|  | /* | 
|  | * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README | 
|  | */ | 
|  |  | 
|  | #include <linux/time.h> | 
|  | #include <linux/reiserfs_fs.h> | 
|  | #include <linux/reiserfs_acl.h> | 
|  | #include <linux/reiserfs_xattr.h> | 
|  | #include <linux/smp_lock.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/buffer_head.h> | 
|  | #include <linux/quotaops.h> | 
|  |  | 
|  | /* | 
|  | ** We pack the tails of files on file close, not at the time they are written. | 
|  | ** This implies an unnecessary copy of the tail and an unnecessary indirect item | 
|  | ** insertion/balancing, for files that are written in one write. | 
|  | ** It avoids unnecessary tail packings (balances) for files that are written in | 
|  | ** multiple writes and are small enough to have tails. | 
|  | ** | 
|  | ** file_release is called by the VFS layer when the file is closed.  If | 
|  | ** this is the last open file descriptor, and the file | 
|  | ** small enough to have a tail, and the tail is currently in an | 
|  | ** unformatted node, the tail is converted back into a direct item. | 
|  | ** | 
|  | ** We use reiserfs_truncate_file to pack the tail, since it already has | 
|  | ** all the conditions coded. | 
|  | */ | 
|  | static int reiserfs_file_release(struct inode *inode, struct file *filp) | 
|  | { | 
|  |  | 
|  | struct reiserfs_transaction_handle th; | 
|  | int err; | 
|  | int jbegin_failure = 0; | 
|  |  | 
|  | if (!S_ISREG(inode->i_mode)) | 
|  | BUG(); | 
|  |  | 
|  | /* fast out for when nothing needs to be done */ | 
|  | if ((atomic_read(&inode->i_count) > 1 || | 
|  | !(REISERFS_I(inode)->i_flags & i_pack_on_close_mask) || | 
|  | !tail_has_to_be_packed(inode)) && | 
|  | REISERFS_I(inode)->i_prealloc_count <= 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | reiserfs_write_lock(inode->i_sb); | 
|  | mutex_lock(&inode->i_mutex); | 
|  | /* freeing preallocation only involves relogging blocks that | 
|  | * are already in the current transaction.  preallocation gets | 
|  | * freed at the end of each transaction, so it is impossible for | 
|  | * us to log any additional blocks (including quota blocks) | 
|  | */ | 
|  | err = journal_begin(&th, inode->i_sb, 1); | 
|  | if (err) { | 
|  | /* uh oh, we can't allow the inode to go away while there | 
|  | * is still preallocation blocks pending.  Try to join the | 
|  | * aborted transaction | 
|  | */ | 
|  | jbegin_failure = err; | 
|  | err = journal_join_abort(&th, inode->i_sb, 1); | 
|  |  | 
|  | if (err) { | 
|  | /* hmpf, our choices here aren't good.  We can pin the inode | 
|  | * which will disallow unmount from every happening, we can | 
|  | * do nothing, which will corrupt random memory on unmount, | 
|  | * or we can forcibly remove the file from the preallocation | 
|  | * list, which will leak blocks on disk.  Lets pin the inode | 
|  | * and let the admin know what is going on. | 
|  | */ | 
|  | igrab(inode); | 
|  | reiserfs_warning(inode->i_sb, | 
|  | "pinning inode %lu because the " | 
|  | "preallocation can't be freed"); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | reiserfs_update_inode_transaction(inode); | 
|  |  | 
|  | #ifdef REISERFS_PREALLOCATE | 
|  | reiserfs_discard_prealloc(&th, inode); | 
|  | #endif | 
|  | err = journal_end(&th, inode->i_sb, 1); | 
|  |  | 
|  | /* copy back the error code from journal_begin */ | 
|  | if (!err) | 
|  | err = jbegin_failure; | 
|  |  | 
|  | if (!err && atomic_read(&inode->i_count) <= 1 && | 
|  | (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) && | 
|  | tail_has_to_be_packed(inode)) { | 
|  | /* if regular file is released by last holder and it has been | 
|  | appended (we append by unformatted node only) or its direct | 
|  | item(s) had to be converted, then it may have to be | 
|  | indirect2direct converted */ | 
|  | err = reiserfs_truncate_file(inode, 0); | 
|  | } | 
|  | out: | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | reiserfs_write_unlock(inode->i_sb); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void reiserfs_vfs_truncate_file(struct inode *inode) | 
|  | { | 
|  | reiserfs_truncate_file(inode, 1); | 
|  | } | 
|  |  | 
|  | /* Sync a reiserfs file. */ | 
|  |  | 
|  | /* | 
|  | * FIXME: sync_mapping_buffers() never has anything to sync.  Can | 
|  | * be removed... | 
|  | */ | 
|  |  | 
|  | static int reiserfs_sync_file(struct file *p_s_filp, | 
|  | struct dentry *p_s_dentry, int datasync) | 
|  | { | 
|  | struct inode *p_s_inode = p_s_dentry->d_inode; | 
|  | int n_err; | 
|  | int barrier_done; | 
|  |  | 
|  | if (!S_ISREG(p_s_inode->i_mode)) | 
|  | BUG(); | 
|  | n_err = sync_mapping_buffers(p_s_inode->i_mapping); | 
|  | reiserfs_write_lock(p_s_inode->i_sb); | 
|  | barrier_done = reiserfs_commit_for_inode(p_s_inode); | 
|  | reiserfs_write_unlock(p_s_inode->i_sb); | 
|  | if (barrier_done != 1) | 
|  | blkdev_issue_flush(p_s_inode->i_sb->s_bdev, NULL); | 
|  | if (barrier_done < 0) | 
|  | return barrier_done; | 
|  | return (n_err < 0) ? -EIO : 0; | 
|  | } | 
|  |  | 
|  | /* I really do not want to play with memory shortage right now, so | 
|  | to simplify the code, we are not going to write more than this much pages at | 
|  | a time. This still should considerably improve performance compared to 4k | 
|  | at a time case. This is 32 pages of 4k size. */ | 
|  | #define REISERFS_WRITE_PAGES_AT_A_TIME (128 * 1024) / PAGE_CACHE_SIZE | 
|  |  | 
|  | /* Allocates blocks for a file to fulfil write request. | 
|  | Maps all unmapped but prepared pages from the list. | 
|  | Updates metadata with newly allocated blocknumbers as needed */ | 
|  | static int reiserfs_allocate_blocks_for_region(struct reiserfs_transaction_handle *th, struct inode *inode,	/* Inode we work with */ | 
|  | loff_t pos,	/* Writing position */ | 
|  | int num_pages,	/* number of pages write going | 
|  | to touch */ | 
|  | int write_bytes,	/* amount of bytes to write */ | 
|  | struct page **prepared_pages,	/* array of | 
|  | prepared pages | 
|  | */ | 
|  | int blocks_to_allocate	/* Amount of blocks we | 
|  | need to allocate to | 
|  | fit the data into file | 
|  | */ | 
|  | ) | 
|  | { | 
|  | struct cpu_key key;	// cpu key of item that we are going to deal with | 
|  | struct item_head *ih;	// pointer to item head that we are going to deal with | 
|  | struct buffer_head *bh;	// Buffer head that contains items that we are going to deal with | 
|  | __le32 *item;		// pointer to item we are going to deal with | 
|  | INITIALIZE_PATH(path);	// path to item, that we are going to deal with. | 
|  | b_blocknr_t *allocated_blocks;	// Pointer to a place where allocated blocknumbers would be stored. | 
|  | reiserfs_blocknr_hint_t hint;	// hint structure for block allocator. | 
|  | size_t res;		// return value of various functions that we call. | 
|  | int curr_block;		// current block used to keep track of unmapped blocks. | 
|  | int i;			// loop counter | 
|  | int itempos;		// position in item | 
|  | unsigned int from = (pos & (PAGE_CACHE_SIZE - 1));	// writing position in | 
|  | // first page | 
|  | unsigned int to = ((pos + write_bytes - 1) & (PAGE_CACHE_SIZE - 1)) + 1;	/* last modified byte offset in last page */ | 
|  | __u64 hole_size;	// amount of blocks for a file hole, if it needed to be created. | 
|  | int modifying_this_item = 0;	// Flag for items traversal code to keep track | 
|  | // of the fact that we already prepared | 
|  | // current block for journal | 
|  | int will_prealloc = 0; | 
|  | RFALSE(!blocks_to_allocate, | 
|  | "green-9004: tried to allocate zero blocks?"); | 
|  |  | 
|  | /* only preallocate if this is a small write */ | 
|  | if (REISERFS_I(inode)->i_prealloc_count || | 
