_SHARED); | 
 |  | 
 | pgprot_t PAGE_EXEC __read_mostly; | 
 | unsigned long pg_iobits __read_mostly; | 
 |  | 
 | unsigned long _PAGE_IE __read_mostly; | 
 |  | 
 | unsigned long _PAGE_E __read_mostly; | 
 | EXPORT_SYMBOL(_PAGE_E); | 
 |  | 
 | unsigned long _PAGE_CACHE __read_mostly; | 
 | EXPORT_SYMBOL(_PAGE_CACHE); | 
 |  | 
 | static void prot_init_common(unsigned long page_none, | 
 | 			     unsigned long page_shared, | 
 | 			     unsigned long page_copy, | 
 | 			     unsigned long page_readonly, | 
 | 			     unsigned long page_exec_bit) | 
 | { | 
 | 	PAGE_COPY = __pgprot(page_copy); | 
 | 	PAGE_SHARED = __pgprot(page_shared); | 
 |  | 
 | 	protection_map[0x0] = __pgprot(page_none); | 
 | 	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit); | 
 | 	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit); | 
 | 	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit); | 
 | 	protection_map[0x4] = __pgprot(page_readonly); | 
 | 	protection_map[0x5] = __pgprot(page_readonly); | 
 | 	protection_map[0x6] = __pgprot(page_copy); | 
 | 	protection_map[0x7] = __pgprot(page_copy); | 
 | 	protection_map[0x8] = __pgprot(page_none); | 
 | 	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit); | 
 | 	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit); | 
 | 	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit); | 
 | 	protection_map[0xc] = __pgprot(page_readonly); | 
 | 	protection_map[0xd] = __pgprot(page_readonly); | 
 | 	protection_map[0xe] = __pgprot(page_shared); | 
 | 	protection_map[0xf] = __pgprot(page_shared); | 
 | } | 
 |  | 
 | static void __init sun4u_pgprot_init(void) | 
 | { | 
 | 	unsigned long page_none, page_shared, page_copy, page_readonly; | 
 | 	unsigned long page_exec_bit; | 
 |  | 
 | 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | | 
 | 				_PAGE_CACHE_4U | _PAGE_P_4U | | 
 | 				__ACCESS_BITS_4U | __DIRTY_BITS_4U | | 
 | 				_PAGE_EXEC_4U); | 
 | 	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | | 
 | 				       _PAGE_CACHE_4U | _PAGE_P_4U | | 
 | 				       __ACCESS_BITS_4U | __DIRTY_BITS_4U | | 
 | 				       _PAGE_EXEC_4U | _PAGE_L_4U); | 
 | 	PAGE_EXEC = __pgprot(_PAGE_EXEC_4U); | 
 |  | 
 | 	_PAGE_IE = _PAGE_IE_4U; | 
 | 	_PAGE_E = _PAGE_E_4U; | 
 | 	_PAGE_CACHE = _PAGE_CACHE_4U; | 
 |  | 
 | 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U | | 
 | 		     __ACCESS_BITS_4U | _PAGE_E_4U); | 
 |  | 
 | 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^ | 
 | 		0xfffff80000000000; | 
 | 	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U | | 
 | 				   _PAGE_P_4U | _PAGE_W_4U); | 
 |  | 
 | 	/* XXX Should use 256MB on Panther. XXX */ | 
 | 	kern_linear_pte_xor[1] = kern_linear_pte_xor[0]; | 
 |  | 
 | 	_PAGE_SZBITS = _PAGE_SZBITS_4U; | 
 | 	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U | | 
 | 			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U | | 
 | 			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U); | 
 |  | 
 |  | 
 | 	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U; | 
 | 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | | 
 | 		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U); | 
 | 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | | 
 | 		       __ACCESS_BITS_4U | _PAGE_EXEC_4U); | 
 | 	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | | 
 | 			   __ACCESS_BITS_4U | _PAGE_EXEC_4U); | 
 |  | 
 | 	page_exec_bit = _PAGE_EXEC_4U; | 
 |  | 
 | 	prot_init_common(page_none, page_shared, page_copy, page_readonly, | 
 | 			 page_exec_bit); | 
 | } | 
 |  | 
 | static void __init sun4v_pgprot_init(void) | 
 | { | 
 | 	unsigned long page_none, page_shared, page_copy, page_readonly; | 
