|  | /* | 
|  | * Copyright (C) 2007 Oracle.  All rights reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public | 
|  | * License v2 as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public | 
|  | * License along with this program; if not, write to the | 
|  | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
|  | * Boston, MA 021110-1307, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include "ctree.h" | 
|  | #include "transaction.h" | 
|  | #include "btrfs_inode.h" | 
|  | #include "extent_io.h" | 
|  |  | 
|  | static u64 entry_end(struct btrfs_ordered_extent *entry) | 
|  | { | 
|  | if (entry->file_offset + entry->len < entry->file_offset) | 
|  | return (u64)-1; | 
|  | return entry->file_offset + entry->len; | 
|  | } | 
|  |  | 
|  | /* returns NULL if the insertion worked, or it returns the node it did find | 
|  | * in the tree | 
|  | */ | 
|  | static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, | 
|  | struct rb_node *node) | 
|  | { | 
|  | struct rb_node **p = &root->rb_node; | 
|  | struct rb_node *parent = NULL; | 
|  | struct btrfs_ordered_extent *entry; | 
|  |  | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); | 
|  |  | 
|  | if (file_offset < entry->file_offset) | 
|  | p = &(*p)->rb_left; | 
|  | else if (file_offset >= entry_end(entry)) | 
|  | p = &(*p)->rb_right; | 
|  | else | 
|  | return parent; | 
|  | } | 
|  |  | 
|  | rb_link_node(node, parent, p); | 
|  | rb_insert_color(node, root); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * look for a given offset in the tree, and if it can't be found return the | 
|  | * first lesser offset | 
|  | */ | 
|  | static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, | 
|  | struct rb_node **prev_ret) | 
|  | { | 
|  | struct rb_node *n = root->rb_node; | 
|  | struct rb_node *prev = NULL; | 
|  | struct rb_node *test; | 
|  | struct btrfs_ordered_extent *entry; | 
|  | struct btrfs_ordered_extent *prev_entry = NULL; | 
|  |  | 
|  | while (n) { | 
|  | entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); | 
|  | prev = n; | 
|  | prev_entry = entry; | 
|  |  | 
|  | if (file_offset < entry->file_offset) | 
|  | n = n->rb_left; | 
|  | else if (file_offset >= entry_end(entry)) | 
|  | n = n->rb_right; | 
|  | else | 
|  | return n; | 
|  | } | 
|  | if (!prev_ret) | 
|  | return NULL; | 
|  |  | 
|  | while (prev && file_offset >= entry_end(prev_entry)) { | 
|  | test = rb_next(prev); | 
|  | if (!test) | 
|  | break; | 
|  | prev_entry = rb_entry(test, struct btrfs_ordered_extent, | 
|  | rb_node); | 
|  | if (file_offset < entry_end(prev_entry)) | 
|  | break; | 
|  |  | 
|  | prev = test; | 
|  | } | 
|  | if (prev) | 
|  | prev_entry = rb_entry(prev, struct btrfs_ordered_extent, | 
|  | rb_node); | 
|  | while (prev && file_offset < entry_end(prev_entry)) { | 
|  | test = rb_prev(prev); | 
|  | if (!test) | 
|  | break; | 
|  | prev_entry = rb_entry(test, struct btrfs_ordered_extent, | 
|  | rb_node); | 
|  | prev = test; | 
|  | } | 
|  | *prev_ret = prev; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to check if a given offset is inside a given entry | 
|  | */ | 
|  | static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) | 
|  | { | 
|  | if (file_offset < entry->file_offset || | 
|  | entry->file_offset + entry->len <= file_offset) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * look find the first ordered struct that has this offset, otherwise | 
|  | * the first one less than this offset | 
|  | */ | 
|  | static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, | 
|  | u64 file_offset) | 
|  | { | 
|  | struct rb_root *root = &tree->tree; | 
|  | struct rb_node *prev; | 
|  | struct rb_node *ret; | 
|  | struct btrfs_ordered_extent *entry; | 
|  |  | 
|  | if (tree->last) { | 
|  | entry = rb_entry(tree->last, struct btrfs_ordered_extent, | 
|  | rb_node); | 
|  | if (offset_in_entry(entry, file_offset)) | 