|  | (!(write_bytes & (inode->i_sb->s_blocksize - 1)) && | 
|  | blocks_to_allocate < | 
|  | REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize)) | 
|  | will_prealloc = | 
|  | REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize; | 
|  |  | 
|  | allocated_blocks = kmalloc((blocks_to_allocate + will_prealloc) * | 
|  | sizeof(b_blocknr_t), GFP_NOFS); | 
|  | if (!allocated_blocks) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* First we compose a key to point at the writing position, we want to do | 
|  | that outside of any locking region. */ | 
|  | make_cpu_key(&key, inode, pos + 1, TYPE_ANY, 3 /*key length */ ); | 
|  |  | 
|  | /* If we came here, it means we absolutely need to open a transaction, | 
|  | since we need to allocate some blocks */ | 
|  | reiserfs_write_lock(inode->i_sb);	// Journaling stuff and we need that. | 
|  | res = journal_begin(th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 3 + 1 + 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb));	// Wish I know if this number enough | 
|  | if (res) | 
|  | goto error_exit; | 
|  | reiserfs_update_inode_transaction(inode); | 
|  |  | 
|  | /* Look for the in-tree position of our write, need path for block allocator */ | 
|  | res = search_for_position_by_key(inode->i_sb, &key, &path); | 
|  | if (res == IO_ERROR) { | 
|  | res = -EIO; | 
|  | goto error_exit; | 
|  | } | 
|  |  | 
|  | /* Allocate blocks */ | 
|  | /* First fill in "hint" structure for block allocator */ | 
|  | hint.th = th;		// transaction handle. | 
|  | hint.path = &path;	// Path, so that block allocator can determine packing locality or whatever it needs to determine. | 
|  | hint.inode = inode;	// Inode is needed by block allocator too. | 
|  | hint.search_start = 0;	// We have no hint on where to search free blocks for block allocator. | 
|  | hint.key = key.on_disk_key;	// on disk key of file. | 
|  | hint.block = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);	// Number of disk blocks this file occupies already. | 
|  | hint.formatted_node = 0;	// We are allocating blocks for unformatted node. | 
|  | hint.preallocate = will_prealloc; | 
|  |  | 
|  | /* Call block allocator to allocate blocks */ | 
|  | res = | 
|  | reiserfs_allocate_blocknrs(&hint, allocated_blocks, | 
|  | blocks_to_allocate, blocks_to_allocate); | 
|  | if (res != CARRY_ON) { | 
|  | if (res == NO_DISK_SPACE) { | 
|  | /* We flush the transaction in case of no space. This way some | 
|  | blocks might become free */ | 
|  | SB_JOURNAL(inode->i_sb)->j_must_wait = 1; | 
|  | res = restart_transaction(th, inode, &path); | 
|  | if (res) | 
|  | goto error_exit; | 
|  |  | 
|  | /* We might have scheduled, so search again */ | 
|  | res = | 
|  | search_for_position_by_key(inode->i_sb, &key, | 
|  | &path); | 
|  | if (res == IO_ERROR) { | 
|  | res = -EIO; | 
|  | goto error_exit; | 
|  | } | 
|  |  | 
|  | /* update changed info for hint structure. */ | 
|  | res = | 
|  | reiserfs_allocate_blocknrs(&hint, allocated_blocks, | 
|  | blocks_to_allocate, | 
|  | blocks_to_allocate); | 
|  | if (res != CARRY_ON) { | 
|  | res = res == QUOTA_EXCEEDED ? -EDQUOT : -ENOSPC; | 
|  | pathrelse(&path); | 
|  | goto error_exit; | 
|  | } | 
|  | } else { | 
|  | res = res == QUOTA_EXCEEDED ? -EDQUOT : -ENOSPC; | 
|  | pathrelse(&path); | 
|  | goto error_exit; | 
|  | } | 
|  | } | 
|  | #ifdef __BIG_ENDIAN | 
|  | // Too bad, I have not found any way to convert a given region from | 
|  | // cpu format to little endian format | 
|  | { | 
|  | int i; | 
|  | for (i = 0; i < blocks_to_allocate; i++) | 
|  | allocated_blocks[i] = cpu_to_le32(allocated_blocks[i]); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Blocks allocating well might have scheduled and tree might have changed, | 
|  | let's search the tree again */ | 
|  | /* find where in the tree our write should go */ | 
|  | res = search_for_position_by_key(inode->i_sb, &key, &path); | 
|  | if (res == IO_ERROR) { | 
|  | res = -EIO; | 
|  | goto error_exit_free_blocks; | 
|  | } | 
|  |  | 
|  | bh = get_last_bh(&path);	// Get a bufferhead for last element in path. | 
|  | ih = get_ih(&path);	// Get a pointer to last item head in path. | 
|  | item = get_item(&path);	// Get a pointer to last item in path | 
|  |  | 
|  | /* Let's see what we have found */ | 
|  | if (res != POSITION_FOUND) {	/* position not found, this means that we | 
|  | might need to append file with holes | 
|  | first */ | 
|  | // Since we are writing past the file's end, we need to find out if | 
|  | // there is a hole that needs to be inserted before our writing | 
|  | // position, and how many blocks it is going to cover (we need to | 
|  | //  populate pointers to file blocks representing the hole with zeros) | 
|  |  | 
|  | { | 
|  | int item_offset = 1; | 
|  | /* | 
|  | * if ih is stat data, its offset is 0 and we don't want to | 
|  | * add 1 to pos in the hole_size calculation | 
|  | */ | 
|  | if (is_statdata_le_ih(ih)) | 
|  | item_offset = 0; | 
|  | hole_size = (pos + item_offset - | 
|  | (le_key_k_offset | 
|  | (get_inode_item_key_version(inode), | 
|  | &(ih->ih_key)) + op_bytes_number(ih, | 
|  | inode-> | 
|  | i_sb-> | 
|  | s_blocksize))) | 
|  | >> inode->i_sb->s_blocksize_bits; | 
|  | } | 
|  |  | 
|  | if (hole_size > 0) { | 
|  | int to_paste = min_t(__u64, hole_size, MAX_ITEM_LEN(inode->i_sb->s_blocksize) / UNFM_P_SIZE);	// How much data to insert first time. | 
|  | /* area filled with zeroes, to supply as list of zero blocknumbers | 
|  | We allocate it outside of loop just in case loop would spin for | 
|  | several iterations. */ | 
|  | char *zeros = kmalloc(to_paste * UNFM_P_SIZE, GFP_ATOMIC);	// We cannot insert more than MAX_ITEM_LEN bytes anyway. | 
|  | if (!zeros) { | 
|  | res = -ENOMEM; | 
|  | goto error_exit_free_blocks; | 
|  | } | 
|  | memset(zeros, 0, to_paste * UNFM_P_SIZE); | 
|  | do { | 
|  | to_paste = | 
|  | min_t(__u64, hole_size, | 
|  | MAX_ITEM_LEN(inode->i_sb-> | 
|  | s_blocksize) / | 
|  | UNFM_P_SIZE); | 
|  | if (is_indirect_le_ih(ih)) { | 
|  | /* Ok, there is existing indirect item already. Need to append it */ | 
|  | /* Calculate position past inserted item */ | 
|  | make_cpu_key(&key, inode, | 
|  | le_key_k_offset | 
|  | (get_inode_item_key_version | 
|  | (inode), | 
|  | &(ih->ih_key)) + | 
|  | op_bytes_number(ih, | 
|  | inode-> | 
|  | i_sb-> | 
|  | s_blocksize), | 
|  | TYPE_INDIRECT, 3); | 
|  | res = | 
|  | reiserfs_paste_into_item(th, &path, | 
|  | &key, | 
|  | inode, | 
|  | (char *) | 
|  | zeros, | 
|  | UNFM_P_SIZE | 
|  | * | 
|  | to_paste); | 
|  | if (res) { | 
|  | kfree(zeros); | 
|  | goto error_exit_free_blocks; | 
|  | } | 
|  | } else if (is_statdata_le_ih(ih)) { | 
|  | /* No existing item, create it */ | 
|  | /* item head for new item */ | 
|  | struct item_head ins_ih; | 
|  |  | 
|  | /* create a key for our new item */ | 
|  | make_cpu_key(&key, inode, 1, | 
|  | TYPE_INDIRECT, 3); | 
|  |  | 
|  | /* Create new item head for our new item */ | 
|  | make_le_item_head(&ins_ih, &key, | 
|  | key.version, 1, | 
|  | TYPE_INDIRECT, | 
|  | to_paste * | 
|  | UNFM_P_SIZE, | 
|  | 0 /* free space */ ); | 
|  |  | 
|  | /* Find where such item should live in the tree */ | 
|  | res = | 
|  | search_item(inode->i_sb, &key, | 
|  | &path); | 
|  | if (res != ITEM_NOT_FOUND) { | 
|  | /* item should not exist, otherwise we have error */ | 
|  | if (res != -ENOSPC) { | 
|  | reiserfs_warning(inode-> | 
|  | i_sb, | 
|  | "green-9008: search_by_key (%K) returned %d", | 
|  | &key, | 
|  | res); | 
|  | } | 
|  | res = -EIO; | 
|  | kfree(zeros); | 
|  | goto error_exit_free_blocks; | 
|  | } | 
|  | res = | 
|  | reiserfs_insert_item(th, &path, | 