 | 	unsigned long page_exec_bit; | 
 |  | 
 | 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID | | 
 | 				_PAGE_CACHE_4V | _PAGE_P_4V | | 
 | 				__ACCESS_BITS_4V | __DIRTY_BITS_4V | | 
 | 				_PAGE_EXEC_4V); | 
 | 	PAGE_KERNEL_LOCKED = PAGE_KERNEL; | 
 | 	PAGE_EXEC = __pgprot(_PAGE_EXEC_4V); | 
 |  | 
 | 	_PAGE_IE = _PAGE_IE_4V; | 
 | 	_PAGE_E = _PAGE_E_4V; | 
 | 	_PAGE_CACHE = _PAGE_CACHE_4V; | 
 |  | 
 | 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^ | 
 | 		0xfffff80000000000; | 
 | 	kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V | | 
 | 				   _PAGE_P_4V | _PAGE_W_4V); | 
 |  | 
 | 	kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^ | 
 | 		0xfffff80000000000; | 
 | 	kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V | | 
 | 				   _PAGE_P_4V | _PAGE_W_4V); | 
 |  | 
 | 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V | | 
 | 		     __ACCESS_BITS_4V | _PAGE_E_4V); | 
 |  | 
 | 	_PAGE_SZBITS = _PAGE_SZBITS_4V; | 
 | 	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V | | 
 | 			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V | | 
 | 			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V | | 
 | 			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V); | 
 |  | 
 | 	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V; | 
 | 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V | | 
 | 		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V); | 
 | 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V | | 
 | 		       __ACCESS_BITS_4V | _PAGE_EXEC_4V); | 
 | 	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V | | 
 | 			 __ACCESS_BITS_4V | _PAGE_EXEC_4V); | 
 |  | 
 | 	page_exec_bit = _PAGE_EXEC_4V; | 
 |  | 
 | 	prot_init_common(page_none, page_shared, page_copy, page_readonly, | 
 | 			 page_exec_bit); | 
 | } | 
 |  | 
 | unsigned long pte_sz_bits(unsigned long sz) | 
 | { | 
 | 	if (tlb_type == hypervisor) { | 
 | 		switch (sz) { | 
 | 		case 8 * 1024: | 
 | 		default: | 
 | 			return _PAGE_SZ8K_4V; | 
 | 		case 64 * 1024: | 
 | 			return _PAGE_SZ64K_4V; | 
 | 		case 512 * 1024: | 
 | 			return _PAGE_SZ512K_4V; | 
 | 		case 4 * 1024 * 1024: | 
 | 			return _PAGE_SZ4MB_4V; | 
 | 		}; | 
 | 	} else { | 
 | 		switch (sz) { | 
 | 		case 8 * 1024: | 
 | 		default: | 
 | 			return _PAGE_SZ8K_4U; | 
 | 		case 64 * 1024: | 
 | 			return _PAGE_SZ64K_4U; | 
 | 		case 512 * 1024: | 
 | 			return _PAGE_SZ512K_4U; | 
 | 		case 4 * 1024 * 1024: | 
 | 			return _PAGE_SZ4MB_4U; | 
 | 		}; | 
 | 	} | 
 | } | 
 |  | 
 | pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size) | 
 | { | 
 | 	pte_t pte; | 
 |  | 
 | 	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot)); | 
 | 	pte_val(pte) |= (((unsigned long)space) << 32); | 
 | 	pte_val(pte) |= pte_sz_bits(page_size); | 
 |  | 
 | 	return pte; | 
 | } | 
 |  | 
 | static unsigned long kern_large_tte(unsigned long paddr) | 
 | { | 
 | 	unsigned long val; | 
 |  | 
 | 	val = (_PAGE_VALID | _PAGE_SZ4MB_4U | | 
 | 	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U | | 
 | 	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U); | 
 | 	if (tlb_type == hypervisor) | 
 | 		val = (_PAGE_VALID | _PAGE_SZ4MB_4V | | 
 | 		       _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V | | 
 | 		       _PAGE_EXEC_4V | _PAGE_W_4V); | 
 |  | 
 | 	return val | paddr; | 
 | } | 
 |  | 
 | /* | 
 |  * Translate PROM's mapping we capture at boot time into physical address. | 
 |  * The second parameter is only set from prom_callback() invocations. | 
 |  */ | 
 | unsigned long prom_virt_to_phys(unsigned long promva, int *error) | 
 | { | 
 | 	unsigned long mask; | 
 | 	int i; | 
 |  | 