|  | return tree->last; | 
|  | } | 
|  | ret = __tree_search(root, file_offset, &prev); | 
|  | if (!ret) | 
|  | ret = prev; | 
|  | if (ret) | 
|  | tree->last = ret; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* allocate and add a new ordered_extent into the per-inode tree. | 
|  | * file_offset is the logical offset in the file | 
|  | * | 
|  | * start is the disk block number of an extent already reserved in the | 
|  | * extent allocation tree | 
|  | * | 
|  | * len is the length of the extent | 
|  | * | 
|  | * This also sets the EXTENT_ORDERED bit on the range in the inode. | 
|  | * | 
|  | * The tree is given a single reference on the ordered extent that was | 
|  | * inserted. | 
|  | */ | 
|  | int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, | 
|  | u64 start, u64 len, u64 disk_len, int type) | 
|  | { | 
|  | struct btrfs_ordered_inode_tree *tree; | 
|  | struct rb_node *node; | 
|  | struct btrfs_ordered_extent *entry; | 
|  |  | 
|  | tree = &BTRFS_I(inode)->ordered_tree; | 
|  | entry = kzalloc(sizeof(*entry), GFP_NOFS); | 
|  | if (!entry) | 
|  | return -ENOMEM; | 
|  |  | 
|  | mutex_lock(&tree->mutex); | 
|  | entry->file_offset = file_offset; | 
|  | entry->start = start; | 
|  | entry->len = len; | 
|  | entry->disk_len = disk_len; | 
|  | entry->inode = inode; | 
|  | if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) | 
|  | set_bit(type, &entry->flags); | 
|  |  | 
|  | /* one ref for the tree */ | 
|  | atomic_set(&entry->refs, 1); | 
|  | init_waitqueue_head(&entry->wait); | 
|  | INIT_LIST_HEAD(&entry->list); | 
|  | INIT_LIST_HEAD(&entry->root_extent_list); | 
|  |  | 
|  | node = tree_insert(&tree->tree, file_offset, | 
|  | &entry->rb_node); | 
|  | BUG_ON(node); | 
|  |  | 
|  | set_extent_ordered(&BTRFS_I(inode)->io_tree, file_offset, | 
|  | entry_end(entry) - 1, GFP_NOFS); | 
|  |  | 
|  | spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); | 
|  | list_add_tail(&entry->root_extent_list, | 
|  | &BTRFS_I(inode)->root->fs_info->ordered_extents); | 
|  | spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); | 
|  |  | 
|  | mutex_unlock(&tree->mutex); | 
|  | BUG_ON(node); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a struct btrfs_ordered_sum into the list of checksums to be inserted | 
|  | * when an ordered extent is finished.  If the list covers more than one | 
|  | * ordered extent, it is split across multiples. | 
|  | */ | 
|  | int btrfs_add_ordered_sum(struct inode *inode, | 
|  | struct btrfs_ordered_extent *entry, | 
|  | struct btrfs_ordered_sum *sum) | 
|  | { | 
|  | struct btrfs_ordered_inode_tree *tree; | 
|  |  | 
|  | tree = &BTRFS_I(inode)->ordered_tree; | 
|  | mutex_lock(&tree->mutex); | 
|  | list_add_tail(&sum->list, &entry->list); | 
|  | mutex_unlock(&tree->mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this is used to account for finished IO across a given range | 
|  | * of the file.  The IO should not span ordered extents.  If | 
|  | * a given ordered_extent is completely done, 1 is returned, otherwise | 
|  | * 0. | 
|  | * | 
|  | * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used | 
|  | * to make sure this function only returns 1 once for a given ordered extent. | 
|  | */ | 
|  | int btrfs_dec_test_ordered_pending(struct inode *inode, | 
|  | u64 file_offset, u64 io_size) | 
|  | { | 
|  | struct btrfs_ordered_inode_tree *tree; | 
|  | struct rb_node *node; | 
|  | struct btrfs_ordered_extent *entry; | 
|  | struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | 
|  | int ret; | 
|  |  | 
|  | tree = &BTRFS_I(inode)->ordered_tree; | 
|  | mutex_lock(&tree->mutex); | 
|  | clear_extent_ordered(io_tree, file_offset, file_offset + io_size - 1, | 
|  | GFP_NOFS); | 
|  | node = tree_search(tree, file_offset); | 
|  | if (!node) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); | 