|  | &key, &ins_ih, | 
|  | inode, | 
|  | (char *)zeros); | 
|  | } else { | 
|  | reiserfs_panic(inode->i_sb, | 
|  | "green-9011: Unexpected key type %K\n", | 
|  | &key); | 
|  | } | 
|  | if (res) { | 
|  | kfree(zeros); | 
|  | goto error_exit_free_blocks; | 
|  | } | 
|  | /* Now we want to check if transaction is too full, and if it is | 
|  | we restart it. This will also free the path. */ | 
|  | if (journal_transaction_should_end | 
|  | (th, th->t_blocks_allocated)) { | 
|  | res = | 
|  | restart_transaction(th, inode, | 
|  | &path); | 
|  | if (res) { | 
|  | pathrelse(&path); | 
|  | kfree(zeros); | 
|  | goto error_exit; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Well, need to recalculate path and stuff */ | 
|  | set_cpu_key_k_offset(&key, | 
|  | cpu_key_k_offset(&key) + | 
|  | (to_paste << inode-> | 
|  | i_blkbits)); | 
|  | res = | 
|  | search_for_position_by_key(inode->i_sb, | 
|  | &key, &path); | 
|  | if (res == IO_ERROR) { | 
|  | res = -EIO; | 
|  | kfree(zeros); | 
|  | goto error_exit_free_blocks; | 
|  | } | 
|  | bh = get_last_bh(&path); | 
|  | ih = get_ih(&path); | 
|  | item = get_item(&path); | 
|  | hole_size -= to_paste; | 
|  | } while (hole_size); | 
|  | kfree(zeros); | 
|  | } | 
|  | } | 
|  | // Go through existing indirect items first | 
|  | // replace all zeroes with blocknumbers from list | 
|  | // Note that if no corresponding item was found, by previous search, | 
|  | // it means there are no existing in-tree representation for file area | 
|  | // we are going to overwrite, so there is nothing to scan through for holes. | 
|  | for (curr_block = 0, itempos = path.pos_in_item; | 
|  | curr_block < blocks_to_allocate && res == POSITION_FOUND;) { | 
|  | retry: | 
|  |  | 
|  | if (itempos >= ih_item_len(ih) / UNFM_P_SIZE) { | 
|  | /* We run out of data in this indirect item, let's look for another | 
|  | one. */ | 
|  | /* First if we are already modifying current item, log it */ | 
|  | if (modifying_this_item) { | 
|  | journal_mark_dirty(th, inode->i_sb, bh); | 
|  | modifying_this_item = 0; | 
|  | } | 
|  | /* Then set the key to look for a new indirect item (offset of old | 
|  | item is added to old item length */ | 
|  | set_cpu_key_k_offset(&key, | 
|  | le_key_k_offset | 
|  | (get_inode_item_key_version(inode), | 
|  | &(ih->ih_key)) + | 
|  | op_bytes_number(ih, | 
|  | inode->i_sb-> | 
|  | s_blocksize)); | 
|  | /* Search ofor position of new key in the tree. */ | 
|  | res = | 
|  | search_for_position_by_key(inode->i_sb, &key, | 
|  | &path); | 
|  | if (res == IO_ERROR) { | 
|  | res = -EIO; | 
|  | goto error_exit_free_blocks; | 
|  | } | 
|  | bh = get_last_bh(&path); | 
|  | ih = get_ih(&path); | 
|  | item = get_item(&path); | 
|  | itempos = path.pos_in_item; | 
|  | continue;	// loop to check all kinds of conditions and so on. | 
|  | } | 
|  | /* Ok, we have correct position in item now, so let's see if it is | 
|  | representing file hole (blocknumber is zero) and fill it if needed */ | 
|  | if (!item[itempos]) { | 
|  | /* Ok, a hole. Now we need to check if we already prepared this | 
|  | block to be journaled */ | 
|  | while (!modifying_this_item) {	// loop until succeed | 
|  | /* Well, this item is not journaled yet, so we must prepare | 
|  | it for journal first, before we can change it */ | 
|  | struct item_head tmp_ih;	// We copy item head of found item, | 
|  | // here to detect if fs changed under | 
|  | // us while we were preparing for | 
|  | // journal. | 
|  | int fs_gen;	// We store fs generation here to find if someone | 
|  | // changes fs under our feet | 
|  |  | 
|  | copy_item_head(&tmp_ih, ih);	// Remember itemhead | 
|  | fs_gen = get_generation(inode->i_sb);	// remember fs generation | 
|  | reiserfs_prepare_for_journal(inode->i_sb, bh, 1);	// Prepare a buffer within which indirect item is stored for changing. | 
|  | if (fs_changed(fs_gen, inode->i_sb) | 
|  | && item_moved(&tmp_ih, &path)) { | 
|  | // Sigh, fs was changed under us, we need to look for new | 
|  | // location of item we are working with | 
|  |  | 
|  | /* unmark prepaerd area as journaled and search for it's | 
|  | new position */ | 
|  | reiserfs_restore_prepared_buffer(inode-> | 
|  | i_sb, | 
|  | bh); | 
|  | res = | 
|  | search_for_position_by_key(inode-> | 
|  | i_sb, | 
|  | &key, | 
|  | &path); | 
|  | if (res == IO_ERROR) { | 
|  | res = -EIO; | 
|  | goto error_exit_free_blocks; | 
|  | } | 
|  | bh = get_last_bh(&path); | 
|  | ih = get_ih(&path); | 
|  | item = get_item(&path); | 
|  | itempos = path.pos_in_item; | 
|  | goto retry; | 
|  | } | 
|  | modifying_this_item = 1; | 
|  | } | 
|  | item[itempos] = allocated_blocks[curr_block];	// Assign new block | 
|  | curr_block++; | 
|  | } | 
|  | itempos++; | 
|  | } | 
|  |  | 
|  | if (modifying_this_item) {	// We need to log last-accessed block, if it | 
|  | // was modified, but not logged yet. | 
|  | journal_mark_dirty(th, inode->i_sb, bh); | 
|  | } | 
|  |  | 
|  | if (curr_block < blocks_to_allocate) { | 
|  | // Oh, well need to append to indirect item, or to create indirect item | 
|  | // if there weren't any | 
|  | if (is_indirect_le_ih(ih)) { | 
|  | // Existing indirect item - append. First calculate key for append | 
|  | // position. We do not need to recalculate path as it should | 
|  | // already point to correct place. | 
|  | make_cpu_key(&key, inode, | 
|  | le_key_k_offset(get_inode_item_key_version | 
|  | (inode), | 
|  | &(ih->ih_key)) + | 
|  | op_bytes_number(ih, | 
|  | inode->i_sb->s_blocksize), | 
|  | TYPE_INDIRECT, 3); | 
|  | res = | 
|  | reiserfs_paste_into_item(th, &path, &key, inode, | 
|  | (char *)(allocated_blocks + | 
|  | curr_block), | 
|  | UNFM_P_SIZE * | 
|  | (blocks_to_allocate - | 
|  | curr_block)); | 
|  | if (res) { | 
|  | goto error_exit_free_blocks; | 
|  | } | 
|  | } else if (is_statdata_le_ih(ih)) { | 
|  | // Last found item was statdata. That means we need to create indirect item. | 
|  | struct item_head ins_ih;	/* itemhead for new item */ | 
|  |  | 
|  | /* create a key for our new item */ | 
|  | make_cpu_key(&key, inode, 1, TYPE_INDIRECT, 3);	// Position one, | 
|  | // because that's | 
|  | // where first | 
|  | // indirect item | 
|  | // begins | 
|  | /* Create new item head for our new item */ | 
|  | make_le_item_head(&ins_ih, &key, key.version, 1, | 
|  | TYPE_INDIRECT, | 
|  | (blocks_to_allocate - | 
|  | curr_block) * UNFM_P_SIZE, | 
|  | 0 /* free space */ ); | 
|  | /* Find where such item should live in the tree */ | 
|  | res = search_item(inode->i_sb, &key, &path); | 
|  | if (res != ITEM_NOT_FOUND) { | 
|  | /* Well, if we have found such item already, or some error | 
|  | occured, we need to warn user and return error */ | 
|  | if (res != -ENOSPC) { | 
|  | reiserfs_warning(inode->i_sb, | 
|  | "green-9009: search_by_key (%K) " | 
|  | "returned %d", &key, | 
|  | res); | 
|  | } | 
|  | res = -EIO; | 
|  | goto error_exit_free_blocks; | 
|  | } | 
|  | /* Insert item into the tree with the data as its body */ | 
|  | res = | 
|  | reiserfs_insert_item(th, &path, &key, &ins_ih, | 
|  | inode, | 
|  | (char *)(allocated_blocks + | 
|  | curr_block)); | 
|  | } else { | 
|  | reiserfs_panic(inode->i_sb, | 
|  | "green-9010: unexpected item type for key %K\n", | 
|  | &key); | 
|  | } | 
|  | } | 
|  | // the caller is responsible for closing the transaction | 
|  | // unless we return an error, they are also responsible for logging | 
|  | // the inode. | 
|  | // | 
|  | pathrelse(&path); | 
|  | /* | 
|  | * cleanup prellocation from previous writes | 
|  | * if this is a partial block write | 
|  | */ | 
|  | if (write_bytes & (inode->i_sb->s_blocksize - 1)) | 