 | 	mask = _PAGE_PADDR_4U; | 
 | 	if (tlb_type == hypervisor) | 
 | 		mask = _PAGE_PADDR_4V; | 
 |  | 
 | 	for (i = 0; i < prom_trans_ents; i++) { | 
 | 		struct linux_prom_translation *p = &prom_trans[i]; | 
 |  | 
 | 		if (promva >= p->virt && | 
 | 		    promva < (p->virt + p->size)) { | 
 | 			unsigned long base = p->data & mask; | 
 |  | 
 | 			if (error) | 
 | 				*error = 0; | 
 | 			return base + (promva & (8192 - 1)); | 
 | 		} | 
 | 	} | 
 | 	if (error) | 
 | 		*error = 1; | 
 | 	return 0UL; | 
 | } | 
 |  | 
 | /* XXX We should kill off this ugly thing at so me point. XXX */ | 
 | unsigned long sun4u_get_pte(unsigned long addr) | 
 | { | 
 | 	pgd_t *pgdp; | 
 | 	pud_t *pudp; | 
 | 	pmd_t *pmdp; | 
 | 	pte_t *ptep; | 
 | 	unsigned long mask = _PAGE_PADDR_4U; | 
 |  | 
 | 	if (tlb_type == hypervisor) | 
 | 		mask = _PAGE_PADDR_4V; | 
 |  | 
 | 	if (addr >= PAGE_OFFSET) | 
 | 		return addr & mask; | 
 |  | 
 | 	if ((addr >= LOW_OBP_ADDRESS) && (addr < HI_OBP_ADDRESS)) | 
 | 		return prom_virt_to_phys(addr, NULL); | 
 |  | 
 | 	pgdp = pgd_offset_k(addr); | 
 | 	pudp = pud_offset(pgdp, addr); | 
 | 	pmdp = pmd_offset(pudp, addr); | 
 | 	ptep = pte_offset_kernel(pmdp, addr); | 
 |  | 
 | 	return pte_val(*ptep) & mask; | 
 | } | 
 |  | 
 | /* If not locked, zap it. */ | 
 | void __flush_tlb_all(void) | 
 | { | 
 | 	unsigned long pstate; | 
 | 	int i; | 
 |  | 
 | 	__asm__ __volatile__("flushw\n\t" | 
 | 			     "rdpr	%%pstate, %0\n\t" | 
 | 			     "wrpr	%0, %1, %%pstate" | 
 | 			     : "=r" (pstate) | 
 | 			     : "i" (PSTATE_IE)); | 
 | 	if (tlb_type == spitfire) { | 
 | 		for (i = 0; i < 64; i++) { | 
 | 			/* Spitfire Errata #32 workaround */ | 
 | 			/* NOTE: Always runs on spitfire, so no | 
 | 			 *       cheetah+ page size encodings. | 
 | 			 */ | 
 | 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t" | 
 | 					     "flush	%%g6" | 
 | 					     : /* No outputs */ | 
 | 					     : "r" (0), | 
 | 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); | 
 |  | 
 | 			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) { | 
 | 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t" | 
 | 						     "membar #Sync" | 
 | 						     : /* no outputs */ | 
 | 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); | 
 | 				spitfire_put_dtlb_data(i, 0x0UL); | 
 | 			} | 
 |  | 
 | 			/* Spitfire Errata #32 workaround */ | 
 | 			/* NOTE: Always runs on spitfire, so no | 
 | 			 *       cheetah+ page size encodings. | 
 | 			 */ | 
 | 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t" | 
 | 					     "flush	%%g6" | 
 | 					     : /* No outputs */ | 
 | 					     : "r" (0), | 
 | 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); | 
 |  | 
 | 			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) { | 
 | 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t" | 
 | 						     "membar #Sync" | 
 | 						     : /* no outputs */ | 
 | 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU)); | 
 | 				spitfire_put_itlb_data(i, 0x0UL); | 
 | 			} | 
 | 		} | 
 | 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) { | 
 | 		cheetah_flush_dtlb_all(); | 
 | 		cheetah_flush_itlb_all(); | 
 | 	} | 
 | 	__asm__ __volatile__("wrpr	%0, 0, %%pstate" | 
 | 			     : : "r" (pstate)); | 
 | } | 
 |  | 
 | #ifdef CONFIG_MEMORY_HOTPLUG | 
 |  | 
 | void online_page(struct page *page) | 
 | { | 
 | 	ClearPageReserved(page); | 
 | 	init_page_count(page); | 
 | 	__free_page(page); | 
 | 	totalram_pages++; | 
 | 	num_physpages++; | 
 | } | 
 |  | 
 | int remove_memory(u64 start, u64 size) | 
 | { | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | #endif /* CONFIG_MEMORY_HOTPLUG */ |