|  | if (!offset_in_entry(entry, file_offset)) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = test_range_bit(io_tree, entry->file_offset, | 
|  | entry->file_offset + entry->len - 1, | 
|  | EXTENT_ORDERED, 0); | 
|  | if (ret == 0) | 
|  | ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); | 
|  | out: | 
|  | mutex_unlock(&tree->mutex); | 
|  | return ret == 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * used to drop a reference on an ordered extent.  This will free | 
|  | * the extent if the last reference is dropped | 
|  | */ | 
|  | int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) | 
|  | { | 
|  | struct list_head *cur; | 
|  | struct btrfs_ordered_sum *sum; | 
|  |  | 
|  | if (atomic_dec_and_test(&entry->refs)) { | 
|  | while (!list_empty(&entry->list)) { | 
|  | cur = entry->list.next; | 
|  | sum = list_entry(cur, struct btrfs_ordered_sum, list); | 
|  | list_del(&sum->list); | 
|  | kfree(sum); | 
|  | } | 
|  | kfree(entry); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * remove an ordered extent from the tree.  No references are dropped | 
|  | * but, anyone waiting on this extent is woken up. | 
|  | */ | 
|  | int btrfs_remove_ordered_extent(struct inode *inode, | 
|  | struct btrfs_ordered_extent *entry) | 
|  | { | 
|  | struct btrfs_ordered_inode_tree *tree; | 
|  | struct rb_node *node; | 
|  |  | 
|  | tree = &BTRFS_I(inode)->ordered_tree; | 
|  | mutex_lock(&tree->mutex); | 
|  | node = &entry->rb_node; | 
|  | rb_erase(node, &tree->tree); | 
|  | tree->last = NULL; | 
|  | set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); | 
|  |  | 
|  | spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); | 
|  | list_del_init(&entry->root_extent_list); | 
|  |  | 
|  | /* | 
|  | * we have no more ordered extents for this inode and | 
|  | * no dirty pages.  We can safely remove it from the | 
|  | * list of ordered extents | 
|  | */ | 
|  | if (RB_EMPTY_ROOT(&tree->tree) && | 
|  | !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { | 
|  | list_del_init(&BTRFS_I(inode)->ordered_operations); | 
|  | } | 
|  | spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); | 
|  |  | 
|  | mutex_unlock(&tree->mutex); | 
|  | wake_up(&entry->wait); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * wait for all the ordered extents in a root.  This is done when balancing | 
|  | * space between drives. | 
|  | */ | 
|  | int btrfs_wait_ordered_extents(struct btrfs_root *root, int nocow_only) | 
|  | { | 
|  | struct list_head splice; | 
|  | struct list_head *cur; | 
|  | struct btrfs_ordered_extent *ordered; | 
|  | struct inode *inode; | 
|  |  | 
|  | INIT_LIST_HEAD(&splice); | 
|  |  | 
|  | spin_lock(&root->fs_info->ordered_extent_lock); | 
|  | list_splice_init(&root->fs_info->ordered_extents, &splice); | 
|  | while (!list_empty(&splice)) { | 
|  | cur = splice.next; | 
|  | ordered = list_entry(cur, struct btrfs_ordered_extent, | 
|  | root_extent_list); | 
|  | if (nocow_only && | 
|  | !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) && | 
|  | !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) { | 
|  | list_move(&ordered->root_extent_list, | 
|  | &root->fs_info->ordered_extents); | 
|  | cond_resched_lock(&root->fs_info->ordered_extent_lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | list_del_init(&ordered->root_extent_list); | 
|  | atomic_inc(&ordered->refs); | 
|  |  | 
|  | /* | 
|  | * the inode may be getting freed (in sys_unlink path). | 
|  | */ | 
|  | inode = igrab(ordered->inode); | 
|  |  | 
|  | spin_unlock(&root->fs_info->ordered_extent_lock); | 
|  |  | 
|  | if (inode) { | 
|  | btrfs_start_ordered_extent(inode, ordered, 1); | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | iput(inode); | 
|  | } else { | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | } | 
|  |  | 
|  | spin_lock(&root->fs_info->ordered_extent_lock); | 
|  | } | 