|  | reiserfs_discard_prealloc(th, inode); | 
|  | reiserfs_write_unlock(inode->i_sb); | 
|  |  | 
|  | // go through all the pages/buffers and map the buffers to newly allocated | 
|  | // blocks (so that system knows where to write these pages later). | 
|  | curr_block = 0; | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | struct page *page = prepared_pages[i];	//current page | 
|  | struct buffer_head *head = page_buffers(page);	// first buffer for a page | 
|  | int block_start, block_end;	// in-page offsets for buffers. | 
|  |  | 
|  | if (!page_buffers(page)) | 
|  | reiserfs_panic(inode->i_sb, | 
|  | "green-9005: No buffers for prepared page???"); | 
|  |  | 
|  | /* For each buffer in page */ | 
|  | for (bh = head, block_start = 0; bh != head || !block_start; | 
|  | block_start = block_end, bh = bh->b_this_page) { | 
|  | if (!bh) | 
|  | reiserfs_panic(inode->i_sb, | 
|  | "green-9006: Allocated but absent buffer for a page?"); | 
|  | block_end = block_start + inode->i_sb->s_blocksize; | 
|  | if (i == 0 && block_end <= from) | 
|  | /* if this buffer is before requested data to map, skip it */ | 
|  | continue; | 
|  | if (i == num_pages - 1 && block_start >= to) | 
|  | /* If this buffer is after requested data to map, abort | 
|  | processing of current page */ | 
|  | break; | 
|  |  | 
|  | if (!buffer_mapped(bh)) {	// Ok, unmapped buffer, need to map it | 
|  | map_bh(bh, inode->i_sb, | 
|  | le32_to_cpu(allocated_blocks | 
|  | [curr_block])); | 
|  | curr_block++; | 
|  | set_buffer_new(bh); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | RFALSE(curr_block > blocks_to_allocate, | 
|  | "green-9007: Used too many blocks? weird"); | 
|  |  | 
|  | kfree(allocated_blocks); | 
|  | return 0; | 
|  |  | 
|  | // Need to deal with transaction here. | 
|  | error_exit_free_blocks: | 
|  | pathrelse(&path); | 
|  | // free blocks | 
|  | for (i = 0; i < blocks_to_allocate; i++) | 
|  | reiserfs_free_block(th, inode, le32_to_cpu(allocated_blocks[i]), | 
|  | 1); | 
|  |  | 
|  | error_exit: | 
|  | if (th->t_trans_id) { | 
|  | int err; | 
|  | // update any changes we made to blk count | 
|  | mark_inode_dirty(inode); | 
|  | err = | 
|  | journal_end(th, inode->i_sb, | 
|  | JOURNAL_PER_BALANCE_CNT * 3 + 1 + | 
|  | 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb)); | 
|  | if (err) | 
|  | res = err; | 
|  | } | 
|  | reiserfs_write_unlock(inode->i_sb); | 
|  | kfree(allocated_blocks); | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* Unlock pages prepared by reiserfs_prepare_file_region_for_write */ | 
|  | static void reiserfs_unprepare_pages(struct page **prepared_pages,	/* list of locked pages */ | 
|  | size_t num_pages /* amount of pages */ ) | 
|  | { | 
|  | int i;			// loop counter | 
|  |  | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | struct page *page = prepared_pages[i]; | 
|  |  | 
|  | try_to_free_buffers(page); | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* This function will copy data from userspace to specified pages within | 
|  | supplied byte range */ | 
|  | static int reiserfs_copy_from_user_to_file_region(loff_t pos,	/* In-file position */ | 
|  | int num_pages,	/* Number of pages affected */ | 
|  | int write_bytes,	/* Amount of bytes to write */ | 
|  | struct page **prepared_pages,	/* pointer to | 
|  | array to | 
|  | prepared pages | 
|  | */ | 
|  | const char __user * buf	/* Pointer to user-supplied | 
|  | data */ | 
|  | ) | 
|  | { | 
|  | long page_fault = 0;	// status of copy_from_user. | 
|  | int i;			// loop counter. | 
|  | int offset;		// offset in page | 
|  |  | 
|  | for (i = 0, offset = (pos & (PAGE_CACHE_SIZE - 1)); i < num_pages; | 
|  | i++, offset = 0) { | 
|  | size_t count = min_t(size_t, PAGE_CACHE_SIZE - offset, write_bytes);	// How much of bytes to write to this page | 
|  | struct page *page = prepared_pages[i];	// Current page we process. | 
|  |  | 
|  | fault_in_pages_readable(buf, count); | 
|  |  | 
|  | /* Copy data from userspace to the current page */ | 
|  | kmap(page); | 
|  | page_fault = __copy_from_user(page_address(page) + offset, buf, count);	// Copy the data. | 
|  | /* Flush processor's dcache for this page */ | 
|  | flush_dcache_page(page); | 
|  | kunmap(page); | 
|  | buf += count; | 
|  | write_bytes -= count; | 
|  |  | 
|  | if (page_fault) | 
|  | break;	// Was there a fault? abort. | 
|  | } | 
|  |  | 
|  | return page_fault ? -EFAULT : 0; | 
|  | } | 
|  |  | 
|  | /* taken fs/buffer.c:__block_commit_write */ | 
|  | int reiserfs_commit_page(struct inode *inode, struct page *page, | 
|  | unsigned from, unsigned to) | 
|  | { | 
|  | unsigned block_start, block_end; | 
|  | int partial = 0; | 
|  | unsigned blocksize; | 
|  | struct buffer_head *bh, *head; | 
|  | unsigned long i_size_index = inode->i_size >> PAGE_CACHE_SHIFT; | 
|  | int new; | 
|  | int logit = reiserfs_file_data_log(inode); | 
|  | struct super_block *s = inode->i_sb; | 
|  | int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize; | 
|  | struct reiserfs_transaction_handle th; | 
|  | int ret = 0; | 
|  |  | 
|  | th.t_trans_id = 0; | 
|  | blocksize = 1 << inode->i_blkbits; | 
|  |  | 
|  | if (logit) { | 
|  | reiserfs_write_lock(s); | 
|  | ret = journal_begin(&th, s, bh_per_page + 1); | 
|  | if (ret) | 
|  | goto drop_write_lock; | 
|  | reiserfs_update_inode_transaction(inode); | 
|  | } | 
|  | for (bh = head = page_buffers(page), block_start = 0; | 
|  | bh != head || !block_start; | 
|  | block_start = block_end, bh = bh->b_this_page) { | 
|  |  | 
|  | new = buffer_new(bh); | 
|  | clear_buffer_new(bh); | 
|  | block_end = block_start + blocksize; | 
|  | if (block_end <= from || block_start >= to) { | 
|  | if (!buffer_uptodate(bh)) | 
|  | partial = 1; | 
|  | } else { | 
|  | set_buffer_uptodate(bh); | 
|  | if (logit) { | 
|  | reiserfs_prepare_for_journal(s, bh, 1); | 
|  | journal_mark_dirty(&th, s, bh); | 
|  | } else if (!buffer_dirty(bh)) { | 
|  | mark_buffer_dirty(bh); | 
|  | /* do data=ordered on any page past the end | 
|  | * of file and any buffer marked BH_New. | 
|  | */ | 
|  | if (reiserfs_data_ordered(inode->i_sb) && | 
|  | (new || page->index >= i_size_index)) { | 
|  | reiserfs_add_ordered_list(inode, bh); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | if (logit) { | 
|  | ret = journal_end(&th, s, bh_per_page + 1); | 
|  | drop_write_lock: | 
|  | reiserfs_write_unlock(s); | 
|  | } | 
|  | /* | 
|  | * If this is a partial write which happened to make all buffers | 
|  | * uptodate then we can optimize away a bogus readpage() for | 
|  | * the next read(). Here we 'discover' whether the page went | 
|  | * uptodate as a result of this (potentially partial) write. | 
|  | */ | 
|  | if (!partial) | 
|  | SetPageUptodate(page); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Submit pages for write. This was separated from actual file copying | 
|  | because we might want to allocate block numbers in-between. | 
|  | This function assumes that caller will adjust file size to correct value. */ | 
|  | static int reiserfs_submit_file_region_for_write(struct reiserfs_transaction_handle *th, struct inode *inode, loff_t pos,	/* Writing position offset */ | 
|  | size_t num_pages,	/* Number of pages to write */ | 
|  | size_t write_bytes,	/* number of bytes to write */ | 
|  | struct page **prepared_pages	/* list of pages */ | 
|  | ) | 
|  | { | 
|  | int status;		// return status of block_commit_write. | 
|  | int retval = 0;		// Return value we are going to return. | 
|  | int i;			// loop counter | 
|  | int offset;		// Writing offset in page. | 
|  | int orig_write_bytes = write_bytes; | 
|  | int sd_update = 0; | 
|  |  | 
|  | for (i = 0, offset = (pos & (PAGE_CACHE_SIZE - 1)); i < num_pages; | 
|  | i++, offset = 0) { | 
|  | int count = min_t(int, PAGE_CACHE_SIZE - offset, write_bytes);	// How much of bytes to write to this page | 
|  | struct page *page = prepared_pages[i];	// Current page we process. | 
|  |  | 
|  | status = | 
|  | reiserfs_commit_page(inode, page, offset, offset + count); | 
|  | if (status) | 
|  | retval = status;	// To not overcomplicate matters We are going to | 
|  | // submit all the pages even if there was error. | 
|  | // we only remember error status to report it on | 
|  | // exit. | 
|  | write_bytes -= count; | 
|  | } | 
|  | /* now that we've gotten all the ordered buffers marked dirty, | 
|  | * we can safely update i_size and close any running transaction | 
|  | */ | 
|  | if (pos + orig_write_bytes > inode->i_size) { | 
|  | inode->i_size = pos + orig_write_bytes;	// Set new size | 
|  | /* If the file have grown so much that tail packing is no | 
|  | * longer possible, reset "need to pack" flag */ | 
|  | if ((have_large_tails(inode->i_sb) && | 
|  | inode->i_size > i_block_size(inode) * 4) || | 
|  | (have_small_tails(inode->i_sb) && | 
|  | inode->i_size > i_block_size(inode))) | 
|  | REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; | 
|  | else if ((have_large_tails(inode->i_sb) && | 
|  | inode->i_size < i_block_size(inode) * 4) || | 
|  | (have_small_tails(inode->i_sb) && | 
|  | inode->i_size < i_block_size(inode))) | 
|  | REISERFS_I(inode)->i_flags |= i_pack_on_close_mask; | 
|  |  | 
|  | if (th->t_trans_id) { | 
|  | reiserfs_write_lock(inode->i_sb); | 
|  | // this sets the proper flags for O_SYNC to trigger a commit | 
|  | mark_inode_dirty(inode); | 
|  | reiserfs_write_unlock(inode->i_sb); | 
|  | } else | 
|  | mark_inode_dirty(inode); | 
|  |  | 
|  | sd_update = 1; | 
|  | } | 
|  | if (th->t_trans_id) { | 
|  | reiserfs_write_lock(inode->i_sb); | 
|  | if (!sd_update) | 
|  | mark_inode_dirty(inode); | 
|  | status = journal_end(th, th->t_super, th->t_blocks_allocated); | 
|  | if (status) | 
|  | retval = status; | 
|  | reiserfs_write_unlock(inode->i_sb); | 
|  | } | 
|  | th->t_trans_id = 0; | 
|  |  | 
|  | /* | 
|  | * we have to unlock the pages after updating i_size, otherwise | 
|  | * we race with writepage | 
|  | */ | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | struct page *page = prepared_pages[i]; | 
|  | unlock_page(page); | 
|  | mark_page_accessed(page); | 
|  | page_cache_release(page); | 
|  | } | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* Look if passed writing region is going to touch file's tail | 
|  | (if it is present). And if it is, convert the tail to unformatted node */ | 
|  | static int reiserfs_check_for_tail_and_convert(struct inode *inode,	/* inode to deal with */ | 
|  | loff_t pos,	/* Writing position */ | 
|  | int write_bytes	/* amount of bytes to write */ | 
|  | ) | 
|  | { | 
|  | INITIALIZE_PATH(path);	// needed for search_for_position | 
|  | struct cpu_key key;	// Key that would represent last touched writing byte. | 
|  | struct item_head *ih;	// item header of found block; | 
|  | int res;		// Return value of various functions we call. | 
|  | int cont_expand_offset;	// We will put offset for generic_cont_expand here | 
|  | // This can be int just because tails are created | 
|  | // only for small files. | 
|  |  | 
|  | /* this embodies a dependency on a particular tail policy */ | 
|  | if (inode->i_size >= inode->i_sb->s_blocksize * 4) { | 
|  | /* such a big files do not have tails, so we won't bother ourselves | 
|  | to look for tails, simply return */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | reiserfs_write_lock(inode->i_sb); | 
|  | /* find the item containing the last byte to be written, or if | 
|  | * writing past the end of the file then the last item of the | 
|  | * file (and then we check its type). */ | 
|  | make_cpu_key(&key, inode, pos + write_bytes + 1, TYPE_ANY, | 
|  | 3 /*key length */ ); | 
|  | res = search_for_position_by_key(inode->i_sb, &key, &path); | 
|  | if (res == IO_ERROR) { | 
|  | reiserfs_write_unlock(inode->i_sb); | 
|  | return -EIO; | 
|  | } | 
|  | ih = get_ih(&path); | 
|  | res = 0; | 
|  | if (is_direct_le_ih(ih)) { | 
|  | /* Ok, closest item is file tail (tails are stored in "direct" | 
|  | * items), so we need to unpack it. */ | 
|  | /* To not overcomplicate matters, we just call generic_cont_expand | 
|  | which will in turn call other stuff and finally will boil down to | 
|  | reiserfs_get_block() that would do necessary conversion. */ | 
|  | cont_expand_offset = | 
|  | le_key_k_offset(get_inode_item_key_version(inode), | 
|  | &(ih->ih_key)); | 
|  | pathrelse(&path); | 
|  | res = generic_cont_expand(inode, cont_expand_offset); | 
|  | } else | 
|  | pathrelse(&path); | 
|  |  | 
|  | reiserfs_write_unlock(inode->i_sb); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* This function locks pages starting from @pos for @inode. | 
|  | @num_pages pages are locked and stored in | 
|  | @prepared_pages array. Also buffers are allocated for these pages. | 
|  | First and last page of the region is read if it is overwritten only | 
|  | partially. If last page did not exist before write (file hole or file | 
|  | append), it is zeroed, then. | 
|  | Returns number of unallocated blocks that should be allocated to cover | 
|  | new file data.*/ | 
|  | static int reiserfs_prepare_file_region_for_write(struct inode *inode | 
|  | /* Inode of the file */ , | 
|  | loff_t pos,	/* position in the file */ | 
|  | size_t num_pages,	/* number of pages to | 
|  | prepare */ | 
|  | size_t write_bytes,	/* Amount of bytes to be | 
|  | overwritten from | 
|  | @pos */ | 
|  | struct page **prepared_pages	/* pointer to array | 
|  | where to store | 
|  | prepared pages */ | 
|  | ) | 
|  | { | 
|  | int res = 0;		// Return values of different functions we call. | 
|  | unsigned long index = pos >> PAGE_CACHE_SHIFT;	// Offset in file in pages. | 
|  | int from = (pos & (PAGE_CACHE_SIZE - 1));	// Writing offset in first page | 
|  | int to = ((pos + write_bytes - 1) & (PAGE_CACHE_SIZE - 1)) + 1; | 
|  | /* offset of last modified byte in last | 
|  | page */ | 
|  | struct address_space *mapping = inode->i_mapping;	// Pages are mapped here. | 
|  | int i;			// Simple counter | 
|  | int blocks = 0;		/* Return value (blocks that should be allocated) */ | 
|  | struct buffer_head *bh, *head;	// Current bufferhead and first bufferhead | 
|  | // of a page. | 
|  | unsigned block_start, block_end;	// Starting and ending offsets of current | 
|  | // buffer in the page. | 
|  | struct buffer_head *wait[2], **wait_bh = wait;	// Buffers for page, if | 
|  | // Page appeared to be not up | 
|  | // to date. Note how we have | 
|  | // at most 2 buffers, this is | 
|  | // because we at most may | 
|  | // partially overwrite two | 
|  | // buffers for one page. One at                                                 // the beginning of write area | 
|  | // and one at the end. | 
|  | // Everything inthe middle gets                                                 // overwritten totally. | 
|  |  | 
|  | struct cpu_key key;	// cpu key of item that we are going to deal with | 
|  | struct item_head *ih = NULL;	// pointer to item head that we are going to deal with | 
|  | struct buffer_head *itembuf = NULL;	// Buffer head that contains items that we are going to deal with | 
|  | INITIALIZE_PATH(path);	// path to item, that we are going to deal with. | 
|  | __le32 *item = NULL;	// pointer to item we are going to deal with | 
|  | int item_pos = -1;	/* Position in indirect item */ | 
|  |  | 
|  | if (num_pages < 1) { | 
|  | reiserfs_warning(inode->i_sb, | 
|  | "green-9001: reiserfs_prepare_file_region_for_write " | 