|  | spin_unlock(&root->fs_info->ordered_extent_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this is used during transaction commit to write all the inodes | 
|  | * added to the ordered operation list.  These files must be fully on | 
|  | * disk before the transaction commits. | 
|  | * | 
|  | * we have two modes here, one is to just start the IO via filemap_flush | 
|  | * and the other is to wait for all the io.  When we wait, we have an | 
|  | * extra check to make sure the ordered operation list really is empty | 
|  | * before we return | 
|  | */ | 
|  | int btrfs_run_ordered_operations(struct btrfs_root *root, int wait) | 
|  | { | 
|  | struct btrfs_inode *btrfs_inode; | 
|  | struct inode *inode; | 
|  | struct list_head splice; | 
|  |  | 
|  | INIT_LIST_HEAD(&splice); | 
|  |  | 
|  | mutex_lock(&root->fs_info->ordered_operations_mutex); | 
|  | spin_lock(&root->fs_info->ordered_extent_lock); | 
|  | again: | 
|  | list_splice_init(&root->fs_info->ordered_operations, &splice); | 
|  |  | 
|  | while (!list_empty(&splice)) { | 
|  | btrfs_inode = list_entry(splice.next, struct btrfs_inode, | 
|  | ordered_operations); | 
|  |  | 
|  | inode = &btrfs_inode->vfs_inode; | 
|  |  | 
|  | list_del_init(&btrfs_inode->ordered_operations); | 
|  |  | 
|  | /* | 
|  | * the inode may be getting freed (in sys_unlink path). | 
|  | */ | 
|  | inode = igrab(inode); | 
|  |  | 
|  | if (!wait && inode) { | 
|  | list_add_tail(&BTRFS_I(inode)->ordered_operations, | 
|  | &root->fs_info->ordered_operations); | 
|  | } | 
|  | spin_unlock(&root->fs_info->ordered_extent_lock); | 
|  |  | 
|  | if (inode) { | 
|  | if (wait) | 
|  | btrfs_wait_ordered_range(inode, 0, (u64)-1); | 
|  | else | 
|  | filemap_flush(inode->i_mapping); | 
|  | iput(inode); | 
|  | } | 
|  |  | 
|  | cond_resched(); | 
|  | spin_lock(&root->fs_info->ordered_extent_lock); | 
|  | } | 
|  | if (wait && !list_empty(&root->fs_info->ordered_operations)) | 
|  | goto again; | 
|  |  | 
|  | spin_unlock(&root->fs_info->ordered_extent_lock); | 
|  | mutex_unlock(&root->fs_info->ordered_operations_mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Used to start IO or wait for a given ordered extent to finish. | 
|  | * | 
|  | * If wait is one, this effectively waits on page writeback for all the pages | 
|  | * in the extent, and it waits on the io completion code to insert | 
|  | * metadata into the btree corresponding to the extent | 
|  | */ | 
|  | void btrfs_start_ordered_extent(struct inode *inode, | 
|  | struct btrfs_ordered_extent *entry, | 
|  | int wait) | 
|  | { | 
|  | u64 start = entry->file_offset; | 
|  | u64 end = start + entry->len - 1; | 
|  |  | 
|  | /* | 
|  | * pages in the range can be dirty, clean or writeback.  We | 
|  | * start IO on any dirty ones so the wait doesn't stall waiting | 
|  | * for pdflush to find them | 
|  | */ | 
|  | btrfs_fdatawrite_range(inode->i_mapping, start, end, WB_SYNC_ALL); | 
|  | if (wait) { | 
|  | wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, | 
|  | &entry->flags)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Used to wait on ordered extents across a large range of bytes. | 
|  | */ | 
|  | int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) | 
|  | { | 
|  | u64 end; | 
|  | u64 orig_end; | 
|  | u64 wait_end; | 
|  | struct btrfs_ordered_extent *ordered; | 
|  |  | 
|  | if (start + len < start) { | 
|  | orig_end = INT_LIMIT(loff_t); | 
|  | } else { | 
|  | orig_end = start + len - 1; | 
|  | if (orig_end > INT_LIMIT(loff_t)) | 
|  | orig_end = INT_LIMIT(loff_t); | 
|  | } | 
|  | wait_end = orig_end; | 
|  | again: | 
|  | /* start IO across the range first to instantiate any delalloc | 
|  | * extents | 
|  | */ | 
|  | btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_ALL); | 
|  |  | 
|  | /* The compression code will leave pages locked but return from | 
|  | * writepage without setting the page writeback.  Starting again | 