|  | "called with zero number of pages to process"); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | /* We have 2 loops for pages. In first loop we grab and lock the pages, so | 
|  | that nobody would touch these until we release the pages. Then | 
|  | we'd start to deal with mapping buffers to blocks. */ | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | prepared_pages[i] = grab_cache_page(mapping, index + i);	// locks the page | 
|  | if (!prepared_pages[i]) { | 
|  | res = -ENOMEM; | 
|  | goto failed_page_grabbing; | 
|  | } | 
|  | if (!page_has_buffers(prepared_pages[i])) | 
|  | create_empty_buffers(prepared_pages[i], | 
|  | inode->i_sb->s_blocksize, 0); | 
|  | } | 
|  |  | 
|  | /* Let's count amount of blocks for a case where all the blocks | 
|  | overwritten are new (we will substract already allocated blocks later) */ | 
|  | if (num_pages > 2) | 
|  | /* These are full-overwritten pages so we count all the blocks in | 
|  | these pages are counted as needed to be allocated */ | 
|  | blocks = | 
|  | (num_pages - 2) << (PAGE_CACHE_SHIFT - inode->i_blkbits); | 
|  |  | 
|  | /* count blocks needed for first page (possibly partially written) */ | 
|  | blocks += ((PAGE_CACHE_SIZE - from) >> inode->i_blkbits) + !!(from & (inode->i_sb->s_blocksize - 1));	/* roundup */ | 
|  |  | 
|  | /* Now we account for last page. If last page == first page (we | 
|  | overwrite only one page), we substract all the blocks past the | 
|  | last writing position in a page out of already calculated number | 
|  | of blocks */ | 
|  | blocks += ((num_pages > 1) << (PAGE_CACHE_SHIFT - inode->i_blkbits)) - | 
|  | ((PAGE_CACHE_SIZE - to) >> inode->i_blkbits); | 
|  | /* Note how we do not roundup here since partial blocks still | 
|  | should be allocated */ | 
|  |  | 
|  | /* Now if all the write area lies past the file end, no point in | 
|  | maping blocks, since there is none, so we just zero out remaining | 
|  | parts of first and last pages in write area (if needed) */ | 
|  | if ((pos & ~((loff_t) PAGE_CACHE_SIZE - 1)) > inode->i_size) { | 
|  | if (from != 0) {	/* First page needs to be partially zeroed */ | 
|  | char *kaddr = kmap_atomic(prepared_pages[0], KM_USER0); | 
|  | memset(kaddr, 0, from); | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  | } | 
|  | if (to != PAGE_CACHE_SIZE) {	/* Last page needs to be partially zeroed */ | 
|  | char *kaddr = | 
|  | kmap_atomic(prepared_pages[num_pages - 1], | 
|  | KM_USER0); | 
|  | memset(kaddr + to, 0, PAGE_CACHE_SIZE - to); | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  | } | 
|  |  | 
|  | /* Since all blocks are new - use already calculated value */ | 
|  | return blocks; | 
|  | } | 
|  |  | 
|  | /* Well, since we write somewhere into the middle of a file, there is | 
|  | possibility we are writing over some already allocated blocks, so | 
|  | let's map these blocks and substract number of such blocks out of blocks | 
|  | we need to allocate (calculated above) */ | 
|  | /* Mask write position to start on blocksize, we do it out of the | 
|  | loop for performance reasons */ | 
|  | pos &= ~((loff_t) inode->i_sb->s_blocksize - 1); | 
|  | /* Set cpu key to the starting position in a file (on left block boundary) */ | 
|  | make_cpu_key(&key, inode, | 
|  | 1 + ((pos) & ~((loff_t) inode->i_sb->s_blocksize - 1)), | 
|  | TYPE_ANY, 3 /*key length */ ); | 
|  |  | 
|  | reiserfs_write_lock(inode->i_sb);	// We need that for at least search_by_key() | 
|  | for (i = 0; i < num_pages; i++) { | 
|  |  | 
|  | head = page_buffers(prepared_pages[i]); | 
|  | /* For each buffer in the page */ | 
|  | for (bh = head, block_start = 0; bh != head || !block_start; | 
|  | block_start = block_end, bh = bh->b_this_page) { | 
|  | if (!bh) | 
|  | reiserfs_panic(inode->i_sb, | 
|  | "green-9002: Allocated but absent buffer for a page?"); | 
|  | /* Find where this buffer ends */ | 
|  | block_end = block_start + inode->i_sb->s_blocksize; | 
|  | if (i == 0 && block_end <= from) | 
|  | /* if this buffer is before requested data to map, skip it */ | 
|  | continue; | 
|  |  | 
|  | if (i == num_pages - 1 && block_start >= to) { | 
|  | /* If this buffer is after requested data to map, abort | 
|  | processing of current page */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (buffer_mapped(bh) && bh->b_blocknr != 0) { | 
|  | /* This is optimisation for a case where buffer is mapped | 
|  | and have blocknumber assigned. In case significant amount | 
|  | of such buffers are present, we may avoid some amount | 
|  | of search_by_key calls. | 
|  | Probably it would be possible to move parts of this code | 
|  | out of BKL, but I afraid that would overcomplicate code | 
|  | without any noticeable benefit. | 
|  | */ | 
|  | item_pos++; | 
|  | /* Update the key */ | 
|  | set_cpu_key_k_offset(&key, | 
|  | cpu_key_k_offset(&key) + | 
|  | inode->i_sb->s_blocksize); | 
|  | blocks--;	// Decrease the amount of blocks that need to be | 
|  | // allocated | 
|  | continue;	// Go to the next buffer | 
|  | } | 
|  |  | 
|  | if (!itembuf ||	/* if first iteration */ | 
|  | item_pos >= ih_item_len(ih) / UNFM_P_SIZE) {	/* or if we progressed past the | 
|  | current unformatted_item */ | 
|  | /* Try to find next item */ | 
|  | res = | 
|  | search_for_position_by_key(inode->i_sb, | 
|  | &key, &path); | 
|  | /* Abort if no more items */ | 
|  | if (res != POSITION_FOUND) { | 
|  | /* make sure later loops don't use this item */ | 
|  | itembuf = NULL; | 
|  | item = NULL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Update information about current indirect item */ | 
|  | itembuf = get_last_bh(&path); | 
|  | ih = get_ih(&path); | 
|  | item = get_item(&path); | 
|  | item_pos = path.pos_in_item; | 
|  |  | 
|  | RFALSE(!is_indirect_le_ih(ih), | 
|  | "green-9003: indirect item expected"); | 
|  | } | 
|  |  | 
|  | /* See if there is some block associated with the file | 
|  | at that position, map the buffer to this block */ | 
|  | if (get_block_num(item, item_pos)) { | 
|  | map_bh(bh, inode->i_sb, | 
|  | get_block_num(item, item_pos)); | 
|  | blocks--;	// Decrease the amount of blocks that need to be | 
|  | // allocated | 
|  | } | 
|  | item_pos++; | 
|  | /* Update the key */ | 
|  | set_cpu_key_k_offset(&key, | 
|  | cpu_key_k_offset(&key) + | 
|  | inode->i_sb->s_blocksize); | 
|  | } | 
|  | } | 
|  | pathrelse(&path);	// Free the path | 
|  | reiserfs_write_unlock(inode->i_sb); | 
|  |  | 
|  | /* Now zero out unmappend buffers for the first and last pages of | 
|  | write area or issue read requests if page is mapped. */ | 
|  | /* First page, see if it is not uptodate */ | 
|  | if (!PageUptodate(prepared_pages[0])) { | 
|  | head = page_buffers(prepared_pages[0]); | 
|  |  | 
|  | /* For each buffer in page */ | 
|  | for (bh = head, block_start = 0; bh != head || !block_start; | 
|  | block_start = block_end, bh = bh->b_this_page) { | 
|  |  | 
|  | if (!bh) | 
|  | reiserfs_panic(inode->i_sb, | 
|  | "green-9002: Allocated but absent buffer for a page?"); | 
|  | /* Find where this buffer ends */ | 
|  | block_end = block_start + inode->i_sb->s_blocksize; | 
|  | if (block_end <= from) | 
|  | /* if this buffer is before requested data to map, skip it */ | 
|  | continue; | 
|  | if (block_start < from) {	/* Aha, our partial buffer */ | 
|  | if (buffer_mapped(bh)) {	/* If it is mapped, we need to | 
|  | issue READ request for it to | 
|  | not loose data */ | 
|  | ll_rw_block(READ, 1, &bh); | 
|  | *wait_bh++ = bh; | 
|  | } else {	/* Not mapped, zero it */ | 
|  | char *kaddr = | 
|  | kmap_atomic(prepared_pages[0], | 
|  | KM_USER0); | 
|  | memset(kaddr + block_start, 0, | 
|  | from - block_start); | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  | set_buffer_uptodate(bh); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Last page, see if it is not uptodate, or if the last page is past the end of the file. */ | 
|  | if (!PageUptodate(prepared_pages[num_pages - 1]) || | 
|  | ((pos + write_bytes) >> PAGE_CACHE_SHIFT) > | 
|  | (inode->i_size >> PAGE_CACHE_SHIFT)) { | 
|  | head = page_buffers(prepared_pages[num_pages - 1]); | 
|  |  | 
|  | /* for each buffer in page */ | 
|  | for (bh = head, block_start = 0; bh != head || !block_start; | 
|  | block_start = block_end, bh = bh->b_this_page) { | 
|  |  | 
|  | if (!bh) | 
|  | reiserfs_panic(inode->i_sb, | 
|  | "green-9002: Allocated but absent buffer for a page?"); | 
|  | /* Find where this buffer ends */ | 
|  | block_end = block_start + inode->i_sb->s_blocksize; | 
|  | if (block_start >= to) | 
|  | /* if this buffer is after requested data to map, skip it */ | 
|  | break; | 
|  | if (block_end > to) {	/* Aha, our partial buffer */ | 
|  | if (buffer_mapped(bh)) {	/* If it is mapped, we need to | 
|  | issue READ request for it to | 
|  | not loose data */ | 
|  | ll_rw_block(READ, 1, &bh); | 
|  | *wait_bh++ = bh; | 
|  | } else {	/* Not mapped, zero it */ | 
|  | char *kaddr = | 
|  | kmap_atomic(prepared_pages | 
|  | [num_pages - 1], | 
|  | KM_USER0); | 
|  | memset(kaddr + to, 0, block_end - to); | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  | set_buffer_uptodate(bh); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Wait for read requests we made to happen, if necessary */ | 
|  | while (wait_bh > wait) { | 
|  | wait_on_buffer(*--wait_bh); | 
|  | if (!buffer_uptodate(*wait_bh)) { | 
|  | res = -EIO; | 
|  | goto failed_read; | 
|  | } | 
|  | } | 
|  |  | 
|  | return blocks; | 
|  | failed_page_grabbing: | 
|  | num_pages = i; | 
|  | failed_read: | 
|  | reiserfs_unprepare_pages(prepared_pages, num_pages); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* Write @count bytes at position @ppos in a file indicated by @file | 
|  | from the buffer @buf. | 
|  |  | 
|  | generic_file_write() is only appropriate for filesystems that are not seeking to optimize performance and want | 
|  | something simple that works.  It is not for serious use by general purpose filesystems, excepting the one that it was | 
|  | written for (ext2/3).  This is for several reasons: | 
|  |  | 
|  | * It has no understanding of any filesystem specific optimizations. | 
|  |  | 
|  | * It enters the filesystem repeatedly for each page that is written. | 
|  |  | 
|  | * It depends on reiserfs_get_block() function which if implemented by reiserfs performs costly search_by_key | 
|  | * operation for each page it is supplied with. By contrast reiserfs_file_write() feeds as much as possible at a time | 
|  | * to reiserfs which allows for fewer tree traversals. | 
|  |  | 
|  | * Each indirect pointer insertion takes a lot of cpu, because it involves memory moves inside of blocks. | 
|  |  | 
|  | * Asking the block allocation code for blocks one at a time is slightly less efficient. | 
|  |  | 
|  | All of these reasons for not using only generic file write were understood back when reiserfs was first miscoded to | 
|  | use it, but we were in a hurry to make code freeze, and so it couldn't be revised then.  This new code should make | 
|  | things right finally. | 
|  |  | 
|  | Future Features: providing search_by_key with hints. | 
|  |  | 
|  | */ | 
|  | static ssize_t reiserfs_file_write(struct file *file,	/* the file we are going to write into */ | 
|  | const char __user * buf,	/*  pointer to user supplied data | 
|  | (in userspace) */ | 
|  | size_t count,	/* amount of bytes to write */ | 
|  | loff_t * ppos	/* pointer to position in file that we start writing at. Should be updated to | 
|  | * new current position before returning. */ | 
|  | ) | 
|  | { | 
|  | size_t already_written = 0;	// Number of bytes already written to the file. | 
|  | loff_t pos;		// Current position in the file. | 
|  | ssize_t res;		// return value of various functions that we call. | 
|  | int err = 0; | 
|  | struct inode *inode = file->f_dentry->d_inode;	// Inode of the file that we are writing to. | 
|  | /* To simplify coding at this time, we store | 
|  | locked pages in array for now */ | 
|  | struct page *prepared_pages[REISERFS_WRITE_PAGES_AT_A_TIME]; | 
|  | struct reiserfs_transaction_handle th; | 
|  | th.t_trans_id = 0; | 
|  |  | 
|  | /* If a filesystem is converted from 3.5 to 3.6, we'll have v3.5 items | 
|  | * lying around (most of the disk, in fact). Despite the filesystem | 
|  | * now being a v3.6 format, the old items still can't support large | 
|  | * file sizes. Catch this case here, as the rest of the VFS layer is | 
|  | * oblivious to the different limitations between old and new items. | 
|  | * reiserfs_setattr catches this for truncates. This chunk is lifted | 
|  | * from generic_write_checks. */ | 
|  | if (get_inode_item_key_version (inode) == KEY_FORMAT_3_5 && | 
|  | *ppos + count > MAX_NON_LFS) { | 
|  | if (*ppos >= MAX_NON_LFS) { | 
|  | send_sig(SIGXFSZ, current, 0); | 
|  | return -EFBIG; | 
|  | } | 
|  | if (count > MAX_NON_LFS - (unsigned long)*ppos) | 
|  | count = MAX_NON_LFS - (unsigned long)*ppos; | 
|  | } | 
|  |  | 
|  | if (file->f_flags & O_DIRECT) {	// Direct IO needs treatment | 
|  | ssize_t result, after_file_end = 0; | 
|  | if ((*ppos + count >= inode->i_size) | 
|  | || (file->f_flags & O_APPEND)) { | 
|  | /* If we are appending a file, we need to put this savelink in here. | 
|  | If we will crash while doing direct io, finish_unfinished will | 
|  | cut the garbage from the file end. */ | 
|  | reiserfs_write_lock(inode->i_sb); | 
|  | err = | 
|  | journal_begin(&th, inode->i_sb, | 
|  | JOURNAL_PER_BALANCE_CNT); | 
|  | if (err) { | 
|  | reiserfs_write_unlock(inode->i_sb); | 
|  | return err; | 
|  | } | 
|  | reiserfs_update_inode_transaction(inode); | 
|  | add_save_link(&th, inode, 1 /* Truncate */ ); | 
|  | after_file_end = 1; | 
|  | err = | 
|  | journal_end(&th, inode->i_sb, | 
|  | JOURNAL_PER_BALANCE_CNT); | 
|  | reiserfs_write_unlock(inode->i_sb); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | result = generic_file_write(file, buf, count, ppos); | 
|  |  | 
|  | if (after_file_end) {	/* Now update i_size and remove the savelink */ | 
|  | struct reiserfs_transaction_handle th; | 
|  | reiserfs_write_lock(inode->i_sb); | 
|  | err = journal_begin(&th, inode->i_sb, 1); | 
|  | if (err) { | 
|  | reiserfs_write_unlock(inode->i_sb); | 
|  | return err; | 
|  | } | 
|  | reiserfs_update_inode_transaction(inode); | 
|  | mark_inode_dirty(inode); | 
|  | err = journal_end(&th, inode->i_sb, 1); | 
|  | if (err) { | 
|  | reiserfs_write_unlock(inode->i_sb); | 
|  | return err; | 
|  | } | 
|  | err = remove_save_link(inode, 1 /* truncate */ ); | 
|  | reiserfs_write_unlock(inode->i_sb); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | if (unlikely((ssize_t) count < 0)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (unlikely(!access_ok(VERIFY_READ, buf, count))) | 
|  | return -EFAULT; | 
|  |  | 
|  | mutex_lock(&inode->i_mutex);	// locks the entire file for just us | 
|  |  | 
|  | pos = *ppos; | 
|  |  | 
|  | /* Check if we can write to specified region of file, file | 
|  | is not overly big and this kind of stuff. Adjust pos and | 
|  | count, if needed */ | 
|  | res = generic_write_checks(file, &pos, &count, 0); | 
|  | if (res) | 
|  | goto out; | 
|  |  | 
|  | if (count == 0) | 
|  | goto out; | 
|  |  | 
|  | res = remove_suid(file->f_dentry); | 
|  | if (res) | 
|  | goto out; | 
|  |  | 
|  | file_update_time(file); | 
|  |  | 
|  | // Ok, we are done with all the checks. | 