|  | * with WB_SYNC_ALL will end up waiting for the IO to actually start. | 
|  | */ | 
|  | btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_ALL); | 
|  |  | 
|  | btrfs_wait_on_page_writeback_range(inode->i_mapping, | 
|  | start >> PAGE_CACHE_SHIFT, | 
|  | orig_end >> PAGE_CACHE_SHIFT); | 
|  |  | 
|  | end = orig_end; | 
|  | while (1) { | 
|  | ordered = btrfs_lookup_first_ordered_extent(inode, end); | 
|  | if (!ordered) | 
|  | break; | 
|  | if (ordered->file_offset > orig_end) { | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | break; | 
|  | } | 
|  | if (ordered->file_offset + ordered->len < start) { | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | break; | 
|  | } | 
|  | btrfs_start_ordered_extent(inode, ordered, 1); | 
|  | end = ordered->file_offset; | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | if (end == 0 || end == start) | 
|  | break; | 
|  | end--; | 
|  | } | 
|  | if (test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end, | 
|  | EXTENT_ORDERED | EXTENT_DELALLOC, 0)) { | 
|  | schedule_timeout(1); | 
|  | goto again; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find an ordered extent corresponding to file_offset.  return NULL if | 
|  | * nothing is found, otherwise take a reference on the extent and return it | 
|  | */ | 
|  | struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, | 
|  | u64 file_offset) | 
|  | { | 
|  | struct btrfs_ordered_inode_tree *tree; | 
|  | struct rb_node *node; | 
|  | struct btrfs_ordered_extent *entry = NULL; | 
|  |  | 
|  | tree = &BTRFS_I(inode)->ordered_tree; | 
|  | mutex_lock(&tree->mutex); | 
|  | node = tree_search(tree, file_offset); | 
|  | if (!node) | 
|  | goto out; | 
|  |  | 
|  | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); | 
|  | if (!offset_in_entry(entry, file_offset)) | 
|  | entry = NULL; | 
|  | if (entry) | 
|  | atomic_inc(&entry->refs); | 
|  | out: | 
|  | mutex_unlock(&tree->mutex); | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * lookup and return any extent before 'file_offset'.  NULL is returned | 
|  | * if none is found | 
|  | */ | 
|  | struct btrfs_ordered_extent * | 
|  | btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) | 
|  | { | 
|  | struct btrfs_ordered_inode_tree *tree; | 
|  | struct rb_node *node; | 
|  | struct btrfs_ordered_extent *entry = NULL; | 
|  |  | 
|  | tree = &BTRFS_I(inode)->ordered_tree; | 
|  | mutex_lock(&tree->mutex); | 
|  | node = tree_search(tree, file_offset); | 
|  | if (!node) | 
|  | goto out; | 
|  |  | 
|  | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); | 
|  | atomic_inc(&entry->refs); | 
|  | out: | 
|  | mutex_unlock(&tree->mutex); | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * After an extent is done, call this to conditionally update the on disk | 
|  | * i_size.  i_size is updated to cover any fully written part of the file. | 
|  | */ | 
|  | int btrfs_ordered_update_i_size(struct inode *inode, | 
|  | struct btrfs_ordered_extent *ordered) | 
|  | { | 
|  | struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; | 
|  | struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | 
|  | u64 disk_i_size; | 
|  | u64 new_i_size; | 
|  | u64 i_size_test; | 
|  | struct rb_node *node; | 
|  | struct btrfs_ordered_extent *test; | 
|  |  | 
|  | mutex_lock(&tree->mutex); | 
|  | disk_i_size = BTRFS_I(inode)->disk_i_size; | 
|  |  | 
|  | /* | 
|  | * if the disk i_size is already at the inode->i_size, or | 
|  | * this ordered extent is inside the disk i_size, we're done | 
|  | */ | 
|  | if (disk_i_size >= inode->i_size || | 
|  | ordered->file_offset + ordered->len <= disk_i_size) { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * we can't update the disk_isize if there are delalloc bytes | 
|  | * between disk_i_size and  this ordered extent | 
|  | */ | 
|  | if (test_range_bit(io_tree, disk_i_size, | 
|  | ordered->file_offset + ordered->len - 1, | 
|  | EXTENT_DELALLOC, 0)) { | 
|  | goto out; | 
|  | } | 
|  | /* | 
|  | * walk backward from this ordered extent to disk_i_size. | 
|  | * if we find an ordered extent then we can't update disk i_size | 
|  | * yet | 
|  | */ | 
|  | node = &ordered->rb_node; | 
|  | while (1) { | 
|  | node = rb_prev(node); | 
|  | if (!node) | 
|  | break; | 
|  | test = rb_entry(node, struct btrfs_ordered_extent, rb_node); | 
|  | if (test->file_offset + test->len <= disk_i_size) | 
|  | break; | 
|  | if (test->file_offset >= inode->i_size) | 
|  | break; | 
|  | if (test->file_offset >= disk_i_size) | 
|  | goto out; | 
|  | } | 
|  | new_i_size = min_t(u64, entry_end(ordered), i_size_read(inode)); | 
|  |  | 
|  | /* | 
|  | * at this point, we know we can safely update i_size to at least | 
|  | * the offset from this ordered extent.  But, we need to | 
|  | * walk forward and see if ios from higher up in the file have | 
|  | * finished. | 
|  | */ | 
|  | node = rb_next(&ordered->rb_node); | 
|  | i_size_test = 0; | 
|  | if (node) { | 
|  | /* | 
|  | * do we have an area where IO might have finished | 
|  | * between our ordered extent and the next one. | 
|  | */ | 
|  | test = rb_entry(node, struct btrfs_ordered_extent, rb_node); | 
|  | if (test->file_offset > entry_end(ordered)) | 
|  | i_size_test = test->file_offset; | 
|  | } else { | 
|  | i_size_test = i_size_read(inode); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * i_size_test is the end of a region after this ordered | 
|  | * extent where there are no ordered extents.  As long as there | 
|  | * are no delalloc bytes in this area, it is safe to update | 
|  | * disk_i_size to the end of the region. | 
|  | */ | 
|  | if (i_size_test > entry_end(ordered) && | 
|  | !test_range_bit(io_tree, entry_end(ordered), i_size_test - 1, | 
|  | EXTENT_DELALLOC, 0)) { | 
|  | new_i_size = min_t(u64, i_size_test, i_size_read(inode)); | 
|  | } | 
|  | BTRFS_I(inode)->disk_i_size = new_i_size; | 
|  | out: | 
|  | mutex_unlock(&tree->mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * search the ordered extents for one corresponding to 'offset' and | 
|  | * try to find a checksum.  This is used because we allow pages to | 
|  | * be reclaimed before their checksum is actually put into the btree | 
|  | */ | 
|  | int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, | 
|  | u32 *sum) | 
|  | { | 
|  | struct btrfs_ordered_sum *ordered_sum; | 
|  | struct btrfs_sector_sum *sector_sums; | 
|  | struct btrfs_ordered_extent *ordered; | 
|  | struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; | 
|  | unsigned long num_sectors; | 
|  | unsigned long i; | 
|  | u32 sectorsize = BTRFS_I(inode)->root->sectorsize; | 
|  | int ret = 1; | 
|  |  | 
|  | ordered = btrfs_lookup_ordered_extent(inode, offset); | 
|  | if (!ordered) | 
|  | return 1; | 
|  |  | 
|  | mutex_lock(&tree->mutex); | 
|  | list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { | 
|  | if (disk_bytenr >= ordered_sum->bytenr) { | 
|  | num_sectors = ordered_sum->len / sectorsize; | 
|  | sector_sums = ordered_sum->sums; | 
|  | for (i = 0; i < num_sectors; i++) { | 
|  | if (sector_sums[i].bytenr == disk_bytenr) { | 
|  | *sum = sector_sums[i].sum; | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | out: | 
|  | mutex_unlock(&tree->mutex); | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * taken from mm/filemap.c because it isn't exported | 
|  | * | 
|  | * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range | 
|  | * @mapping:	address space structure to write | 
|  | * @start:	offset in bytes where the range starts | 
|  | * @end:	offset in bytes where the range ends (inclusive) | 
|  | * @sync_mode:	enable synchronous operation | 
|  | * | 
|  | * Start writeback against all of a mapping's dirty pages that lie | 
|  | * within the byte offsets <start, end> inclusive. | 