|  |  | 
|  | // Now we should start real work | 
|  |  | 
|  | /* If we are going to write past the file's packed tail or if we are going | 
|  | to overwrite part of the tail, we need that tail to be converted into | 
|  | unformatted node */ | 
|  | res = reiserfs_check_for_tail_and_convert(inode, pos, count); | 
|  | if (res) | 
|  | goto out; | 
|  |  | 
|  | while (count > 0) { | 
|  | /* This is the main loop in which we running until some error occures | 
|  | or until we write all of the data. */ | 
|  | size_t num_pages;	/* amount of pages we are going to write this iteration */ | 
|  | size_t write_bytes;	/* amount of bytes to write during this iteration */ | 
|  | size_t blocks_to_allocate;	/* how much blocks we need to allocate for this iteration */ | 
|  |  | 
|  | /*  (pos & (PAGE_CACHE_SIZE-1)) is an idiom for offset into a page of pos */ | 
|  | num_pages = !!((pos + count) & (PAGE_CACHE_SIZE - 1)) +	/* round up partial | 
|  | pages */ | 
|  | ((count + | 
|  | (pos & (PAGE_CACHE_SIZE - 1))) >> PAGE_CACHE_SHIFT); | 
|  | /* convert size to amount of | 
|  | pages */ | 
|  | reiserfs_write_lock(inode->i_sb); | 
|  | if (num_pages > REISERFS_WRITE_PAGES_AT_A_TIME | 
|  | || num_pages > reiserfs_can_fit_pages(inode->i_sb)) { | 
|  | /* If we were asked to write more data than we want to or if there | 
|  | is not that much space, then we shorten amount of data to write | 
|  | for this iteration. */ | 
|  | num_pages = | 
|  | min_t(size_t, REISERFS_WRITE_PAGES_AT_A_TIME, | 
|  | reiserfs_can_fit_pages(inode->i_sb)); | 
|  | /* Also we should not forget to set size in bytes accordingly */ | 
|  | write_bytes = (num_pages << PAGE_CACHE_SHIFT) - | 
|  | (pos & (PAGE_CACHE_SIZE - 1)); | 
|  | /* If position is not on the | 
|  | start of the page, we need | 
|  | to substract the offset | 
|  | within page */ | 
|  | } else | 
|  | write_bytes = count; | 
|  |  | 
|  | /* reserve the blocks to be allocated later, so that later on | 
|  | we still have the space to write the blocks to */ | 
|  | reiserfs_claim_blocks_to_be_allocated(inode->i_sb, | 
|  | num_pages << | 
|  | (PAGE_CACHE_SHIFT - | 
|  | inode->i_blkbits)); | 
|  | reiserfs_write_unlock(inode->i_sb); | 
|  |  | 
|  | if (!num_pages) {	/* If we do not have enough space even for a single page... */ | 
|  | if (pos > | 
|  | inode->i_size + inode->i_sb->s_blocksize - | 
|  | (pos & (inode->i_sb->s_blocksize - 1))) { | 
|  | res = -ENOSPC; | 
|  | break;	// In case we are writing past the end of the last file block, break. | 
|  | } | 
|  | // Otherwise we are possibly overwriting the file, so | 
|  | // let's set write size to be equal or less than blocksize. | 
|  | // This way we get it correctly for file holes. | 
|  | // But overwriting files on absolutelly full volumes would not | 
|  | // be very efficient. Well, people are not supposed to fill | 
|  | // 100% of disk space anyway. | 
|  | write_bytes = | 
|  | min_t(size_t, count, | 
|  | inode->i_sb->s_blocksize - | 
|  | (pos & (inode->i_sb->s_blocksize - 1))); | 
|  | num_pages = 1; | 
|  | // No blocks were claimed before, so do it now. | 
|  | reiserfs_claim_blocks_to_be_allocated(inode->i_sb, | 
|  | 1 << | 
|  | (PAGE_CACHE_SHIFT | 
|  | - | 
|  | inode-> | 
|  | i_blkbits)); | 
|  | } | 
|  |  | 
|  | /* Prepare for writing into the region, read in all the | 
|  | partially overwritten pages, if needed. And lock the pages, | 
|  | so that nobody else can access these until we are done. | 
|  | We get number of actual blocks needed as a result. */ | 
|  | res = reiserfs_prepare_file_region_for_write(inode, pos, | 
|  | num_pages, | 
|  | write_bytes, | 
|  | prepared_pages); | 
|  | if (res < 0) { | 
|  | reiserfs_release_claimed_blocks(inode->i_sb, | 
|  | num_pages << | 
|  | (PAGE_CACHE_SHIFT - | 
|  | inode->i_blkbits)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | blocks_to_allocate = res; | 
|  |  | 
|  | /* First we correct our estimate of how many blocks we need */ | 
|  | reiserfs_release_claimed_blocks(inode->i_sb, | 
|  | (num_pages << | 
|  | (PAGE_CACHE_SHIFT - | 
|  | inode->i_sb-> | 
|  | s_blocksize_bits)) - | 
|  | blocks_to_allocate); | 
|  |  | 
|  | if (blocks_to_allocate > 0) {	/*We only allocate blocks if we need to */ | 
|  | /* Fill in all the possible holes and append the file if needed */ | 
|  | res = | 
|  | reiserfs_allocate_blocks_for_region(&th, inode, pos, | 
|  | num_pages, | 
|  | write_bytes, | 
|  | prepared_pages, | 
|  | blocks_to_allocate); | 
|  | } | 
|  |  | 
|  | /* well, we have allocated the blocks, so it is time to free | 
|  | the reservation we made earlier. */ | 
|  | reiserfs_release_claimed_blocks(inode->i_sb, | 
|  | blocks_to_allocate); | 
|  | if (res) { | 
|  | reiserfs_unprepare_pages(prepared_pages, num_pages); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* NOTE that allocating blocks and filling blocks can be done in reverse order | 
|  | and probably we would do that just to get rid of garbage in files after a | 
|  | crash */ | 
|  |  | 
|  | /* Copy data from user-supplied buffer to file's pages */ | 
|  | res = | 
|  | reiserfs_copy_from_user_to_file_region(pos, num_pages, | 
|  | write_bytes, | 
|  | prepared_pages, buf); | 
|  | if (res) { | 
|  | reiserfs_unprepare_pages(prepared_pages, num_pages); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Send the pages to disk and unlock them. */ | 
|  | res = | 
|  | reiserfs_submit_file_region_for_write(&th, inode, pos, | 
|  | num_pages, | 
|  | write_bytes, | 
|  | prepared_pages); | 
|  | if (res) | 
|  | break; | 
|  |  | 
|  | already_written += write_bytes; | 
|  | buf += write_bytes; | 
|  | *ppos = pos += write_bytes; | 
|  | count -= write_bytes; | 
|  | balance_dirty_pages_ratelimited_nr(inode->i_mapping, num_pages); | 
|  | } | 
|  |  | 
|  | /* this is only true on error */ | 
|  | if (th.t_trans_id) { | 
|  | reiserfs_write_lock(inode->i_sb); | 
|  | err = journal_end(&th, th.t_super, th.t_blocks_allocated); | 
|  | reiserfs_write_unlock(inode->i_sb); | 
|  | if (err) { | 
|  | res = err; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (likely(res >= 0) && | 
|  | (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode)))) | 
|  | res = generic_osync_inode(inode, file->f_mapping, | 
|  | OSYNC_METADATA | OSYNC_DATA); | 
|  |  | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | reiserfs_async_progress_wait(inode->i_sb); | 
|  | return (already_written != 0) ? already_written : res; | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&inode->i_mutex);	// unlock the file on exit. | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static ssize_t reiserfs_aio_write(struct kiocb *iocb, const char __user * buf, | 
|  | size_t count, loff_t pos) | 
|  | { | 
|  | return generic_file_aio_write(iocb, buf, count, pos); | 
|  | } | 
|  |  | 
|  | const struct file_operations reiserfs_file_operations = { | 
|  | .read = generic_file_read, | 
|  | .write = reiserfs_file_write, | 
|  | .ioctl = reiserfs_ioctl, | 
|  | .mmap = generic_file_mmap, | 
|  | .release = reiserfs_file_release, | 
|  | .fsync = reiserfs_sync_file, | 
|  | .sendfile = generic_file_sendfile, | 
|  | .aio_read = generic_file_aio_read, | 
|  | .aio_write = reiserfs_aio_write, | 
|  | .splice_read = generic_file_splice_read, | 
|  | .splice_write = generic_file_splice_write, | 
|  | }; | 
|  |  | 
|  | struct inode_operations reiserfs_file_inode_operations = { | 
|  | .truncate = reiserfs_vfs_truncate_file, | 
|  | .setattr = reiserfs_setattr, | 
|  | .setxattr = reiserfs_setxattr, | 
|  | .getxattr = reiserfs_getxattr, | 
|  | .listxattr = reiserfs_listxattr, | 
|  | .removexattr = reiserfs_removexattr, | 
|  | .permission = reiserfs_permission, | 
|  | }; |