|  | * | 
|  | * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as | 
|  | * opposed to a regular memory cleansing writeback.  The difference between | 
|  | * these two operations is that if a dirty page/buffer is encountered, it must | 
|  | * be waited upon, and not just skipped over. | 
|  | */ | 
|  | int btrfs_fdatawrite_range(struct address_space *mapping, loff_t start, | 
|  | loff_t end, int sync_mode) | 
|  | { | 
|  | struct writeback_control wbc = { | 
|  | .sync_mode = sync_mode, | 
|  | .nr_to_write = mapping->nrpages * 2, | 
|  | .range_start = start, | 
|  | .range_end = end, | 
|  | .for_writepages = 1, | 
|  | }; | 
|  | return btrfs_writepages(mapping, &wbc); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * taken from mm/filemap.c because it isn't exported | 
|  | * | 
|  | * wait_on_page_writeback_range - wait for writeback to complete | 
|  | * @mapping:	target address_space | 
|  | * @start:	beginning page index | 
|  | * @end:	ending page index | 
|  | * | 
|  | * Wait for writeback to complete against pages indexed by start->end | 
|  | * inclusive | 
|  | */ | 
|  | int btrfs_wait_on_page_writeback_range(struct address_space *mapping, | 
|  | pgoff_t start, pgoff_t end) | 
|  | { | 
|  | struct pagevec pvec; | 
|  | int nr_pages; | 
|  | int ret = 0; | 
|  | pgoff_t index; | 
|  |  | 
|  | if (end < start) | 
|  | return 0; | 
|  |  | 
|  | pagevec_init(&pvec, 0); | 
|  | index = start; | 
|  | while ((index <= end) && | 
|  | (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, | 
|  | PAGECACHE_TAG_WRITEBACK, | 
|  | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { | 
|  | unsigned i; | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | struct page *page = pvec.pages[i]; | 
|  |  | 
|  | /* until radix tree lookup accepts end_index */ | 
|  | if (page->index > end) | 
|  | continue; | 
|  |  | 
|  | wait_on_page_writeback(page); | 
|  | if (PageError(page)) | 
|  | ret = -EIO; | 
|  | } | 
|  | pagevec_release(&pvec); | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | /* Check for outstanding write errors */ | 
|  | if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) | 
|  | ret = -ENOSPC; | 
|  | if (test_and_clear_bit(AS_EIO, &mapping->flags)) | 
|  | ret = -EIO; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * add a given inode to the list of inodes that must be fully on | 
|  | * disk before a transaction commit finishes. | 
|  | * | 
|  | * This basically gives us the ext3 style data=ordered mode, and it is mostly | 
|  | * used to make sure renamed files are fully on disk. | 
|  | * | 
|  | * It is a noop if the inode is already fully on disk. | 
|  | * | 
|  | * If trans is not null, we'll do a friendly check for a transaction that | 
|  | * is already flushing things and force the IO down ourselves. | 
|  | */ | 
|  | int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct inode *inode) | 
|  | { | 
|  | u64 last_mod; | 
|  |  | 
|  | last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans); | 
|  |  | 
|  | /* | 
|  | * if this file hasn't been changed since the last transaction | 
|  | * commit, we can safely return without doing anything | 
|  | */ | 
|  | if (last_mod < root->fs_info->last_trans_committed) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * the transaction is already committing.  Just start the IO and | 
|  | * don't bother with all of this list nonsense | 
|  | */ | 
|  | if (trans && root->fs_info->running_transaction->blocked) { | 
|  | btrfs_wait_ordered_range(inode, 0, (u64)-1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | spin_lock(&root->fs_info->ordered_extent_lock); | 
|  | if (list_empty(&BTRFS_I(inode)->ordered_operations)) { | 
|  | list_add_tail(&BTRFS_I(inode)->ordered_operations, | 
|  | &root->fs_info->ordered_operations); | 
|  | } | 
|  | spin_unlock(&root->fs_info->ordered_extent_lock); | 
|  |  | 
|  | return 0; | 
|  | } |